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Figure 1: RELIC is an evaluation framework for compositional instruction following, where we
(a) stochastically generate context-free grammars (e.g., sets of instructions) of given complexities,
(b) sample positive and negative strings (e.g., tasks) for each grammar, and (c) prompt models to
classify whether the strings are generated by those grammars.

Abstract

Large language models (LLMs) are increasingly expected to perform tasks based1

only on a specification of the task provided in context, without examples of inputs2

and outputs; this ability is referred to as instruction following. To evaluate models’3

ability to perform a task provided in context, we introduce the Recognition of4

Languages In-Context (RELIC) framework, where the task is to determine if a string5

is generated by a context-free grammar. This requires composing together a large6

number of instructions (grammar productions) retrieved from the context. Because7

the languages are synthetic, the task can be increased in complexity as LLMs’ skills8

improve in the future, and new instances can be automatically generated, mitigating9

data contamination concerns. We evaluate state-of-the-art LLMs on RELIC and find10

that their accuracy can be reliably predicted from the complexity of the grammar11

and the individual example strings, and that even the most advanced LLMs currently12

available show near-chance performance on more complex grammars and samples,13

in line with theoretical expectations. We also analyze how LLMs attempt to solve14

increasingly difficult reasoning tasks, and find that as the complexity of the language15

recognition task increases, models switch from following complex instructions to16

relying on shallow heuristics.17

1 Introduction18

Large language models (LLMs) are increasingly expected to solve tasks “zero-shot,” using only a19

specification of the task provided in the LLM’s context window, without examples of inputs and20

outputs or any additional training. These instructions are often compositional, involving the interaction21

of multiple rules or constraints. Even a simple question such as “using my credit card statement, tell22
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me if I spent more money in 2025 than I did on average in the past three years” (inspired by Zhou23

et al. 2024) requires an LLM to retrieve a large number of items from its context and perform multiple24

operations in a particular sequence (in this example, summing and averaging them and comparing25

the outputs). As the complexity of such instructions increases, the system needs to use its context26

in a sophisticated way to identify the relevant instructions and combine them appropriately. The27

importance of compositional instruction following highlights the need for a reliable benchmark with28

controllable complexity that can measure LLMs’ abilities in this area as they improve in the future.29

We introduce the Recognition of Languages In-Context (RELIC) framework as a means of studying30

how well LLMs can understand and follow complex compositional instructions provided in prompts.31

Here, an model is tasked with solving the language recognition task: is an arbitrary string derivable32

from the rules of a given grammar? Earlier work has explored instruction following through the lens of33

the recognition of regular languages by models fine-tuned for the task (e.g., Finlayson et al. 2022; see34

appendix A for a full review of related work). Here, we extend this paradigm in both complexity and35

flexibility to ask: can LLMs perform the language-recognition task for the substantially more complex36

class of context-free languages, and do so in an in-context setting, where they are not provided any37

training on the task or the particular grammars? We build RELIC as a data generating process, which38

stochastically samples new grammars of desired complexity and produces unlimited amounts of new39

evaluation examples for these grammars. This property of the benchmark addresses issues of data40

contamination and benchmark saturation which plague static benchmarks.41

Using this framework, we generate and release a first static benchmark, RELIC-500, which consists of42

200 grammars which vary in complexity (up to 500 nonterminal production rules), and sets of positive43

and negative examples for each grammar (of lengths up to 50 symbols). We evaluate a range of frontier44

LLMs on RELIC-500. Most of the models performed substantially above chance on simpler grammars,45

indicating an understanding of the general structure of the task; but all models, including OpenAI’s46

most advanced reasoning model o3, had near-chance accuracy on the larger grammars, which are47

still orders of magnitude smaller than the grammars needed to define commonly-used programming48

languages or approximate human languages. In a qualitative analysis of the chain-of-thought tokens49

that LLMs produce before providing their response, we find that in many cases models rely on incorrect50

heuristics; quantitative analysis of these tokens shows that the amount of tokens does not grow as51

would be expected from the correct strategy to perform the task.52

2 RELIC: Recognizing Languages In-Context53

Following Clark (2017, 2018), we stochastically generate grammars which are parameterized by four54

values: the number of terminal symbols nterm, non-terminal symbols nnonterm, lexical production rules55

nlex, and non-lexical production rules nnonlex. We start by defining nterm symbols Σ={t1,t2,...}; and56

nnonterm symbols V ={NT1,NT2,...}. We then sample nlex lexical production rules NTa→‘tb’ from the57

set of pairsV ×Σ, and we samplennonterm non-lexical production rulesNTa→NTb NTc from the set of all58

triples ({S}∪V )×V ×V , where S is a privileged start symbol. The grammar is then trimmed to remove59

any non-lexical rules which do not lead to a lexical rule, and any lexical rules which are inaccessible60

from non-lexical productions. The result is a coherent context-free grammar with at most as many61

terminals, nonterminals, lexical productions, and non-lexical productions as the generating parameters.62

We generate a first static benchmark, which we refer to as RELIC-500. We sample 200 grammars63

where all parameters (nterm, nnonterm, nlex and nnonlex) are less than 500. For each grammar, we sample64

up to 10 positive and negative strings for each length 1≤ℓ≤50. We sample positive strings by treating65

each grammar as a probabilistic context-free grammar with uniform probability assigned to production66

rules sharing a left-hand symbol; and negative strings from a unigram model over the terminal symbols67

Σ+, rejecting any which parse.68

Intended use. RELIC is designed as a zero-shot evaluation of a model’s ability to use instructions69

provided in-context without providing positive and negative exemplars, and without fine-tuning on70

this task. Evaluating models in an in-context few-shot setting could lead to higher accuracy, but any71

increases in accuracy could be due to heuristics that distinguish the two classes with some accuracy72

but fail to strictly test the model’s ability to follow in-context instructions. We release RELIC-500 and73

the codebase to generate new grammars and examples at the following anonymized GitHub repository:74

https://anonymous.4open.science/r/relic-C363/.75
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Figure 2: Accuracy on RELIC-500 reduces to near-chance (dashed lines) for all models as instruction
set complexity (number of nonlexical productions in the grammar, top row) and task complexity
(example length, bottom row) increase.

3 Evaluating Frontier LLMs on RELIC-50076

We evaluate eight LLMs on RELIC-500. First, three models from OpenAI’s GPT line that were the77

newest at the time of writing: gpt-4.1-nano, gpt-4.1-mini, and gpt-4.1 (released on April 14;78

OpenAI 2025a). Second, we evaluate two “reasoning” models from OpenAI,o4-mini ando3 (OpenAI,79

2025b). All evaluations of OpenAI’s API-based models were carried out between 14 April 2025 and 180

May 2025. Third, we evaluate two models from Google’s Gemma 3 family of open-weights instruction-81

tuned language models (gemma-3-1b-it and gemma-3-4b-it; Gemma Team et al. 2025). Finally,82

we evaluate an open-weights reasoning model, DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI83

et al., 2025). See appendix E for more details on API costs, compute, and evaluation hyperparameters.84

For each grammar G and each string s, we prompt the models with a description of the language85

recognition task, the grammar G, and the string s, and ask the model to classify the string according86

to whether or not it is generated by the grammar (see appendix B for an example prompt). We use87

a regular expression over the output to extract whether the model classified the example as positive88

or negative; we classify the response as “unknown” if the model fails to offer a prediction. We evaluate89

gpt-4.1-nano, gpt-4.1-mini, gpt-4.1, and o4-mini on the full RELIC-500 dataset; for o3,90

gemma-3-1b-it, gemma-3-4b-it, and DeepSeek-R1-Distill-Qwen-7B, we subsample each91

grammar’s data to have at most two examples per length per type due to the increased cost of running92

evaluations on these models.93

3.1 Performance Decreases as Grammar and Example Complexity Increases94

When grammars are small and example strings are short, most models display near-perfect accuracy on95

RELIC as shown in fig. 2, indicating that models exhibit the capacity to solve instances of the language96

recognition task in principle. However, for all models, performance on RELIC-500 decreases as a97

function of a grammar’s complexity, as quantified by each of the four grammar parameters. Among98

these parameters, the number of non-lexical productions nnonlex is most strongly anti-correlated99

with performance. On a per-model basis, we observe a roughly log-linear relationship between the100

number of non-lexical productions and performance: though some models have high accuracy on101

small grammars, as nnonlex approaches 500 all models are at or below chance performance (fig. 2, top).102

Model performance is also affected by the complexity of individual examples. As example length ℓ103

increases, models’ mean accuracy over both positive and negative examples decreases (fig. 2, bottom).104

This drop-off happens quite rapidly, with an inflection point occurring at between ℓ=5 and ℓ=15105

depending on the model. A regression shows that the effects of log(nnonlex) and log(ℓ) are highly106

significant (see tables 1 and 2 in appendix C).107
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Figure 3: As task complexity (example length) increases, the test-time compute (TTC) expended by
models peaks early and then diminishes (top row; TTC is computed as the mean number of completion
tokens produced for examples of a given length, relative to the length for which the mean number of
tokens is highest). Concomitantly, models shift from pursuing rule-based approaches to relying on
heuristic strategies (bottom row). o4-mini and o3 do not provide full CoTs, so we cannot classify
these models’ strategies.

3.2 Models Don’t Use Chains-of-Thought Effectively108

Inn-context recognition for CFGs is known to be in the complexity classes AC1 and NC1-hard (Ruzzo,109

1980; Venkateswaran, 1991; Greenlaw et al., 1991). In contrast, transformers without chain-of-thought110

are in the complexity class TC0 (Merrill and Sabharwal, 2023). Thus, under standard complexity111

conjectures, solving RELIC by implementing parsing should require the model to spend more test-time112

compute (TTC) on longer inputs. Standard context-free parsing algorithms run in time Θ(n3), and113

it is unlikely that this can be significantly improved (Lee, 2002). Applying results relating TTC to114

algorithmic runtime (Merrill and Sabharwal, 2024), a transformer can solve RELIC only by scaling115

test-time-compute superlinearly in the length of the input string. By contrast, fig. 3 shows that the116

number of tokens generated diminishes for longer input strings, suggesting models are backing off to117

heuristics rather than recognizing long strings by parsing them. These changes motivate LLM systems118

which are either not so limited in their inference compute or which can solve the problem in a more119

compute-efficient manner.120

3.3 Models Shift to Heuristics as Complexity Increases121

Qualitative analysis of model completions reveals divergent strategies models employ to solve the task.122

In some cases, models attempt to solve the task by algorithmic means, either by building a parse table for123

a string or by exhaustively searching the production rules for a licit derivation; in other cases, models rely124

on heuristic arguments for why a string ‘seems’ (un)likely to be derivable from the provided grammar125

(see appendix F for example completions). To gauge strategy use, we use o4-mini as an LLM-judge126

(Zheng et al., 2023) to classify the responses of the three best-performing models reporting full comple-127

tions: the gpt-4.1 family. We classify responses into ‘rule-based’ or ‘heuristic’ strategies irrespective128

of final correctness. Figure 3 shows that as task complexity increases, models shift from pursuing rule-129

based approaches to relying on shallow heuristic arguments. This shift is concomitant with the decrease130

in both overall accuracy and relative test-time-compute expended by the models on solving the task.131

4 Discussion132

We introduce RELIC, a method for studying how well language models can follow complex133

compositional instructions through the lens of in-context language recognition. We show that current134

frontier LLMs struggle substantially on this task, suggesting substantial room for improvement in135

generalized instruction following. We diagnose how and why models fail by comparing their compute136

expenditure to theoretical predictions, finding that, as inputs become complex, models shift to relying137

on unsound heuristics.138
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A Related Work294

LLMs are typically fine-tuned to follow instructions provided in-context, and can generalize this skill295

to new instructions that were not included in fine-tuning (Sanh et al., 2022; Wei et al., 2022). It is often296

difficult, however, to automatically verify whether the model indeed followed the instructions. Like297

our work, the IFEval benchmark (Zhou et al., 2023) addresses the verification issue by placing formal298

constraints on the output (e.g., avoiding commas), but it does not evaluate complex and long instructions299

as we do. Our focus on evaluating compositionality is also related to work on compositionality in300

question answering (Dziri et al., 2023; Press et al., 2023) and semantic parsing (Kim and Linzen, 2020).301

A number of studies have evaluated LLMs’ ability to recognize formal languages (Finlayson et al.,302

2022; Bhattamishra et al., 2020; Delétang et al., 2023; Butoi et al., 2024). For example, Finlayson303

et al. (2022) evaluated the ability of T5 (Raffel et al., 2019) to recognize regular expressions, and found304

that the model’s performance degraded as languages became more complex. Our study differs from305

theirs both in that we study a richer class of languages, where recognition requires more compositional306

computation, and in that we evaluate zero-shot instruction following, without fine-tuning the model307

to recognize a particular grammar. In this sense, our work is more similar to that of Gupta et al.308

(2025), who evaluated LLMs on an in-context version of transduction and completion tasks for regular309

languages, finding that some regular languages can pose challenges for currently-available LLMs. Our310

work is also distinct from studies where models are expected to induce the grammar of a language from311

positive examples (Akyürek et al., 2024; Hua et al., 2025; Qiu et al., 2024; Bhattamishra et al., 2023).312

B Example Task Prompt313

User prompt for RELIC

You will be presented with a context-free grammar in Chomsky normal form and a
string which may or may not be in the language defined by the given grammar. Your
job is to determine whether or not the grammar generates the provided string. You
can use any reasoning strategy you like, but you must end your response with either
’Yes’ (if the string is generated by the grammar) or ’No’ (if it isn’t.)

Grammar:
“‘
S -> NT97 NT1
NT180 -> NT47 NT121
NT120 -> NT73 NT121
NT114 -> NT197 NT79
NT191 -> NT76 NT49
NT8 -> NT90 NT28
NT192 -> NT140 NT152
...
...
NT171 -> ’t59’
NT31 -> ’t139’
NT172 -> ’t28’
NT100 -> ’t16’
NT187 -> ’t158’
NT100 -> ’t44’
...
...
“‘

Here is the string you need to evaluate:

String: ‘t64‘.

Remember, end your response with either ’Yes’ or ’No’.
314
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C Grammar and Example Information315

C.1 Distributional Statistics for Grammars and Examples316
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-0.00 0.31 -0.01

Figure 4: Correlations between generating hyperparameters for the released static set. Note that nlex
and nterm are inherently correlated.

To construct the static evaluation set used in our experiments, we first over-generate grammars (∼1000317

total) where the four generating hyperparameters of each grammar (the numbers of terminal nterm and318

nonterminal nnonterm symbols and the numbers of lexical nlex and nonlexical nnonlex production rules)319

are bounded above by 500. We then subsample these grammars to include the 200 grammars whose320

hyperparameters are minimally correlated with one another. Figure 4 below reports the hyperparameter321

correlations in the released set. Note that the correlations between nterm ∼nlex and nnonterm ∼nnonlex322

are higher than the others since the former term is bounded above by the latter in both cases.323

From each grammar we sample positive and negative strings. Positive strings are sampled by324

converting each grammar into a probabilistic context-free grammar (Booth and Thompson, 1973) with325

uniform probability for each right-hand-side path among all productions which share a left-hand-side326

non-terminal and sampling a production stochastically. We over-sample positive strings and filter327

so that they are of length at most 50, and such that we have no more than 10 strings per length. Negative328

strings are sampled by drawing strings over the set of terminal symbols Σ+ of fixed length 1≤ℓ≤50329

uniformly-at-random and rejecting any strings which are parseable by the grammar. We repeat this330

process until we have 10 strings per length.331

Since positive examples are not drawn with a pre-determined length and not all grammars can generate332

10 strings for each length, the resulting set of sampled strings will in some cases be smaller than that of333

the negative examples; fig. 5 shows the relative proportions of positive and negative samples drawn from334

the released set of grammars. For our evaluations, we choose not to post-hoc rebalance example types335

for each length since the distribution of positive examples by length is a property of the grammar. Since336

not all grammars will generate strings of every length in equal proportions, the length of an example337

contains relevant information about the example’s type, albeit information which is not provided to338

the model independently from the grammar itself. For a model to justifiably use the example length339

to arrive at the correct answer, it must derive the relevant properties from the production rules itself.340

We refer to the size of a grammar’s examples, relative to the theoretical maximum of 1000 strings341

(= 2 example types * 50 lengths * 10 examples per length per type) as the grammar’s coverage; fig. 6342

shows the coverage of the grammars used in our experiments.343

D Detailed Results344

E Inference Cost, Setup, and Hyperparameters345

Evaluations on OpenAI models used roughly $15k total of compute credits. Evaluations on the346

open-weights models were run on a GPU cluster using Nvidia A100s, H100s V100s, and RTX8000s;347

models were loaded using the HuggingFace transformers library (Wolf et al., 2020).348

Table 3 reports the inference hyperparameters used in our experiments. For the open-weights models,349

which we run on local hardware, we restrict the number of new tokens (max_completion_tokens) to350

4096 to limit memory usage and inference time. For all models, we generate completions with sampling351

using the default parameters (temperature τ and nucleus constant p) specified by the model or API.352
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Figure 5: Proportions of example types represented in the static dataset, in aggregate (left) and broken
down by example length (right).
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Figure 6: Distribution of grammars by coverage (i.e., the size of the language they generate, measured
as the number of positive examples of lengths ℓ≤ 50, with a maximum of 10 examples/length, out
of a theoretical maximum of 500) shown as a histogram (top) and a cumulative distribution function
(bottom).
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Figure 7: Spearman’s rank correlation coefficients for the per-example accuracies between different
models, faceted by example length. On short examples of length ≤ 10, all models are moderately
correlated with one another; on longer examples, gpt-4.1-nano and gpt-4.1.mini become less
correlated with the other models.
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Figure 8: Spearman’s rank correlation coefficients for the per-example accuracies between different
models, faceted by example length. On short examples of length ≤ 10, all models are moderately
correlated with one another; on longer examples, gpt-4.1-nano and gpt-4.1.mini become less
correlated with the other models.
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log(nterm) log(nlex) log(nnonterm) log(nnonlex)

gpt-4.1-nano rF1 0.26 0.23 0.14 −0.10
rAcc. 0.15 0.17 0.09 −0.05

gpt-4.1-mini rF1 0.07 −0.02 −0.13 −0.57
rAcc. 0.09 0.02 −0.13 −0.45

gpt-4.1 rF1 −0.11 −0.37 −0.52 −0.59
rAcc. −0.13 −0.28 −0.25 −0.27

o4-mini rF1 −0.20 −0.39 −0.60 −0.79
rAcc. −0.15 −0.28 −0.20 −0.36

o3 rF1 −0.12 −0.22 −0.37 −0.75
rAcc. −0.06 −0.12 −0.17 −0.40

gemma-3-1b rF1 −0.21 −0.24 −0.19 −0.20
rAcc. −0.09 −0.13 −0.13 −0.11

gemma-3-4b rF1 −0.22 −0.36 −0.49 −0.61
rAcc. −0.05 −0.09 −0.21 −0.19

DSR1-7B rF1 −0.14 −0.24 −0.43 −0.38
rAcc. −0.12 −0.20 −0.20 −0.20

Table 1: Pearson correlation coefficients r between models’ accuracy/macro F1 scores and grammar
hyperparameters, including the compression ratio CR of positive examples and the numbers of terminal
symbols nterm, non-terminal symbols nnonterm, lexical productions nlex, and non-lexical productions
nnonlex. Correlation scores are taken over the mean F1 and accuracy values grouped by grammar.

Term Coeff. p-value Sig.

Intercept 46.56 < 0.001 ***
gpt-4.1-mini 13.18 < 0.001 ***
gpt-4.1 19.43 < 0.001 ***
o4-mini 21.69 < 0.001 ***
o3 26.26 < 0.001 ***
gemma-3-1b 7.87 < 0.001 ***
gemma-3-4b 7.38 < 0.001 ***
DSR1-7B 9.66 < 0.001 ***

log10(nnonlex)∗gpt-4.1-nano −2.28 < 0.001 ***
log10(nnonlex)∗gpt-4.1-mini −24.17 < 0.001 ***
log10(nnonlex)∗gpt-4.1 −10.28 < 0.001 ***
log10(nnonlex)∗o4-mini −14.41 < 0.001 ***
log10(nnonlex)∗o3 −23.54 < 0.001 ***
log10(nnonlex)∗gemma-3-1b −4.44 < 0.001 ***
log10(nnonlex)∗gemma-3-4b −9.93 < 0.001 ***
log10(nnonlex)∗DSR1-7B −9.78 < 0.001 ***

log10(ℓ)∗gpt-4.1-nano −26.79 < 0.001 ***
log10(ℓ)∗gpt-4.1-mini 0.72 0.385
log10(ℓ)∗gpt-4.1 15.93 < 0.001 ***
log10(ℓ)∗o4-mini 8.73 < 0.001 ***
log10(ℓ)∗o3 −1.36 0.102
log10(ℓ)∗gemma-3-1b 28.37 < 0.001
log10(ℓ)∗gemma-3-4b 41.20 < 0.001 ***
log10(ℓ)∗DSR1-7B 28.03 < 0.001 ***

log10(nnonlex)∗log10(ℓ) −10.28 < 0.001 ***

Table 2: Regression coefficients for accuracy by model, log10(nnonlex), and example length ℓ. The base
level of the model factor is gpt-4.1-nano. Significance values are listed as *** for p<0.001, ** for
p<0.01, and * for p<0.05.
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Model New tokens τ p

gpt-4.1-nano None 1.0 1.00
gpt-4.1-mini None 1.0 1.00
gpt-4.1 None 1.0 1.00

o4-mini None 1.0 1.00
o3 None 1.0 1.00

gemma-3-1b-it 4096 1.0 0.95
gemma-3-4b-it 4096 1.0 0.95

DeepSeek-R1-Distill-Qwen-7B 2048 0.6 0.95

Table 3: Inference hyperparameters used in experiments.

F Chains-of-Thought353

This appendix provides a few examples of the chains-of-thought (token generated between the prompt354

and the answer) produced by two of the models, and DeepSeek-R1-Distill-Qwen-7B (which we355

abbreviate here as DSR1). We elide some text with ... and some paragraphs with [...] for brevity.356

F.1 Example A357

gpt-4.1-mini
Grammar 20250415162507_949738

Let’s analyze the grammar carefully and the string to verify if the string can be
generated by the grammar.

[...]
### Step 1: Since S -> NT5 NT2
The string breaks into two substrings:
- substring generated by NT5 - substring generated by NT2
Let’s try possible splits:
- split after 1 token: (t30) (t24 t24 t23 t4)
- split after 2 tokens: (t30 t24) (t24 t23 t4)
- split after 3 tokens: (t30 t24 t24) (t23 t4)
- split after 4 tokens: (t30 t24 t24 t23) (t4)
Try each possibility.

### Step 2: Can NT5 generate the initial substring?
**NT5 options:**
- NT5 -> NT0 NT5
- NT5 -> terminals like ’t18’, ’t23’, ’t25’, ’t13’ (no ’t30’ here)
**NT0 terminals:**

[...]
- ’t24’ (yes)
- ’t30’ (yes) So ’t30’ is in NT0 terminals.

Try first split:
[...]

NT5 is not nullable (no empty production), so this is not possible.

Try split after 2 tokens:
[...]

So no.

Try split after 3 tokens:
[...]

No.

Try split after 4 tokens:

358
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NT5 = ’t30 t24 t24 t23’

Try parsing tokens stepwise:

- t30 as NT0 (allowed)
remaining t24 t24 t23 as NT5

Try NT5->NT0 NT5 again:

- t24 as NT0 (allowed)
remaining t24 t23 as NT5

Again:

- t24 as NT0 (allowed)
remaining t23 as NT5

Check ’t23’ in NT5 terminals? Yes! NT5 -> ’t23’ allowed.

So:

NT5 derivation:
t30 (NT0)
t24 (NT0)
t24 (NT0)
t23 (NT5 terminal)

Wait, but this would only work if NT5 allows chaining of:

NT5 -> NT0 NT5 (>=1)

Ending with NT5 terminal.

So parse:

- NT5:
NT5 -> NT0 NT5
NT0 -> ’t30’
NT5 -> NT0 NT5
NT0 -> ’t24’
NT5 -> NT0 NT5
NT0 -> ’t24’
NT5 -> ’t23’ (terminal)

Tokens: t30 t24 t24 t23

So yes, this derives the 4 tokens.

### Step 3: Now check if NT2 can generate last token: ’t4’

NT2 terminals: ’t9’, ’t23’, ’t27’, ’t4’, ’t30’

Yes, ’t4’ is a terminal allowed by NT2
Therefore, NT2 can directly generate ’t4’

### Step 4: Full derivation

S -> NT5 NT2

NT5 -> ’t30 t24 t24 t23’ (via recursive NT5 -> NT0 NT5)
NT2 -> ’t4’ terminal

359
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The full string ‘t30 t24 t24 t23 t4‘ is generated by S.

### Final conclusion:

The string can be generated by the grammar.

**Answer:**

Yes
360

F.2 Example A361

DSR1 Grammar 20250218222557

... I think the approach is to start from the string and see if I can break it down
into the non-terminals according to the production rules. ... ¶1

[...]
... since the string has 41 symbols, which is an odd number. Wait, let me count the
tokens: the string is "t75 t104 t120 t27 t137 t27 t11 t11 t11 t173 t181 t27 t84 t11
t82 t104 t120 t168 t69 t141 t158 t9 t12 t140 t102 t114 t190 t141 t147 t79 t141 t159
t178 t183 t183 t83 t141 t158 t9 t55 t74 t170 t140 t102 t114 t190". Let me count these:
41 tokens. ... ¶2

[...]
Alternatively, starting from the beginning, the first symbol is ’t75’, which must
come from some terminal in the grammar. Looking at the grammar, let’s find which
non-terminals have a production ending with ’t75’. Wait, in the grammar, NT44 ->
’t132’, and NT197 -> ’t178’, and NT97 -> ’t75’ according to the end of the grammar
list: NT97 -> ’t75’. So, NT97 can directly produce ’t75’. ¶3

[...]
Now, looking at NT1: according to the grammar, NT1 -> ’t1’. So, that’s a terminal.
So the first two symbols in the string must be ’t75’ followed by ’t1’. Let me check
the given string: the first two tokens are ’t75 t104’, but wait, that’s not ’t75’
followed by ’t1’. So that’s a problem. ¶4

[...]
Wait, alternatively, maybe the NT1 is not the immediate right child but another
expansion. ... ¶5

[...]
Therefore, it’s not possible that the entire string is generated by this grammar
because the second symbol doesn’t match ’t1’. ... ¶6

362

F.3 Example B363

DSR1 Grammar 20250402155408_676876

[...]
Looking at the patterns, I see that ‘t136‘ might correspond to multiple parts. I
remember that ‘t136‘ could link to ‘t39‘ and ‘t6‘ based on some earlier patterns. ¶1

[...]
Putting it all together, it seems like ‘t136‘ is a valid node in the context. So, the
answer should be ’Yes’. ¶2

364
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F.4 Example C365

366

DSR1 Grammar 20250402155408_676876

[...]
First, I see that the task involves checking if the token ’t27’ appears in the output
of a certain string evaluation. The string to evaluate is ‘t44 t249 t80 t333 t171
t194 t329 t224 t196 t64 t8 t43 t16 t15 t280 t220 t107 t230 t334 t207 t19 t296‘. ¶1

[...]
So, based on my evaluation, the output of the evaluation doesn’t contain ’t27’.
Therefore, the condition isn’t met, and the answer should be ’No’. ¶2

367

G Analysis of Strategies using the LLM-as-a-Judge Paradigm368

To categorize the strategies used by the gpt-4.1- series of models, we instruct o4-mini to classify369

model completions into one of three categories (following the ‘LLM-as-a-judge’ framework of Zheng370

et al. 2023): rule-based, where the model provides a complete derivation for the example or proves371

that one cannot exist; heuristic, where the model appeals to distributional properties of the example372

or partial derivations to argue that a string is (un)likely to be generated by the grammar; or code, where373

the model defines a program or algorithm to solve the task and then hallucinates ‘running’ the function374

to arrive at the result. We use the following prompt:375

User prompt for strategy classification

You will be presented with a completion from an LLM which was given a context-free
grammar and a string of symbols drawn from that grammar’s set of terminal symbols and
asked to determine whether the string is generated by the grammar or not. Your job is
to classify how the LLM attempted to solve the task by binning the completion strategy
into one of the following categories:
- ‘heuristic‘: The LLM attempts to solve the task by using heuristics it surmises
from the grammar, such as “if the string is long, it is likely generated by the
grammar” or “the string only contains terminal symbols present in the grammar, so
it’s likely a positive sample”. Count strategies as heuristic if they appeal to the
existence of certain production rules but do not rigorously determine that no such
derivation exists.
- ‘rule-based‘: The LLM attempts to solve the task by writing out the FULL DERIVATION
of the sample from the grammar, or rigorously determining that no such derivation
exists. Only count strategies as rule-based if the LLM doesn’t use any guesswork to
reach its final conclusion.
- ‘code‘: The LLM attempts to solve the task by writing out a program or algorithm
which it claims will solve the task. This includes writing out a program in a
programming language, or writing out pseudocode.

You can write as much as you want in your answer, but please end your response with the
name of the classification you think is most appropriate.

Here is the LLM’s completion:

“‘
{completion}
“‘

376

To validate the accuracy of o4-mini’s categorizations of model responses, we first prompt o4-mini377

to categorize the completions for a single grammar. We then sample 20 (model response, predicted378

category) pairs and have three of the paper authors each label the model responses according to the379

same rubric. We then compute the inter-annotator agreement, majority-annotator categories, and380

o4-mini’s agreement with the majority class. We attain an inter-annotator agreement of 93.3%,381

and o4-mini attains a majority-class agreement of 70% and a weighted-class agreement of 73.3%,382

as shown in table 4. We qualitatively note that o4-mini is stricter than the three annotators at383
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categorizing responses as rule-based; all instances of disagreement with the majority class are cases384

when annotators labeled a response as rule-based while o4-mini labeled it as heuristic.385

A B C Majority o4-mini IAA MA WA

1 heuristic rule-based rule-based rule-based heuristic 0.667 0 0.333
2 rule-based rule-based rule-based rule-based rule-based 1 1 1
3 rule-based rule-based rule-based rule-based rule-based 1 1 1
4 rule-based rule-based rule-based rule-based heuristic 1 0 0
5 heuristic rule-based rule-based rule-based heuristic 0.667 0 0.333
6 heuristic heuristic heuristic heuristic heuristic 1 1 1
7 rule-based rule-based rule-based rule-based rule-based 1 1 1
8 heuristic rule-based rule-based rule-based heuristic 0.667 0 0.333
9 rule-based rule-based rule-based rule-based rule-based 1 1 1

10 rule-based rule-based rule-based rule-based rule-based 1 1 1
11 heuristic rule-based rule-based rule-based rule-based 0.667 1 0.667
12 heuristic heuristic heuristic heuristic heuristic 1 1 1
13 rule-based rule-based rule-based rule-based heuristic 1 0 0
14 rule-based rule-based rule-based rule-based rule-based 1 1 1
15 rule-based rule-based rule-based rule-based heuristic 1 0 0
16 rule-based rule-based rule-based rule-based rule-based 1 1 1
17 heuristic heuristic heuristic heuristic heuristic 1 1 1
18 rule-based rule-based rule-based rule-based rule-based 1 1 1
19 rule-based rule-based rule-based rule-based rule-based 1 1 1
20 heuristic heuristic heuristic heuristic heuristic 1 1 1

0.933 0.7 0.733

Table 4: Validation of o4-mini’s categorizations for 20 model responses. We report inter-annotator-
agreement (IAA) among the three annotators, the majority agreement (MA) between o4-mini and the
annotator majority, and the weighted agreement (WA) between o4-mini and the three annotators.
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