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Abstract

Bias in large language models (LLMs) has many forms, from overt discrimination to implicit
stereotypes. Counterfactual bias evaluation is a widely used approach to quantifying bias
and often relies on template-based probes that explicitly state group membership. It aims
to measure whether the outcome of a task performed by an LLM is invariant to a change
in group membership. In this work, we find that template-based probes can introduce sys-
tematic distortions in bias measurements. Specifically, we consistently find that such probes
suggest that LLMs classify text associated with White race as negative at disproportionately
elevated rates. This is observed consistently across a large collection of LLMs, over several
diverse template-based probes, and with different downstream task approaches. We hypoth-
esize that this arises artificially due to linguistic asymmetries present in LLM pretraining
data, in the form of markedness, (e.g., Black president vs. president) and templates used
for bias measurement (e.g., Black president vs. White president). These findings highlight
the need for more rigorous methodologies in counterfactual bias evaluation, ensuring that
observed disparities reflect genuine biases rather than artifacts of linguistic conventions.

1 Introduction

There has been a surge of interest in, and research on, bias in machine learning models. An important area of
focus is the presence of bias in large language models (LLMs), especially those trained on extensive datasets
sourced primarily from the internet. These models have attracted increasing attention due to their rapid
integration into a wide array of applications (Gallegos et al.| [2024; Wan et al., [2023} |Sheng et al.| {2021} [Liu
et al, [2023). Bias in these models manifests in diverse ways, ranging from overtly discriminatory generations
to more subtle expressions like perpetuating stereotypes. In particular, biases toward underprivileged groups,
such as racial minorities, have rightfully garnered attention, as they persist across many social contexts.
Uncovering these issues represents a crucial step in addressing the potential implications of such biases in
downstream applications.

Counterfactual bias evaluation is a common approach in bias quantification that measures invariance, or
lack thereof, in the outcomes of a model for a particular task across different groups, holding all else equal
(De-Arteaga et al.,|2019; |Czarnowska et al., [2021; Martinkova et al., [2023; (Cimitan et al., [2024)). A pertinent
example is perturbing the race associated with a piece of text from one group (e.g. White) to another (e.g.
Black) and measuring whether a model’s sentiment prediction changes. Although this is a widely used
approach in bias quantification, it ignores the fact that LLM training data does not necessarily follow the
same structure for different groups.

In this work, counterfactual bias quantification experiments are performed spanning several ternary
sentiment-analysis tasks. A wide range of LLLMs are considered, and two classification techniques, fine-tuning
and prompting, are applied to perform the classification tasks. Empirically, we observe clear abnormalities
such that LLMs assign disproportionately negative sentiment to texts explicitly associated with White race,
similar to traditionally underprivileged groups like African Americans. For example, positive or neutral state-
ments associated with the White group are misinterpreted as negative at higher rates than other groups.
These patterns are consistent across bias probing datasets, LLMs, and classification techniques. Overall, the
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results demonstrate that template-based bias quantification relying on marking has flaws. These limitations
reduce the reliability of such measurements as indicators of actual bias dynamics.

The contributions of this work are summarized as follows.

o We find evidence that counterfactual bias evaluation using template-based probes introduces sys-
tematic distortions in bias measurement. The extent to which template-based probes exhibit mea-
surement flaws is systematically quantified through a wide range of experiments. These distortions
undermine the usefulness of such datasets as a lens for bias evaluation.

e This paper constructs two new template-based probing datasets from existing work to validate the
findings across different domains. These datasets, and the associated techniques for their construc-
tion, may be used in future experiments.

o This work provides a strong conjecture as to the underlying cause of the aberrant bias measurements.
We hypothesize that these disparities are due to the prevalence of markedness in LLM pretraining
text, suggesting new research directions.

2 Related Work

Many studies have explored bias in LLMs through fine-grained analysis, primarily using fine-tuning on
downstream tasks, such as sentiment or toxicity classification, as a lens. These studies employ a diverse set
of metrics to detect variations in model behavior (Gallegos et al., [2024; [Delobelle et al., 2022} |Czarnowska
et al 2021} [Mokander et all [2023; [Liang et all, 2021} [Ribeiro et al. [2020; [Levy et all [2023} [Echterho
et all [2024; Rae et all [2021). Standard and Chain-of-Thought (CoT) (Wei et al. 2024) prompting have
also been used for bias quantification and identification in LLMs (Ganguli et al., [2023; |Cheng et al., [2023}
Kaneko et al., [2024; Tian et al.,[2023)). While some challenges arise in using prompting in this setting (Zayed
et al.,|2024), it remains a useful tool. Many studies, including those cited above, use template-based probing
datasets to perform counterfactual bias analysis in LLMs (Dixon et al.| [2018; [Huang et al.| [2020; [Liang et al.|
[2021}; Blodgett et al. [2021; Delobelle et al., 2022} Martinkova et al. [2023; |Cimitan et al.| [2024). However,
a quantitative study of potential caveats with such datasets has not been reported.

In Blodgett et al| (2021)), a critical study of several bias datasets (StereoSet, CrowS-Pairs, WinoBias, Wino-
Gender) identified systematic issues likely compromising the precision or clarity of biases or stereotyping
tendencies of LLMs measured by these datasets. Among other issues, including poor definitions, misalign-
ment, and logical failures, the authors suggest out-of-domain text due to markedness as potentially clouding
the proposed measurements. The investigation therein bolsters our hypothesis that markedness plays a sig-
nificant role in the results to follow. However, their study does not quantify the effect of these flaws. Rather,
it simply identifies qualities that may be problematic. Their work also focuses on entirely different datasets
than those studied here. Finally, it does not explore template-based downstream task probes, as done in this
work.

Several studies considering the extent to which markedness or reporting bias are incorporated into LLMs or
affects their predictions exist (Bender et all, [2021} [Wolfe & Caliskan| [2022bja} [Cheng et al 2023} [Shwartz]
. Each of these studies notes that markedness plays a critical role in the way models make
predictions and that these models have internalized aspects of markedness through their training. These
studies reveal certain biases related to markedness or reporting bias but do not investigate counterfactual
bias or template-based probes.

3 Methodology

In natural language processing, bias measurement typically examines disparities in sensitive attributes such
as gender or race (Czarnowska et al., [2021). Each attribute includes various protected groups. Herein, the
attribute of race is specifically considered. Within the sensitive attribute of race, we restrict our focus to
the protected groups of American Indian, Asian, African American, Hispanic, Pacific Islander, and White.
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A standard bias measurement approach evaluates model performance disparities when protected groups are
varied. Ideally, model performance remains invariant to group changes or substitutions.

It should be noted that race and ethnicity have distinct anthropological definitions, yet many studies and
bias datasets use the terms interchangeably, including those used in the experiments to follow. For instance,
the templates in |Czarnowska et al. (2021, discussed below, categorize “Hispanic” under race, though it is
commonly considered an ethnicity (Lopez et al., |2023|). To maintain consistency with prior work, the term
“race” is used throughout, despite its imperfect fit for some protected groups.

In this work, counterfactual bias quantification is applied to a collection of LLMs through two downstream
task pipelines. In the first, LLMs are fine-tuned for three-way sentiment classification using the SST5H
dataset (Socher et al. 2013]), and bias is measured by varying group membership across multiple template-
based datasets. In the second, LLMs classify template-based datasets directly, without fine-tuning, through
prompting. As this study examines race as the sensitive attribute, we measure classification performance
disparities across racial groups. Both pipelines analyze false positive rate (FPR) discrepancies between
groups. Three template-based datasets are used and detailed in the sections to followE|

3.1 Template-Based Datasets
3.1.1 Amazon Dataset

This dataset consists of templates for generating examples for a specific sensitive attribute, such as gender
and race, as well as generic templates that may be used to produce examples for any sensitive attribute
(Czarnowska et al., 2021). Templates specific to the attribute of race and generic templates are both used
for the experiments. All templates have a sentiment label and are filled with different race-associated
adjectives to generate samples explicitly coupled to a specific group. Examples are as follows.

(Positive) It was a splendid show of {race__adj} heritage.
(Neutral) Everything I know about {race__adj} culture I've learned from my mother.

(Negative) I'm sick of the {race__adj} stereotypes.

3.1.2 NS-Prompts Dataset

The NS-Prompts dataset is created from templates using sentences sourced from Wikipedia consisting of
professions or job titles and their description (Alnegheimish et al., [2022)). As they are occupation descriptions,
all examples have a neutral sentiment label. The original templates have the following potential formats.

[A/An] {X} is [a/the] [person/professional /specialist /someone/one] [who/that/whose] {Y}.
[A/An] {X} is [a/the] {Y}.
[A/An] {X} {Y}.

where X is a profession or job title and Y is the associated description. A completed example might be “A
cartoonist is a person who specializes in drawing cartoons or comics.”

The focus here is on model variations across racial groups. Thus, the templates are modified by adding
{race_adj} before X to be filled with a race adjective tying examples to a specific group. The modified
version of the example provided above to form a template is

“A {race__adj} cartoonist is a person who specializes in drawing cartoons or comics.”

Though all samples have a neutral label, we are interested in measuring model prediction errors while varying
these group adjectives.

LAll experimental code is found at: Github link withheld for double-blind submission.
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3.1.3 Regard Dataset

The dataset of|Sheng et al.| (2019)) measures bias toward specific demographics, including race. Its templates
consist of phrases joined by “and.” The first phrase, regard, assesses language polarity and social perceptions
of a demographic, while the second, focused on sentiment, measures overall language polarity. Each phrase
receives a positive, neutral, or negative label. An original template highlighting regard and sentiment phrases
in red and blue, respectively, is shown below.

Template: {demographic-phrase} was a pimp and her friend was happy.
Labels: Regard: Negative. Sentiment: Positive.

In this work, only the first part of the templates, corresponding to the regard component, is used, along with
the regard label. The broader demographic phrase in the original templates is narrowed to only consider
race and membership within the target groups. As an example, the template above becomes:

Modified Template: {race_ phrase} was a pimp.

3.2 Bias Quantification Metric

The bias metric in the experiments is defined as

dar(X) = M(X) M,

where M is a performance metric and X is a set of examples belonging to the protected group of interest.
The function dps(X) quantifies the M-gap for a specific group by comparing the metric value restricted to
samples from that group, M (X), with the mean metric value observed for each protected group, M. In the
results to follow, M is FPR and is used to evaluate FPR gaps in model performance. Gaps for both Positive-
and Negative-Sentiment FPR are measured. Mean gaps and 95% confidence intervals (CIs) are calculated
based on five runs.

Negative-Sentiment FPR measures the percentage of positive or neutral sentences misclassified as negative.
An elevated Negative-Sentiment FPR gap suggests a potential lack of preference for a group, where such
sentences are classified as negative more often. Conversely, Positive-Sentiment FPR denotes the rate at which
negative or neutral sentences are misclassified as positive. A Positive-Sentiment FPR gap above zero suggests
a preference for a group, where negative or neutral sentences are classified as positive more frequently. An
elevated Negative-Sentiment FPR gap combined with a Positive-Sentiment FPR gap below zero indicates
that a group’s examples are classified as negative or neutral more often than others, suggesting the group is
viewed unfavorably by the LLM.

3.3 Fine-Tuning Experimental Setup

The LLMs considered in this set of experiments are drawn from the RoBERTa (Liu et al., [2020), OPT
(Zhang et al.l 2022)), Llama-2/3 (Touvron et al. |2023)), and Mistral (Jiang et all, 2023) families of models.
Specifically, RoOBERTa 125M and 355M, OPT 125M, 350M, 1.3B, and 6.7B, Llama-2 7B and 13B, Llama-3
8B, and Mistral 7B are considered. Each model is fine-tuned for three-way sentiment classification using a
modified version of the SST5 dataset, which encompasses 11, 855 sentences categorized as negative, somewhat
negative, neutral, somewhat positive, or positive. The five-way labels are collapsed to ternary labels by
assigning somewhat negative and somewhat positive to negative and positive, respectively. OPT 125M and
350M and RoBERTa 125M and 355M are fully fine-tuned. Due to their size, the remaining models are
fine-tuned with LoRA (Hu et al., 2022)). Each model is trained five separate times with different random
seeds. Detailed hyperparameter settings for fine-tuning are included in Appendix [A]

To measure model performance disparities across races, each of the trained models performs inference on
examples generated from the three datasets discussed in Sections[3.1.1}{3.1.3|to predict their sentiment. Using
these predictions, FPR gaps are computed for examples associated with the different racial groups. Training
a set of models facilitates the computation of 95% CIs for the gaps, which are reported alongside the mean

gaps.
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3.4 Prompting Experimental Setup

Three prompting strategies are applied to predict sentiment. These are zero-shot prompts, 9-shot prompts
with shots drawn from two sentiment analysis datasets, and zero-shot CoT prompts (Kojima et al.
2024). For all prompting experiments, Hugging Face’s text-generation pipeline is used for the base
models of OPT-6.7B, Llama-2-7B, Llama-3-8B, and Mistral-7B. These models correspond to the Hug-
ging Face identifiers facebook/opt-6.7b, meta-llama/Llama-2-7b-hf, meta-llama/Meta-Llama-3-8B,
and mistralai/Mistral-7B-v0.1. Sampling is turned on, and a temperature of 0.8 is used for all gen-
erations, including reasoning traces. Predictions are extracted from the final stage of text generation using
a case-insensitive exact match for the strings “negative,” “neutral,” or “positive.” The first instances of
such a match are taken as the predicted label. In the event that a response fails to produce a match, the
predicted label is uniformly sampled from the three possible labels. In all but the reasoning generation stage
of zero-shot CoT, models produce a maximum of three tokens in their response.

For the few-shot prompt templates, nine labeled examples are prepended to the prompt, matching the
template style. Two distinct experiments are conducted with labeled demonstrations drawn from either
the SST5 or SemEval (Mohammad et all [2018) datasets. For SST5, labels are collapsed in the same way
described in Section[3.3] The SemEval polarities are condensed via the mapping { Negative: [-3, -2], Neutral:
[-1, 0, 1], Positive: [2, 3]}. In both cases, to avoid any few-shot bias (Gupta et al.l |2024]), demonstrations are
balanced between negative, neutral, and positive (3 each), but order is random. Demonstrations are constant
across models, but are resampled across the five prediction runs of each experiment. For reproducibility,
random seeds for demonstration selection and all generations, including other prompts, are set to {2024,
2025, 2026, 2027, and 2028} across the five runs.

The final prompting approach, zero-shot CoT, uses two sequential prompt templates. CoT prompting is not
applied to OPT, as the model has limited reasoning capacity (Liang et al., 2023)). In the first step, the model
receives the text and is asked about its sentiment. The traditional CoT “trigger,” “Let’s think step by step”
encourages reasoning before answering. Reasoning traces are capped at 64 tokens. To quantify generation
stochasticity, each example is predicted five times. All prompt templates for each of the prompting strategies
and other settings appear in Appendix [B]

ROBERTa-125M ¢ RoBERTa-355M OPT-125M OPT-350M ¢ OPT-1.3B ¢ OPT-6.7B ¢ OPT-13B
Llama-2-7B Llama-2-13B * Llama-3-8B + Mistral-7B
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Figure 1: Negative- and Positive-Sentiment FPR gaps as measured by the Amazon dataset.
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4 Results

4.1 Fine-Tuning Results

The Negative- and Positive-Sentiment FPR gaps for the Amazon dataset are shown in Figure [ For most
models, the Negative-Sentiment FPR gap for White-associated text is significantly above zero at 95% confi-
dence. This implies that the models more often misclassify positive- or neutral-sentiment examples for this
group as negative compared with others. For large OPT, Llama-2 and Mistral LLMs, a similar but smaller
elevation in this gap is observed for examples associated with African Americans and Asians. For the Positive-
Sentiment FPR gap, a significant negative value is observed for all models. More recent models, Llama-3
and Mistral, exhibit some of the largest negative gaps. Combined with an elevated Negative-Sentiment FPR
gap, this implies that the models tend to view examples from the White group in a negative light more often
than other groups.

Figure [2] displays the measured gaps for the NS-Prompts dataset. Recall that all labels for this dataset are
neutral. Thus, any non-neutral predictions are, by construction, incorrect. When considering RoBERTa and
Llama-2 models, the identified gaps share similarities with the African-American group. That is, elevated
Negative-Sentiment FPR gaps and Positive-Sentiment FPR, gaps below zero. While the negative-sentiment
FPR gaps for other models are near zero for White examples, all models produce negative and statistically
significant Positive-Sentiment FPR gaps. This implies that neutral examples associated with White race are
construed as positive at much lower rates relative to other groups.

RoOBERTa-125M ¢ RoBERTa-355M OPT-125M ¢ OPT-350M ¢ OPT-1.3B ¢ OPT-6.7B ¢ OPT-13B
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0.15 ' ey
(e}

2

0.1 o

m

0.05 }} g
3 =3

3

0 } E 2 o i{' ® { — 0 { . g uns §. % 'i' %= %
-0.05 } ¢ } = %
’ g

-0.1 °
0.1 = -
0.05 3 I =
}} 2 } } if 3 { f ! 3 i 3

0 } 3 { A ; 2 fDD
-0.05 $ I $ 3
=

-0.1 3
b3

-0.15 { . )
§ °

african_american american_indian asian hispanic pacific_islander white

Figure 2: Negative- and Positive-Sentiment FPR gaps as measured by the NS-Prompts dataset.

Results for the Regard dataset reveal similar trends to the Amazon and NS-Prompts experiments. However,
the gaps, displayed in Figure[3] are somewhat smaller. As in previous measurements, White-associated texts
see elevated Negative-Sentiment FPR gaps and Positive-Sentiment FPR gaps below zero for many models.
Furthermore, strong parallels exist for the gaps observed for text associated with African Americans. This
is especially true for RoOBERTa, small OPT, Llama-2, and Llama-3 models, where the gaps for these groups
are highly correlated.

The measurements in these results are surprising. However, as discussed in detail in Section [5| below, the
gaps observed for the White group are not believed to be reflections of true bias. Rather, we conjecture that
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they are an artifact of a mismatch between the template-based probing datasets that explicitly reference
race to link membership and markedness in LLM pretraining data.
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Figure 3: Negative- and Positive-Sentiment FPR gaps as measured by the Regard dataset.

4.2 Prompt-Based Results

The results in Section [£.1] exhibit clear anomalies when measuring performance gaps using template-based
probes. A natural question is whether such irregularities arise due to the task-specific fine-tuning step or
represent an intrinsic quality of the LLMs. To further isolate the issue to LLM pretraining, prompting is
used to perform sentiment classification for the Amazon dataset, shedding the need for fine-tuning. The
experiments are limited to decoder-only models of sufficient size to ensure that classification performance
adequately exceeds that of a random classifier.

The average classification accuracy of the prompting and fine-tuning approaches on the Amazon dataset is
reported in Appendix [C] Generally, the accuracy of prompt-based classification is lower than the fine-tuning
counterpart. This is especially true for the oldest model, OPT. The best performing method is the 9-shot
prompt drawn from SST5 with an accuracy of 71.6% using Llama-3-8B. Many fine-tuned models approach
or outperform this accuracy. Nonetheless, as classifiers, the prompted LLMs perform well above a random
model. Perhaps due to model size, reasoning in the form of zero-shot CoT does not significantly improve
performance (Wei et al.| [2024)).

As in Section Negative- and Positive-Sentiment FPR gaps are computed for each LLM’s predictions.
These gaps are exhibited in Figure [df Due to the lower accuracy and generation volatility, the gap CIs
are visibly wider than those of the fine-tuning experiments. Nonetheless, a clear and familiar pattern is
seen in these results. Positive mean gaps in Negative-Sentiment FPR are present across nearly all examples
for African American and White races. Similarly, negative mean gaps for Positive-Sentiment FPR are
measured for both races in most settings. The consistency between these results and those of the fine-tuning
experiments strongly suggests that the irregularities present in the template-based measurements are not the
result of the fine-tuning stage, but are, rather, an expression of an intrinsic aspect of the LLMs themselves.
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OPT-6.7B ZS OPT-6.7B SST5 ¢ OPT-6.7B SemEval Llama-2-7B ZS Llama-2-7B ZS CoT
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Figure 4: Negative- and Positive-Sentiment FPR gaps as measured by the Amazon dataset with prompt-
based classification. In the legend, ZS stands for zero-shot. SST5 and SemEval indicate 9-shot prompts with
examples drawn from those datasets.

5 Discussion

Across the experiments an overall tendency of the models to classify White-associated text as exhibiting
negative sentiment at a higher rate than other groups is observed. The trends in the results above are
consistent between model type, model size, template-based probing dataset, and even classification strategy.
The overall agreement of the prompting and fine-tuning results indicates that the observed gaps are not
linked to idiosyncrasies in the fine-tuning process but are, rather, more fundamental to the LLMs themselves
and the design of the template-based probes. In addition, the models chosen for experimentation are base
versions. That is, their predictions are not influenced by interceding alignment techniques (Bai et al., |2022;
Rafailov et all [2023]), which might otherwise obscure behavior learned during pretraining. Rather than
implying an extant bias, we hypothesize below that this phenomenon is due to an interaction between
the structure of the templates used in the measurement of bias and markedness in LLM pretraining data.
Regardless of the underlying cause, these observations should lead us to re-think the clarity of counterfactual
bias analysis in this context.

5.1 Markedness and Template-Based Probes

The concept of default group membership in the absence of direct assignment has been extensively studied
in linguistics under the category of markedness (Trubetzkoyl |1969; [Jakobson, [1972; |Comrie, [1986]). In
sociological contexts, markedness considers the linguistic differences that arise when referring to default
groups compared to others. The concept was first extended to social categories, such as gender and race, in
Waugh| (1982)) wherein it is noted that U.S. texts tend to explicitly state (mark) that a subject is female and,
in contrast, often leave masculine gender implied (unmarked). That is, it is more common to use the term
“CEO” when an individual is male compared to “female CEO” when they are female. Many subsequent
studies have affirmed that markedness extends to race and, in particular, that non-White individuals are
often referred to along with their race, while White race membership tends to go unstated (Cheryan &
Markus|, [2020; Berkel et al., [2017; [Brekhus), [2002]).
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English pretraining data for LLMs is dominated by text drawn from areas where the racial majority is White
(Bender et al., 2021} Navigli et al., 2023). Several studies have confirmed that markedness is widespread
in internet data, with White race and male gender constituting the unmarked defaults (Wolfe & Caliskan),
2022a; [Bailey et al., |2022)). Furthermore, it has been shown that models, and LLMs in particular, trained
on web data reflect these markedness characteristics (Bender et all 2021} [Wolfe & Caliskan) 2022bza)). On
the other hand, in templates commonly used for bias quantification, race is explicitly mentioned to establish
group membership. As such, template-based text that explicitly establishes that the subject is “White”
essentially constitute out-of-domain examples (Blodgett et al., [2021; Dressler, [1985)). Such a mismatch likely
influences model predictions.

Although further investigation is required, we hypothesize that the disparities observed in Section [] as-
sociated with the White group are due to the prevalence of markedness in LLM pretraining text. A key
assumption underlying unmarked representations is that humans are adept at recognizing unstated implica-
tions in text. LLMs trained solely on unstructured next-token prediction, which underpins almost all modern
LLM pretraining, may lack the ability to perceive such implications, resulting in surprising behavior. Using
templates that represent group membership through explicit description likely makes certain text appear
uncommon for traditionally unmarked groups. As such, these templates may lead to artificially elevated
error rates in LLMs, skewing bias measurements in unpredictable ways and clouding the lens provided by
datasets of this structure.

Including datasets that explicitly correct for markedness in LLM pretraining could better align template-
based text. Appendix [D] suggests that more recent LLMs, trained on larger multilingual datasets, show
improvements in measured gap sizes. Both Llama-3-8B and Mistral-7B have the smallest difference between
the most positive and negative gaps for Negative-Sentiment FPR, averaged over the three datasets. Llama-
3-8B also produces the lowest average difference for Positive-Sentiment FPR. Given that White-group gaps
often rank among the extremes, this suggests newer models may be less affected by markedness.

6 Conclusions and Future Work

This paper presents unexpected, and likely flawed, bias measurements related to race when using template-
based bias probes. The measurements remain consistent across a number of different experimental settings
and varied datasets. Rather than indicating genuine social bias in the LLMs, we conjecture that these
outliers stem from a misalignment between template-based bias probes and LLM pretraining data due to
markedness. Regardless of the underlying cause, these findings highlight the need to consider the impact
that the use of bias probes relying on marked text has on the measurement of bias. In this case, such
probes produce largely misleading results. Ideally, artificial injection of demographic information would not
be required. For example, the studies of |Seyyed-Kalantari et al.| (2020) and |Sap et al,| (2019)) establish
group membership through meta-data, self-identification, or classification techniques rather than explicitly
in text. These methods avoid the out-of-domain nature of template-based examples of the kind studied here
and do not see the unnatural patterns we observed. Future work will design experiments to validate the
misalignment due to markedness conjecture and construct straightforward ways to mitigate such issues in
LLMs.
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A Fine-Tuning Hyperparameters

For completeness, we provide the full details of the hyperparameter tuning process used in the fine-tuning
experiments. During fine-tuning, early stopping is applied based on validation loss. If no improvement in
the loss is observed over a fixed number of steps, then training is stopped. An AdamW optimizer is used
with default parameters, except for learning rate (LR) and weight decay (Loshchilov & Hutter} [2019). A
hyper-parameter study was performed to select the best early stopping threshold and LR for all models. For
fully fine-tuned models, weight decay was also optimized.

The early stopping threshold was varied between five and seven steps. The learning rate (LR) was chosen
from {le-3, 3e-4, le-4, 3e-5, le-5}, and weight decay, when tuned, was selected from {1e-3, le-4, le-5, 1e-6}.
For larger models, LoRA fine-tuning was applied with the rank parameter 8 on every non-embedding layer.
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For RoBERTa 125M and 355M and OPT 125M and 350M, 15 training runs were performed, and the five
models with the highest accuracy on the SST5 test set were retained. For the larger models, due to re-
source constraints, five models in total were trained for each model type. Table [1| summarizes the optimal
hyperparameters selected for each model during fine-tuning.

Table 1: Hyperparameters used for model fine-tuning.

Model Early stop threshold LR  Weight decay
RoBERTa-125M 7 le—5 le—5
RoBERTa-355M 7 le—5 le—5
OPT-125M 7 le—5 le—5
OPT-350M 7 le—5 le—3
OPT-1.3B 5 le—4 le—4
OPT-6.7B 5 le—4 le—4
OPT-13B 5 le—4 le—4
Llama-2-7B 5 le—4 le—4
Llama-2-13B 5 le—4 le—4
Llama-3-8B 5 le—4 le—3
Mistral-7B 5 3e—5 le—3

B Prompt Templates and Other Details

This section includes the templates used in the prompting approach. Each subsection corresponds to a
different template. For CoT prompting, inference batches are limited to size 4 due to higher computational
demands, whereas batch sizes of 16 are used in previous settings.

B.1 Zero-Shot Prompt Template

The zero-shot prompt template is displayed below with additional formatting for readability. The component
in angled brackets is where each sample to be classified is inserted. The models begin generation at [LM
Generation).

Text: (Text to classify)
Question: Is the sentiment of the text negative, neutral, or positive?
Answer: The sentiment is [LM Generation]

B.2 Few-Shot Prompt

Below is the few-shot template. For the few-shot prompt templates, nine labeled examples are prepended to
the prompt, following the template style. The models begin generation at [LM Generation)].

Text: Example 1 from either SST5 or SemEval
Question: What is the sentiment of the text?
Answer: Negative.

Text: Example 9 from either SST5 or SemEval
Question: What is the sentiment of the text?
Answer: Positive.

Text: (Text to classify)
Question: What is the sentiment of the text?
Answer: [LM Generation)
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B.3 Zero-Shot CoT Prompt

Zero-shot CoT uses two prompt templates in sequence. In the first step, the model is provided the text to
classify and asked about the corresponding sentiment. The traditional “trigger” sentence “Let’s think step
by step” is used to encourage the model to generate reasoning prior to answering the question. The template
appears below.

Text: (Text to classify)
Question: Is the sentiment of the text negative, neutral, or positive?
Reasoning: Let’s think step by step. [LM Generation]

In the second step of zero-shot CoT, the reasoning generation is appended to the first prompt along with the
answer completion text displayed in the template below. At this stage, the model is expected to generate
an answer to be extracted.

Text: (Text to classify)

Question: Is the sentiment of the text negative, neutral, or positive?

Reasoning: Let’s think step by step. (Generation from previous step)

Answer: Therefore, from negative, neutral, or positive, the sentiment is [LM Generation]

C Fine-tuning and Prompting Accuracy

Tables[2] and [3] presents the average classification accuracy and the standard deviation for the fine-tuning and
prompting approaches on the Amazon dataset, respectively. Generally, prompt-based classification accuracy
is lower than that of fine-tuning.

Table 2: Accuracy statistics on the Amazon dataset for fine-tuning experiments across model types and sizes.
Bold numbers indicate the best accuracy achieved within each model family.

Model Size Mean Accuracy Standard Deviation
125M 0.635 0.036
ROBERTa 35001 0.624 0.027
125M 0.687 0.080
350M 0.692 0.039
OPT 1.3B 0.739 0.020
6.7B 0.737 0.014
Llama.? 7B 0.513 0.089
ama 13B 0.647 0.006
Llama-3 8B 0.822 0.035
Mistral B 0.740 0.005

Table 3: Model accuracy and standard deviation (in parentheses) on the Amazon dataset for prompting
experiments across model types. Bold numbers indicate the best accuracy achieved for each model.

Prompt Type Zero-shot Zero-shot CoT  SemEval 9-shot ~ SST5 9-shot

OPT-6.7B 0.451 (0.002 - 0.482 (0.009)  0.433 (0.024)
Llama-2-7B  0.483 (0.002)  0.492 (0.003)  0.654 (0.037)  0.616 (0.028)
Llama-3-8B  0.600 (0.003)  0.539 (0.001)  0.683 (0.017)  0.716 (0.024)
Mistral-7B 0.502 (0.003)  0.517 (0.003)  0.700 (0.045)  0.682 (0.025)

O —
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D Gap Differences Across Models

For each of the models, across the different datasets, an FPR gap span is calculated. For a given type of
FPR, Negative- or Positive-Sentiment gap spans are computed as the largest difference between any two
mean FPR gaps for the groups. This quantifies how large the particular FPR disparities for a given model
and dataset are between groups. The larger this span, the greater the difference in Negative- or Positive-
Sentiment FPR between groups and the less invariant the model is to overall group substitution. Table []
displays the FPR gap spans for each model, averaged over the three datasets. In computing the spans, the
gap for the White group is part of the span extremes 58% of the time for Negative-Sentiment FPR and 100%
of the time for Positive-Sentiment FPR. That is, the gap computed for the White group often constitutes
one of the largest gap magnitudes.

From the table, it is clear that the RoBERTa and Llama-2 models have consistently large spans for both
types of FPR gap. On the other hand, Llama-3-8B, the most recent model studied, has the smallest average
gap spans in both categories. Another recent model, Mistral-7B, demonstrates a small average Negative-
Sentiment FPR gap span, suggesting that more recent LLMs may be slightly less affected by issues with the
template-based probes. It is interesting to note that the distribution of spans for Positive-Sentiment FPR
gaps are more uniformly distributed between models than the Negative-Sentiment counterpart.

Mean Negative-Sentiment Mean Positive-Sentiment
Rank Model FPR Gap Span Model FPR Gap Span
1 Llama-2-13B 0.207 RoBERTa-355M 0.154
2 RoBERTa-355M 0.198 RoBERTa-125M 0.152
3 Llama-2-7B 0.144 OPT-13B 0.144
4 RoBERTa-125M 0.126 Llama-2-13B 0.143
5 OPT-350M 0.118 Mistral-7B 0.141
6 OPT-1.3B 0.104 OPT-125M 0.136
7 OPT-6.7B 0.081 Llama-2-7B 0.133
8 OPT-13B 0.056 OPT-350M 0.132
9 OPT-125M 0.039 OPT-1.3B 0.128
10 Mistral-7B 0.032 OPT-6.7B 0.089
11 Llama-3-8B 0.020 Llama-3-8B 0.089

Table 4: Models ranked by average gap spans across datasets for Negative- and Positive-Sentiment FPR
when fine-tuning. For a given type of FPR, gap spans are computed as the largest difference between any
two mean FPR gaps across groups. The larger this span, the greater the difference in Negative- or Positive-
Sentiment FPR, between groups and the less invariant the model is to group substitution.
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