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ABSTRACT

Diffusion models have exhibited remarkable advancements in generating high-
quality data. However, a critical drawback of these models is their computation-
ally intensive inference process, which requires a large number of timesteps to
generate a single sample. Existing methods address this challenge by decoupling
the forward and reverse processes, and they rely on handcrafted rules (e.g., uni-
form skipping) for sampling acceleration, leading to the risk of discarding impor-
tant steps and deviating from the optimal trajectory. In this paper, we propose an
Efficient Denoising Diffusion method via Probabilistic Masking (EDDPM) that
can identify and skip the redundant steps during training. To determine whether
a timestep should be skipped or not, we employ probabilistic reparameterization
to continualize the binary determination mask. The mask distribution parameters
are learned jointly with the diffusion model weights. By incorporating a real-time
sparse constraint, our method can effectively identify and eliminate unnecessary
steps during the training iterations, thereby improving inference efficiency. No-
tably, as the model becomes fully trained, the random masks converge to a sparse
and deterministic one, retaining only a small number of essential steps. Empirical
results demonstrate the superiority of our proposed EDDPM over the state-of-the-
art sampling acceleration methods across various domains. EDDPM can generate
high-quality samples with only 20% of the steps for time series imputation and
achieve 4.89 FID with 5 steps for CIFAR-10. Moreover, when starting from a
pretrained model, our method efficiently identifies the most informative timesteps
within a single epoch, which demonstrates the potential of EDDPM to be a prac-
tical tool to explore large diffusion models with limited resources.

1 INTRODUCTION

Diffusion models have emerged as a powerful generative technique, achieving unprecedented suc-
cess in various domains, including image generation (Ho et al., 2020; Saharia et al., 2022; Dhariwal
& Nichol, 2021), speech synthesis (Kong et al., 2020; Jeong et al., 2021), text generation (Hooge-
boom et al., 2021; Li et al., 2022), 3D shape generation (Luo & Hu, 2021) and time series forecasting
and imputation (Tashiro et al., 2021; Rasul et al., 2021). These models employ an iterative sampling
procedure to generate each sample by progressively removing noise from random initial vectors.

One significant drawback of diffusion models is their reliance on a large number of denoising steps,
ranging from hundreds to thousands, to transform Gaussian noise into a sample. As a result, diffu-
sion models are considerably slower compared to other generative models like GANs (Brock et al.,
2018). In recent years, several acceleration techniques have been proposed to address this issue,
which can be divided into learning-free and learning-based methods according whether additional
training is required. It is worth noting that learning-free methods (Song et al., 2020a; Bao et al.,
2021; Liu et al., 2021; Bao et al., 2022) often employ handcrafted rules, whereas learning- based
methods (Watson et al., 2021a;b; Dockhorn et al., 2022; Salimans & Ho, 2021; Luhman & Luhman,
2021) decouple the training and inference schedules. This decoupling allows for separate learning of
the training and sampling schedules. However, both approaches have the potential to result in sub-
optimal performance. Therefore, exploring the determination of the optimal sampling step during
training is a promising direction worth investigating.
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Figure 1: The left sub-figure shows the parametic probabilistic masking method, in which the masks
are determined by the Bernoulli distribution. The steps with 0-valued masks will be skipped. The
right sub-figure shows the performance changes when we simply remove a single step. The red
rectangles indicate that the sample quality can be improved after removing that step. The results are
collected from CSDI (Tashiro et al., 2021) model with the Air-quality dataset. It shows that for most
steps, performance drop of removing them is negligible, i.e., lower than 0.15. It can be expected that
more promising results can be achieved when more advanced approaches are employed.

In this paper, we propose an efficient denoising diffusion model (EDDPM) to enhance the sampling
efficiency. The fundamental concept is illustrated in Figure 1. The sub-figure on the right highlights
redundant sampling steps in the denoising process. Removing these steps has a negligible effect
on the quality of the samples or may even improve the sample quality. To automatically and safely
skip redundant steps in the forward and reverse diffusion processes, we propose EDDPM, which
is a diffusion model equipped with a novel probabilistic masking module. This module gradually
identifies and masks the less informative steps. To be precise, we assign a binary probabilistic mask
mi to each diffusion step i, indicating whether it should be skipped (mi = 0 ) or kept (mi =
1). Since searching for the globally optimal steps for diffusion models is an intractable discrete
optimization problem, we address it by continualizing it through probabilistic reparameterization.
We parameterize mi to be a Bernoulli random variable with probability si set to 1 and probability
1 − si set to 0. Consequently, we can use the sum of si to control the model efficiency, which can
finally be encoded into a sparse constraint. Therefore, the training problem is continualized into
optimizing the denoising diffusion model under the sparsity constraint.

By jointly training the denoising diffusion model and optimizing the mask distribution parame-
ters, we are able to automatically identify and eliminate redundant steps. Our method possesses
an appealing feature: as a result of the sparse constraint applied to the distribution parameters, the
majority of probabilities si will converge to either 0 or 1 upon full training. Consequently, the
masks tend to converge to nearly deterministic ones after training and the redundant steps can thus
be safely removed.We conducted extensive quantitative and qualitative evaluations on image syn-
thesis and time series imputation tasks to validate the effectiveness of our method. For instance,
in time series imputation, our method achieves significant performance improvements, generating
high-quality samples using only 20% of the original steps. Moreover, it achieves an impressive FID
score of 4.89 on CIFAR-10 with just 5 steps. Another advantage of our method is that it only re-
quires one epoch of fine-tuning on a pretrained model to determine the most informative denoising
steps. This makes it feasible to explore large diffusion models even with limited resources, which
is particularly valuable for the research in academia. The main contributions of this work can be
summarized as follows:

• We propose an efficient denoising diffusion model via probabilistic masking, offering the
following advantages:

– Our method can identify and remove redundant denoising steps during training, elim-
inating the need for handcrafted skipping rules.

– Most of our probabilistic masks converge to deterministic values after full training,
allowing for the safe removal of redundant steps.

– The training efficiency in the later stages is significantly improved. As the training
process goes on, most si’s would get closer to either 0 or 1. Thus, our EDDPM would
automatically select the uninformative steps (i.e., si is small) with low probability and
always focus on the informative ones (i.e., si is close to 1) to train the model weights.

• We verify the proposed EDDPM method on two domain tasks. In the time series imputation
benchmarks, the empirical results on Healthcare and Air-quality datasets demonstrate that
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EDDPM outperforms the state-of-the-art sampling acceleration methods. It achieves com-
parable or even superior performance compared to the original baselines with only 20%
denosing steps. Moreover, EDDPM achieves a 4.89 FID with only 5 steps for CIFAR-10.

• EDDPM demonstrates impressive performance in diffusion model compression. Starting
from a pretrained diffusion model, our method can compress it within a single epoch of
fine-tuning. This highlights the potential of EDDPM as a practical tool for exploring large
diffusion models with limited resources.

2 RELATED WORKS

In this section, we first review the development and applications of diffusion models, Then, we
introduce the recent work on improving the sampling efficiency of diffusion models.

Development and applications of DPMs. Diffusion probabilistic models (DPMs) are firstly intro-
duced by (Sohl-Dickstein et al., 2015) that they can convert one distribution into a target distribution,
in which each diffusion step is tractable. Bordes et al. (2016) improved DPMs by a infusion training
procedure that requires slightly shorter generation trajectory. Ho et al. (2020) proposed a new diffu-
sion model, called Denoising Diffusion Model (DDPM), and a weighted variational bound objective
by connecting the DPMs and denoising score matching methods (Song & Ermon, 2019). Song et al.
(2020a) generalized the DDPMs to non-Markovian diffusion processes which lead to “short” gener-
ative Markov chains that can increase sample efficiency. With above the important improvements,
DPMs show great potential in various applications, including speech synthesis (Kong et al., 2020;
Jeong et al., 2021), 3D shape generation (Luo & Hu, 2021), image super-resolution (Saharia et al.,
2022), text generation (Hoogeboom et al., 2021; Li et al., 2022) and probabilistic time series fore-
casting(Rasul et al., 2021) and imputation (Tashiro et al., 2021) Previous studies have shown deep
learning models can capture the temporal dependency of time series and give more accurate impu-
tation than statistical methods (Fortuin et al., 2020; Mulyadi et al., 2021; Bonilla & Chai, 2007).
Rasul et al. (2021) used DPMs for multivariate probabilistic time series forecasting and achieved
the state-of-the-art performance. CSDI (Tashiro et al., 2021) is a conditional score-based diffusion
model and it is used to generate the missing values in the time series. To our knowledge, prior works
have not explore the acceleration of DPMs on time series domain.

Acceleration of DPMs. Following the survey (Yang et al., 2022), we divide the existing efficient
sampling methods into two categories, i.e., learning-free and learning-based on methods based on
whether they require an additional learning process after the diffusion model has been trained.
The learning-free approaches accelerate the sampling process by discretizing either the reverse-
time stochastic differential equations (SDE) (Dockhorn et al., 2021; Song et al., 2020b; Jolicoeur-
Martineau et al., 2020) or the probability flow ordinary differential equations (ODE) (Liu et al.,
2021; Song et al., 2020a; Zhang et al., 2022; Lu et al., 2022). We notice that these methods always
use handcrafted steps to select the denosing steps. As our proposed method belongs to the learn-
ing based category, here we mainly review the recent studies on learning-based efficient sampling
methods (Watson et al., 2021a;b; Dockhorn et al., 2022; Salimans & Ho, 2021; Luhman & Luhman,
2021), which find efficient denoising trajectories by optimizing some objective or using knowledge
distillation.For example, Watson et al. (2021b) used the dynamic programming algorithm to search
the informative diffusion steps. Xiao et al. (2021) compressed the diffusion process by combining
the GANs and DPMs, the efficiency is improved since larger step size is allowed. San-Roman et al.
(2021) estimated the level of noise by training a separate model, and modified the denoising pro-
cess dynamically to match the predicted noise level. Dockhorn et al. (2022) derive a second-order
solver for accelerating synthesis by training a additional head on top of the first-order score network.
Knowledge distillation is adopted in (Salimans & Ho, 2021; Luhman & Luhman, 2021) to distill the
full sampling process into a faster sampler.

Through promising results are reported in existing studies, it is worth noting that learning-free meth-
ods often employ handcrafted rules, whereas learning-based methods usually decouple the training
and inference schedules. However, both approaches have the potential to result in suboptimal per-
formance. To overcome the separation of the training and the inference processes, we propose to
progressively remove the redundant diffusion steps in the training through a probabilistic parame-
terization approach.
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Notations: Let ∥ · ∥1 be the ℓ1 norm of a vector. We denote 1 ∈ Rn and 0 ∈ Rn to be the vectors
with all components equal to 1 and 0. In addition, {0, 1}n is a set of n-dimensional vectors with
each coordinate valued in {0, 1}.

3 BASICS

In this section, for the convenience of presenting our method EDDPM in Section 4, we introduce
the basics of denoising diffusion probabilistic models.

Starting from a sample x0, a diffusion process or forward process is defined as a T -step Markov
chain, where Gaussian noise is gradually injected into x0. That is

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) with q(xt|xt−1) = N (xt|
√
1− βtxt−1, βtI), (1)

where the scalar parameter βt (t = 1, . . . , T ) determines the variance of the noise added at each
diffusion step, subject to 0 < βt < 1. x1, ...,xT are latent variables in the same space as x0. It
can be verified that the diffusion schedule in Eqn.(1) can guarantee xT would be close to a standard
Gaussian noise, i.e., N (xT ;0, I), when T is sufficiently large. Notice that xt at an arbitrary timestep
t takes the form of:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (2)

where αt =
∏t

s=1 α̂s, α̂t = 1 − βt. This property enables us to sample xt at any timestep t in
training without going through xi, i ≤ t one by one.

The reverse process is modelled as another Markov chain parameterized by θ. To be precise, it starts
from p(xT ) = N (xT ;0, I) and

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) with pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I). (3)

The parameters θ of the reverse process can be learned by maximizing the following variational
lower bound on the training set, i.e.,

Eq(x0) log pθ(x0) ≥ Eq(x0,x1,...,xT ) log
pθ(x0:T )

q(x1:T |x0)
. (4)

Minimizing the objective function in Eqn.(4) is equivalent to minimizing the distance between
pθ(xt−1|xt) against forward process posteriors q(xt−1|xt,x0), which is actually a Gaussian distri-
bution, i.e.,

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), (5)

where µ̃t(xt,x0) :=

√
αt−1βt

1− αt
x0 +

√
α̂t(1− αt−1)

1− αt
xt, β̃t :=

1− αt−1

1− αt
βt.

By parameterizing pθ(xt−1|xt) as N (xt−1, µθ(xt, t), σ
2
t I) with

µθ(xt, t) = µ̃t

(
xt,

1
√
αt

(xt −
√
1− αtϵθ(xt, t))

)
,

and letting ϵ ∼ N (0, I), the overall training problem of diffusion model can be written as

min
θ

Ex0,ϵ,t

[
β2
t

2σ2
t α̂t(1− αt)

∥∥ϵ− ϵθ
(√

αtx0 +
√
1− αtϵ, t

)∥∥2
]
. (6)

4 METHOD

In this section, we present our efficient denoising diffusion probabilistic model EDDPM by first
introducing our probabilistic masking approach and then presenting the detailed training procedure.
The detailed derivation procedure for our method is given in the appendix.
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4.1 PROBABILISTIC MASKING FOR DIFFUSION MODELS

As shown in Figure 1, our basic idea is to assign a binary mask mt to determine whether this time
step t should be skipped (i.e., mt = 0) or not (i.e., mt = 1) and then jointly learn these masks with
the diffusion model parameters.

In EDPPM, we multiply each variance βt with the binary mask mt. Therefore, mt = 0 means the
diffusion step t can be skipped, since the injected noise in Eqn.(1) would be 0. Thus, the ℓ1-norm of
m, i.e., ∥m∥1, can be used to control the number of steps the diffusion model goes through. Notice
that, in this way, xt is still a Gaussian random variable. To be precise,

xt ∼ N (
√

αt(m)x0, (1− αt(m))I) where αt(m) =

t∏
i=1

α̂i(m), and α̂t(m) = 1− βtmt. (7)

It implies that we can sample xt at any time step t without going through the former steps 0 to t−1.
The variational low bound for diffusion models can be written as:

Lθ(x0, ϵ,m) = −Eq

log p(xT |m) +
∑
t≥1

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)

 , (8)

where the masked reverse process corresponding to Eqn. (3) becomes

pθ(xt−1|xt,m) = N (xt−1;µθ(xt,m, t), σ2
t (m)I), (9)

and the masked forward process posterior takes the form of

q(xt−1|xt,x0,m) = N (xt−1; ũ(xt,x0,m), β̃t(m)I),with

ũt(xt,x0,m) =

√
αt−1(m)βtmt

1− αt(m)
x0 +

√
α̂t(m)(1− αt−1(m))

1− αt(m)
xt, β̃t(m) =

1− ᾱt−1(m)

1− ᾱt(m)
mtβt.

The problem of training a sparse diffusion can be formulated naturally into

min
θ

Ex0,ϵ,t

[
Ct

∥∥∥ϵ− ϵθ

(√
αt(m)x0 +

√
1− αt(m)ϵ, t

)∥∥∥2] , s.t. ||m||1 ≤ K,m ∈ {0, 1}T ,

where Ct =
β2
tmt

2σ2
t α̂t(m)(1−αt(m))

with K is a positive integer controls the process complexity, T is
the total length of the diffusion process.

Notice that the above formulation involves a discrete optimization problem, which is hard to solve
and thus cannot be applied in practice. To address this issue, we contiualize the training problem
by probabilistic masking. That is, we reparameterize m into a binary random vector with each
component mt being an independent Bernoulli random variable with probability st ∈ [0, 1] to be 1
and 1 − st to be 0. Then, we can relax the above discrete optimization problem into the following
continuous one:

min
θ,s

Φ(θ, s) := Em∼p(m|s)Ex0,ϵ,t|mLt
θ(x0, ϵ,m), s.t. ||s||1 ≤ K, s ∈ [0, 1]T , (EDDPM)

where Lt
θ(x0, ϵ,m) = Ct

∥∥∥ϵ− ϵθ

(√
αt(m)x0 +

√
1− αt(m)ϵ, t

)∥∥∥2 .
Notice that Ct = 0 when mt = 0, therefore, we do not need to update the model in this case.
Discussion. Nice properties of our EDDPM are summarized as follows:

• Given the mask m, since xt are Gaussian random variables, we can sample them at any
time step t without going through the former diffusion steps. This would enable us to train
the model efficiently.

• Due to the constraints on s, i.e., ||s||1 ≤ K and s ∈ [0, 1]T , the optimal s would be sparse
and most of its components would be either 0 or 1. See Section C in the appendix for
details. This would lead us to the three advantages below:

– When fully trained, the mask m sampled from Bernoulli distribution p(m|s) would
become sparse. Thus, the length of the denoising steps can be significantly reduced
and inference efficiency can be improved.
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– Since the mask m would be nearly deterministic after training, the steps with 0 valued
masks can be safely discarded. Therefore, the undesired randomness in sampling the
final diffusion model is eliminated.

– The training efficiency in the late stage can be improved. The reason is that as the
training process goes on , most si’s would get closer to either 0 or 1. Therefore our
EDDPM would automatically select the uninformative steps (i.e., si is small) with low
probability and always focus on the informative ones (i.e., si is close to 1) to train the
model weights. Thus, the training efficiency can be improved, which is verified in the
experimental results (see Figure 2).

4.2 UPDATING MASKING SCORES

We adopt stochastic optimization algorithms to train our model EDDPM. Therefore, the key tech-
nique is to estimate the stochastic gradient. Notice that

∇θΦ(θ, s) = Em∼p(m|s)Ex0,ϵ,t|m∇θLt
θ(x0, ϵ,m). (10)

Hence, ∇θLt
θ(x0, ϵ,m) is an unbiased estimation of ∇θΦ(θ, s). Below, we introduce the estimation

of ∇sΦ(θ, s).

[Gradient Computation ∇sΦ(θ, s)] We adopt the policy gradient method to estimate the gradient.
To be precise,

∇sΦ(θ, s) = ∇s

∑
m

[
Ex0,ϵ,t|mLt

θ(x0, ϵ,m)
]
p(m|s)

=
∑
m

[
Ex0,ϵ,t|mLt

θ(x0, ϵ,m)
]
∇sp(m|s)

=
∑
m

[
Ex0,ϵ,t|mLt

θ(x0, ϵ,m)∇s ln p(m|s)
]
p(m|s)

= Em∼p(m|s)Ex0,ϵ,t|mLt
θ(x0, ϵ,m)∇s ln p(m|s). (11)

Therefore, Lt
θ(x0, ϵ,m)∇s ln p(m|s) is a stochastic gradient of Φ(θ, s).

Based on Eqn.(10) and (11), we know that during training, we can estimate the gradients ∇θΦ(θ, s)
and ∇sΦ(θ, s) by sampling a random mask m and a Gaussian noise ϵ.

[Gradually Increasing Masking Rate] To control the model complexity, we denote the final mask-
ing rate as γf , that is

K = γfT.

Then, to stabilize the training process, we increase the masking rate gradually to make a smooth
transformation from a full diffusion process to a sparse process. We utilize the increase function of
Zhu & Gupta (2017):

γe =

{
1, if e < e1,

γf + (1− γf )
(
1− e−e1

N−e1

)3
, otherwise,

(12)

where N is the training epoch, γe is the ratio of the remaining steps in the current epoch e. e1 is a
positive integer indicating that we train the entire denosing steps in the first e1 epochs.

After obtaining the gradients, θ and s are updated by projected gradient descent as follows:

θ = θ − η∇θΦ(θ, s) and s = projS (s− η∇sΦ(θ, s)) , (13)

where S = {s ∈ RT : ||s||1 ≤ Ke, s ∈ [0, 1]T } with Ke = γeT . The projection can be efficiently
computed with the details given in Theorem 1 of the appendix.

Our training method can be integrated with general stochastic optimization algorithms flexibly. The
detailed steps of our algorithm are given in the appendix.
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Table 1: CIFAR-10 image generation measured in FID. “-” means this result is not provided in the
corresponding paper. The underlined result is the second best method. NCSN++ w/ TDAS achieves
lower FID than our method as it adopts different base model.

Method Denoising steps
5 10 25 50 100 200 1000

Learning-free methods
DDPM (Ho et al., 2020) - 233.41 125.05 66.28 31.36 12.96 3.04
DDIM (Song et al., 2020a) 41.6 21.31 10.70 7.74 6.08 5.07 4.13
SN-DDPM (Bao et al., 2022) - 24.06 6.91 4.63 3.67 3.31 3.65
SN-DDIM (Bao et al., 2022) - 12.19 4.28 3.39 3.23 3.22 3.65
NPR-DDPM (Bao et al., 2022) - 32.35 10.55 6.18 4.52 3.57 4.10
NPR-DDIM (Bao et al., 2022) - 13.34 5.38 3.95 3.53 3.42 3.72
Analytic-DDPM (Bao et al., 2021) - 34.26 11.60 7.25 5.40 4.01 4.03
Analytic-DDIM (Bao et al., 2021) - 14.00 5.81 4.04 3.55 3.39 3.74
S-PNDM (Liu et al., 2021) 35.9 11.6 - 5.18 4.34 - 3.80
F-PNDM (Liu et al., 2021) - 7.03 - 3.95 3.72 - 3.70
Learning-based methods
GGDM (Watson et al., 2021a) 13.77 8.23 4.25 - - - -
DPM-solver (Lu et al., 2022) - 4.70 - - - - -
GENIE (Dockhorn et al., 2022) 11.2 5.28 3.64 - - - -
NCSN w/ TDAS (Ma et al., 2022) - - - - - 72.92 23.56
NCSN++ w/ TDAS (Ma et al., 2022) - - - - 7.78 2.97 -
EDDPM 4.89 4.34 3.59 3.34 3.21 3.19 3.03

5 EXPERIMENT

In this section, we evaluate the the effectiveness of EDDPM on two applications of DDPM, i.e.,
image synthesis and multivariate time series imputation. We follow the experimental settings in the
existing studies (Ho et al., 2020; Song et al., 2020a; Watson et al., 2021a) to ensure a fair comparison.

Datasets. We use the CIFAR-10 dataset (Krizhevsky et al., 2009) (50k images of resolution 32×32)
for image synthesis, and Healthcare (Silva et al., 2012) and Air-quality (Tashiro et al., 2021) for the
time series imputation experiments.

Baselines. The following two different sets of baselines are used for time series imputation and
image synthesis. For the time series task, we compared EDDPM to a variety of scheduling and
acceleration techniques applicable to DDPMs: DDPM (Ho et al., 2020), DDIM (Song et al., 2020a),
Analytic-DPM (Bao et al., 2021) and Extended-Analytic-DPM (Bao et al., 2022). Based on CSDI
model (Tashiro et al., 2021), these methods are all re-implemented in our codebase. In addition to
the above acceleration methods, we also compare PNDM (Liu et al., 2021), GGDM (Watson et al.,
2021a), DPM-solver (Lu et al., 2022), GENIE (Dockhorn et al., 2022) and TDAS (Ma et al., 2022)
on CIFAR-10 benchmark.

Evaluation Metric. In the time series task, we evaluate the performance on normalized data (zero
mean and unit variance) by three commonly used metrics (Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE)) for probabilistic time series imputation. Following previous studies (Tashiro
et al., 2021), we generate 100 samples to approximate the probability distribution over missing
values and report the normalized average of CRPS for all missing values. The detailed formulations
of these three metrics are provided in the appendix. In the image generation task, we use the Fréchet
Inception Distance (FID) (Heusel et al., 2017) to evaluate generated 50K samples. The transformed
feature is the 2048-dimensional vector output of the last layer of Inception-V3 (Szegedy et al., 2016).

5.1 MAIN RESULTS

In this section, we demonstrate the superior performance of our proposed EDDPM method in com-
pressing diffusion steps for probabilistic time series imputation and image generation tasks, as com-
pared to sampling acceleration methods. Additional visualization results can be found in the ap-
pendix.

As presented in Table 1, our proposed EDDPM method outperforms previous state-of-the-art sam-
pling acceleration methods in terms of CIFAR-10 image generation, particularly at sampling steps
of 5 and 10. These results illustrate that the decoupled forward and reverse processes fail to identify
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Table 2: Comparising sampling acceleration methods in terms of RMSE results on variable denois-
ing steps. † indicate that the sampling is accelerated by quadratic skipping during inference, the
others utilize uniform skipping. We highlight the best results that surpass the baseline (DDPM is
trained with 100% sampling steps) in red color, which means our method generates high-quality
time series with fewer denoising steps. The bold results show that our proposed EDDPM achieves
better performance than other sampling acceleration methods.

Dataset Missing rate Method Denoising steps Baseline10% 25% 40% 50%

H
ealthcare

10%

DDPM† 0.934 0.774 0.682 0.646
DDPM 0.900 0.707 0.634 0.592
DDIM 0.899 0.709 0.611 0.727
AnalyticDPM 0.856 0.842 0.831 0.825 0.549
SN-DDPM 1.094 1.112 1.128 1.146
NPR-DDIM 0.818 0.804 0.820 0.844
Ours (EDDPM) 0.582 0.545 0.529 0.505

50%

DDPM† 0.971 0.876 0.802 0.765
DDPM 0.961 0.815 0.747 0.706
DDIM 0.962 0.821 0.746 0.755
AnalyticDPM 0.976 0.902 0.896 0.865 0.679
SN-DDPM 1.029 1.038 1.047 1.061
NPR-DDIM 0.872 0.850 0.960 0.877
Ours (EDDPM) 0.721 0.672 0.669 0.670

90%

DDPM† 0.990 0.963 0.931 0.911
DDPM 0.101 0.931 0.883 0.850
DDIM 0.101 0.961 0.900 0.875
AnalyticDPM 0.982 0.919 0.916 0.901 0.823
SN-DDPM 1.179 1.115 1.105 1.095
NPR-DDIM 0.953 0.913 0.914 0.917
Ours (EDDPM) 0.851 0.811 0.809 0.815

A
ir-quality

13%

4% 10% 20% 40%
DDPM† 67.602 58.851 48.131 35.005
DDPM 64.302 55.300 44.199 31.338
DDIM† 67.767 60.848 52.296 40.761
DDIM 64.252 56.684 47.234 36.125
AnalyticDPM 62.458 51.223 48.936 46.379 19.212
SN-DDPM 78.885 73.111 69.656 69.430
SN-DDIM 85.099 69.359 69.241 73.545
NPR-DDPM 55.142 58.524 63.164 66.557
NPR-DDIM 55.656 46.654 45.496 44.458
Ours (EDDPM) 30.967 23.024 18.371 18.242

the optimal sampling steps, while our EDDPM method can automatically identify more informative
steps during training.

In Table 2, we evaluated the proposed EDDPM and alternative accelerated sampling methods. These
methods utilize the same CSDI (Tashiro et al., 2021) backbone network for a pair-to-pair compar-
ison. We have the following 3 observations. 1) The results demonstrate that, on Healthcare and
Air-quality datasets, our proposed EDDPM can achieve better RMSE results than the baselines with
100% steps (blue text) even if 50% ∼ 80% denoising steps are masked. 2) We also found that the
denoising process with uniform skipping approach can obtain better performance than the quadratic
skipping. 3) Furthermore, we observed that the methods DDIM, SN-DDPM and NPR-DDIM ex-
hibit instability, particularly when a higher percentage of sampling steps is masked. The results
deteriorate when 50% of the sampling steps are masked. Additionally, we present the MAE results
on Figure 2(a). Our method achieves better MAE results than the baseline with denoising steps by
only using 20% denoising steps. Moreover, our method demonstrates greater effectiveness at higher
masking rates compared to DDIM (Song et al., 2020a).

5.2 ABLATION STUDY

In this section, we aim to provide a comprehensive understanding of EDDPM by showcasing the
distribution of probability values si’s throughout the complete training process and visually repre-

8



Under review as a conference paper at ICLR 2024

2% 4% 10% 20% 40%
Denoising steps

10

20

30

40

50

M
AE

Baseline
DDPM
DDIM
Ours

9.6

9.8

(a) MAE

0.0 0.2 0.4 0.6 0.8 1.0
Step importance score

0

5

10

15

20

25

30

# 
of

 S
te

ps

60%

40%

Denoising steps 40%

(b) Score Distribution

0 100 200
# of Epoch

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Tr
ai

ni
ng

 lo
ss

DDPM
EDDPM

(c) Training Loss

Figure 2: a) MAE results, in which our EDDPM method performs better than other DPMs when
facing different masking rates. The “Baseline” indicates the imputated samples are generated by
100% sampling steps. b) The histogram of the probability s learned by our proposed EDDPM, and
the results are obtained from Air-quality dataset. Almost all of the si(i ∈ {1, . . . , T}) are either 0
or 1, making m becomes deterministic. c) The curves of training losses of DDPM and EDDPM.
EDDPM converges much more fast than DDPM in the late stage since it identify the informative
steps and focus on them to train the weights.

Table 3: Comparing the MAE results of DDPM and our proposed EDDPM. “Scratch” presents
that the denoising steps are searched from scratch by our EDDPM, “Finetune” uses the pretrained
DDPM models to search the most informative steps by finetuning one epoch. Here, DDPM and
Ours(Stratch) have the same training time cost since they run for the same number of epoches and
the training cost of updating s is negligible due to the efficient policy gradient estimator.

Method Denoising steps Training time2% 4% 10% 20% 40%
DDPM 55.075 50.566 41.585 30.243 18.399 4 h
Ours (Scratch) 15.125 14.128 11.135 9.5660 9.495 4 h
Ours (Finetune) 24.747 13.876 12.885 11.142 9.892 1 min

senting the training progress. Additionally, we demonstrate the effectiveness of EDDPM in model
compression, i.e., identifying the optimal denoising trajectory within pre-trained diffusion models.

Convergence to Deterministic Mask. Figure 2(b) illustrates the convergence of the probabilities
learned by our method after training. It is evident that the probabilities si tend to converge towards
either 0 or 1, resulting in a deterministic mask. This characteristic allows us to safely discard the
insignificant steps once training is complete. The effectiveness of this convergence can be attributed
to the global sparsity constraint imposed on s as we discussed in Section 4.

Fast Convergence. In Figure 2(c), we present a visualization of the impact of EDDPM on improving
training efficiency. We can observe that the training loss of EDDPM decreases much faster than
DDPM, especially in the late stage. The reason is that as the training goes on most of the si(i ∈
{1, . . . , T}) would get closer to either 0 or 1 (see Figure 2(b)), which enables EDDPM focus on the
most informative steps to train the model weights.

Finetuning Pretrained Diffusion Models. We assess the effectiveness of EDDPM in compressing
diffusion models. Specifically, we employ EDDPM on a pre-trained diffusion model to determine
the optimal denoising trajectory. The outcomes presented in Table 3 indicate that EDDPM can
achieve comparable performance in only 1 epoch, in contrast to the model trained from scratch.
This highlights the potential of EDDPM as a practical tool for exploring large diffusion models with
resource constraints.

6 CONCLUSION

In this paper, we propose an efficient denoising diffusion model via probabilistic masking to accel-
erate sample generation process. The main contribution is that the proposed probabilistic masking
approach can identity and remove the redundant steps gradually during training. We re-implement
several latest sampling acceleration methods on two time series imputation benchmarks and con-
struct experiments on image generation task to verify the effectiveness of the proposed EDDPM.
We also find that our method can find the optimal denoising steps by only using one epoch. This
makes it possible to explore large diffusion models in academia with limited resources.
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Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilis-
tic time series imputation. In International conference on artificial intelligence and statistics, pp.
1651–1661. PMLR, 2020.

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
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Algorithm 1 Efficient Denoising Diffusion via Probabilistic Masking (EDDPM)

Require: Random initilized diffusion model Fθ, N is the training epoch, masking rate γf .

Initilization: Sampling probabilities for each time step: s = 1 ∈ RT

1: for epoch e = 1, 2, .., N do
2: Calculate γe according to Eqn.(12).
3: for each training iteration do
4: Sample mini batch of data XB .
5: Bernoulli sampling based on scores s for masking diffusion steps.
6: Update variance schedule based on the sampled masks with Eqn.(7).
7: Random sample the unmasked diffusion step for training.
8: Compute diffusion model loss Lt

θ.
9: Back-propagation for Fθ to estimate ∇θΦ(θ, s).

10: Estimate ∇sΦ(θ, s) according to Eqn. (11) .
11: Update θ and s according to Eqn.(13).
12: end for
13: end for

A DIFFUSION MODEL WITH PROBABILISTIC MASKS

The masked forward process is

q(xt|xt−1,mt) = N (xt;
√

1− βtmtxt−1, βtmtI);

q(x1:T ,m|x0) = q(x1:T |x0,m)ps(m)

= ps(m)ΠT
t=1q(xt|xt−1,mt)

= ΠT
t=1q(xt|xt−1,mt)ps(mt)

The masked reverse process is

pθ(xt−1|xt,mt) = N (xt−1;µθ(xt,mt, t),mtΣθ(xt, t))

pθ(x0:T ,m) = ps(m)pθ(x0:T |m)

= ps(m)p(xT )Π
T
t=1pθ(xt−1|xt,mt)

= p(xT )Π
T
t=1pθ(xt−1|xt,mt)ps(mt)

The variational low bound for diffusion models can be written as:

− log pθ(x0) = − log

∫
pθ(x0:T ,m)dx1:T dm

= − log

∫
pθ(x0:T ,m)

q(x1:T ,m|x0)
q(x1:T ,m|x0)dx1:T dm

= − logEq
pθ(x0:T ,m)

q(x1:T ,m|x0)

≤ −Eq log
pθ(x0:T ,m)

q(x1:T ,m|x0)

= −Eq log
p(xT |m)ΠT

t=1pθ(xt−1|xt,m)ps(mt)

ΠT
t=1q(xt|xt−1,m)ps(mt)

= −Eq

[
log p(xT |m) +

T∑
t=1

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)

]
=: L
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q(xt|xt−1,m) =q(xt|x0,xt−1,m)

=
q(xt,x0,xt−1,m)

q(x0,xt−1,m)

=
q(xt−1|xt,x0,m)q(xt,x0,m)

q(x0,xt−1,m)

=
q(xt−1|xt,x0,m)q(xt|x0,m)q(x0,m)

q(xt−1|x0,m)q(x0,m)

=q(xt−1|xt,x0,m)
q(xt|x0,m)

q(xt−1|x0,m)

L = −Eq

[
log p(xT |m) +

T∑
t=1

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)

]

= −Eq

[
log p(xT |m) +

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)
+ log

pθ(x0|x1,m)

q(x1|x0,m)

]

= −Eq

[
log p(xT |m) +

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt−1|xt,x0,m)
· q(xt−1|x0,m)

q(xt|x0,m)
+ log

pθ(x0|x1,m)

q(x1|x0,m)

]

= −Eq

[
log

p(xT |m)

q(xT |x0,m)
+

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt−1|xt,x0,m)
+ log pθ(x0|x1,m)

]

= Eq

DKL (q(xT |x0,m)∥p(xT |m))︸ ︷︷ ︸
LT

+

T∑
t=2

DKL (q(xt−1|xt,x0,m)∥pθ(xt−1|xt,m))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1,m)


Note that

q(xt−1|xt,x0,m) = N (xt−1; µ̃(xt,x0), β̃tI)

µ̃t(xt,x0) =

√
ᾱt−1(m)βtmt

1− αt(m)
x0 +

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt,

β̃t =
1− ᾱt−1(m)

1− ᾱt(m)
mtβt.

where

αt(m) = 1−mtβt and ᾱt(m) = Πt
i=1αi(m).

For the reverse process, we have

pθ(xt−1|xt,m) = N (xt−1;µθ(xt,m, t), σ̃2
t (m)I).

We define
δ(µ̃t, µθ) =

1

σ̃2
t (m)

∥µ̃t(xt,x0)− µθ(xt,m, t)∥2,

we can get,

Lt−1 =

{
0, if mt = 0
1
2

[
n 1−ᾱt−1(m)

1−ᾱt(m)
mtβt

σ̃2
t (m)

− n+ δ(µ̃t, µθ) + n log
(

1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

)]
, otherwise

=

{
0, if mt = 0
1
2δ(µ̃t, µθ) +

n
2

[
1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

− 1 + log
(

1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

)]
, otherwise

=

{
0, if mt = 0
1
2δ(µ̃t, µθ) + C(m) otherwise
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where

C(m) =
n

2

[
1− ᾱt−1(m)

1− ᾱt(m)

mtβt

σ̃2
t (m)

− 1 + log

(
1− ᾱt−1(m)

1− ᾱt(m)

mtβt

σ̃2
t (m)

)]
.

In this paper, following DDPM, we choose

σ̃2
t (m) =

1− ᾱt−1(m)

1− ᾱt(m)
mtβt.

In this case,
C(m) = 0.

For µ̃t(xt,x0), since

xt(x0, ϵ) =
√
ᾱt(m)x0 +

√
1− ᾱt(m)ϵ with ϵ ∼ N (0, I),

we have

µ̃t(xt,x0) =

√
ᾱt−1(m)mtβt

1− ᾱt(m)
x0 +

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt(x0, ϵ)

=

√
ᾱt−1(m)mtβt

1− ᾱt(m)

1√
ᾱt(m)

(
xt(x0, ϵ)−

√
1− ᾱt(m)ϵ

)
+

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt(x0, ϵ)

=
1√

αt(m)

(
xt(x0, ϵ)−

mtβt√
1− ᾱt(m)

ϵ

)
.

Hence, we define

µ(xt,m, t) =
1√

αt(m)

(
xt −

mtβt√
1− ᾱt(m)

ϵθ(xt, t)

)
.

Then, we have
1

2σ̃2
t (m)

∥µ̃t(xt,x0)− µθ(xt,m, t)∥2

=
mtβ

2
t

2σ̃2
t (m)αt(m)(1− ᾱt(m))

∥ϵ− ϵθ (xt, t)∥2

=
mtβ

2
t

2σ̃2
t (m)αt(m)(1− ᾱt(m))

∥∥∥ϵ− ϵθ

(√
ᾱt(m)x0 +

√
1− ᾱt(m)ϵ, t

)∥∥∥2
Finally, we get the loss as follows:

Lt−1 =

{
0, if mt = 0

mtβ
2
t

2σ̃2
t (m)αt(m)(1−ᾱt(m))

∥∥∥ϵ− ϵθ

(√
ᾱt(m)x0 +

√
1− ᾱt(m)ϵ, t

)∥∥∥2 , otherwise

Thus, we get the objective function in the main paper.

B PROJECTION OPERATOR IMPLEMENTATION

Theorem 1. Given a vector z, its projection s onto our constraint region {s ∈ RT : ∥s∥1 ≤ Ke, s ∈
[0, 1]T } can be computed as follows:

s = min(1,max(0, z− v∗21)).

where v∗2 = max(0, v∗1) and v∗1 is the solution to the following equation:

1⊤[min(1,max(0, z− v∗11))]−Ke = 0. (14)
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The equation (14) can be efficiently solved using the bisection method.

We would like to point out that the theorem above as well as its proof is standard and similar cases
can be found in (Wang & Carreira-Perpinán, 2013). To make this paper self-contained, we present
them in the appendix, although this is not our contribution.

Proof. The projection of z onto the set {s ∈ RT : ∥s∥1 ≤ Ke, s ∈ [0, 1]T } can be formulated as the
following optimization problem:

min
s∈Rn

1

2
∥s− z∥2,

s.t.1⊤s ≤ Ke and 0 ≤ si ≤ 1, i = 1, . . . , T.

We derive the solution as follows.

The Lagrangian of the problem is given by:

L(s, v) =
1

2
∥s− z∥2 + v(1⊤s−Ke) (15)

=
1

2
∥s− (z− v1)∥2 + v(1⊤z−Ke)−

n

2
v2. (16)

subject to v ≥ 0 and 0 ≤ si ≤ 1.

Minimizing the problem with respect to s, we obtain:

s̃ = 1z−v1≥1 + (z− v1)1>z−v1>0 (17)

Then we have:

g(v) =L(s̃, v)

=
1

2
∥[z− v1]− + [z− (v + 1)1]+∥2

+ v(1⊤z−Ke)−
n

2
v2

=
1

2
∥[z− v1]−∥2 +

1

2
∥[z− (v + 1)1]+∥2

+ v(1⊤z−Ke)−
n

2
v2, v ≥ 0.

g′(v) =1⊤[v1− z]+ + 1⊤[(v + 1)1− z]−

+ (1T z−Ke)− nv

=1⊤ min(1,max(0, z− v1))−Ke, v ≥ 0.

To verify that g′(v) is a monotone decreasing function with respect to v, we can use the bisection
method to solve the equation g′(v) = 0 and find the solution v∗1 . It can be observed that g(v)
increases in the range (−∞, v∗1] and decreases in the range [v∗1 ,+∞). The maximum of g(v) is
achieved at 0 if v∗1 ≤ 0, and at v∗1 if v∗1 > 0. We then set v∗2 = max(0, v∗1). Finally, the projection
s∗ is given by:

s∗ =1z−v∗
21≥1 + (z− v∗21)1>z−v∗

21>0 (18)

=min(1,max(0, z− v∗21)). (19)

C ANALYSIS ON THE SPARSITY OF THE OPTIMAL SCORE

As we claimed in the main text, most the elements of score vector s would converge to either 0 or
1 as the training goes on. It is equivalent to say that most of the elements in the optimal solution s∗

are either 0 or 1. To explain this, let us start from understanding the sparsity of lasso.
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Figure 3: Estimation picture for the lasso (Hastie et al., 2015).

Prof. Robert Tibshirani, the author of the well-known sparse learning method lasso, provides an
explanation on the sparsity in lasso from a geometric perspective in pages 10-12 of his book ti-
tled Statistical Learning with Sparsity: The Lasso and Generalizations (Hastie et al., 2015). To be
precise, the optimization problem of lasso is equivalent to the following one with some t:

min
β

∥y −Xβ∥2, s.t.
p∑

i=1

|βi| ≤ t,

where X ∈ Rn×p is the feature matrix of n samples and y ∈ Rn is the response vector. Note that
the constraint region above is a diamond (p = 2) or a rhomboid (p > 2). As shown in Figure 3,
which is copied from page 11 of the above textbook, the optimal solution is the point, where the
elliptical contours of the loss hit this constraint region. When the dimension p = 2, the diamond
has corners; if the solution occurs at a corner, then it has one parameter βj equal to 0. When p > 2,
the diamond becomes a rhomboid, and has many corners, flat edges, and faces; there are many more
opportunities for the estimated parameters to be zero. Please refer to page 12 of the above book for
more details.

The situation in our problem is essentially the same with lasso, the only difference is that our con-
straint region {

∑T
t=1 |st| ≤ K, s ∈ [0, 1]T } has more corners (i.e., the coordinates are 0 or 1) than

that of lasso, therefore, the optimal st has a high probability to be either 0 or 1.

D BASICS

D.1 MUTUAL SKIPPING OF SAMPLING STEPS

To improve the efficiency of sample generation process, previous methods (Song et al., 2020a;
Bao et al., 2022; 2021) always manually select the denoising steps through uniform skipping and
quadratic skipping. The mathematical expression of the above skipping approaches can be written
as:

T = {1, 1 + S, ..., 1 + iS, ..., L}, with S =

{
T
L , uniform skipping,(
0.8T
L

)2
, quadratic skipping.

(20)

where i = 1, . . . , L. T and L are the number of diffusion steps and number of denoising steps in
the training and testing state respectively. S is the skipping step. The difference of T and L results
in decoupled forward and reverse processes, which makes a suboptimal performance. Instead, our
proposed probabilistic masking method can identify and keep the most informative steps during
training.

D.2 MULTIVARIATE TIME SERIES IMPUTATION

Let us denote each time series as X ∈ RK×P , where K is the number of features and P is the
length of time series. Probabilistic time series imputation is to estimate the missing values of X by
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exploiting the observed values of X . The diffusion model is used to estimate the true conditional
data distribution q(xt

0|xc
0), where xt

0 and xc
0 are the imputation targets and conditional observations

respectively.

E EXPERIMENTS

E.1 TIME SERIES DATASETS

Healthcare dataset (Silva et al., 2012) consists of 4000 clinical time series with 35 variables for 48
hours from intensive care unit (ICU), and it contains around 80% missing values. Following previous
study (Tashiro et al., 2021), we randomly choose 10/50/90% of observed values as ground-truth on
the test data for imputation.

Air-quality dataset is composed of air quality data from 36 stations in Beijing from 2014/05/01
to 2015/04/30, and it has around 13% missing values. We set 36 consecutive time steps as one
time series. To build missing values in the time series, we follow the empirical settings of the
baseline (Tashiro et al., 2021), we adopt the random strategy for the healthcare dataset and the mix
of the random and historical strategy for the air quality dataset.

E.2 IMPLEMENT DETAILS

All the experiments are implemented by Pytorch 1.7.0 on a virtual workstation with 8 11G memory
Nvidia GeForce RTX 2080Ti GPUs.

Time series. As for model hyper-parameters, we set the batch size as 16 and the number of epochs
as 200. We used Adam (Kingma & Ba, 2014) optimizer with learning rate 0.001 that is decayed to
0.0001 and 0.00001 at 75% and 90% of the total epochs, respectively. For the diffusion model, we
follow the CSDI (Tashiro et al., 2021) architecture to set the number of residual layers as 4, residual
channels as 64, and attention heads as 8. The denoising step T is set to 50 as our baseline.

Image data. Following (Nichol & Dhariwal, 2021), we use the U-Net model architecture, train
500K iterations with a batch size of 128, use a learning rate of 0.0001 with the Adam (Kingma
& Ba, 2014) optimizer and use an exponential moving average (EMA) with a rate of 0.9999. The
denoising step T is set to 1000 and the linear forward noise schedule is used as our baseline.

E.3 EVALUATION METRIC

The detailed formulations of three metrics for time series task are:

MAE(x, x̂) =
1

N

N∑
i=1

∥xi − x̂i∥, (21)

RMSE(x, x̂) =

√√√√ 1

N

N∑
i=1

∥xi − x̂i∥2, (22)

CRPS(F, F̂ ) =

∫ ∞

−∞

[
F (z)− F̂ (z)

]2
dz, (23)

where x denotes the ground truth of the missed time series, x̂ represents the predicted values. F is
the cumulative distribution function of observations.

E.4 MAIN RESULTS

As shown in Table 4, our proposed EDDPM can achieve better results than the baselines with 100%
steps (blue text) even if 60% ∼ 75% denoising steps are masked. These results are consistent with
the conclusion of the main paper.
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Figure 4: The histogram of the probability s learned by our proposed EDDPM, and the results are
obtained from CIFAR-10 dataset.

E.5 VISUALIZATION RESULTS

From the results illustrated in Figure 5, we can conclude that our proposed EDDPM can generate
more accurate probabilistic imputation results by only using the original 20% ∼ 50% steps.

For CIFAR-10 image generation, Figure 6 and 8 show that our proposed EDDPM can generate
more high-quality image samples than DDIM (Song et al., 2020a) when using 10 denoising steps.
Figure 7 and 9 show the sample pairs generated by our EDDPM with 5, 10 and 100 denoising steps,
from these results we can conclude that our method generate high-quality CIFAR-10 images using
5 steps.
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Table 4: Comparising sampling acceleration methods in terms of CRPS results on variable denois-
ing steps. † indicate that the sampling is accelerated by quadratic skipping during inference, the
others utilize uniform skipping. We highlight the best results that surpass the baselines in red color,
which means our method generates high-quality time series with fewer denoising steps. The bold
results show that our proposed EDDPM achieves better performance than other sampling accelera-
tion methods.

Dataset Missing Method Denoising steps Baselines10% 25% 40% 50%

H
ealthcare

10%

DDPM† 0.688 0.501 0.382 0.326
DDPM 0.640 0.431 0.344 0.276
DDIM 0.641 0.495 0.564 0.840
AnalyticDPM 0.615 0.536 0.516 0.501 0.238
SN-DDPM 0.769 0.757 0.762 0.769
NPR-DDIM 0.573 0.502 0.504 0.516
Ours 0.267 0.237 0.235 0.231

50%

DDPM† 0.699 0.582 0.490 0.439
DDPM 0.675 0.516 0.437 0.372
DDIM 0.675 0.562 0.601 0.810
AnalyticDPM 0.698 0.586 0.572 0.579 0.331
SN-DDPM 0.761 0.752 0.759 0.772
NPR-DDIM 0.612 0.546 0.547 0.561
Ours 0.357 0.337 0.321 0.330

90%

DDPM † 0.731 0.690 0.648 0.622
DDPM 0.737 0.654 0.594 0.557
DDIM 0.737 0.695 0.715 0.856
AnalyticDPM 0.715 0.685 0.672 0.668 0.522
SN-DDPM 0.840 0.810 0.808 0.810
NPR-DDIM 0.704 0.647 0.643 0.644
Ours 0.572 0.517 0.516 0.513

A
ir-quality

13%

4% 10% 20% 40%
DDPM† 0.568 0.482 0.374 0.217
DDPM 0.536 0.453 0.344 0.209
DDIM† 0.569 0.507 0.464 0.605
DDIM 0.537 0.485 0.619 1.553
AnalyticDPM 0.489 0.453 0.429 0.382 0.109
SN-DDPM 0.557 0.507 0.482 0.481
SN-DDIM 0.653 0.568 0.558 0.582
NPR-DDPM 0.359 0.355 0.377 0.395
NPR-DDIM 0.362 0.344 0.305 0.271
Ours 0.170 0.133 0.112 0.104
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Figure 5: The comparison of our EDDPM method and DDPM Ho et al. (2020) for probabilistic time
series imputation on Air-quality dataset. CSDI model is trained by DDPM. The black crosses show
observed values and the blue circles show ground-truth imputation targets. red and green colors
correspond to our EDDPM and CSDI, respectively. For each method, median values of imputations
are shown as the line and 5% and 95% quantiles are shown as the shade.
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DDIM EDDPM

Figure 6: Random samples generated by DDIM Song et al. (2020a) and EDDPM (ours) with 10
denoising steps on CIFAR-10 dataset. We only present the result in this extreme sparse case since
the results for more denoising steps are difficult to differentiate for human beings.
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Figure 7: Random samples generated by our EDDPM with 5, 10 and 100 denoising steps on CIFAR-
10 dataset.

T = 10
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Figure 8: Sample pair comparison based on DDIM Song et al. (2020a) and EDDPM (ours) with 10
denoising steps on CIFAR-10 dataset. We can see that our method can generate images with more
details.
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Figure 9: Random samples generated by our EDDPM with 5, 10 and 100 denoising steps on CIFAR-
10 dataset.
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