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Abstract

Direct Preference Optimization (DPO) often001
struggles with long-chain mathematical reason-002
ing. Existing approaches, such as Step-DPO,003
typically improve this by focusing on the first004
erroneous step in the reasoning chain. How-005
ever, they overlook all other steps and rely006
heavily on humans or GPT-4 to identify erro-007
neous steps. To address these issues, we pro-008
pose Full-Step-DPO, a novel DPO framework009
tailored for mathematical reasoning. Instead010
of optimizing only the first erroneous step, it011
leverages step-wise rewards from the entire rea-012
soning chain. This is achieved by training a013
self-supervised process reward model, which014
automatically scores each step, providing re-015
wards while avoiding reliance on external sig-016
nals. Furthermore, we introduce a novel step-017
wise DPO loss, which dynamically updates018
gradients based on these step-wise rewards.019
This endows stronger reasoning capabilities020
to language models. Extensive evaluations on021
both in-domain and out-of-domain mathemati-022
cal reasoning benchmarks across various base023
language models, demonstrate that Full-Step-024
DPO achieves superior performance compared025
to state-of-the-art baselines 1.026

1 Introduction027

Large Language Models (LLMs) have attracted028

massive interest due to their remarkable capabilities029

across various tasks (Kaddour et al., 2023; Song030

et al., 2023; Wang et al., 2023a; Zheng et al., 2024;031

Wang et al., 2023b). However, they commonly032

encounter difficulties when tackling complex and033

symbolic multi-step reasoning, particularly in math-034

ematical problem reasoning (Lightman et al., 2023;035

Huang et al., 2023). To improve the mathematical036

reasoning ability, some studies use Direct Prefer-037

ence Optimization (DPO) (Rafailov et al., 2024)038

1Our code, data, and models are available at https://
github.com/anonymous.
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Figure 1: Comparison between DPO, Step-DPO, and
our Full-Step-DPO. DPO operates on solution-wise
preference data. Step-DPO advances to step-wise data
but optimizes only a single step. Full-Step-DPO opti-
mizes all steps with a novel step-wise DPO loss, effec-
tively enhancing the model’s reasoning capability.

with solution-wise preference data but find its ben- 039

efit limited (Pal et al., 2024; Xu et al., 2024; Jiao 040

et al., 2024). Recent works attribute this limitation 041

to DPO’s inability to perform process supervision 042

and instead builds preference data based on rea- 043

soning steps rather than entire solutions (Lai et al., 044

2024; Chen et al., 2024; Xie et al., 2024a; Lu et al., 045

2024). For example, Step-DPO (Lai et al., 2024) 046

focuses on optimizing only the first erroneous step 047

in the reasoning chain, demonstrating notable im- 048

provements. 049

However, despite their improvements, these 050

existing methods face the following limitations: 051

(1) Some focus solely on the first erroneous step 052

and ignore all other useful steps in the reasoning 053

chain (Lai et al., 2024), as shown in Figure 1. 054
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As a result, they fail to fully optimize the rea-055

soning chains, leading to suboptimal performance.056

(2) Their loss function still follows the early vanilla057

DPO in a solution-wise approach (Lu et al., 2024;058

Xie et al., 2024a). Consequently, it cannot directly059

leverage rewards in a step-wise fashion for learn-060

ing. (3) They heavily rely on costly and resource-061

intensive annotations from GPT-4 or humans to062

detect erroneous steps (Lai et al., 2024; Lightman063

et al., 2023), significantly limiting their practicality.064

To address the above limitations, we propose065

Full-Step-DPO, a novel DPO framework for math-066

ematical reasoning. As illustrated in Figure 1, un-067

like vanilla DPO, which operates solution-wise, or068

Step-DPO, which focuses solely on the first erro-069

neous step, Full-Step-DPO utilizes each step in the070

entire reasoning chain and optimizes them using071

step-wise rewards. We first train a Process Reward072

Model (PRM) (Lightman et al., 2023; Wang et al.,073

2023c) in a self-supervised way, utilizing data gen-074

erated by the model itself. This approach enables075

the PRM to automatically score each step in the rea-076

soning chain, eliminating the reliance on external077

annotations such as GPT-4 or humans. Then, we078

propose a novel Step-wise DPO Loss, which em-079

ploys dynamic gradient updates to optimize each080

step based on its corresponding reward. This ap-081

proach shifts the optimization focus from solution-082

wise to step-wise, enabling the policy model to083

achieve superior reasoning capabilities.084

We conduct experiments on both in-domain and085

out-of-domain mathematical reasoning datasets086

with four widely used backbone LLMs. Experi-087

mental results demonstrate that our Full-Step DPO088

consistently outperforms the DPO and Step-DPO089

baselines, validating its effectiveness in enhancing090

reasoning performance. Our contributions can be091

summarized as follows:092

• We propose the Full-Step-DPO framework with093

a novel step-wise DPO loss that dynamically094

adjusts each step’s gradient based on its re-095

ward, enabling step-wise optimization rather than096

solution-wise and enhancing reasoning ability.097

• We train a self-supervised PRM to provide step-098

wise rewards for preference learning and explore099

a more efficient approach for automatically con-100

structing PRM training data.101

• Extensive experiments on widely used mathemat-102

ical benchmarks and base language models show-103

case the remarkable effectiveness of our method.104

2 Related Work 105

Mathematical Reasoning Mathematical reason- 106

ing task is one of the most challenging tasks for 107

LLMs. Various approaches have been explored to 108

improve or elicit the mathematical reasoning abil- 109

ity of LLMs. A number of approaches have either 110

continually pre-trained the base model on a vast 111

of mathematical datasets (Azerbayev et al., 2023; 112

Shao et al., 2024) or used supervised fine-tuning 113

with substantial synthetic datasets distilled from 114

cutting-edge models (Luo et al., 2023; Yu et al., 115

2023b; Mitra et al., 2024; Xu et al., 2024). Another 116

line of work focuses on enhancing test-time compu- 117

tation by generating multiple solutions, developing 118

separate reward models at either the outcome or 119

process level to rerank these solutions (Cobbe et al., 120

2021a; Lightman et al., 2023), or employing decod- 121

ing strategies guided by the reward model (Yu et al., 122

2023a; Xie et al., 2024b; Wang et al., 2023c; Wu 123

et al., 2024). In addition, Reinforcement Learn- 124

ing’s potential in general domains, demonstrated 125

by Achiam et al. (2023) and Touvron et al. (2023), 126

some studies have explored its use in mathematical 127

reasoning (Wang et al., 2023c; Mitra et al., 2024; 128

Pal et al., 2024). 129

Preference Learning Recently, preference learn- 130

ing (Ethayarajh et al., 2024) has attracted signifi- 131

cant attention due to its ability to align with human 132

preferences and distinguish between positive and 133

negative examples. While these methods, like DPO 134

(Rafailov et al., 2024), have proven effective in gen- 135

eral domains, it offers only marginal benefits for 136

mathematical reasoning (Pal et al., 2024). Some 137

works (Chen et al., 2024; Lai et al., 2024) suggest 138

that DPO’s focus on coarse solution-wise prefer- 139

ences makes it less effective at correcting errors 140

in multi-step reasoning, hindering reasoning im- 141

provement. Therefore, Step-DPO (Lai et al., 2024) 142

was proposed, which first identifies the first erro- 143

neous step, and then optimizes only this erroneous 144

step along with the corresponding correct one. Al- 145

though this approach enhances mathematical rea- 146

soning capabilities, it totally overlooks the other 147

steps in long-chain reasoning, which also provide 148

valuable information and should not be completely 149

disregarded. Building on this consideration, we 150

propose Full-Step-DPO, which fully accounts for 151

each step by dynamically optimizing all steps in 152

the reasoning process. 153
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Step-wise Supervision Recent findings by Light-154

man et al. (2023) suggest that step-wise supervision155

outperforms outcome-wise, due to the provision of156

more detailed feedback. However, training a PRM157

requires either costly manual annotation (Lightman158

et al., 2023) or significant computational resources159

(Khalifa et al., 2023; Wang et al., 2023c), which160

hinders the advancement and practical application161

of PRM. Therefore, in this paper, we aim to build a162

PRM for mathematical reasoning without relying163

on human annotation and with reduced computa-164

tional resources. Additionally, we explore the ef-165

fectiveness of the PRM in decoding and preference166

learning scenarios.167

3 Full-Step DPO168

In this section, we elaborate the proposed Full-169

Step DPO framework. We begin by reviewing the170

background of previous DPO and Step-DPO. Then171

we introduce the novel Step-wise DPO Loss which172

optimizes with step-wise rewards, and the Process173

Reward Model which automatically generate these174

step-wise rewards. Finally we outline the complete175

training pipeline of our Full-Step-DPO.176

3.1 Preliminary177

DPO. Direct Preference Optimization (DPO)178

(Rafailov et al., 2024) is one of the most popular179

preference optimization methods. Instead of learn-180

ing an explicit reward model, DPO directly uses181

pair-wise preference data to optimize the policy182

model with an equivalent optimization objective.183

Specifically, given an input prompt x, and a prefer-184

ence data pair (yw, yl), DPO aims to maximize the185

probability of the entire preferred solution yw and186

minimize that of the dispreferred solution yl. The187

optimization objective of DPO is:188

LDPO(θ) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(y
w | x)

πref(yw | x)
− β log

πθ(y
l | x)

πref(yl | x)

)]189

where πθ(·|x) is the policy model to be optimized,190

πref(·|x) is the reference model, (x, yw, yl) are191

preference pairs, σ is the sigmoid function, β is192

a parameter controlling the deviation from the193

reference model.194

195

Step-DPO. Although DPO performs well on chat196

benchmarks, it is less effective for long-chain rea-197

soning tasks like mathematical problems. Step-198

DPO (Lai et al., 2024) attributes this to DPO’s199

inability to consider the sequential nature of math- 200

ematical reasoning, as rejecting an entire dispre- 201

ferred solution may inadvertently penalize correct 202

preceding steps, introducing significant noise. To 203

address this, Step-DPO optimizes only the first in- 204

correct step. As shown in Figure 1, given a math 205

problem and a series of initial correct reasoning 206

steps {s1, ..., sk−1}, Step-DPO aims to maximize 207

the probability of the correct next step swk and min- 208

imize the probability of the incorrect one slk. Note 209

that swk and slk refer to single steps, not all sub- 210

sequent steps. The loss function used is still the 211

vanilla DPO loss. 212

3.2 Step-wise DPO Loss 213

We now introduce the novel Step-wise DPO loss, 214

which performs step-wise optimization using step- 215

wise rewards. Although the motivation behind Step- 216

DPO is reasonable, focusing solely on optimizing 217

the first erroneous step and neglecting the valuable 218

information provided by other steps may not be 219

optimal. Additionally, we contend that it is not truly 220

a step-wise DPO, as it still relies on the standard 221

solution-wise DPO loss and resembles more of a 222

data construction method. 223

To address this, we modify the vanilla DPO loss 224

to the step-wise DPO loss, dynamically weight- 225

ing the gradients of each step based on its reward, 226

thereby enabling true step-wise optimization. Let’s 227

start with the gradient of the loss function LDPO. 228

The gradient with respect to the parameters θ can 229

be written as: 230

∇θL=−βE(x,yw,yl)∼D[σ
(
r̂θ(x, y

l)− r̂θ(x, y
w)

)
[∇θ log πθ(y

w | x)−∇θ log πθ(y
l | x)]]

231

where r̂θ(x, y) = β log πθ(y|x)
πref(y|x) . Intuitively, the 232

gradient indiscriminately increases the likelihood 233

of whole yw and decreases the likelihood of whole 234

yl. To achieve dynamically weighting, we break 235

∇θ log πθ(y | x) into a step-wise form and weight 236

the gradient as follows: 237

∇θL =− βE(x,yw,yl)∼D

[
σ
(
r̂θ(x, y

l)− r̂θ(x, y
w)

)
[

Kw∑
i=1

αw
i ∇θ log πθ(s

w
i | x, sw:<i)

−
Kl∑
i=1

αl
i∇θ log πθ(s

l
i | x, sl:<i)

]]
238

where si represents the i-th reasoning step of the 239

solution y, s:<i denotes all reasoning steps preced- 240

ing si , K is the total number of steps, and αi is 241
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the weight coefficient of si, calculated based on the242

reward of si as shown below:243

αi =


eγrsi∑
j e

γrsj
, si ∈ yw

e−γrsi∑
j e

−γrsj
, si ∈ yl

244

where rsi is the reward of the step si, which will245

be introduced in the next subsection, and γ is the246

temperature of the Softmax operation. It is im-247

portant to note that the calculation of αi differs248

between the preferred solution yw and the dispre-249

ferred solution yl. For preferred solutions, a higher250

reward indicates a greater likelihood of correct rea-251

soning in that step, so the model should perform252

gradient ascent with greater intensity. Conversely,253

for dispreferred solutions, a lower reward suggests254

a higher chance of incorrect reasoning, and the255

model should apply gradient descent with greater256

intensity accordingly. This approach allows us to257

leverage all steps and adaptively adjust the weight258

of each step based on its probability of correctness,259

achieving true step-wise optimization.260

Compared to Step-DPO methods that focus261

solely on a single step, our method optimizes all262

steps simultaneously, enabling better global opti-263

mization. Noted that as γ→0, all steps will have264

equal weights, making Full-Step-DPO equivalent265

to vanilla DPO.266

3.3 Process Reward Models267

To obtain step-wise rewards, we train a Process268

Reward Model (PRM). The biggest challenge269

in training a PRM is constructing a process270

supervision dataset. Previous studies (Uesato et al.,271

2022; Lightman et al., 2023) utilize human anno-272

tators to obtain step-wise labels, which requires273

advanced annotator skills and is quite costly. Later,274

MathShepherd (Wang et al., 2023c) proposes275

using Monte Carlo estimation (Coulom, 2006) to276

automatically gather step-wise supervision, but277

it remained computationally expensive. In this278

section, we first examine the principles of Monte279

Carlo estimation, then present our simplified280

solution that significantly improves the efficiency281

of data construction.282

283

Monte Carlo estimation. This approach assumes284

that the gold label ysi of a step si can be defined285

as the probability to deduce the correct answer286

a∗, and it includes both sampling and simulation287

phase. Specifically, given a math problem, it first288

randomly samples M solutions, with each solution 289

consisting of K reasoning steps {s1, s2, . . . , sK}, 290

and a represents the decoded answer from the last 291

step sK . Then, to estimate the quality of rea- 292

soning step si in a given solution, it simulates 293

N subsequent reasoning processes from this step: 294

{(si+1,j , . . . , sK,j)}Nj=1. The golden label for si is 295

calculated as follows: 296

ysi =

∑N
j=1 I(aj = a∗)

N
297

where aj is the decoded answer for the j-th 298

simulated solution, and I is the indicator function 299

that returns 1 if aj = a∗ and 0 otherwise. This 300

two-stage approach is highly time-consuming, as it 301

requires N simulations for each of K step across 302

all M solutions, resulting in a time complexity of 303

O(MNK). 304

305

Our efficient approach. It is important to note 306

that there is a trade-off between the sampling num- 307

ber M and the simulation number N when com- 308

putational resources are limited. A larger M can 309

provide more data for training the PRM, while a 310

larger N can result in higher accuracy of the labels 311

yi. In this paper, we found that the trained PRM 312

performs reasonably well even with N = 1 when 313

M is large, such as 32. This is likely because a 314

larger M introduces more diversity into the train- 315

ing data, making the PRM more tolerant to slight 316

reductions in data precision caused by the limited 317

simulation number. This setting simplifies the PRM 318

data construction by requiring only the sampling 319

of M solutions without the need for simulation, 320

significantly reducing computational resources and 321

lowering the time complexity to O(M). As a re- 322

sult, the gold label for step si can be simplified as 323

follows: 324

ysi =

{
1 if a = a∗

0 otherwise
325

then the PRM could be trained as shown below: 326

LPRM = −
K∑
i=1

[ysi log rsi + (1− ysi) log(1− rsi)] 327

where ysi is the golden label for si, rsi is the sig- 328

moid score assigned by the PRM. With the above 329

PRM, we can automatically score each step in the 330

reasoning chain, providing reward signals for the 331

step-wise DPO loss and enabling step-wise opti- 332

mization. 333
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Figure 2: The overall framework of Full-Step-DPO
consists of three steps: (1) Training the PRM using the
model itself and generated solutions. (2) Using the PRM
to score and filter solutions to form preference data with
step-wise rewards. (3) Training the policy model with
the proposed step-wise DPO loss.

3.4 Training Pipeline334

Following previous methods (Wang et al., 2023c;335

Shao et al., 2024), we adopt a standard training336

pipeline illustrated in Figure 2: (1) We begin by337

training a PRM with self-generated data, where338

higher reward values indicate a stronger likelihood339

of correct reasoning, while lower values suggest po-340

tential errors. (2) The trained PRM is then used to341

construct preference pairs with step-wise rewards.342

Specifically, we generate M solutions for each343

math problem, score each step of these solutions344

with the PRM to produce a reward sequence, and345

calculate the average reward across all steps as the346

overall reward for each solution. We select the347

top T correct solutions with the highest rewards348

and the bottom T incorrect solutions with the low-349

est rewards to form T 2 step-wise preference pairs.350

(3) Finally, we update the policy model using the351

proposed step-wise DPO loss and the step-wise352

preference pairs, as described in Section 3.2.353

During the inference, a well-trained PRM can354

guide the decoding process and enhance the355

model’s performance. Therefore, in addition to the356

standard greedy decoding, we explore three alterna-357

tive decoding methods: (1) Self-Consistency (SC)358

(Wang et al., 2022): given a problem in the test set,359

we sample K candidate solutions from the policy360

model. Instead of relying on the first decoded solu- 361

tion, we select the final answer based on majority 362

voting over the answers provided by all sampled 363

solutions. SC is a simple yet highly effective verifi- 364

cation strategy. (2) Best-of-N (BoN): we similarly 365

sample K candidate solutions, score them using 366

the reward model, and select the highest-scoring so- 367

lution as the final answer. Following previous work 368

(Lightman et al., 2023; Wang et al., 2023c), we 369

use the minimum score across all steps as the final 370

score assigned to a solution by the PRM. (3) Step- 371

wise Beam Search (SBS) (Yu et al., 2023a): the 372

PRM provides feedback at each step, offering more 373

fine-grained guidance. Specifically, for each step, 374

we first sample b1 candidate subsequent steps, then 375

score them using the PRM. The top b2 steps are 376

retained, and decoding continues until b2 final so- 377

lutions are reached. The detailed algorithm is pro- 378

vided in Appendix A. 379

4 Experiments 380

4.1 Experimental Setup 381

Backbones. To comprehensively validate the 382

effectiveness of our proposed method, we adopt 383

four popular open-source LLMs as the back- 384

bone models: MetaMath-Mistral-7B (Yu et al., 385

2023b), Llama-3-8B (Touvron et al., 2023), 386

DeepSeekMath-Base-7B (Shao et al., 2024) and 387

Qwen2-7B (Bai et al., 2023). To improve these 388

backbones’ reasoning ability, Step-DPO (Lai 389

et al., 2024) finetunes DeepSeekMath-Base-7B 390

and Qwen2-7B on two open-source synthetic math 391

datasets, MetaMath (Yu et al., 2023b) and MMIQC 392

(Liu and Yao, 2024), resulting in DeepSeekMath- 393

Base-SFT 2 and Qwen2-7B-SFT 3, which greatly 394

outperform their previous versions. Following 395

Step-DPO, we further finetune Llama3-8B to 396

produce Llama3-8B-SFT. MetaMath-Mistral-7B 397

has already been finetuned on MetaMath, so no 398

additional finetuning was performed. 399

400

Baselines. For closed-source baselines, we com- 401

pare our approach with OpenAI’s GPT-3.5 and 402

GPT-4 (Achiam et al., 2023). We also bench- 403

marked our method against recent high-performing 404

mathematical LLMs, including WizardMath (Luo 405

et al., 2023), MetaMath (Yu et al., 2023b), 406

InternLM-Math-7B (Ying et al., 2024), Qwen2-7B- 407

2https://huggingface.co/xinlai/
DeepSeekMath-Base-SFT

3https://huggingface.co/xinlai/Qwen2-7B-SFT
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Instruct(Bai et al., 2023), DeepSeekMath-Instruct408

(Shao et al., 2024), InternLM-Math-20B (Ying409

et al., 2024), and Llama-3-70B-Instruct (Touvron410

et al., 2023).411

Additionally, we compare it against DPO412

(Rafailov et al., 2024) and Step-DPO (Lai et al.,413

2024). Among these, Lai et al. (2024) publicly414

release DeepSeekMath-Base-SFT-Step-DPO 4415

and Qwen2-7B-SFT-Step-DPO 5, which we416

directly used for evaluation. Additionally, we417

trained MetaMath-Mistral-7B-Step-DPO and418

Llama-3-8B-SFT-Step-DPO using their publicly419

available code and dataset.420

421

Datasets. To ensure a fair comparison, we use the422

same training dataset 6 provided by Step-DPO (Lai423

et al., 2024), which is synthesized from the training424

set of GSM8K (Cobbe et al., 2021b) and MATH425

(Hendrycks et al., 2021). Noted that we only use426

the problem prompts in this dataset and do not use427

the step labels marked by GPT-4.428

For in-domain evaluation, we conduct exper-429

iments on GSM8K and MATH, which contain430

1,319 and 5,000 test problems, respectively. We431

also evaluate on two more challenging out-of-432

domain (OOD) test sets OCWCourses (OCW)433

(Lewkowycz et al., 2022) and GaoKao2023434

(GK2023) (Liao et al., 2024). OCW contains of435

272 undergraduate-level STEM problems requiring436

multi-step reasoning for most questions, while437

GK2023 includes 385 mathematics problems from438

the 2023 Chinese higher education entrance exam,439

translated into English. Accuracy serves as the440

evaluation metric.441

442

Implementation Details. During PRM training,443

we first randomly sample M = 32 solutions for444

each math problem using Qwen2-7B-SFT and then445

label them as described in Section 3.3, resulting in446

the PRM training set. Then, we add a classification-447

head to Qwen2-7B-SFT and train it on the PRM448

training set for one epoch. The batch size is 256,449

and the learning rate is 5e-7.450

To build preference learning datasets, we first451

sample M = 32 solutions for each math problem.452

The trained PRM then scores each solution, and453

4https://huggingface.co/xinlai/
DeepSeekMath-Base-SFT-Step-DPO

5https://huggingface.co/xinlai/
Qwen2-7B-SFT-Step-DPO

6https://huggingface.co/datasets/xinlai/
Math-Step-DPO-10K

we select T = 4 solutions with the highest average 454

rewards and T = 4 with the lowest average rewards 455

to randomly form 16 preference pairs. 456

During preference learning, the batch size is 64, 457

the learning rate is 5e-7, β is 0.05, and the re- 458

ward temperature γ is 0.5. We use the AdamW 459

(Loshchilov and Hutter, 2017) optimizer with a lin- 460

ear decay learning rate scheduler and only train one 461

epoch. The warm-up ratio is 0.05. 462

During the decoding phase, we conduct exper- 463

iments with two settings for SC and BoN, using 464

K = 5 and K = 15. For Step-wise Beam Search, 465

to ensure fair comparison, we test two configura- 466

tions: b1 = 5, b2 = 1 (corresponding to K = 5) 467

and b1 = 5, b2 = 3 (corresponding to K = 15). 468

The sampling temperature is set to 0.8. 469

All the experiments are conducted on a server 470

equipped with 8 NVIDIA A100-80GB GPUs and 471

512GB of system RAM. The implementation 472

frameworks are PyTorch (Paszke et al., 2017), 473

DeepSpeed (Rasley et al., 2020), and Huggingface 474

(Wolf et al., 2019). 475

4.2 Main Results 476

Table 1 provides a comprehensive comparison of 477

various models on both MATH and GSM8K, in- 478

cluding open-source and closed-source LLMs. We 479

find that: (1) Consistent with previous studies 480

(Pal et al., 2024), DPO exhibits notable instabil- 481

ity. Its performance shows slight degradation on 482

MetaMath-Mistral-7B and MetaMath-Mistral-7B- 483

SFT backbones, while the accuracy drops sharply 484

to around 20% on Qwen2-7B-SFT. It achieves a 485

slight performance improvement only when ap- 486

plied to the DeepSeekMath-Base-SFT. (2) Step- 487

DPO achieves only minimal improvements across 488

all backbones, with gains generally around 1% and, 489

in some settings, even slight performance drops. 490

We evaluate the publicly released Step-DPO model 491

using its official script, and the results may dif- 492

fer slightly from those reported in the Step-DPO 493

paper. Similar issues have also been observed by 494

other researchers 7. (3) Our Full-Step-DPO consis- 495

tently outperforms Step-DPO across all backbones. 496

Specifically, when applied to MetaMath-Mistral- 497

7B and Llama-3-8B-SFT, our model achieves im- 498

provements of approximately 2.3% to 3.7%, while 499

applied to the stronger backbones, DeepSeekMath- 500

Base-SFT and Qwen2-7B-SFT, our method still 501

delivers gains exceeding 1%. These results clearly 502

7https://github.com/dvlab-research/Step-DPO/
issues/2
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Model MATH (%) GSM8K (%)

GPT-3.5 34.1 80.8
GPT-4 53.6 93.6

WizardMath 10.7 54.9
MetaMath 19.8 66.5
InternLM-Math-7B 34.6 78.1
Qwen2-7B-Instruct 49.6 82.3
DeepSeekMath-Instruct 46.8 82.9
InternLM-Math-20B 37.7 82.6
Llama-3-70B-Instruct 50.4 93.0

MetaMath-Mistral-7B 28.2 77.7
+ DPO 24.8 -3.4 70.7 -7.0

+ Step-DPO 28.9 +0.7 79.6 +1.9

+ Full-Step-DPO 30.5 +2.3 81.4 +3.7

Llama-3-8B-SFT 32.6 78.5
+ DPO 23.4 -9.2 62.3 -16.2

+ Step-DPO 31.8 -0.8 80.1 +1.6

+ Full-Step-DPO 35.0 +2.4 82.0 +3.5

DeepSeekMath-Base-SFT 51.7 86.4
+ DPO 51.7 -0 87.3 +0.9

+ Step-DPO 52.9 +1.2 86.6 +0.2

+ Full-Step-DPO 53.2 +1.5 87.9 +1.5

Qwen2-7B-SFT 53.9 88.3
+ DPO 20.0 -23.9 27.3 -61.0

+ Step-DPO 54.9 +1.0 88.4 +0.1

+ Full-Step-DPO 55.4 +1.5 89.3 +1.0

Table 1: Performance comparison of various models on
MATH and GSM8K with greedy decoding.

demonstrate the effectiveness of our proposed ap-503

proach, which considers all steps in the reasoning504

process rather than focusing on solution-wise pref-505

erences or only a single step. A case study can be506

found in Appendix B.3.507

4.3 Results on OOD Datasets508

To further demonstrate the superiority of Full-Step-509

DPO, we evaluate the models on OOD datasets510

GK2023 and OCW, as shown in Table 2. On511

these competition-level math problems, DPO and512

Step-DPO often exhibit performance degradation513

under various settings, while our Full-Step-DPO514

consistently achieves performance improvements.515

The only exception occurs on the OCW dataset516

with MetaMath-Mistral-7B, where Full-Step-DPO517

shows a slight 0.8% drop in accuracy. However,518

this drop is notably smaller than 3.0% with DPO519

and the 3.7% with Step-DPO. These results demon-520

strate the superior stability and resilience of Full-521

Step-DPO, particularly in handling challenging522

mathematical reasoning tasks. More experimen-523

tal results on additional datasets can be found in524

Appendix B.1.525

Model GK2023 (%) OCW (%)

MetaMath-Mistral-7B 15.8 10.7
+ DPO 15.8 -0 7.7 -3.0

+ Step-DPO 15.1 -0.7 7.0 -3.7

+ Full-Step-DPO 20.5 +4.7 9.9 -0.8

Llama-3-8B-SFT 20.5 12.5
+ DPO 11.7 -8.8 9.9 -2.6

+ Step-DPO 19.7 -0.8 13.6 +1.1

+ Full-Step-DPO 22.1 +1.6 15.1 +2.6

DeepSeekMath-Base-SFT 30.4 19.1
+ DPO 31.2 +0.8 18.4 -0.7

+ Step-DPO 31.2 +0.8 18.0 -1.1

+ Full-Step-DPO 31.7 +1.3 20.2 +1.1

Qwen2-7B-SFT 33.0 15.8
+ DPO 8.8 -24.2 8.1 -7.7

+ Step-DPO 32.5 -0.5 15.8 -0

+ Full-Step-DPO 33.5 +0.5 18.4 +2.6

Table 2: Performance comparison on out-of-domain
math problems.

4.4 Results on Various Verification Strategies 526

Figure 3 presents the performance of different veri- 527

fication strategies on GSM8K under two settings: 528

K = 5 and K = 15. We find that: (1) SC serves 529

as a simple yet powerful validation method that 530

significantly improves performance across all mod- 531

els. Even for the high-performing Qwen2-7B-SFT, 532

which achieves an accuracy of 89.3% with greedy 533

decoding, SC further improves the accuracy to 534

93% when the sampling size K = 15. This re- 535

sult is already comparable to GPT-4’s accuracy of 536

93.6%. (2) Compared to SC, BoN often achieves 537

further improvements on MetaMath-Mistral-7B 538

and Llama-3-8B-SFT. However, on the highly capa- 539

ble DeepSeekMath-Base-SFT and Qwen2-7B-SFT, 540

BoN underperforms SC, indicating that the benefits 541

of the reward model diminish for very strong base- 542

line models. (3) SBS performs worse than both 543

SC and BoN across most settings, yet consistently 544

surpasses Greedy decoding, aligning with findings 545

from previous studies (Yu et al., 2023a; Khalifa 546

et al., 2023). This may be because, during the early 547

stages of inference, the reward model struggles to 548

effectively distinguish the correctness of steps. 549

4.5 Analysis of PRMs 550

As discussed in Section 3.3, the quality of the PRM 551

may be influenced by the sampling number M and 552

simulation number N . To assess this, we conducted 553

a controlled experiment with fixed M = 32 and 554

varying N . The trained PRM is then used to guide 555

the decoding of MetaMath-Mistral-7B-Full-Step- 556
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Figure 3: Performance comparison of various verifi-
cations on GSM8K, with all models trained using our
Full-Step-DPO.

DPO using BoN strategy with K = 15.557

As shown in Figure 4, the purple bars indicate558

the A100-Hours cost for constructing PRM training559

data, while blue and orange lines show GSM8K and560

MATH accuracy. When N = 1, which represents561

our proposed method, the model achieves competi-562

tive performance with 85.3% accuracy on GSM8K563

and 34.2% on MATH, while only requiring 8.5h564

with a time complexity of O(M). As N increases,565

we observe that the performance fluctuation re-566

mains relatively minimal (within approximately567

1% range), while the sampling cost grows substan-568

tially with a complexity of O(MNK). This em-569

pirical evidence suggests that our approach with570

N = 1 achieves a good balance between sampling571

efficiency and model performance. Additionally,572

we provide a comprehensive comparison between573

our PRM and other publicly available PRMs in574

Appendix B.2.575

4.6 Sensitivity of Hyperparameters576

In step-wise DPO loss, the reward temperature577

γ reflects the level of trust in the PRM. As γ578

increases, the PRM model has a greater impact579

on the gradients. When γ → 0, it indicates580

complete distrust in the PRM model, assigning581

equal weight coefficient to all steps, degrading582

in vanilla DPO. Conversely, when γ → ∞, the583

loss function optimizes only the single step with584

the maximum or minimum reward in the solution,585

similar to Step-DPO. Figure 5 presents the586

accuracy of MetaMath-Mistral-7B-Full-Step-DPO587
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Figure 4: Accuracy of MetaMath-Mistral-7B-Full-Step-
DPO using BoN decoding with K = 15. The PRM uses
a fixed sampling number M = 32, while the simulation
number N varies. Purple bars indicate the A100-Hours
cost for constructing PRM training data.
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Figure 5: Accuracy of MetaMath-Mistral-7B-Full-Step-
DPO with different reward temperature γ.

with different γ values. The experimental results 588

indicate that introducing a PRM to weight the 589

gradients indeed effectively enhances optimization 590

efficiency and improves performance. Additionally, 591

this experiment demonstrates that there is a sweet 592

spot for the reward temperature γ; excessively 593

high or low γ will reduce accuracy. 594

595

5 Conclusion 596

In this work, we propose Full-Step-DPO, a novel 597

framework for mathematical reasoning that opti- 598

mizes each step in the entire reasoning chain us- 599

ing step-wise rewards. To achieve this, we train a 600

self-supervised Process Reward Model to automat- 601

ically score reasoning steps, eliminating reliance 602

on external annotations. We also propose a novel 603

Step-Wise DPO Loss that dynamically updates gra- 604

dients based on the rewards for individual steps, 605

enabling step-wise optimization and enhancing the 606

reasoning ability of policy models. Experimental 607

results on various benchmarks validate the effec- 608

tiveness of Full-Step-DPO, paving the way for its 609

application to other reasoning-intensive tasks. 610
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Limitations611

While we have conducted comprehensive exper-612

iments to demonstrate the effectiveness of Full-613

Step-DPO, several limitations remain. First, recent614

advancements suggest that generative reward mod-615

els outperform the discriminative reward model616

used in this work. Exploring how generative re-617

ward models can further enhance mathematical618

reasoning capabilities would be a valuable direc-619

tion for future research. Second, during preference620

data construction, the current strategy of selecting621

samples based on average reward is relatively sim-622

ple. Investigating more advanced sample selection623

strategies may lead to further improvements. Fi-624

nally, the step-wise DPO loss proposed in this paper625

is highly adaptable to other reasoning tasks, such626

as code generation. Conducting experiments on627

a broader range of tasks would provide additional628

evidence of the advantages of our method.629
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A Step-wise Beam Search858

Unlike conventional beam search, which relies on token-level probabilities, our method integrates the859

reward model with an associated reranking criterion. This enables for step-wise beam search (SBS)860

(Yu et al., 2023a; Chen et al., 2024), effectively selecting the preferred solution path in mathematical861

reasoning, while incurring a lower computational cost compared to Monte Carlo Tree Search. Specifically,862

for each step t, suppose the sampling size is b1, the policy model πθ produces a set of candidate steps863

S(1:t+1) = {S(1:t+1)
i }b1i=1, where S(1:t+1)

i =
[
s1i , ..., s

t+1
i

]
is the i-th partial solution up to step t + 1.864

Given the PRM πr that can score each step, we select the top-scoring steps with beam size b2. The865

algorithm is detailed in Algorithm 1. By focusing on the quality of each reasoning step rather than just the866

final solution, our method enhances the overall reasoning capabilities of the model.867

Algorithm 1 Step-wise Beam Search

1: Input: Math problem q, Sampling size b1, Beam size b2, Maximum step C
2: Output: Best solution for q
3: Models: Policy model πθ and PRM πr
4: function STEPLEVELBEAMSEARCH(q, b1, b2,C)
5: Initialize step sequences S← {}
6: Use πθ to sample initial steps {s11, . . . , s1b1}
7: Use πr to score all initial steps {r11, . . . , r1b1}
8: Select top-b1 steps and add to S
9: Set current step counter t← 1

10: while t < C do
11: if All sequences in S are complete then
12: Break
13: end if
14: Snew ← {}
15: R← {};
16: for each solution S(1:t) in S do
17: for i = 1 to b1 do
18: S(1:t+1)

i = πθ(S(1:t); q)
19: r

(1:t+1)
i = πr(S(1:t+1)

i ; q)

20: Snew ← Snew + {S(1:t+1)
i }

21: R← R+ {r(1:t+1)
i }

22: end for
23: end for
24: Snew ← top-b2 rewarded solutions in (Snew,R)
25: S← Snew
26: t← t+ 1;
27: end while
28: return solution with highest final reward in S
29: end function

B Additional Experiments868

B.1 More OOD Datasets869

We evaluate our method on five additional OOD mathematical reasoning datasets as our testbed. As shown870

in Table 3, our Full-Step-DPO consistently improves performance across all datasets, demonstrating the871

effectiveness and generalization ability of our approach on OOD mathematical reasoning tasks.872

• SVAMP (Patel et al., 2021) includes 1000 math questions of up to fourth grade difficulty. These873

questions can be solved by expressions requiring no more than two operators.874

12



• AddSub (Hosseini et al., 2014) contains 395 math questions that involve addition and subtraction 875

operations. 876

• ASDiv (Miao et al., 2021) contains 2215 English math questions of different problem types. Each 877

question provides the corresponding equation and answer. 878

• GSM-IC2 and GSM-ICM (Shi et al., 2023) are mathematical reasoning datasets containing irrelevant 879

conditions within the problem descriptions each consisting of 1000 problems. Problems in GSM-IC2 880

require two steps to solve, while problems in GSM-ICM require more than two steps to solve. 881

Model SVAMP (%) AddSub (%) ASDiv (%) GSM-IC2 (%) GSM-ICM (%) Average (%)

MetaMath-Mistral-7B 79.1 86.6 81.2 77.9 76.5 80.3
+ DPO 72.7 53.4 73.8 60.5 65.2 65.1
+ Step-DPO 80.3 86.9 82.7 76.4 76.3 80.5
+ Full-Step-DPO 81.7 88.6 83.9 75.9 76.6 81.3

Llama-3-8B-SFT 82.8 88.4 85.0 80.1 79.5 83.2
+ DPO 72.2 60.0 74.2 64.1 66.3 67.4
+ Step-DPO 81.7 88.5 85.3 80.7 81.2 83.5
+ Full-Step-DPO 82.9 88.8 86.4 82.1 81.6 84.4

DeepSeekMath-Base-SFT 84.2 87.6 91.0 85.4 85.2 86.7
+ DPO 85.1 86.6 90.6 85.2 85.0 86.5
+ Step-DPO 85.3 85.3 90.7 85.9 86.2 86.7
+ Full-Step-DPO 85.9 86.6 91.2 87.8 85.3 87.4

Qwen2-7B-SFT 88.7 92.7 91.6 93.7 91.6 91.7
+ DPO 23.5 25.6 27.0 30.1 29.5 27.1
+ Step-DPO 88.1 92.2 91.8 93.8 91.9 91.6
+ Full-Step-DPO 89.5 93.1 92.4 93.6 92.7 92.3

Table 3: Performance comparison on five additional OOD math problems. The best and second-best results are
highlighted in bold and underlined, respectively.

B.2 Performance Comparison of Different PRMs 882

We compare our PRM with Math-Shepherd-PRM-7B using MetaMath-Mistral-7B as the base model 883

under the Best-of-8 decoding strategy. During decoding, we sampled eight responses with temperature = 884

0.7. For both PRMs, each response was scored by the minimum reward among its reasoning steps, and 885

the response with the highest score was selected as the final output. 886

As shown in Table 4, our PRM achieves 84.3% accuracy on GSM8K and 33.2% on MATH, outper- 887

forming Math-Shepherd-PRM-7B (82.4% on GSM8K, 32.6% on MATH). While these results suggest the 888

effectiveness of our approach, we acknowledge that the comparison may not be entirely comprehensive 889

due to differences in backbone architecture and training data between the PRMs. Nevertheless, these 890

findings, combined with our analysis in Section 4.5, demonstrate that our PRM can achieve competitive 891

performance while significantly reducing the computational cost of PRM construction. 892

Model MATH GSM8K

MetaMath-Mistral-7B 28.2 77.7
+ Self-Consistency 32.4 81.3
+ Math-Shepherd-PRM-7B 32.6 82.4
+ Our-PRM-7B 33.2 84.3

Table 4: Performance comparison of different scoring strategies using Best-of-8 decoding on MATH and GSM8K
benchmarks.
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B.3 Case Study893

We conducted a detailed case study using a sample problem from the AddSub dataset, as shown in Table894

5. We compared outputs from DeepSeekMath-Base-SFT model and its Step-DPO and Full-Step-DPO895

variants. While both the base SFT model and Step-DPO model made incorrect reasoning by including896

the cost of unbought CDs, our Full-Step-DPO model generated correct reasoning steps. Our PRM scores897

accurately reflect the correctness of each reasoning step, with higher scores for correct steps and lower898

scores for incorrect ones.899

Question For his car, Mike spent $118.54 on speakers and $106.33 on new tires. Mike wanted 3 CD’s for
$4.58 but decided not to. In total, how much did Mike spend on car parts?

Gold Answer 224.87

SFT
Response

Step 1: Mike spent 118.54onspeakersand106.33 on new tires. So the total cost of these two items
is $118.54 + $106.33 = $224.87. Score: 0.9348
Step 2: Mike wanted to buy 3 CD’s for $4.58 each, but he decided not to. So the total cost of the
CD’s he didn’t buy is 3 * $4.58 = $13.74. Score: 0.3646
Step 3: To find out how much Mike spent in total on car parts, we need to add the total cost of the
speakers and tires to the total cost of the CD’s he didn’t buy. So the total cost is $224.87 + $13.74 =
$238.61. The answer is: 238.61 Score: 0.0427

Step-DPO
Response

Step 1: First, Mike spent $118.54 on speakers and $106.33 on new tires. So the total cost of these
two items is $118.54 + $106.33 = $224.87. Score: 0.9406
Step 2: Mike also wanted 3 CD’s, but he decided not to buy them. Each CD costs $4.58, so the total
cost of the CD’s he didn’t buy is 3 * $4.58 = $13.74. Score: 0.3036
Step 3: To find out how much Mike spent in total on car parts, we need to add the total cost of the
speakers and tires to the total cost of the CD’s he didn’t buy. So, the total cost is $224.87 + $13.74 =
$238.61. The answer is: 238.61 Score: 0.0445

Full-Step-DPO
Response

Step 1: Mike spent $118.54 on speakers and $106.33 on new tires. So the total amount he spent on
these two items is $118.54 + $106.33 = $224.87. Score: 0.9313
Step 2: Mike wanted to buy 3 CD’s for $4.58 each, but he decided not to. So the total amount he
would have spent on the CD’s is 3 * $4.58 = $13.74. Score: 0.7408
Step 3: To find out how much Mike spent in total on car parts, we need to add the total amount
he spent on speakers and tires to the amount he would have spent on CD’s. So the total amount is
$224.87 + $0 = $224.87. The answer is: 224.87 Score: 0.7363

Table 5: Comparison of reasoning steps and their corresponding PRM scores across different models for AddSub
dataset. The base model is DeepSeekMath-Base-SFT.
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