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ABSTRACT

Ensembles of generative large language models (LLMs) can integrate the strengths
of different LLMs to compensate for the limitations of individual models. How-
ever, recent work has focused on training an additional fusion model to combine
complete responses from multiple LLMs, failing to tap into their collaborative
potential to generate higher-quality responses. Moreover, as the additional fusion
model is trained on a specialized dataset, these methods struggle with generalizing
to open-domain queries from online users. In this paper, we propose SpecFuse, a
novel ensemble framework that outputs the fused result by iteratively producing
the next segment through collaboration among LLMs. This is achieved through
cyclic execution of its inference and verification components. In each round, the
inference component invokes each base LLM to generate candidate segments in
parallel, and the verify component calls these LLMs again to predict the ranking of
the segments. The top-ranked segment is then broadcast to all LLMs, encouraging
them to generate higher-quality segments in the next round. This approach also al-
lows the base LLMs to be plug-and-play, without any training or adaptation, avoid-
ing generalization limitations. Furthermore, to conserve computational resources,
we propose a model exit mechanism that dynamically excludes models exhibiting
poor performance in previous rounds during each query response. In this way, it
effectively reduces the number of model calls while maintaining overall perfor-
mance. We conduct extensive experiments using ensembles of five LLMs with
different architectures across six benchmarks, covering instruction-response, rea-
soning, commonsense, and instruction-following tasks. The experimental results
demonstrate that SpecFuse consistently enhances performance across all bench-
marks, with RougeL scores improving by +3.1 on the Chinese and +3.0 on the
English human-computer interaction benchmarks. Furthermore, the model exit
mechanism reduces the average models invoked per round from 5 to 2.4, with
only a slight reduction in performance. We will release the code for SpecFuse.

1 INTRODUCTION

Generative large language models (LLMs) (Brown et al., 2020; Yang et al., 2024) have been widely
applied attributed to their impressive performance across various domains, providing efficient sup-
port for a broad range of user needs. These off-the-shelf generative LLMs specialize in different
areas due to differences in training data and model architecture. Therefore, by combining their
strengths, an ensemble of LLMs (Yang et al., 2023) can alleviate the biases and errors of individual
models, delivering a better user experience. Unfortunately, vocabulary discrepancies across differ-
ent LLMs limit the application of traditional logits-based fusion methods (Schapire & Freund, 2013;
Sagi & Rokach, 2018) in the integration of generative LLMs.

Recent research on ensembling generative LLMs can be divided into two categories: post-hoc en-
semble methods and pre-selection ensemble methods. The post-hoc ensemble method (Jiang et al.,
2023b; Lv et al., 2024b) first generates complete responses for a given question by employing all
base LLMs, then integrates these responses through a trained fusion model. The pre-selection en-
semble method (Lu et al., 2023) pre-trains a query routing model that, for a given query, assigns it
to the LLM most likely to generate a high-quality response, using only that LLM for inference.
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However, both methods overlook the potential for LLMs to collaboratively generate higher-quality
responses through mutual inspiration during the inference process. Additionally, as these methods
train an extra fusion model or routing model on specific datasets, they tend to struggle with poor
generalization when faced with open-domain queries from users.

In this paper, we introduce SpecFuse, a novel ensemble framework that leverages mutual inspiration
between LLMs to produce high-quality next segment. Inspired by Speculative Decoding (Leviathan
et al., 2023), SpecFuse achieves this by iteratively executing its two main components: Inference
and Verification. In the inference component, given the preceding context, all base LLMs generate
candidate fragments simultaneously, with a predefined maximum length per round. The verifica-
tion component concatenates each newly generated candidate segment with the preceding context
to form a batch, then feeds it into each LLM to rank the segments by calculating sequence probabil-
ities in parallel. The top-ranked segment is then broadcast to all LLMs, inspiring them to generate
higher-quality segments in the next round. In this process, there is no need to train additional fusion
or routing models, which avoids generalization limitations and allows base LLMs to be effortlessly
plugged in without any adaptation. Furthermore, to reduce computational costs, we propose the
Model Exit mechanism, which dynamically adjusts the softmax temperature based on previous can-
didate rankings, modifying the distribution of cumulative model scores. Models with scores below
a certain threshold will exit the response of current query, freeing up resources for other queries and
reducing overall machine deployment.

We select five high-performing models with 7-9 billion parameters as base LLMs and evaluate our
framework across six benchmarks, covering instruction-response, reasoning, commonsense, and
instruction-following tasks. Experimental results show that SpecFuse consistently enhances perfor-
mance across all benchmarks, with average Rouge (n) scores improving by +3.1 on the English
human-computer interaction benchmarks. Furthermore, the model exit mechanism reduces the av-
erage number of models invoked per round from 5 to 2.4, with only a slight impact on performance.

In summary, our contributions are as follows:

• We propose SpecFuse, a novel ensemble framework that generates fused results by iter-
atively producing the next segment through collaboration among LLMs. Our framework
allows base LLMs to be effortlessly plugged in without any training or adaptation, thus
avoiding generalization limitations.

• We introduce a model exit mechanism that dynamically excludes models with poor perfor-
mance in previous rounds during each query response, maintaining ensemble performance
while reducing computational costs.

• We evaluate our framework on four tasks, including instruction-response and common-
sense, and the results demonstrate that SpecFuse consistently enhances performance across
six benchmarks. Additionally, the model exit mechanism reduces the average number of
models invoked per round by 50%, with only minimal performance loss.

2 METHODOLOGY

In the following sections, we first introduce the overall framework of SpecFuse, followed by a
detailed explanation of its three parts: the Inference component, the Verify component, and the
Model Exit mechanism.

2.1 OVERVIEW

Figure 1 shows an overview of SpecFuse. Given K base LLMs M = {mi}Ki=1 and an input I , for
each round in the generation process, SpecFuse first invokes the Inference component (§ 2.2), where
the base LLMs in M generate candidate segments in parallel. Then, it calls the Verify component
(§ 2.3) to score each candidate segment, selecting the highest-scoring one as the current round
output. Simultaneously, this output is concatenated with the previous input to form the new input I
for the next round. Finally, SpecFuse activates a Model Exit mechanism (§ 2.4), removing models
with low cumulative scores from M. The above three operations are repeated in a loop until the
generated segment contains an end token.
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Figure 1: An overview of SpecFuse, a novel ensemble framework, consisting of three parts: the
Inference component, the Verify component, and the Model Exit mechanism. The blue solid line
represents a single round of the process, while the dashed line shows the process of updating the
models participating in the ensemble and refreshing the Input for the next round. In SpecFuse, the
Inference component and Verify component synchronously update the model list after the Model
Exit mechanism is executed. δ is the threshold, and when the probability drops below it, the model
is excluded from the current generation process.

2.2 INFERENCE COMPONENT

Given a maximum length L for the candidate segments generated at each round, the Inference com-
ponent parallelly invokes each model in M to generate candidate segments {Ci}|M|

i=1 , extending from
input I , and with a length not exceeding L, where |M| denotes the number of models in M. The
probabilities corresponding to each token in the candidate Ci, are averaged to produce the self-score
Si
i of the model mi :

Si
i =

∑L̂i

n=1(x
n
i )

L̂i

(1)

where L̂i represents the actual length of candidate Ci, as the generated candidates may be shorter
than L in the final round. xn

i is the probability obtained by applying Softmax normalization to the
logits output by model mi when generating the n-th token in Ci. Finally, each model’s generated
candidate segment, together with its corresponding self-score, is input into the Verify component.
We include the model’s self-score, as the do-sample1 method used by generative LLMs involves
high randomness and may not yield the model’s best segment. If the model scores other candidates
higher than its own output, it indicates that its generated text is of lower quality.

2.3 VERIFY COMPONENT

The Verify component first concatenates each candidate segment Ci with the Input I , forming the
concatenated text C̄i. These concatenated texts

{
C̄i
}|M|
i=1

are then grouped into a batch, with each
model’s own generated candidate being removed from the batch to reduce computational load. Next,
the Verify component enables all models to compute the probability of each token in the input text
in parallel. Similar to obtaining Si

i, the probabilities of each token in segment Ci predicted by model
mj are averaged to compute the sequence score Sj

i , representing the evaluation of Ci by model mj .

1https://huggingface.co/docs/transformers/generation_strategies
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For each candidate Ci, its self-score and the scores from other models are averaged to obtain its
quality score, denoted as S̃i:

S̃i =

∑|M|
j=1 S

j
i

|M|
(2)

Finally, the candidate segment with the highest quality score is selected as the output presented to
users for the current round.

In the implementation process, we use key-values cache to reduce redundant computations of previ-
ous text in both the verification and inference stages, improving the inference speed in each round.
Collaborating between the inference and verification components to generate the next segment not
only alleviates low-quality responses caused by a single model’s unfamiliarity with the user’s ques-
tion but also reduces instability from sampling during generation. Furthermore, incorporating the
best candidate segment as input for the next round can stimulate other models, and throughout the
multi-round generation process, models can continuously inspire one another, ultimately leading to
higher-quality responses.

2.4 MODEL EXIT MECHANISM

While model ensembles can provide users with more stable and higher-quality responses, they also
come with increased computational resource demands and costs. To reduce the computational over-
head without compromising performance, we propose a Model Exit mechanism. The motivation for
this approach stems from our observation that, when responding to a query, some models’ output
segments rarely rank first. This indicates that these models are not well-suited for responding to the
given query, making further computational investment in them inefficient. We use the cumulative
scores from previous rounds of each model as prior estimates of quality in subsequent rounds to de-
termine whether a model should be exited. Since the number of rounds varies for different queries,
a fixed threshold cannot be used for exit decisions. Therefore, we apply the softmax function to nor-
malize the scores and set a temperature coefficient of

√
T (T being the current round). We choose√

T as the temperature coefficient because the number of output rounds rarely exceeds 100. By
using

√
T , we effectively limit the cumulative scores to under 10, preventing extreme values from

dominating. Additionally, we analyze the distribution of the best candidate segments. When these
segments belong to only a few models, other models can be exited. By combining the tempera-
ture coefficient with the best segment distribution, the softmax scores more accurately reflect model
performance, allowing underperforming models to exit promptly.

Specifically, we use Qi =
∑T

t=1S̃t
i to represent the cumulative quality score of the candidate seg-

ments generated by model mi from the first step to the current T -th step. Next, we count the number
of times each model ranked first in previous steps and weighted them based on the step intervals
from the current step: within 4 steps by 1, 4 to 8 steps by 3/4, 8 to 12 steps by 1/2, and beyond 12
steps by 1/4, resulting in a weighted count ri for each model mi. We introduced positional weights
when calculating ri to prioritize recent steps, since models that perform well only in distant steps are
less relevant to future responses. The ri is then normalized to create a distribution Pr = {r̃i}|M|

i=1 ,
where r̃i is calculated as follows:

r̃i =
ri∑|M|
j=1rj

(3)

Next, we use entropy to measure the uncertainty of the distribution, where for an n-model distribu-
tion, the entropy ranges from [0, log n]. To facilitate further processing, we normalize the entropy
by dividing it by log n, resulting in a value range of [0, 1], and obtain H:

H =
−
∑n

i=1 r̃i log r̃i
log n

(4)

We can see that lower entropy H indicates less uncertainty in the distribution Pr, where r̃ values
are large for a few models and nearly zero for others, suggesting that some models may be dis-
carded. Subsequently, we normalize the cumulative quality score Q using the Softmax function and
adjust the temperature coefficient based on H to control output sharpness, combining both factors
to evaluate the likelihood p of a model generating the best candidates in future steps:

pi =
exp(Qi/max(1, (H×

√
T )))∑

j exp(Qj/max(1, (H×
√
T )))

(5)
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The reason for using max(1, ·) is to prevent overly sharp distributions in the early steps of inference
when H ×

√
T is less than 1, which could lead to mistakenly discarding some models. Finally, we

set the threshold value as:
δ = λ× 1

n
(6)

where λ is an coefficient and based on experiments on the validation set, we use λ as 0.5. If pi is
less than δ, it will be removed from M and excluded from the current query response.

3 EXPERIMENTS

3.1 SETUPS

Evaluation datasets. We evaluate all the models on six datasets that represent different core capa-
bilities of LLMs, open-domain instruction-response (IR), commonsense, reasoning and instruction
following.

• Open-domain IR: We evaluate the model’s open-domain instruction-response capability
using both English and Chinese human-computer interaction datasets. For the English
dataset, we choose the Alpaca-gpt4 (Peng et al., 2023) and Dolly-15k (Conover et al.,
2023) datasets for evaluation, both of which have inputs that consist of human instructions.
For the Chinese dataset, we utilize the Human-Value and Ruozb datasets from the COIG-
CQIA (Bai et al., 2024) benchmark for testing. A detailed description of the dataset can be
found in Appendix A.

• Commonsense: We use the MMLU (Hendrycks et al., 2021), which covers 57subjects
across STEM, and the ARC-C (Clark et al., 2018), which includes questions from science
exams for grades 3 to 9, to assess the model’s commonsense abilities.

• Reasoning: To evaluate the model’s reasoning abilities, GSM8K (Cobbe et al., 2021) a
dataset of high-quality, linguistically diverse grade school math word problems is used.

• Instruction following: To evaluate the model’s instruction-following capability, we uti-
lize IFEval (Zhou et al., 2023), a method specifically designed to assess how proficiently
language models follow instructions.

Base LLMs. In our experiment, we chose the top-performing open-source models with parameter
sizes ranging from 7 to 9 billion as the base LLMs for our ensemble framework including Llama-3-
8B (AI@Meta, 2024), Mistral-7B-v0.3 (Jiang et al., 2023a), Qwen2-7B (Yang et al., 2024), Glm-4-
9b (GLM et al., 2024), and Gemma-2-9b (Gemma et al., 2024).

Evaluation metrics. We use a variety of metrics for different tasks, following the test scripts from
the Openllm leaderboard. To assess the quality of human question-answering, we apply BARTScore
(Bart-S) (Yuan et al., 2021), BERTScore (Bert-S) (Zhang et al., 2019), GPT4-Rank (GPT4-R) (Ope-
nAI et al., 2024), BLEU (Papineni et al., 2002), and ROUGE (R-n) (Lin, 2004). For multiple-choice
tasks such as MMLU and ARC-C, we select the option with the highest likelihood to calculate
accuracy (Acc). For the reasoning dataset GSM8K, we evaluate exact match (EM) accuracy. For
IFEVAL, we rely on the evaluation files provided by the dataset creators (Zhou et al., 2023), testing
under prompt-strict, instruction-strict, prompt-loose, and instruction-loose conditions. A detailed
explanation of the evaluation methods is provided in Appendix B.

Baselines. Since our approach has not undergone any additional training, we selecte several types
of untrained baseline models for comparison with our method: (1) Larger LLMs, including Mixtral-
8x7B-v0.1 (Jiang et al., 2023a), Qwen2-72B (Yang et al., 2024), and Llama-3-70B (AI@Meta,
2024). (2) PairRank: an English reward model introduced in the LLM-Blender (Jiang et al., 2023b),
which compares candidate results generated by different LLMs and selects the best candidate as the
ensemble output. (3) Minimum Bayes Risk (MBR) (Freitag et al., 2023): selects the answer with
the highest lexical similarity to other candidate answers. In this paper, we use the SimCSE (Gao
et al., 2022) model to calculate the similarity between candidate responses. (4) Generation Fusion
(GF) (Jiang et al., 2023b): uses the outputs of other models as context, passing them to a new
model, which generates a response based on this context. (5) Majority Voting: each model provides
a choice, and the final result is determined by the option with the most votes.
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Implement details. As the methods in this paper are not trained, we only provide the parameter
settings for inference. All models in this study are loaded with bfloat16 precision for inference and
use the following generation parameters: do sample = True, temperature = 0.6, and top p =
0.9. All of our experiments are conducted on A100 GPUs, and set the maximum length of candidate
segments to 10.

3.2 MAIN RESULTS

Model Rouge1↑ Rouge2↑ RougeL↑ BLEU↑ Bart-S↑ Bert-S↑ GPT4-R↓
Base LLMs

Llama-3-8B 25.1622 9.7688 23.3102 3.5669 -2.9837 69.9865 9.0850
Glm-4-9B 25.8456 10.2618 23.8950 3.4774 -2.9608 70.5125 8.7993
Qwen2-7B 26.6179 10.8107∗ 24.4886 3.8603 -2.9380 71.4384 8.1443

Gemma-2-9B 25.3130 10.0080 23.5932 4.1933 -2.9282∗ 71.5234 8.6027
Mistral-7B 27.7450∗ 10.7520 25.5678∗ 4.8154∗ -2.9368 71.8773∗ 7.5093∗

Larger LLMs
Llama-3-70B 26.7744 10.8736 24.5639 4.0981 -2.8376 70.9799 5.2153
Qwen2-72B 27.2580 11.2312 25.1139 4.2896 -2.7601 71.7302 4.1950

Mixtral-8x7B 29.0371 12.2504 26.7546 4.0820 -2.8131 72.1949 3.9461
Ensemble Base LLMs

GF (Qwen2) 23.0829 8.9201 21.2768 3.1881 -2.9513 69.7043 9.6143
GF (Gemma-2) 21.8077 7.6626 20.0847 3.0041 -3.0178 68.1968 9.7543

GF (Mistral) 24.9248 9.5800 22.9664 3.9242 -2.9263 70.3801 8.2710
MBR 27.1221 10.4025 25.3322 4.5642 -2.8912 71.6312 7.5003

PairRank 28.2055 10.8611 25.9361 4.9900 -2.8637 72.0871 6.7073
SpecFuse 30.6664 13.7367 28.3507 5.2799 -2.8653 72.8354 3.8290

SpecFuse (w/o ET) 30.8566 14.0015 28.5648 5.5113 -2.8801 72.8901 3.8227

Table 1: Performance on the English Open-Domain Instruction-Response benchmark, with the best
result for each metric highlighted in bold and an ∗ indicating the highest result among base LLMs.
The upward arrow indicates that a higher value for the metric is better, while the downward arrow
indicates that a lower value is better. All ensemble methods in the table integrate all base LLMs,
with GF (Qwen2) using the outputs of the other base LLMs as context to generate the fused result
through Qwen2-7B.

Open-Domain Instruction-Response Tasks. We evaluate the performance of our ensemble
framework in responding to user queries on both English and Chinese benchmarks and compare
it with single LLMs and other ensemble methods. The test results on the English benchmark are
shown in Table 1. The experimental results demonstrate that by integrating base LLMs, SpecFuse
surpasses all base LLMs and previous ensemble methods across all metrics, with an average im-
provement of more than 3 points in the Rouge (n) scores, while also achieving the highest overall
ranking in the GPT4-Rank metric, which the responses of all models in the table using GPT-42.
Compared to large models with over 70B parameters, our method is competitive across most metrics.
This suggests that in open-domain scenarios with uneven instruction difficulty, SpecFuse provides
more stable output by integrating the advantage of multiple base LLMs, achieving response quality
comparable to larger models while significantly lowering deployment costs and complexity. Previ-
ous generation fusion methods, such as GF (Glm-4), exhibit poor integration performance without
additional training, and in some metrics, their performance is even worse than that of the individ-
ual models. Furthermore, as shown in Table 2, the results on the Chinese benchmark are similar
to those on the English benchmark, with SpecFuse outperforming previous ensemble methods and
base LLMs across all metrics, demonstrating that its effectiveness is not constrained by language
and highlighting its strong generalization ability.

2https://openai.com/index/gpt-4/
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Model Rouge1↑ Rouge2↑ RougeL↑ BLEU↑ Bart-S↑ Bert-S↑ GPT4-R↓
Base LLMs

Gemma-2-9B 29.1486 7.6523 18.3456 3.3647 -4.2845∗ 68.7312 8.5471
Qwen2-7B 29.9296 8.0901 20.0345 3.6181 -4.3271 69.9989 6.5122
Mistral-7B 30.9890∗ 8.6498 20.6568∗ 4.4205 -4.4800 70.1000 6.6230
Glm-4-9B 30.8761 8.7092∗ 20.4193 4.4674∗ -4.3018 70.2452∗ 5.2068∗

Larger LLMs
Llama-3-70B 27.7816 7.0486 20.2227 4.1399 -4.5517 68.5211 7.4415
Qwen2-72B 31.4356 8.9688 22.4781 4.8838 -4.3368 70.6480 3.4485

Ensemble Base LLMs
GF (Qwen2) 28.6936 7.8675 18.9339 3.3169 -4.4105 69.8126 8.3508
GF (Mistral) 30.2933 8.1220 20.3324 3.8817 -4.5356 70.0437 7.1736
GF (Glm-4) 30.2643 8.6996 20.5103 4.2722 -4.3316 70.2348 5.5864

MBR 30.9335 8.7132 20.6322 4.3149 -4.3060 70.2266 4.9921
SpecFuse 31.8931 9.3475 23.5114 4.6383 -4.2596 70.5199 3.7077

SpecFuse(w/o ET) 32.3152 9.4461 23.7639 4.7074 -4.2759 70.5662 3.4023

Table 2: Performance on the Chinese Open-Domain Instruction-Response benchmark.

Model
MMLU ARC-C GSM8K IFEVEL

(5-shot) (5-shot) (3-shot) prompt-avg instruct-avg
Base LLMs

Qwen2-7B 68.2310 84.7269 74.2229 41.6985 53.8841
Glm-4-9B 67.1627 85.1535 71.7968 56.0114 67.1393

Gemma-2-9B 71.5079 88.1399 77.2555 61.6408 72.2564
Ensemble Base LLMs

Majority-Voting 71.7850 88.3785 77.2927 – –
MBR – – 76.9832 54.9618 66.2145

SpecFuse (Qwen2+GLM4) 70.7316 87.5372 75.4359 51.1450 63.0703
SpecFuse (Qwen2+Gemma2) 72.1837 88.3959 78.6960 56.0114 67.3859
SpecFuse (GLM4+Gemma2) 71.8203 88.7372 75.8150 66.8894 75.5241

SpecFuse (All) 73.0117 89.0784 77.4071 62.1107 71.5573

Table 3: Performance on commonsense, reasoning, and instruction-following tasks. For the IFE-
VAL task, we average the prompt-strict and prompt-loose results to obtain prompt-avg and apply the
same approach to calculate instruction-avg.

Commonsense, Reasoning, and Instruction-Following Tasks. To investigate the performance of
SpecFuse on commonsense, reasoning, and instruction-following tasks, we select three base LLMs
with different task specializations and conduct experiments on four benchmarks. As shown in Ta-
ble 3, SpecFuse (All) outperforms previous ensemble methods across all four benchmarks and is
not constrained by the task format. Additionally, by integrating different combinations of base
LLMs with SpecFuse, we observe the following: (1) When the performance gap between base
LLMs is not very large, SpecFuse delivers the most significant overall improvement, with SpecFuse
(Qwen2+GLM4) achieving gains of +2.5 on MMLU and +2.4 on ARC-C by leveraging the re-
spective strengths of Qwen2-7B and GLM-4-9B. (2) When the performance gap is large, integrating
three LLMs yields more stable results compared to two. For instance, in the IFEVAL benchmark,
Qwen2-7B lags 20 points behind Gemma-2-9B on average, and after integration, the performance
improves by 15 points compared to Qwen2-7B but decreases by 5 points compared to Gemma-2-9B.
Adding GLM-4-9B to the ensemble brings the performance becomes roughly the same as Gemma-2-
9B, illustrating that relying on a single strong model in an ensemble system is insufficient. Frequent
updates or the addition of new models are necessary, as the rapid evolution of large models quickly
makes previous SOTA LLMs obsolete, showcasing the plug-and-play advantage of our framework.
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(a) Open-domain Instruction-response (English) (b) Open-domain Instruction-response (Chinese)

Figure 2: In the test sets of the Open-Domain IR English benchmark and the Chinese benchmark,
the percentage of iterations where each model generates the best candidate segment out of the total
iterations in the ensemble framework during testing is measured.

4 ANALYSIS

In this section, we first conduct ablation studies to analyze the significance of the model exit mech-
anism in our approach, followed by an analysis of the maximum candidate segment length, the
number of base LLMs, and latency. Additionally, the case study is described in Appendix C.

Ablation On Model Exit Mechanism. We conduct an ablation study of the Model Exit (ET)
mechanism on the Instruction-Response English benchmark test set, using five base LLMs. As
shown in Table 4, SpecFuse (τ = 1) results in the fewest model invocations but suffers from sig-
nificant performance loss. This occurs because, as iterations increase, the cumulative model scores
grow larger, causing the softmax function to produce a sharper distribution. Consequently, models
with slightly lower scores are prematurely eliminated from the response, which negatively impacts
the overall performance of the ensemble. SpecFuse (τ =

√
T ) sets the temperature coefficient

to
√
T , which makes the softmax function overly smooth. As a result, it takes many iterations to

accumulate substantial score differences between models before the lower-scoring models exit the
current response, leading to delayed exits and an excessive number of model invocations overall.
The ET mechanism, with dynamic temperature scaling, adjusts the temperature coefficient based
on the distribution of the best candidate from previous rounds, ensuring timely model exits. As
shown in Figure 2, the proportion of best candidate generations for each LLM changes only slightly
with or without ET, indicating that the mechanism primarily eliminates LLMs with low selection
probability, minimizing its impact on overall performance while reducing the number of base LLMs
invocations.

Model Bert-S BLEU RougeL AMIR
SpecFuse (w/o ET) 72.8901 5.5113 28.5648 5.0000
SpecFuse (τ = 1) 71.7362 4.2908 25.1196 2.0268

SpecFuse (τ =
√
T ) 72.8105 5.3863 28.2746 4.1996

SpecFuse 72.8354 5.2799 28.3507 2.4168

Table 4: Ablation study of the Model Exit mechanism. SpecFuse (τ = 1) indicates that the Model
Exit Mechanism is used but without dynamic temperature scaling, with the temperature fixed at 1,
and (τ =

√
T ) indicates the temperature is fixed at

√
T , where T refers to the current iteration of

SpecFuse. AMIR refers to the average number of models invoked per iteration.

Analysis of the Maximum Length of Candidate Segments. To explore the impact of different
maximum generation lengths of candidate segments on the performance of the SpecFuse frame-
work, we conducted tests on the English open-domain IR development set. As shown in Figure 3,
the BertScore initially rises with increasing maximum length, reaching its highest point at a length

8
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of 10, after which it begins to decline. When the candidate segment length is too short, it contains
insufficient information, affecting the verification component’s judgment and making it difficult for
models to effectively inspire one another. On the other hand, if the length is too long, the reduced
frequency of cross-model interaction leads to less effective knowledge fusion, ultimately diminish-
ing the quality of the final output. Additionally, we observe that as the candidate segment length
increases, the first-token latency also increases, but since the total output length does not change
significantly, the overall number of system iterations decreases, resulting in more tokens generated
per second on average. Based on these observations, we conclude that setting the maximum candi-
date segment length to 10 during model inference provides the best generation quality, while starting
with a shorter length allows users to receive quicker feedback.
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Figure 3: The variation trends of SpecFuse’s BertScore, first-token latency, and tokens generated
per second as the maximum generation length of each candidate segment changes.

Analysis of the Number of Base LLMs. We test the variation in SpecFuse’s performance as the
number of base LLMs increases on the test set of the Open-Domain Instruction-Response English
benchmark. As shown in Figure 4, the performance of SpecFuse consistently improves as the num-
ber of integrated base LLMs increases. When stronger models are introduced, the improvements are
substantial, while adding weaker models results in moderate enhancements. This reveals that even
weaker models contribute to overall system performance by integrating their strengths, highlighting
the advantage of our framework in seamlessly incorporating new LLMs without the need for any
training or adaptation.

R
ou
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L
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e

Figure 4: The variation in SpecFuse’s RougeL score as the
number of base LLMs increases.

Model FTL/s PTL/s
Llama-3-8B 0.3491 0.0231
Glm-4-9B 0.5500 0.0362
Qwen2-7B 0.3551 0.0258

Gemma-2-9B 0.3872 0.0497
Mistral-7B 0.3720 0.0278

GF (Qwen2) 5.3347 0.0801
GF (Gemma-2) 4.0994 0.0924

GF (Mistral) 5.3890 0.0824
MBR 7.1975 0.0720

SpecFuse 1.2883 0.0765

Table 5: Results of the infer-
ence latency comparison experi-
ment. FTL refers to first-token la-
tency, and PTL refers to the per to-
ken latency. The generated length
is fixed at 100 tokens.

Analysis of Latency. Since the time users wait for the system to generate the first token (FTL),
as well as the average time per token (PTL), significantly affects the user experience, we conduct

9
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experiments on the Open-Domain IR English benchmark to compare the first-token latency and the
average latency per generated token with other methods. We select 200 queries from the develop-
ment set and instruct the models to generate responses of 100 tokens each. The maximum length of
the candidate segments is set to 10. We can see from Table 5 that in previous ensemble methods,
the first-token latency remains around 5 seconds for a response limited to 100 tokens, and this time
doubles as the response length increases to 200 tokens, significantly reducing the user experience
due to the prolonged waiting time. Compared to them, SpecFuse reduces the first-token latency by
3 to 6 times and can further decrease it by adjusting the maximum length of the candidate segments
generated in the first round. For PTL, SpecFuse also consumes less time compared to generation
fusion methods, generating more tokens per second. Additionally, since it takes approximately 0.2
seconds for a human to read each token, these models can meet the reading requirements of users.
However, the acceptable FTL for users is typically 1-2 seconds, and previous methods frequently
encounter the issue of excessively high FTL during online user interactions. In contrast, our model
meets this requirement while delivering better ensemble performance.

5 RELATED WORK

Post-hoc ensemble. The basic idea of the post-hoc ensemble (Jiang et al., 2023b; Lv et al., 2024a)
method is that all base large models first generate complete responses independently for a given
question, and then these responses are fused to produce the final ensemble response. Jiang et al.
(2023b) trained a reward model, PairRank, to compare pairs of candidate results generated by multi-
ple LLMs, selecting the highest-quality candidate as the ensemble output. As these selection-based
methods may restrict the ability to fully utilize each candidate’s strengths, Jiang et al. (2023b) pro-
posed LLM-Blender, which first ranks the candidates using PairRank and then uses a trained fusion
model to take the top few candidates as context to generate a fused output. Subsequently, Lv et al.
(2024b) proposed the URG ensemble method, an end-to-end framework that first ranks responses,
selects the top few candidates as context, and then generates a new response.

Pre-selection ensemble. The pre-selection ensemble methods (Lu et al., 2023; Wang et al., 2024;
Shnitzer et al., 2023) test base models on a dataset, maps each question to its best-performing model,
and then train a routing model using this mapping data to classify future questions to the most
proficient model. Lu et al. (2023) trained a reward model that scores the given query and routes it
to the highest-scoring model, inferring from that model alone. Similarly, Wang et al. (2024) trained
a model called Frugal using expert LLM outputs on training data, and during inference, it obtains
encoded vectors from all LLMs for a given query, which are then fed into Frugal to select one expert
LLM that produces the final prediction.

However, these two methods focus on either selecting a single LLM’s response or merging the com-
plete responses from LLMs, resulting in overlooking the potential for mutual inspiration among
LLMs to collaboratively generate higher-quality responses during inference. Additionally, due to
the need for training an additional fusion or routing model on specific datasets, these methods tend
to struggle with poor generalization when handling open-domain queries from users. In contrast, our
SpecFuse framework generates fused results by iteratively producing the next segment through col-
laboration among LLMs, which supports easy plug-and-play integration of LLMs without requiring
any training, thereby avoiding generalization issues.

6 CONCLUSION

In this paper, we introduce SpecFuse, a novel ensemble framework that generates fused outputs by
iteratively producing the next segment through collaboration among LLMs, allowing base LLMs
to be seamlessly integrated without any training or adaptation. Additionally, SpecFuse employs a
model exit mechanism that dynamically excludes underperforming models in previous rounds dur-
ing query responses, reducing computational costs. Experimental results across six benchmarks
demonstrate that SpecFuse consistently delivers more stable performance compared to single LLMs
and previous ensemble methods. We hope our work inspires further research on online model en-
semble, improving the quality of responses delivered to users based on existing LLMs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Yuelin Bai, Xinrun Du, Yiming Liang, Yonggang Jin, Ziqiang Liu, Junting Zhou, Tianyu Zheng,
Xincheng Zhang, Nuo Ma, Zekun Wang, et al. Coig-cqia: Quality is all you need for chinese
instruction fine-tuning, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/
12/dolly-first-open-commercially-viable-instruction-tuned-llm.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Markus Freitag, Behrooz Ghorbani, and Patrick Fernandes. Epsilon sampling rocks: Inves-
tigating sampling strategies for minimum Bayes risk decoding for machine translation. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 9198–9209, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.617. URL https:
//aclanthology.org/2023.findings-emnlp.617.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings, 2022. URL https://arxiv.org/abs/2104.08821.

Team Gemma, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
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A DATASET DETAILS

The following provides a detailed description of the evaluation of instruction-response capability
using the datasets.

For the English dataset, we choose the Alpaca-gpt4 (Peng et al., 2023) and Dolly-15k (Conover
et al., 2023) datasets for evaluation, both of which have inputs that consist of human instructions.
We select these two datasets because their response sources differ: the Dolly-15k dataset features
human-provided responses, while the Alpaca-GPT-4 dataset contains responses generated by the
state-of-the-art GPT-4 (OpenAI et al., 2024) model, which provides neutral answers to each question
and can refuse to answer inappropriate or harmful ones. Using both types of responses for scoring
allows us to more thoroughly compare the advantages of our ensemble system. Additionally, due
to the large size of these datasets, we randomly sample portions from each to create a new test
set. From the Dolly-15k dataset, we randomly select 1,500 open-QA samples for testing, with 500
reserved for the development set. In the Alpaca-GPT-4 dataset, after shuffling the data, we manually
verify the correctness of GPT-4’s responses and select 2,000 validated samples, with 1,500 used for
testing and 500 for validation.

For the Chinese dataset, we utilize the Human-Value and Ruozb datasets from the COIG-CQIA (Bai
et al., 2024) benchmark for testing. The instructions in these two datasets consist of human-posed
questions, with answers provided either by humans or generated by GPT-4. The COIA authors
manually review and filter the responses, retaining only the correct answers generated by GPT-4.

B EVALUATION METHODS

To evaluate the quality of our framework’s responses to human questions in the dataset, a range of
metrics assessing model generation capabilities are selected for the following experiments.

• BLEU (B-n) (Papineni et al., 2002) and ROUGE (R-n) (Lin, 2004) compare a generated
response with a reference by calculating n-gram overlap. For the Chinese results, we use
Jieba3 to split the text into words before calculating these two scores.

• BERTScore Zhang et al. (2019) (comprising Precision, Recall, and F1-score) measures the
similarity between two texts based on the contextualized embedding from BERT (Devlin
et al., 2019). In this paper, we report the F1 score of BERTScore.

• BARTScore (Yuan et al., 2021) is a unified evaluator which evaluates with the average
likelihood of the pretrained encoder-decoder model, BART (Lewis et al., 2019). It can
predict different scores depending on the formats of the source and target.

• The GPT4-Rank evaluation utilizes the GPT-44 model to compare two different responses
against a ground-truth response. The model will select the better of the two responses.

3https://pypi.org/project/jieba/
4The version we use is GPT-4-turbo, and the link is https://openai.com/index/gpt-4/
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For each test sample, we pair the responses generated by different models and have GPT-4
determine which one is superior. Since the MBR and PairRank methods do not generate
new responses, we do not re-rank the responses they select from the base LLMs. Instead,
we use the average rankings of the responses they select from the base LLMs to represent
their GPT4-Rank. Once all comparisons are complete, we count the number of wins for
each model. Based on these win counts, we rank the responses from the different models.
The average ranking of each model across all data in the dataset is the value reported in our
table. The evaluation instructions for GPT-4 are shown in Table 6.

Template

Instruction:
${instruction}

Ground-Truth Response:
${Truth response}

Model A:
${A response}

Model B:
${B response}

Given the User’s Instruction and Ground-Truth response above, please compare the two Model’s responses.
You only have 2 choices to output:
If you think A is better, please output: 1. A is better
If you think B is better, please output: 2. B is better
Output your choice below:

Comparison Option
1. A is better
2. B is better

Table 6: The template used for GPT-4 compares two models’ responses.

C CASE STUDY

Table 5 presents a case from the SpecFuse workflow where the user’s request is “Write a simile to
describe a person who is hard-working.” The reasoning process goes through four iterations, and the
Verify model’s selection of the best candidate is not always from the same model. In the first round,
the best candidate is generated by Qwen2. In the second round, Mistral, after receiving Qwen2’s
output from the previous round, is inspired and generates a response that better meets the user’s
needs, as using “farmer” to describe a hard-working person is inappropriate. Additionally, the table
shows that through mutual inspiration between models, the final response more closely matches the
user’s expectations, thereby improving the overall quality of the reply.
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User instruction: Write a simile to describe a person who is hard-working.

Input for each round Qwen2 Generation Mistral Generation Glm-4 Generation Best Candidate

Round 1:

Write a simile to describe a person who is 

hard-working.

A person who is hard-

working is like a determined

This person is as dedicated 

to their work as

A hard-working person 

is like a well 

A person who is hard-

working is like a 

determined

Round 2:

Write a simile to describe a person who is 

hard-working. A person who is hard-

working is like a determined

farmer, tirelessly cultivating 
the land and nurturing their 

crops

river, steadily carving its 
path through the

horse pulling a heavy 
cart through a long 

journey.
river, steadily carving its 

path through the

Round 3:

Write a simile to describe a person who is 

hard-working. A person who is hard-

working is like a determined river, steadily 

carving its path through the
rockiest of landscapes. 

<|im_end|> mountains.</s>

rocks and obstacles in 
its way, never giving up

rocks and obstacles in its 
way, never giving up

Round 4:

Write a simile to describe a person who is 

hard-working. A person who is hard-

working is like a determined river, steadily 

carving its path through the rocks and 

obstacles in its way, never giving up
until it reaches the sea.

until it reaches its 

destination.</s> . <|user|> until it reaches its 

destination.

Overall Output: A person who is hard-working is like a determined river, steadily carving its path through the rocks and obstacles in its 

way, never giving up until it reaches its destination.

Figure 5: Case study of SpecFuse integrating the base LLMs Qwen2, Mistral, and GLM-4. The Best
Candidate is the top-ranked option determined by the verify component and is directly presented to
the user. < |im end| >, < /s >, and < |user| > are special end tokens for the three base LLMs,
and generation halts when the best candidate includes any of these end tokens.
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