
Rethinking of Encoder-based Warm-start Methods in
Hyperparameter Optimization

Dawid Płudowski1,∗ Antoni Zajko1,∗ Anna Kozak1 Katarzyna Woźnica1

∗
Equal contribution.

1
Warsaw University of Technology

Abstract Effectively representing heterogeneous tabular datasets for meta-learning purposes remains

an open problem. Previous approaches rely on predefined meta-features, for example, statisti-

cal measures or landmarkers. The emergence of dataset encoders opens new possibilities for

the extraction of meta-features because they do not involve any handmade design. Moreover,

they are proven to generate dataset representations with desired spatial properties. In this

research, we evaluate an encoder-based approach to one of the most established meta-tasks

– warm-starting of the Bayesian Hyperparameter Optimization. To broaden our analysis

we introduce a new approach for representation learning on tabular data based on [Iwata

and Kumagai, 2020]. The validation on over 100 datasets from UCI and an independent

metaMIMIC set of datasets highlights the nuanced challenges in representation learning. We

show that general representations may not suffice for some meta-tasks where requirements

are not explicitly considered during extraction.

1 Introduction

The meta-learning for tabular data poses a unique challenge for the machine learning community

as there is no universal way to compare two datasets. Yet, such data remains ubiquitous across

various domains [Davenport and Kalakota, 2019, Alanazi, 2022]. To resolve this issue, new methods

for data representation were developed [Vanschoren, 2019, Jomaa et al., 2021].

Problem motivation. So far existing approaches to datasets’ representation rely primarily on

handcrafted meta-features which are often based on statistical measures, information theory, or

landmarkers [Rivolli et al., 2022]. The emergence of encoders tailored to heterogeneous datasets

solved this problem by limiting the need for manually chosen meta-features since they only require

a loss function that formalizes the desired properties of the representations. One of the first

encoder-based approaches was Dataset2Vec [Jomaa et al., 2021] which introduced:

Requirement 1. Ensuring close representations for batches of observations within the same dataset
while maintaining distinct representations for observations across different datasets.

By imposing this condition, the authors assume that the resulting representations will reflect the

internal complex structure of the data. This is, however, not explicit whether such representations

are useful in meta-learning tasks, like Bayesian Optimization (BO).

Contributions. In this work, we: (1) conducted a comprehensive analysis of encoder-based represen-

tations using two distinct sets of datasets on the BO warm-start problem, (2) proposed new dataset

encoder which is rooted in Requirement 1 and inspired by the few-shot architecture introduced

in [Iwata and Kumagai, 2020].

The validation of encoder-based representations’ applicability in meta-tasks highlights the

nuanced challenges in representation learning. Merely adhering to Requirement 1 through
encoder-based representations proves to be inadequate for broader meta-learning.

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:dawid.pludowski@gmail.com
mailto:antoni.zajko.1@gmail.com
mailto:anna.kozak@pw.edu.pl
mailto:katarzyna.woznica@pw.edu.pl
https://creativecommons.org/licenses/by/4.0/

2 Problem setting
In this section, we provide the formulation of the problem of employing dataset representation in

meta-learning tasks. In Figure 1, we show the defined components and their workflow. First, we

train encoder 𝜙 on OpenML’s subset D𝑟𝑒𝑝 . The encoder is either liltab or D2V. Next, we create

representations of datasets from the train and test set D𝑡𝑟𝑎𝑖𝑛 , D𝑡𝑒𝑠𝑡 . The origin of these datasets is

either the UCI repository or metaMIMIC, depending on the experiment setting. In the next step, we

create a mapping between the datasets from D𝑡𝑟𝑎𝑖𝑛 and the corresponding best configurations of

hyperparameters (HP) for the predictive algorithm, elastic net, and XGBoost. Having this mapping

and the distances from a single dataset from test set D𝑖 to datasets fromD𝑡𝑟𝑎𝑖𝑛 , we run BO with

warm-start chosen among best configurations for 10 closest datasets fromD𝑡𝑟𝑎𝑖𝑛 .

As shown in the Figure 1, our experiment setting follows a two-step process of solving meta-

tasks provided in [Jomaa et al., 2021]: (1) finding the representation in the common vector space

of heterogeneous tabular datasets, (2) using representation as an input to the meta-model which

solves the meta-task.

We use the BO warm-start in our experiments due to its popularity in research [Bergstra et al.,

2011a, Nicoletta Del Buono et al., 2020, Xiyuan Liu et al., 2020, Victoria and Maragatham, 2021]

and its significance in the speeding up the BO process. The obtained results are compared with

baselines that do not use a data structure to propose a candidate for warm-start.

Figure 1: The workflow of the performed experiment. We denote datasets using dark blue color, their

representations using light blue, and all other components using grey.

3 Considered approaches
Next to the Dataset2Vec, we use liltab-based encoder which meets Requirement 1. Both work

on heterogeneous data, which is crucial when working with tabular data. Their performance is

contrasted with two baseline methods independent of dataset representations.

3.1 Encoders
Dataset2Vec (D2V) is an encoder of the whole dataset proposed in [Jomaa et al., 2021]. It is one

of the approaches to encoding heterogeneous tabular data that uses neural networks instead of

statistical measures. It is a DeepSet-based method [Zaheer et al., 2017] composed of feed-forward

neural networks. It extracts interdependencies between features and targets and joint distributions

inside the data in a three-step process which results in fixed-size encoding. In addition to D2V, we

propose the encoder based on [Iwata and Kumagai, 2020]. The crucial feature of Iwata’s architecture

is the ability to perform predictions on heterogeneous tabular data in the few-shot setting. It is

obtained by using an inference network as an encoder for the support set. In our package liltab,
we implemented both the original architecture from [Iwata and Kumagai, 2020] and the modified

inference network as an encoder. For training purposes, we used a contrastive learning approach.

For a more detailed description, see Appendix A.

2

3.2 Baselines

As baselines for the usability of encoder-based representations, we use two methods: BO without

warm-start and warm-start based on the ranks of HP configurations. We define ranks by the

number of tasks in which the HP configuration was the best. When calculating ranks we only treat

the given configuration as the best one for the specific task when it is strictly the best among all

considered settings i.e. there is only a single best task.

4 Experiments
We select three sets of datasets for the experiment purposes. All of them contain only binary

classification tasks: (1) OpenML’s subset [Vanschoren et al., 2013] used in [Iwata and Kumagai,

2020], (2) UCI’s subset [Markelle Kelly, 2021] used in [Jomaa et al., 2021], (3) Over 5000 few-shot

tasks generated from metaMIMIC [Woźnica et al., 2023] collected from physionet.org. Their usage

is presented in Figure 1. The detailed description can be found in the Appendices B and D.

We train both encoders on OpenML datasets. The details of the training process are listed in

Appendix E. Full reproduction of the training encoders, as well as the following experiments, can

be done with code on GitHub
1
.

We evaluate the quality of the representations in two ways: visually using T-SNE [Van der

Maaten and Hinton, 2008] and quantitatively using two metrics. One of them is the accuracy in the

meta-task of classification whether two samples (both in terms of rows and columns) originate from

the same dataset. The other one is Caliński-Harabasz (CH) index [Caliński, 1974] where in the place

of the cluster labels we put the label of the origin of the dataset’s batch. This measures how far from

each other are representations depending on the origin dataset of the batch. Having these metrics,

we measure the ability of encoders to distinguish between datasets and their representations’ spatial

properties. Therefore, they reflect meeting the Requirement 1.

Next, we assess the applicability of the meta-extractors in the HPO warm-start meta-task.

To achieve that we performed optimizations with encoder-based warm-start, heuristic-based

warmstart, and random initialization. The gain of specific approaches was computed using Average

Distance To theMinimum (ADTM) for the scaled ROC-AUC score which resulted in separate metrics

for each iteration of the HPO. The experiment was performed on data from the UCI repository

and metaMIMIC. We use cross-validation concerning the selection of validation datasets. For

metaMIMIC and UCI data, we use 4 folds and 5 folds respectively. Each optimization consists of 30

iterations with 10 warm-start iterations.

4.1 Experimental setup

During our research on the warm-start, we focus on searching for the best HP for the elastic

net [Pedregosa et al., 2011] and XGBoost [Chen and Guestrin, 2016] classifiers. For the experiment’s

purpose, we generate a random set of the hyperparameters of the elastic net and XGBoost, each

consisting of 100 configurations. We use XGBoost only on UCI datasets, as metaMIMIC tasks would

be too small for this model. The definition of the ranges and distributions of the HP are shown in

Appendix F. Then, we train and evaluate the model with every configuration of HP on each task.

For encoder-based approaches as warm-start points, we select the best configuration on the 10

datasets closest in terms of distance function ∥ · ∥2. For the selection of the rest of the points, we

use the Tree-structured Parzen Estimator [Bergstra et al., 2011b].

5 Results
This section presents two different assessment methods of tabular data representation. The first of

them is the similarity of latent vectors corresponding to similar datasets, i.e., meeting Requirement 1.

The second one is the metrics obtained from warm-start in HP optimization.

1https://github.com/azoz01/rethinking_encoder_warmstart

3

https://physionet.org/
https://github.com/azoz01/rethinking_encoder_warmstart

5.1 Encodings similarity of datasets

In Figure 2, we show the T-SNE representation of vectors obtained by liltab and D2V. For this

purpose, we choose three tasks from the metaMIMIC dataset where two of them - hypertensive
and diabetes share 7 out of 10 features and third - hypotension which has only 3 features in

common with the rest. Each point on this figure corresponds to the validation set of the single

few-shot task generated from metaMIMIC. The analogous results are present for UCI datasets

in Appendix G. In Table 1 we present corresponding metrics. Both encoders perform similarly,

clustering the majority of datasets very well which indicates that they fulfill Requirement 1.

(a) The representations obtained with liltab. (b) The representations obtained with D2V.

Figure 2: T-SNE visualization of three encoded datasets’ representations.

Table 1: Metrics that assess the quality of representations generated by encoders. Each evaluation was

repeated 15 times. We present the averaged values. Accuracy above 0.5 indicates the ability

to distinguish between datasets to some extent.

Encoder Set of datasets Accuracy CH index

D2V metaMIMIC 0.59 ± 0.006 64.85 ± 5.03

liltab metaMIMIC 0.58 ± 0.007 70.77 ± 2.90

D2V UCI 0.72 ± 0.006 241.27 ± 5.10

liltab UCI 0.65 ± 0.008 136.37 ± 8.55

5.2 Transferability of HP

To determine the quality of the proposed warm-start, we present on Figure 3a trajectories of ADTM

for each cross validation fold with averages and confidence intervals for each considered method.

In Figures 3b and 3c we show the statistical significance of our results aggregated across all folds on

critical distance plots. There is a significant difference in the results of the specific methods. It can be

noticed that the rankmethod is significantly better than other methods. Moreover, both encoders are

indistinguishable in terms of performance on the 10th and 30th iteration. Corresponding plots for

UCI are presented in Appendix G. In all cases, baselines either were statistically undistinguishable

from encoder-based approaches or even outperformed them. This contradicts the assumption
that the similarity of general datasets’ representations implies that they share the best HP
configurations.

6 Conclusion

In our study, we provide results showing that using encoder-based representations has no significant

gain over simpler methods in the task of choosing warm-start points in BO. Moreover, our results

show that meta-learning methods do not necessarily outperform simple random initialization. To

make the evidence stronger, we propose a new method to extract data representation from the

model proposed in [Iwata and Kumagai, 2020]. We evaluate its performance and compare it to

4

(a) Plots of ADTM of metaMIMIC data HPO with warm-start comparison. A lower score means the

performance of a method is closer to the best score obtained on a specific dataset on average.

(b) Critical distance plot for logistic regression in

10th iteration.

(c) Critical distance plot for logistic regression in

30th iteration.

Figure 3: Results for the elastic net on metaMIMIC. Each fold in ADTM plots on Figure 3a presents

results for a specific split of datasets to train and validate the subset. Here, the rank method

results in the lowest average distance to the maximum ROC-AUC score for specific datasets.

The position on the Critical distance on Figures 3b and 3c scale denotes test statistic in the

Friedman test. Methods that are connected with horizontal lines are statistically indistin-

guishable.

Dataset2Vec, an established dataset encoder. Both of them met Requirement 1. The experiments

show that they have comparable results on most warm-start tasks and both of them yield no

significant improvement in considered meta-task.

7 Limitation and Broader Impact

Here, we want to emphasize some of the limitations of our work. Additionally, we summarize the

potential future directions in this field.

We only used two encoders because few can work on heterogeneous data. However, considering

the benchmark provided in [Zhu et al., 2023], we choose the two best models that work on varying

features and target spaces. To perform experiments, we used three significantly different sets of

datasets. Despite their versatility, there is a need to re-perform experiments on a more extensive

data portfolio to ensure independence of the results and the data. Concerning reproducibility, one

of the sets cannot be published (metaMIMIC) but detailed instructions to reproduce are provided in

original paper [Woźnica et al., 2023].

We believe that creating new heuristics and encoders is the next direction in this study. The

results shown in this paper suggest that this field needs to be explored more. In particular, there is

a great need to create encoders or heuristic-based methods that perform in all tasks better than

random sampling starting points.

Social impact statement
After careful reflection, we have determined that this work presents no notable negative impacts

on society or the environment.

References

Tomoharu Iwata and Atsutoshi Kumagai. Meta-learning from Tasks with Heterogeneous Attribute

Spaces. In Advances in Neural Information Processing Systems, volume 33, pages 6053–6063, 2020.

5

Thomas Davenport and Ravi Kalakota. The potential for artificial intelligence in healthcare. Future
Healthcare Journal, 6(2):94–98, 2019. doi: 10.7861/futurehosp.6-2-94.

Abdullah Alanazi. Using machine learning for healthcare challenges and opportunities. Informatics
in Medicine Unlocked, 30:100924, 2022. doi: 10.1016/j.imu.2022.100924.

Joaquin Vanschoren. Meta-learning. In Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors,

Automated Machine Learning: Methods, Systems, Challenges, pages 35–61. Springer International
Publishing, 2019. doi: 10.1007/978-3-030-05318-5_2.

Hadi S Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. Dataset2Vec: Learning Dataset Meta-

Features. Data Mining and Knowledge Discovery, 35:964–985, 2021. doi: https://doi.org/10.1007/
s10618-021-00737-9.

Adriano Rivolli, Luís P. F. Garcia, Carlos Soares, Joaquin Vanschoren, and André C. P. L. F. de Car-

valho. Meta-features for meta-learning. Knowledge-Based Systems, 240:108101, 2022. doi:

10.1016/j.knosys.2021.108101.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter

Optimization. In Advances in Neural Information Processing Systems, volume 24, 2011a.

Nicoletta Del Buono, Flavia Esposito, and Laura Selicato. Methods for Hyperparameters Op-

timization in Learning Approaches: An Overview. pages 100–112, 2020. doi: 10.1007/

978-3-030-64583-0_11.

Xiyuan Liu, XiYuan Liu, Jia Wu, Jia Wu, Senpeng Chen, and SenPeng Chen. Efficient Hyperparam-

eters optimization Through Model-based Reinforcement Learning and Meta-Learning. 2020 IEEE
22nd International Conference on High Performance Computing and Communications; IEEE 18th In-
ternational Conference on Smart City; IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 1036–1041, 2020. doi: 10.1109/hpcc-smartcity-dss50907.2020.00139.

A Helen Victoria and Ganesh Maragatham. Automatic tuning of hyperparameters using Bayesian

optimization. Evolving Systems, 12(1):217–223, 2021. doi: 10.1007/s12530-020-09345-2.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and

Alexander J Smola. Deep Sets. In Advances in Neural Information Processing Systems, volume 30,

2017.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked Science

in Machine Learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198.

Kolby Nottingham Markelle Kelly, Rachel Longjohn. UCI Machine Learning Repository, 2021. URL

https://archive.ics.uci.edu.

KatarzynaWoźnica, Mateusz Grzyb, Zuzanna Trafas, and Przemysław Biecek. Consolidated learning:

a domain-specific model-free optimization strategy with validation on metaMIMIC benchmarks.

Machine Learning, pages 1–25, 2023. doi: 10.1007/s10994-023-06359-0. Publisher: Springer.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(11), 2008.

Harabasz Caliński. A dendrite method for cluster analysis. Communications in Statistics-theory and
Methods, 1974. doi: 10.1080/03610927408827101.

6

https://archive.ics.uci.edu

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier

Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
785–794, 2016. doi: 10.1145/2939672.2939785.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-

parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Wein-

berger, editors, Advances in Neural Information Processing Systems, volume 24. Curran Asso-

ciates, Inc., 2011b. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Max Zhu, Katarzyna Kobalczyk, Andrija Petrovic, Mladen Nikolic, Mihaela van der Schaar, Boris

Delibasic, and Petro Lio. Tabular few-shot generalization across heterogeneous feature spaces.

arXiv preprint arXiv:2311.10051, 2023.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep Metric Learning via Lifted

Structured Feature Embedding. In 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4004–4012, 2015.

Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Steven Horng, Leo Anthony Celi, and Roger Mark.

MIMIC-IV, 2023.

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes]

(e) Did you report the statistical significance of your results? [Yes]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes]

7

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://2022.automl.cc/ethics-accessibility/

(g) Did you compare performance over time and describe how you selected the maximum

duration? [No] The methods presented in this paper are meant to be significantly faster

than single evaluation in Bayes Optimization and thus, we do not set time but iteration

limit.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[No] We do not propose any new method in this paper except simple heuristic that are too

simple to perform ablation studies on them.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [No] We fulfilled all requirements from this points

except providing all data, as metaMIMIC dataset cannot be published.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes]

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [N/A]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

8

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

9

A Liltab’s representations of datasets

Here, we describe representations generated by the liltabwhich is part of the architecture introduced
[Iwata and Kumagai, 2020], namely the inference network. Please note that in the original paper,

there are three parts of the proposed network while we show only the first two of them. This is

because the second part creates a representation for each of the records in the dataset. On the

contrary, the representations produced by the third part are created attribute-wise and as a result,

are harder to interpret. In the original paper, the whole architecture was designed to serve in

few-shot learning tasks. However, we do not use any of the few-shot learning features in our work

so we do not use terms related to this technique in the description below.

A.1 Network architecture

Let’s denote [𝑋,𝑌] as task, 𝑥𝑛 as 𝑛-th observation in it and 𝑥𝑛𝑖 as 𝑖-th attribute of 𝑛-th observation.

In our research, we focus only on the binary target so 𝑦𝑛 ∈ {0, 1} denotes 𝑛-th target value. We use

here 𝑁 as the number of observations in the task and 𝐼 as the number of attributes so 𝑛 = 1, . . . , 𝑁

and 𝑖 = 1, . . . , 𝐼 .

Let’s denote feed-forward neural networks as 𝑓⊙ when their function is to encode information

about attributes and targets and 𝑔⊙ when their function is to aggregate the outputs of 𝑓⊙ networks.

Vector 𝜈𝑖 and scalar 𝑐𝑖 store information about the marginal distribution of each attribute and a

target. Their values are obtained by feed forward networks 𝑓𝜈 , 𝑓𝑐 , 𝑔𝜈 , 𝑔𝑐 , which is presented in

Figure 4. The formal formulation of this step is presented below:

𝜈𝑖 = 𝑔𝜈

(
1

𝑁

𝑁∑︁
𝑛=1

𝑓𝜈 (𝑥𝑛𝑖)
)
, 𝑐 = 𝑔𝑐

(
1

𝑁

𝑁∑︁
𝑛=1

𝑓𝑐 (𝑦𝑛)
)
. (1)

Figure 4: First step of the inference network. Here, the inference network learns about the empirical

marginal distributions of the attributes based on the support set.

Further encoding 𝑢𝑛 provides the possibility to provide additional information about rela-

tionships between attributes and targets. What is more, this representation is created for each

observation (as shown in Figure 5). This step can be formulated as below:

10

𝑢𝑛 = 𝑔𝑢

(
1

𝐼

𝐼∑︁
𝑖=1

𝑓𝑢 ([𝜈𝑖 , 𝑥𝑛𝑖]) + 𝑓𝑢 ([𝑐,𝑦𝑛])
)
, (2)

where [·] denotes the concatenation. Please note that the representations 𝑢 = (𝑢1, . . . , 𝑢𝑁) is in
R𝑁×𝑝

, where 𝑝 denotes the size of representation and is treated as the architecture’s hyperparameter.

The presented architecture can store information about marginal distributions and interactions

between variables in the dataset that is provided on input. Thus, by providing an appropriate loss

function, one can train such a model to distinguish between different datasets or subsets of datasets.

Figure 5: Second step of the inference network. Here, the inference network learns the relationships

between the attributes and the target based on the support set.

A.2 Network training

During the original training procedure, the authors of [Iwata and Kumagai, 2020] wanted to

maximize its predictive performance. However, representations produced by an inference network

occur to be uninformative on real-world data and often are vectors with few non-zero coordinates.

To overcome that issue, we propose a new encoder-based technique that targets this part of the

model.

In our training procedure, each batch of data is created from samples from several different

datasets, where the numbers of samples for each dataset are equal. Next, observations from one

dataset in the batch are encoded to their representation. During the calculation of the loss function,

we focus on representations of specific observations and train the network to produce encodings

that are close to each other when they correspond to the same dataset and far away when they

relate to different datasets. To achieve that, we propose the contrastive learning approach with loss

function inspired by [Song et al., 2015]:

𝑙𝑜𝑠𝑠 =
1

|N | + |S |
©­«
∑︁
𝑖, 𝑗∈S

∥𝜙 (𝑥𝑖) − 𝜙 (𝑥 𝑗)∥2 −
∑︁
𝑖, 𝑗∈N

∥𝜙 (𝑥𝑖) − 𝜙 (𝑥 𝑗)∥2

ª®¬ ,
11

where 𝑥𝑖 denotes specific observation, 𝜙 is a liltab’s encoder function, S is a set of pairs of indices

of observations that belong to the same dataset, and N denotes pairs of indices of observations

that are from different datasets. Note that we index by observations, not by subsets in batch.

B Data

The set of datasets from OpenML are binary classification tasks created from regression ones when

a classification target is obtained as an indicator of whether the regression target is above or below

the average. The datasets are preprocessed and standardized, so the distribution of ones and zeros

is equal. A complete list of these datasets is in Appendix C.

The next set of data is supplied from the GitHub repository of D2V. Some of the datasets are

multilabel classification tasks with several classes varying from 2 to 10. However, we decided to

cast classes so that there are only 2 classes in every task. The reason for such modification is that

the tasks on which the encoders are trained are binary only. We also remove datasets with more

than 10000 observations or 20 features. Appendix D shows a complete list of used datasets.

The last set of datasets is prepared on the metaMIMIC datasets [Woźnica et al., 2023]. It

contains fully preprocessed data from [Johnson et al., 2023], with 12 binary classification tasks, each

describing the presence of a specific disease. As tasks originally contain more than 100 features,

selecting the 10 most important for each task provides the ability to measure the similarity of tasks

by simply calculating the fraction of shared most significant features. During our study, we would

like to consider several small datasets, as it is the preferred data type for liltab. Due to that fact, we

split each metaMIMIC task into multiple smaller tasks. For every small task used in the warm-start

evaluation, we specify 4 observations as the training set and 29 observations as the validation

set. Both training and validation sets are sampled equally concerning the target value. With this

methodology, we yielded over 5000 small tasks in total. MetaMIMIC has not yet been used in this

domain, especially as the source of small subsets of data. However, it is a promising type of set of

tasks for the dataset similarity as each task has some common features with the others.

12

C Datasets from OpenML

Table 2: Datasets from OpenML used for encoder training.

name number of rows number of columns

diggle_table_a1 48 5

fri_c4_100_25 100 26

chatfield_4 235 13

edm 154 18

vineyard 52 3

pollution 60 16

fri_c3_100_10 100 11

visualizing_hamster 73 6

pyrim 74 28

visualizing_slope 44 4

hip 54 8

chscase_geyser1 222 3

rabe_148 66 6

bodyfat 252 15

chscase_vine1 52 10

sleuth_ex1714 47 8

echocardiogram-uci 132 8

hutsof99_child_witness 42 16

fri_c3_250_10 250 11

chscase_funds 185 2

qsartox 16 24

qsabr2 15 10

sleep 62 8

longley 16 7

heart 270 14

mu284 284 10

ICU 200 20

qsbralks 13 22

analcatdata_uktrainacc 31 16

slump 103 10

rabe_131 50 6

gascons 27 5

rabe_265 51 7

rabe_166 40 2

baskball 96 5

bolts 40 7

chscase_demand 27 11

qsfsr2 19 10

fri_c2_100_5 100 6

sleuth_ex1605 62 6

qsfsr1 20 10

visualizing_ethanol 88 3

13

name number of rows number of columns

EgyptianSkulls 150 5

transplant 131 3

pwLinear 200 11

diabetes_numeric 43 3

autoPrice 159 16

treepipit 86 10

branin 225 3

machine_cpu 209 7

detroit 13 14

fri_c2_250_25 250 26

qsbr_y2 25 10

humans_numeric 75 15

visualizing_environmental 111 4

USCrime 47 14

rabe_176 70 4

fri_c0_250_5 250 6

rabe_266 120 3

14

D Datasets from UCI

Table 3: Datasets from UCI used for HPO warmstart evaluation.

name number of rows number of columns

chess-krvkp 3196 37

post-operative 90 9

contrac 1473 10

pittsburg-bridges-REL-L 103 8

seeds 210 8

ecoli 336 8

acute-nephritis 120 7

haberman-survival 306 4

cylinder-bands 512 36

pittsburg-bridges-TYPE 105 8

ringnorm 7400 21

tic-tac-toe 958 10

led-display 1000 8

hill-valley 1212 101

waveform 5000 22

credit-approval 690 16

dermatology 366 35

statlog-heart 270 14

echocardiogram 131 11

thyroid 7200 22

planning 182 13

spect 265 23

musk-1 476 167

wall-following 5456 25

ozone 2536 73

hayes-roth 160 4

breast-cancer-wisc-prog 198 34

yeast 1484 9

energy-y2 768 9

wine-quality-red 1599 12

teaching 151 6

musk-2 6598 167

zoo 101 17

statlog-landsat 6435 37

molec-biol-promoter 106 58

heart-switzerland 123 13

congressional-voting 435 17

statlog-image 2310 19

oocytes_trisopterus_states_5b 912 33

oocytes_merluccius_nucleus_4d 1022 42

wine-quality-white 4898 12

mushroom 8124 22

15

name number of rows number of columns

conn-bench-sonar-mines-rocks 208 61

vertebral-column-3clases 310 7

heart-hungarian 294 13

low-res-spect 531 101

semeion 1593 257

iris 150 5

ilpd-indian-liver 583 10

optical 5620 63

horse-colic 368 26

waveform-noise 5000 41

lenses 24 5

glass 214 10

mammographic 961 6

twonorm 7400 21

balance-scale 625 5

abalone 4177 9

pittsburg-bridges-T-OR-D 102 8

bank 4521 17

hepatitis 155 20

breast-cancer-wisc 699 10

ionosphere 351 34

flags 194 29

image-segmentation 2310 19

breast-tissue 106 10

monks-2 601 7

pittsburg-bridges-SPAN 92 8

trains 10 30

heart-cleveland 303 14

spectf 267 45

page-blocks 5473 11

statlog-vehicle 846 19

monks-3 554 7

blood 748 5

oocytes_merluccius_states_2f 1022 26

statlog-australian-credit 690 15

energy-y1 768 9

heart-va 200 13

steel-plates 1941 28

breast-cancer 286 10

lung-cancer 32 57

wine 178 14

spambase 4601 58

oocytes_trisopterus_nucleus_2f 912 26

pima 768 9

annealing 898 32

breast-cancer-wisc-diag 569 31

16

name number of rows number of columns

lymphography 148 19

car 1728 7

cardiotocography-10clases 2126 22

titanic 2201 4

acute-inflammation 120 7

pittsburg-bridges-MATERIAL 106 8

monks-1 556 7

fertility 100 10

balloons 16 5

vertebral-column-2clases 310 7

synthetic-control 600 61

parkinsons 195 23

statlog-german-credit 1000 25

molec-biol-splice 3190 61

cardiotocography-3clases 2126 22

17

E Hyperparameters of encoders

Table 4: Hyperparameters of liltab encoder.

Hyperparameter Description Value

num_epochs Maximum number of epochs 100000

learning_rate Learning rate 0.0001

weight_decay Weight decay 0

batch_size Batch size 37

early_stopping_epochs Epochs without loss decrease before stop of training 2500

hidden_representation_size Dimensionality of output of intermediate networks 32

n_hidden_layers Number of hidden layers in intermediate networks 3

hidden_size Size of hidden layers in intermediate networks 32

dropout_rate Dropout rate in all intermediate networks 0.1

Table 5: Hyperparameters of Dataset2Vec encoder.

Hyperparameter Description Value

gamma Scaling factor in metric-based classification 1

num_epochs Maximum number of epochs 100000

learning_rate Learning rate 0.001

weight_decay Weight decay 0.0001

batch_size Batch size 16

train_n_batches Number of batches in one epoch 100

early_stopping_epochs Epochs without loss decrease before stop of training 500

f_dense_hidden_size Size of input/output layers in residual block in first layer 16

f_res_hidden_size Size of hidden layers in residual block in first layer 16

f_res_n_hidden Number of hidden layers in residual block in first layer 3

f_dense_out_hidden_size Output size of first layer 16

f_block_repetitions Number of residual blocks in first layer 3

g_layers_sizes Sizes of hidden layers in second layer [32, 16, 8]

h_dense_hidden_size Size of input/output layers in residual block in third layer 32

h_res_hidden_size Size of hidden layers in residual block in third layer 32

h_res_n_hidden Number of hidden layers in residual block in third layer 3

h_dense_out_hidden_size Output size of last layer 16

h_block_repetitions Number of residual blocks in third layer 3

18

F Hyperparameters grids used for HPO

Table 6: Hyperparameters grid used for HPO of elastic net algorithm.

Condition Hyperparameter Values’ range Distribution

n/a tol [0.0001, 0.001] loguniform

n/a C [0.0001, 10000] loguniform

n/a solver

[lbfgs, liblinear, newton-cg,

newton-cholesky, sag, saga]

categorical

solver = liblinear

intercept scaling [0.001, 1] uniform

penalty [l1, l2] categorical

solver = liblinear

and penalty = l2

dual [true, false] categorical

solver = saga

penalty [elasticnet, l1, l2, null] categorical

l1 ratio [0, 1] uniform

solver ≠ saga

and solver ≠ liblinear

penalty [l2, null] categorical

Table 7: Hyperparameters grid used for HPO of XGBoost algorithm.

Hyperparameter Values’ range Distribution

no of estimators [1, 1000] uniform (int)

learning rate [0, 1] uniform

booster [gblinear, gbtree] categorical

subsample [0.5, 1] uniform

max depth [6, 15] uniform (int)

min child weight [2, 256] uniform

colsample bytree [0.2, 1] uniform

colsample bylevel [0.2, 1] uniform

19

G Results on the UCI datasets

(a) The representation obtained with liltab. (b) The representation obtained with D2V.

Figure 6: T-SNE visualization of four encoded datasets’ representations. Each point represents an

encoded subset of data sampled from one of the datasets.

(a) Plots of ADTM of UCI data HPO with warm-start comparison. A lower score means the performance

of a method is closer to the best score obtained on a specific dataset on average.

(b) Critical distance plot for logistic regression in

10th iteration.

(c) Critical distance plot for logistic regression in

30th iteration.

Figure 7: Results for UCI datasets, elastic net. Each fold in ADTM plots on Figure 7a presents results

for a specific split of datasets to train and validation the subset. The position on the critical

distance scale in Figures 7b and 7c denotes test statistics in the Friedman test. Methods

that are connected with horizontal lines are statistically indistinguishable. It shows that the

difference in performance between methods is statistically irrelevant.

20

(a) Plots of ADTM of UCI data HPO with warm-start comparison. A lower score means the performance

of a method is closer to the best score obtained on a specific dataset on average.

(b) Critical distance plot for XGBoost in 10th it-

eration.

(c) Critical distance plot for XGBoost in 30th iter-

ation.

Figure 8: Results for UCI, XGBoost. Each fold in ADTM plots on Figure 8a presents results for a

specific split of datasets to train and validation the subset. The position on the critical

distance scale in Figures 8b and 8c denotes test statistics in the Friedman test. Methods

that are connected with horizontal lines are statistically indistinguishable. It shows that the

difference in performance between methods is statistically irrelevant.

21

	Introduction
	Problem setting
	Considered approaches
	Encoders
	Baselines

	Experiments
	Experimental setup

	Results
	Encodings similarity of datasets
	Transferability of HP

	Conclusion
	Limitation and Broader Impact
	Liltab's representations of datasets
	Network architecture
	Network training

	Data
	Datasets from OpenML
	Datasets from UCI
	Hyperparameters of encoders
	Hyperparameters grids used for HPO
	Results on the UCI datasets

