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ABSTRACT

Traditional distributed minimax optimization algorithms cannot be applied in
resource-limited clients dealing with large-scale models. In this work, we present
SubDisMO, a generalized resource-aware distributed minimax optimization algo-
rithm. SubDisMO prunes the global large-scale model into adaptive-sized submod-
els to accommodate varying resources during each communication round. However,
the randomly pruned submodels are susceptible to arbitrary submodel sharpness,
which can hinder generalization and lead to slow convergence. To address this
issue, SubDisMO trains the arbitrarily pruned submodels with perturbations by
optimizing the minimax objectives, enhancing the generalization performance of
the aggregated full model. We theoretically analyze our proposed resource-aware
SubDisMO algorithm, demonstrating that it achieves an asymptotically optimal
convergence rate of O(1/

√
QTC∗), which is dominated by the minimum covering

number C∗. We also show the generalization bound of SubDisMO corresponding
to the perturbation and parameter remaining rate in each layer. Extensive experi-
ments on CIFAR-10 and CIFAR-100 datasets demonstrate that SubDisMO achieves
superior generalization and effectiveness compared to state-of-the-art baselines.

1 INTRODUCTION

Recently, distributed minimax problem has gained tremendous popularity due to the concerns on
privacy and security and the model optimization on edge. SGDAM-PEF (Zhang et al., 2023), Lo-
calSCGDAM (Zhang et al., 2024) formulate the Area-Under-the-ROC-Curve (AUC) maximization
problem as a federated compositional minimax optimization problem. Distributionally robust op-
timization (DRO) problem (Sinha et al., 2018; Deng et al., 2020; Zhu et al., 2024) aims to find
solutions that perform well under the worst-case scenario within a predefined set of possible probabil-
ity distributions, enhancing robustness against distributional uncertainty. FedSAM (Qu et al., 2022),
FedGDA-GT (Sun & Wei, 2022) and FedSGDA+ (Wu et al., 2023) focus on provably optimizing the
following distributed minimax problem,

min
θ

max
δ



f(θ, δ) =

1

N

∑

i∈[N ]

fi(θ, δ)



 , (1)

where N denotes the number of clients, fi(θ, δ) = Eξi∼Di
[fi(θ, δ; ξi)] is the local loss function, and

θ ∈ Rdθ and δ ∈ Rdδ .

However, with the arising of large-scale models (Jiao et al., 2023; Zhou et al., 2023a; Min et al.,
2023), the size of full model θ is tremendous and it is hard to run in the resource-limited clients. Thus,
traditional aggregation mechanisms cannot be applied directly. Therefore, a great deal of work has
been proposed, such as RAM-Fed (Wang et al., 2023), OAP (Zhou et al., 2023b), IST (Yuan et al.,
2022), PruneFL (Jiang et al., 2022), to reduce the scale of the large-scale model and communication
cost, so that they can be adapted to varying resources. However, the mentioned methods mainly aim at
minimization optimization by adopting a gradient descent to find the local minima traditionally, failing
to solve the mentioned minimax optimization. Thus in this work, we consider the resource-aware
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distributed minimax optimization problem as follows:

min
θ

max
∥ϵi∥≤δ



f(θ, ϵ) =

1

N

∑

i∈[N ]

fi(θ, ϵi)



 ,

s.t. fi(θ, ϵi) = max
∥ϵi∥≤δ

fi(θ ⊙mi, ϵi), ∀i ∈ [N ],

(2)

where δ is a predefined constant controlling the perturbation. During local training, clients actually
train the submodel θ⊙mi, where mi is the local mask. Specifically, mi can be changed over time so
that the client can train the submodel adapted to local dynamic resources.

Server

Client A Client B Client C

𝜽𝜽𝒂𝒂 𝜽𝜽𝒂𝒂 𝜽𝜽𝒃𝒃

Perturbed
submodel

flatness

Arbitrary 
submodel
sharpness

With 𝜖𝜖𝑖𝑖

Figure 1: The submodel training paradigm and the
comparison between the origin arbitrary submodel
sharpness and the perturbed submodel flatness loss
landscape.

It’s challenging to solve the above mentioned
distributed minimax optimization problem in
two aspects. 1) On the algorithm side, when
training the random submodel in clients, i.e. in
Figure 1, client C trains θb, the original mini-
mize optimization problem may fall into arbi-
trary submodel sharpness due to overfitting to
the local distribution. Thus, when aggregated
overlapped partial parameters, i.e. in Figure 1,
θa in client A and B, global model could be in-
consistent and divergent, which will degrade the
performance of the global model and even slow
down the model convergence speed. Naturally,
we consider that if we reduce the level of arbi-
trary submodel sharpness at local minima, even
adding a bit perturbation, i.e. θb + ϵ, to make the aggregated model generalized. 2) On the theoretical
analysis side, the interaction between minimization and maximization subproblems complicates the
theoretical analysis in both the convergence speed and the generalization performance. It’s essential
to explore the key factors affecting the result of both the convergence speed and the generalization
performance to guide the algorithm design in resource-aware distributed minimax optimization.

To solve this kind of distributed resource-aware minimax optimization problem while improving
the generality of the global model, we design a new distributed learning algorithm that adaptively
generates submodels through local resources and trains with perturbations namely SubDisMO. We
introduce an additional gradient ascent process to approximate linear constrained inner maximization,
then use local stochastic gradient descent. Thus, we can minimize the worst loss of the perturbed
submodel in local training. After receiving all submodels’ updates, the server aggregates them to
update the global model. Theoretically, 1) we establish an asymptotically optimal convergence rate
O(1/

√
QTC∗) of our algorithm, where Q is the communication rounds, T is the local iteration and

C∗ is the minimum covering number defined in Section 4. 2) From the generalization aspect, we
give a tighter error bound (shown in Theorem 2) corresponding to the perturbation δ and parameter
remaining rate sj in j-th layer. The extensive experimental results confirm the average performance
and generality of SubDisMO. Code is available at https://anonymous.4open.science/
r/SubDisMO/.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to design a resource-aware distributed minimax
optimization algorithm, namely SubDisMO. Specifically, SubDisMO trains the resource-
adaptive submodels with perturbations to mitigate the arbitrary submodel sharpness, thereby
enhancing the generalization of the global full model.

• We theoretically analyze the convergence rate and the generalization bound of SubDisMO.
We prove that it can achieve an asymptotically optimal convergence rate O(1/

√
QTC∗)

under the non-convex condition. We give a tighter generalization bound corresponding to
the perturbation and parameter remaining rate in each layer.

• We conduct extensive experiments on CIFAR-10 and CIFAR-100 by comparing with state-
of-the-art resource-limited training paradigm. Results demonstrate the generalization and
effectiveness of SubDisMO is better than other state-of-the-art baselines.
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In summary, SubDisMO gives a new insight into solving distributed minimax optimization. We
rigorously provide a theoretical convergence guarantee. Existing studies would be special cases of
our SubDisMO. When δ = 0 that is the perturbation is zero, the minimax optimization degrades to
minimization, and the convergence rate of SubDisMO is identical to RAM-Fed (Wang et al., 2023).
When C∗ = N that is all the clients train the full model, SubDisMO achieves the same convergence
rate O(1/

√
QTN) as FedSAM (Qu et al., 2022). When C∗ = N and δ = 0 that is all the clients

train the full model without perturbation, the learning paradigm degrades to FedAvg (McMahan et al.,
2017) and achieves the same convergence rate O(1/

√
QTN). When C∗ = 1 and δ = 0 that is each

client trains definitely non-overlapping submodel without perturbation, SubDisMO achieves the same
convergence rate O(1/

√
QT ) as OAP (Zhou et al., 2023b). Otherwise, we are the first to give a

generalization error bound in resource-limited scenarios and we establish the impact of perturbation
δ and parameter remaining rate sj on it. When sj = 1 that is each client trains the full model, the
generalization bound is identical to FedSAM (Qu et al., 2022)

2 RELATED WORK

Distributed minimax optimization has seen significant advancements driven by the need to handle
large-scale and complex problems efficiently. In order to solve the impact of imbalanced data, Ying
et al. (2016) directly optimizes the Area-Under-the-ROC-Curve (AUC) score instead of cross-entropy
loss function and formulates it as a minimax optimization problem. SGDAM-PEF and SGDAM-
REF (Zhang et al., 2023) use stochastic gradient descent ascent algorithms and consider reducing the
communication cost at the same time. In addition, LocalSCGDAM (Zhang et al., 2024) develops a
local stochastic compositional gradient descent ascent with momentum algorithm. Otherwise, the
distributionally robust optimization (DRO) problem (Sinha et al., 2018; Deng et al., 2020) which
aims to minimize the worst case in the predefined possible probability distributions has gained great
attention. Recently, in order to address general federated minimax problems, Deng & Mahdavi (2021)
introduce local Stochastic Gradient Descent Ascent (SGDA), which enables each device to perform
multiple GDA steps before communication. The authors demonstrated sub-linear convergence for
local SGDA with diminishing step sizes. Based on this, FedGDA-GT (Sun & Wei, 2022) further
proposes federated gradient descent ascent with gradient tracking and proves that FedGDA-GT
converges linearly with a constant stepsize to global ϵ-approximation solution with O(log(1/ϵ))
rounds of communication, which matches the time complexity of centralized GDA method. Wu
et al. (2023) design stochastic gradient decent ascent methods FedSGDA+ and FedSGDA-M with
better sample and communication complexities to match the convergence rate of single-machine.
However, the existing distributed minimax optimization algorithms require sufficient computing and
communication resources on clients to train the full model, without considering resource-limited
scenarios, which is the main goal of our work.

3 METHODOLOGY

In order to alleviate the impact of arbitrary submodel sharpness and improve the generalization
of the global full model, we propose a resource-aware distributed minimax optimization algorithm
named SubDisMO, which can train adaptive-sized submodels in different kinds of clients and gain
a generalized global model. The whole process is shown in Algorithm.1 and we give a further
description in this section.

From the start of the process, the server sends the latest global model θq to clients, and each client use
the resource-aware adaptive mask policy P (θq;Rn) to generate a local mask, where Ri represents
the resource constraints of client i. The mask mq,n ∈ {0, 1}|θq|, where each element is a binary value
that determines whether a corresponding parameter in the global model θq is included in the client’s
submodel θq,i. Thus the submodel trained locally by client i can be expressed as,

θq,n,0 = θq ⊙mq,n, mq,n = P (θq;Rn), (3)

where ⊙ means the element-wise multiplication, only non-zero parameters continue to be trained,
We define the set of whole parameters as S, trained parameters as Kq, and untrained parameters as
S − Kq. This mask can be changed in different communication rounds q for any client n which
introduces the submodel heterogeneous in our algorithm.

3
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Algorithm 1: SubDisMO
Initialize: Dataset Dn on N clients, mask policy P (·),
global model θ1, perturbation upper bound δ
for round q = 1 to Q do

for n = 1 to N (all workers in parallel) do
Generate mask mq,n = P (θq, n)
Generate submodel θq,n,0 = θq ⊙mq,n

# Update local submodel with perturbation:
for epoch t = 1 to T do

Compute a local training estimate
gq,n,t−1 = ∇fn(θq,n,t−1, ξn,t−1)⊙mq,n

θ̃q,n,t−1 = θq,n,t−1 + δ
gq,n,t−1

∥gq,n,t−1∥
Compute a local training estimate
g̃q,n,t−1 = ∇fn(θ̃q,n,t−1, ξn,t−1)⊙mq,n

θq,n,t = θq,n,t−1 − ηlg̃q,n,t−1

end
∆q,n = θq,n,0 − θq,n,T

end
# Update all parameters of global model:
for parameters i = 1 to S do

Find N i
q = {n : mi

q,n = 1}
if Ci

q = 0 then
Update θiq+1 = θiq

else
∆i

q = 1
Ci
q

∑
n∈Ni

q

∆i
q,n

Update θiq+1 = θiq − ηg∆
i
q

end
end

end

Then each client trains the submodel using local data. For the purpose of generalization, we consider
to add the perturbation to the local submodel. Return to the objective that we want to optimize,

min
θ

max
∥ϵi∥≤δ

{f(θ, ϵ) = 1

N

∑

i∈[N ]

fi(θ, ϵi)}, (4)

where fi(θ, ϵ) ≜ max∥ϵi∥≤δ f(θ + ϵi), we use the first order Taylor expansion to approximate it and
gain the perturbed model θ̃ for epoch t = 1 to T :

θ̃q,n,t−1 = θq,n,t−1 + δ
gq,n,t−1

∥gq,n,t−1∥
, (5)

where gq,n,t−1 = ∇fn(θq,n,t−1, ξn,t−1)⊙mq,n. Here we mask the gradient as well to prevent extra
value on untrained parameters. After getting the perturbed model which has the highest loss within
neighborhood, we implemented the normal gradient descent algorithm to complete the model update,

θq,n,t = θq,n,t−1 − ηlg̃q,n,t−1, (6)

where ηl is the local learning rate and g̃q,n,t−1 = ∇fn(θ̃q,n,t−1, ξn,t−1)⊙mq,n. So that we complete
the local submodel update based on the perturbation point θ̃q,n,t−1 + ϵq,n,t−1.

After the local training, each client calculate the final local updates ∆q,n = θq,n,0−θq,n,T and upload
it to the server. After the server collects all clients updates, it aggregates them by parameter. For
every parameter i, the server calculate the number of clients that trained i denoted as Ci

q. If Ci
q = 0,

the parameter i has not been trained, the parameter θiq is remained. Otherwise, the server calculate

4

Then each client trains the submodel using lo-
cal data. For the purpose of generalization, we
consider adding the perturbation to the local sub-
model. Return to the objective that we want to
optimize,

min
θ

max
∥ϵi∥≤δ

{f(θ, ϵ) = 1

N

∑

i∈[N ]

fi(θ, ϵi)}, (4)

where fi(θ, ϵ) ≜ max∥ϵi∥≤δ f(θ + ϵi), we use
the first order Taylor expansion to approximate it
and gain the perturbed model θ̃ for epoch t = 1
to T :

θ̃q,n,t−1 = θq,n,t−1 + δ
gq,n,t−1

∥gq,n,t−1∥
, (5)

where gq,n,t−1 = ∇fn(θq,n,t−1, ξn,t−1) ⊙
mq,n, ξn,t−1 is a data sample. Here we mask
the gradient as well to prevent extra value on un-
trained parameters. After getting the perturbed
model which has the highest loss within neigh-
borhood, we implemented the normal gradient
descent algorithm to complete the model update,

θq,n,t = θq,n,t−1 − ηlg̃q,n,t−1, (6)
where ηl is the local learning rate and g̃q,n,t−1 =

∇fn(θ̃q,n,t−1, ξn,t−1) ⊙mq,n, ξn,t−1 is a data
sample. So that we complete the local submodel
update based on the perturbation point θ̃q,n,t−1+
ϵq,n,t−1.

After the local training, each client calculate the final local updates ∆q,n = θq,n,0−θq,n,T and upload
it to the server. After the server collects all clients updates, it aggregates them by parameter. For
every parameter i, the server calculate the number of clients that trained i denoted as Ci

q. If Ci
q = 0,

the parameter i has not been trained, the parameter θiq is remained. Otherwise, the server calculate
the aggregate updates and update the parameter i with it:

θiq+1 = θiq − ηg
1

Ci
q

∑

n∈Ni
q

∆i
q,n, (7)

where ηg is the learning rate in server.

4 THEORETICAL ANALYSIS

In this section, we analyze both the convergence rate and generalization bound of the proposed
SubDisMO and explore the impact of different key factors. First, we adopt the following commonly
used in distributed learning convergence analysis:

Assumption 1 (L-smooth). Every function fn(·) is L-smooth for all n ∈ [N ], θ, ϕ ∈ Rd,
∥∇fn(θ)−∇fn(ϕ)∥ ≤ L∥θ − ϕ∥. (8)

Assumption 2 (Bounded data heterogeneity level). The effect of data heterogeneity level can be
bounded by σ2

g for all n ∈ [N ],

∥∇fn(θq)−∇f(θq)∥2 ≤ σ2
g . (9)

Assumption 3 (Bounded variance of stochastic gradient). The stochastic gradient ∇fn(θq,n,t, ξn,t),
computed by using mini-batch ξn,t is an unbiased estimator ∇Fn(θq,n,t) bounded by σ2

l ,

Eξn∼Dn

∥∥∥∥
∇fn(θq,n,t, ξn,t)

∥∇fn(θq,n,t, ξn,t)∥
− ∇fn(θq,n,t)

∥∇fn(θq,n,t)∥

∥∥∥∥
2

≤ σ2
l , (10)

∀n ∈ [N ], where the expectation is over all local datasets.

4
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And this assumption is tighter than the similar assumption to bound the stochastic gradient variance,
that is Eξn,t∼Dn

∥∇fn(θq,n,t; ξn,t)−∇fn(θq,n,t)∥2 ≤ σ2. It’s obvious that σ2
l should be less than

π2, the norm of difference in unit vectors that can be bounded by the arc length on a unit circle.

Assumption 4 (Bounded noise induced from mask). The deviation of the masked parameters in
client n from the original parameters for every round q is limited by l ∈ [0, 1):

∥θq − θq ⊙mq,n∥2 ≤ l2∥θq∥2. (11)

4.1 CONVERGENCE ANALYSIS OF SUBDISMO

Definition 1 (Minimum covering number). The minimum number of submodels training the corre-
sponding i-th parameter in all rounds is defined as:

C∗ = min
q,i

Cq,i, i ∈ Kq,∀q, (12)

where Cq,i is the number of the client that train the i-th parameter in the communication round q. For
full model training federated learning framework, i.e., FedAvg, C∗ = N , that is all clients train every
parameter in every communication round.

Lemma 1 (Bounded Eg (Qu et al., 2022)). The variance of local and global gradients with perturba-
tion can be bounded as follows:

Eg = ∥∇fn(θ̃)−∇f(θ̃)∥2 ≤ 3σ2
g + 6L2δ2. (13)

Lemma 2 (Bounded Eϵ (Qu et al., 2022)). Suppose our functions satisfies Assumptions 1-2. Then,
the updates for any learning rate satisfying ηl ≤ 1

4TL have the drift due to perturbation:

Eϵ = E[∥ϵn,t − ϵ∥2] ≤ 2T 2L2η2l δ
2, (14)

where

ϵn,t = δ
∇fn(θn,t, ξn)

∥∇fn(θn,t, ξn)∥
, ϵ = δ

∇f(θ)

∥∇f(θ)∥ .

Lemma 1 bounded the variance of local and global gradients with perturbation, and it is greater than
the variance of local and global gradients which mainly depends on the data-heterogeneity level.

Lemma 3 (Bounded model deviation). Let all assumptions hold, the deviation of the local submodel
and global model with perturbation can be bounded,

1

T

T∑

t=1

E∥θ̃q,n,t−1 − θ̃q]∥2 ≤ 4η2l TL
2δ2σ2

l + 32η2l L
2T 2Eϵ + 32η2l T

2Eg

+ 4l2E∥θq∥2 + 32η2l T
2
∑

i∈Kq

E∥∇f i(θ̃q)∥2].

Theorem 1 Let all assumptions hold, suppose that the learning rates satisfy these conditions,




8η2l L
2T 2 ≤ 1 ⇒ ηl ≤ 1

8LT

32η2l T
2 N
C∗L

2 ≤ 1
16 ⇒ ηl ≤

√
C∗

16TL
√
N

96L3η3l ηgT
3 N
C∗ ≤ 1

16 ⇒ ηg ≤ 2
√
N√
C∗

3LηlηgT ≤ 1
16 ⇒ ηlηg ≤ 1

48TL

Then for all Q ≥ 1, we have

1

Q

Q∑
q=1

∑
i∈Kq

E∥∇f i(θq)∥2 ≤ 16E[f(θ1)]
TηlηgQ

+ 64l2(L2 N

C∗ + 3L3ηgηl
NT

C∗ )
1

Q

Q∑
i=1

E∥θq∥2

+ (2L2 N

C∗ + 6L3ηgηl
NT

C∗ )(2η2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg)

+ (
N

C∗ + 6Lηgηl
NT

C∗ )Eg + 3Lηgηl
N

C∗L
2δ2σ2

l .

5
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The proof of the theorem can be found in the Appendix C.

Corollary 1 Let all assumptions hold, supposing that the step size ηl =
1√
Q
, ηg =

√
C∗√
T

, when the
constant C > 0 exists, and perturbation radius δ proportional to the learning rate, e.g., δ = 1√

Q
,the

convergence rate can be expressed as follows:

1

Q

Q∑
q=1

∑
i∈Kq

E∥∇f i(θq)∥2 ≤ O(
A0√
QTC∗ +

l2B0

C∗ +
σ2
g

C∗ +
σ2
l

TQ
+

1√
TQC∗ ),

where A0 = E[f(θ1)], B0 = 1
Q

∑Q
i=1 E[f(θq)].

Remark 1 Corollary 1 indicates that when Q is sufficiently large, the term O( 1√
QTC∗ ) will dominate

the convergence rate and the convergence increases when we properly choose the learning rate ηl and
ηg , where C∗ is the minimum covering rate. Here we omit the higher order terms, details can be found
in Appendix C. When C∗ = N , that means all the clients train full model in every communication
round, the convergence rate of SubDisMO achieves to O( 1√

QTN
), which match the best convergence

rate in existing general non-convex FL studies that totally train full model, such as FedAvg (Yang
et al., 2021) and FedSAM (Qu et al., 2022). When δ = 0, the last term is vanish and the convergence
rate achieves to O( 1√

QTC∗ ), which is identical to RAM-Fed (Wang et al., 2023). When C∗ = 1 and
δ = 0, SubDisMO achieves same convergence rate O( 1√

QT
) as OAP (Zhou et al., 2023b). And these

algorithms can be seen the special cases of our algorithm.

Remark 2 (Impact of different key factors). Here we analyze how key factors impact the convergence
of our proposed algorithm:

• Impact of noise induced from mask l. As the second term in the Corollary 1 shows, we
introduce an extra term that causing the submodel mask strategy, which is proportional to
the noise l. The smaller l is, the faster the convergence rate is. And according to existing
model adaptive pruning works (Ma et al., 2021), which focused on mask the insignificant
parameter, it’s definitely that l2 is indeed small. Although clients in our algorhrim are
adaptive generate submodel according to the resource, the assumption is also established.
Otherwise, this term is also controlled by C∗.

• Impact of data heterogeneity σg . As we described, the data distribution is always heteroge-
neous in real-world setting. Corollary 1 demonstrates that data heterogeneity is a key factor
in affecting convergence. The larger σg denotes the higher data heterogeneity, which can
slow the convergence rate. When degenerated to iid case s.t. σg = 0, this term becomes
zero, which is faster than existing convergence rate.

• Impact of trained parameters |Kq|. We innovative analyze the convergence rate of our
algorithm that separates the trained model parameters Kq and untrained model parameters
S − Kq in communication round q, so we give a rigour bound of the averaged gradient of
the trained parameters. It is intuitive that the larger Kq , the more parameters can be trained,
the more the gradient of the parameters can be bounded, which benefits model convergence.

Remark 3 The additional term O( 1
Q3C∗ ) comes from the extra local updates due to the perturbation

via Eq. 5. And the local updates drift we’ve analyzed in Lemma 1. However, it can be neglected owing
to its higher order. Thus, we improve the generalization of the model through a little computation but
without slowing down the convergence rate.

4.2 GENERALIZATION BOUNDS OF SUBDISMO

Margin Loss. First, in order to bound the generalization error of SubDisMO, for margin γ > 0, we
define the expected margin loss as follows.

Lγ(f(θ)) :=
1

N

N∑

i=1

Pi

[
fi(θ ⊙mi + ϵi, X)[y] ≤ γ +max

z ̸=y
fi(θ ⊙mi + ϵi, X)[z]

]
.
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Here, fi(θ ⊙mi + ϵi, X) is the local loss function for client i as defined in (2), (X, y) is a sample
from the local distribution of client i. fi(θ ⊙mi + ϵi, X)[z] is the output of the last softmax layer of
the training neural network for label z. Let L̂γ(f(θ)) be the empirical estimate of the above expected
margin loss on the training dataset with d samples.

Therefore, we aim to give bounds on the difference between the expected risk and the empirical
margin-based error. First, we use the following lemma that gives a margin-based generalization
bound derived from the PAC-Bayesian bound.

Lemma 4 (Bounded margin-based generalization (Neyshabur et al., 2018)). Let f(θ) be any predic-
tor with parameter θ, and prior P be any distribution on the parameter θ that is independent of the
training data. Then, for any γ, ζ, d > 0, with probability 1− ζ over training set D of size d, for any
θ, and any perturbation ϵ s.t. Pϵ[maxX |f(θ ⊙m+ ϵ)− f(θ)|∞ ≤ γ

4 ] ≥ 1
2 , we have:

L(f(θ)) ≤ L̂γ(f(θ)) + 4

√
KL(θ ⊙m+ ϵ ∥ P ) + ln 6d

ζ

d− 1
, (15)

where KL(· ∥ P ) is the KL-divergence.

In order to bound the change in the output of the network when only partial network are trained and
perturbed, referring to Neyshabur et al. (2018), we give the following lemma in terms of the spectral
norm of the layers.

Lemma 5 (Perturbed submodel Bound). Let the norm of input X be bounded by A. For any A, l > 0,
let f(θ) be a r-layer neural network with ReLU activations, and j-th layer has hj units. Then for any
θ, θ = vec({Θj}rj=1), and any perturbation ϵ = vec({ϵj}rj=1), s.t. ∥ϵj∥2 ≤ 1

r∥θj∥2, sj denotes the
remaining rate in layer j, 0 < sj ≤ 1. The change of the network can be bound as follows:

|f(θ ⊙m+ ϵ)− f(θ)|2 ≤ A

r∏

j=1

(sj +
1

r
)

r∏

j=1

∥θj∥2
r∑

j=1

∥ϵj∥2
∥θj∥2

. (16)

The proof of this lemma can be found in the Appendix D. Then, we use the above two lemmas to
derive the following generalization guarantee.

Theorem 2 (Generalization bounds of SubDisMO). For any A, r, hj > 0, let h̃ = max sjhj be
an upper bound on the unit number in each layer of submodel. Assume for constant M ≥ 1 any
layer θj satisfies 1

M ≤ ∥θj∥2

β ≤ M , where β := (
∏r

j=1∥θj∥2)1/r. Then for any γ, ζ > 0, with
probability 1 − ζ over training set D of size d, for any parameter θ, with ϵ ∼ N (0, σ2I), s.t.
σ ≤ γ

16
∏r

j=1(sj+
1
r )rAβ̃r−1

√
h̃ ln(4rh̃)

, β̃ is an approximation to β, we have:

L(f(θ)) ≤ L̂γ(f(θ)) +O(

√∏r
j=1(sj +

1
r )

2r2A2 ln(rh̃)S(θ) + r ln Nrd logM
ζ

dγ2
), (17)

where S(θ) =
∏r

j=1∥θj∥22
∑r

i=j
sj∥θj∥2

F

∥θj∥2
2

, ∥θj∥F is the Frobenius norm.

The proof of the theorem can be found in the Appendix D.

Remark 4 Theorem 2 gives an asymptotic bound on the generalization risk of SubDisMO for
general neural network. Compared to the traditional PAC-Bayesian bound of the perturbed model
(Neyshabur et al., 2018; Qu et al., 2022; Chatterji et al., 2020), it introduces the remaining rate in
each layer to the bound. When each client trains the full model without the mask, s.t. sj = 1, thus∏l

j=1(sj +
1
l ) = (1 + 1

l )
l ≤ e, as 1 + x ≤ ex, for all x, the generalization bound is similar to

the asymptotic bound as shown in (Qu et al., 2022). It means that we not only give bounds on the
difference between the empirical error and the expected margin-based error, but also give a tighter
bound compared to the existing work, where each client only trains a submodel. And we also present
how to properly choose the ϵ ∼ N (0, σ2I) to be the perturbation so that we can guarantee the
generalization of SubDisMO.
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Table 1: Test accuracy (%) and standard deviation on CIFAR-10 & CIFAR-100 datasets under
different data distributions.

Algorithm
ViT-Small/CIFAR-10 ViT/CIFAR-100

µ = 0.5 µ = 1.0 IID µ = 0.5 µ = 1.0 IID
Acc.(Dev.) Acc.(Dev.) Acc.(Dev.) Acc.(Dev.) Acc.(Dev.) Acc.(Dev.)

Full
FedAvg 56.44(5.28) 55.70(2.96) 58.75(1.65) 31.60(2.50) 30.95(2.90) 32.17(0.95)
FedSAM 56.02(4.80) 57.03(2.62) 59.01(1.58) 31.73(2.38) 32.11(2.68) 33.36(1.09)

Sub.

IST.O 36.82(16.67) 38.06(10.27) 45.81(2.03) 16.35(7.17) 17.15(5.54) 19.99(0.48)
IST.P 33.66(14.35) 37.96(9.08) 45.68(1.47) 15.67(6.59) 17.59(4.86) 19.98(0.43)
IST.S 30.73(14.36) 33.78(8.72) 41.26(1.52) 15.70(6.82) 16.91(5.29) 18.02(2.91)
IST.A 39.02(12.13) 41.26(8.48) 47.59(1.49) 18.17(5.60) 19.02(2.81) 21.57(1.57)
OAP.O 45.53(12.13) 48.29(9.29) 53.69(1.52) 21.91(6.92) 26.09(6.97) 27.69(1.65)
OAP.P 41.55(12.51) 45.99(7.18) 53.70(1.56) 20.81(6.35) 24.24(4.10) 26.14(1.51)
OAP.S 32.12(10.63) 41.55(7.17) 46.15(1.67) 21.34(2.46) 22.10(3.10) 23.33(1.08)
OAP.A 37.27(9.65) 42.72(7.16) 47.04(1.34) 21.56(3.70) 23.40(3.68) 26.16(1.57)
PruneFL.O 44.87(14.90) 48.20(5.16) 53.04(1.56) 20.36(6.90) 22.35(5.80) 22.09(1.36)
PruneFL.P 44.02(12.64) 49.71(4.25) 52.35(1.33) 15.75(6.22) 17.89(5.44) 20.43(1.46)
PruneFL.S 37.22(11.56) 47.11(5.32) 43.20(1.50) 17.19(3.59) 20.17(3.22) 20.89(1.01)
PruneFL.A 39.32(14.60) 41.31(14.59) 52.78(1.23) 15.30(5.25) 16.54(3.99) 19.96(0.88)
FedRolex.O 40.07(12.40) 44.84(4.75) 45.46(2.08) 20.69(2.93) 21.73(2.57) 22.34(1.46)
FedRolex.P 41.12(11.87) 45.27(6.16) 49.72(1.51) 21.12(3.59) 21.74(4.34) 24.43(1.28)
FedRolex.S 35.12(11.67) 40.60(7.08) 45.53(1.46) 19.24(4.97) 20.78(4.90) 23.42(1.44)
FedRolex.A 37.58(10.42) 43.41(6.38) 47.23(1.33) 20.28(5.72) 22.66(5.72) 24.91(1.61)
RAM-Fed 43.31(11.49) 50.19(4.16) 53.33(1.42) 20.42(5.19) 23.25(4.77) 24.52(0.84)
SubDisMO 48.50(8.47) 51.23(4.77) 55.99(1.85) 23.17(5.60) 25.43(4.56) 28.24(1.27)

5 EXPERIMENTS

In this section, we focus on the generalization and effectiveness of our proposed SubDisMO com-
pared with some federated learning algorithms combined with resource-limited training paradigms.
Moreover, we also explore the effect of two key factors in our algorithm including minimum covering
number C∗ and the upper bound of the perturbation δ. Due to the space limitation, further scalability
analysis and computation analysis are represented in Appendix E.

5.1 EXPERIMENTAL SETUP

Datasets and models. We compare the performance of baselines on two traditional image classi-
fication datasets: CIFAR-10 (Krizhevsky et al., 2009) with ViT-small and CIFAR-100 (Krizhevsky
et al., 2009) with ViT. Both models are based on Transformer architecture, with detailed settings are
shown in Table 4 in Appendix E. To show the effect of model architecutures, we additionally add the
experiments using ResNet18 on CIFAR-10, results are shown in Table 5 in Appendix E. We use two
settings to simulate heterogeneous data distributions among 10 clients. In the IID setting, each client
has the same number of samples from all classes. In the non-IID setting, data heterogeneity levels
are determined by the Dirichlet distribution Dir(µ) (Hsu et al., 2019), with µ = 0.5 simulating high
heterogeneity and µ = 1.0 representing lower heterogeneity. In order to test the generalization of the
global model, we also split the test dataset according to the same distribution among the 10 clients.

Baselines. We compare our proposed SubDisMO with several combinations of resource-limited
distributed learning paradigms and kinds of aggregation algorithms. We choose IST (Yuan et al., 2022),
PruneFL (Jiang et al., 2022), OAP (Zhou et al., 2023b), and FedRolex (Alam et al., 2022) as the basic
resource-limited distributed paradigms. For the aggregation algorithms, we use FedAvg (McMahan
et al., 2017), FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020), and FedAdam (Reddi
et al., 2020), denoted by O, P, S, A for simplicity. We additionally compared with RAM-Fed (Wang
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Figure 2: Training process of different learning paradigms.

et al., 2023), which focuses on solving non-iid data under resource-limited settings. Besides, we use
the FedAvg and FedSAM on full model to show the best performance without model pruning.

Submodel setting. In each communication round, we randomly split the full model into four
submodels θ1, θ2, θ3, θ4 without overlap, so that each submodel contains 25% of the parameters.
To address the model heterogeneity, 50% of the clients with low resources arbitrarily train 1/4 of
the parameters, while the remaining 50% of the clients train 1/2 of the parameters. Low-resource
clients randomly choose one submodel to train, whereas the remaining clients choose two parts (e.g.,
θ1, θ2) to form local submodel. Specially, for the IST design, the full model is divided into 10 equal
submodels, with each client training one part. In PruneFL, clients only train the most important
submodel, meaning that only portion of the parameters can be trained.

5.2 PERFORMANCE EVALUATION

The main results of SubDisMO compared to all the baselines are shown in Table 1. We report the
average test accuracy and standard deviation across the clients’ test datsets.

Performance compared with baselines. Overall, our proposed SubDisMO outperforms other
baselines in terms of average accuracy and maintains lower deviation, except for FedAvg and
FedSAM with the full model. Compared to the second-best results, SubDisMO improves accuracy by
1.52%-2.97% on CIFAR-10 and 0.55%-1.26% on CIFAR-100, demonstrating the efficiency of our
proposed method. Notably, our method achieves lower standard deviations while ensuring higher
accuracy, indicating the excellent generalization of our SubDisMO. For example, OAP.A achieves the
lowest deviation on Dir(µ = 1.0) for CIFAR-10, its average accuracy is significantly lower than ours.
This means that although OAP.A performs consistently across different clients, its overall performance
is subpar. In contrast, SubDisMO outperforms this baseline by 6.11% with a lower deviation. The
convergence process of different learning paradigms is depicted in Figure 3. Considering the readable,
we only choose the top-2 methods for each resource-limited distributed paradigm.

Impact of non-iid data. With the increment of the data heterogeneity level, that is µ becomes
smaller, the average accuracy of all methods decreases. However, our method still outperforms all
baselines. Additionally, the deviation among clients increases with higher µ, even for the federated
full model training baselines, indicating that data distribution impacts the generalization of the global
model. Nevertheless, our method decreases slightly than other baselines, confirming its effectiveness
in mitigating the adverse effects of data heterogeneity. This demonstrates that our method not only
maintains higher average accuracy across varying levels of data heterogeneity but also reduces the
variance in performance among clients. Specifically, RAM-Fed, another resource-adaptive learning
paradigm focused on the non-iid data, is outperformed by our method, further showcasing the superior
generalization capabilities of SubDisMO.

Loss landscape visualization. As previously mentioned, arbitrary submodel sharpness negatively
impacts the generalization of the global model. Thus we visualize the the loss landscape of the
global model both in RAM-Fed and our SubDisMO trained on CIFAR-10 under Dir(µ=0.5) following
the plotting algorithm in literature (Li et al., 2018). As shown in Figure 3, we can observe that the
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(a) RAM-Fed (b) SubDisMO

Figure 3: Visualization of loss landscape.
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Figure 4: The impact of different C∗.

SubDisMO can mitigate sharpness and make the loss landscape flatter, despite each client only trains
a submodel, which indicates that our method improves the generalization significantly.

5.3 IMPACT OF KEY FACTORS

To explore the influence of different factors, we conduct experiments on two key factors of SubDisMO.

Table 2: Impact of hyperparameter δ on CIFAR-10
& CIFAR-100 datasets.

Algorithm ViT-Small/CIFAR-10 ViT/CIFAR-100

Acc. Dev. Acc. Dev.

δ = 0.01 49.73 5.84 25.55 4.62
δ = 0.05 50.66 5.76 25.51 4.53
δ = 0.08 50.99 5.48 25.41 4.5

δ = 0.1 51.23 4.77 25.43 4.56

δ = 0.15 50.30 5.31 24.59 4.26
δ = 0.2 50.58 6.06 23.51 3.83
δ = 0.3 50.48 6.07 22.85 3.39

Impact of δ. In order to investigate the impact
of the perturbation radius δ on SubDisMO, we
fix other settings and choose different value of δ
to run the algorithm within the Dir(µ = 1.0) dis-
tribution. The convergence results and final test
results are shown in Table 2. We see that when
δ ≤ 0.1 for CIFAR-10, as δ increases, the aver-
age test accuracy improves and the deviations
among clients decrease, which shows the intro-
duction of δ enhances both generality and per-
formance. For CIFAR-100, when δ ≤ 0.1, the
average test accuracy and deviation are almost
no change, and when δ ≥ 0.1, as δ increases, the
average test accuracy decreases while deviation
gets small. But for CIFAR-10, when δ continues
to grow, the performance of SubDisMO declines in both accuracy and generality. This decline is
due to excessive perturbations causing model parameters to deviate from the local minima, which
adversely affects the model.

Impact of C∗. We manually set the submodel that each client trains to explore the impact of the
minimum covering rate C∗. Considering a heterogeneous resource setting, C∗ is set to 1, 2, 3, ensuring
all parameters are trained. The results are shown in Figure 4. We observe that when all parameters
are covered, the more frequently the parameters are trained, the higher the accuracy. When C∗ = 3,
the test accuracy is the best. Additionally, considering the convergence rate, we find that a larger C∗

leads to faster convergence, consistent with our theoretical analysis.

6 CONCLUSION

Distributed minimax optimization faces challenges when devices are constrained by limited comput-
ing and communication resources. In this work, we designed a resource-aware algorithm, SubDisMO,
under distributed minimax optimization to address the arbitrary submodel sharpness caused by data
heterogeneity while training perturbed submodels on resource-limited devices. We theoretically
proved that SubDisMO can achieve asymptotically optimal convergence rate O(1/

√
QTC∗) under

general non-convex distributed assumptions. Furthermore, we analyzed the impact of noise induced
by masking, data heterogeneity, and partially trained parameters on the convergence rate. Otherwise,
we gave a generalization bound of SubDisMO corresponding to the perturbation and parameter
remaining rate in each layer. Extensive experiments confirmed that SubDisMO improves overall
performance while reducing deviation among clients.
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APPENDIX

We provide more details about our work and experiments in the appendices:

• Appendix A: the frequently used notations in this work.
• Appendix B: the preliminary lemmas used in the theoretical analysis.
• Appendix C: details proof of the convergence analysis of our proposed SubDisMO.
• Appendix D: details proof of the generalization bound of our proposed SubDisMO.
• Appendix E: the details of experiments settings and supplemental experiment results.
• Appendix F: the details of limitations and broader impacts of this work.

A NOTATIONS

Table 3: Frequently used notations

Notations Descriptions
∥ · ∥ the vector ℓ2 norm or the matrix spectral norm depending on the argument
S the set of all trained parameters
Kq the trained parameters set in round q
|Kq| the number of trained parameters in round q
N i

q the set of clients training parameter i in round q
Ci
q Ci

q = |N i
q| the number of clients in N i

q

C∗ minimum covering number: C∗ = min
q,i

Ci
q , i ∈ Kq , ∀q

∆i
q the accumulated updates for parameter i of global model in round q

∆q,n the accumulated local updates from client n on itself submodel in round q
∆i

q,n the accumulated local updates from client n on parameter i in round q
mq,n the mask of client n in round q
θq the global model in round q
θiq the parameter i of global model in round q

θ̃q the perturbed global model in round q

θ̃iq the perturbed parameter i of global model in round q
ϵi the perturbation in i-th client
δ the radius of perturbation
fn(θ, ξn) the loss function for client n
∇fn(θ) Eξn∼Dn∇fn(θ, ξn)
ηl the learning rate of clients
ηg the learning rate of server
L(f(θ)) the expected loss
L̃(f(θ)) the empirical loss
γ margin
d local training data samples
P prior distribution
A bound of the norm of input X
r the layer number of neural network
hj the units number of j-th layer
sj remaining rate in j-th layer
h̃ = max sjhj upper bound on the unit number in each layer of submodel
β (

∏r
j=1∥θj∥2)1/r, geometric mean of the θ’s spectral norm across all layers

β̃ appropriation of β

13
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B PRELIMINARY LEMMAS

In order to analyze the convergence rate of our proposed FedMKD, we firstly state some preliminary
lemmas as follows:

Lemma 6 (Jensen’s inequality). For any convex function h and any variable x1, . . . , xn we have

h(
1

n

n∑

i=1

xi) ≤
1

n

n∑

i=1

h(xi). (18)

Especially, when h(x) = ∥x∥2, we can get

∥ 1
n

n∑

i=1

xi∥2 ≤ 1

n

n∑

i=1

∥xi∥2. (19)

Lemma 7 For random variable x1, . . . , xn we have

E[∥x1 + · · ·+ xn∥2] ≤ nE[∥x1∥2 + · · ·+ ∥xn∥2]. (20)

Lemma 8 For independent random variables x1, . . . , xn whose mean is 0, we have

E[∥x1 + · · ·+ xn∥2] = E[∥x1∥2 + · · ·+ ∥xn∥2]. (21)

Proof of Lemma 1.

∥∇fn(θ̃)−∇f(θ̃)∥2 = ∥∇fn(θ + ϵn)−∇f(θ + ϵ)∥2

= ∥∇fn(θ + ϵn)−∇fn(θ) +∇fn(θ)−∇f(θ) +∇f(θ)−∇f(θ + ϵ)∥2

≤ 3∥∇fn(θ + ϵn)−∇fn(θ)∥2 + 3∥∇fn(θ)−∇f(θ)∥2 + 3∥∇f(θ)−∇f(θ + ϵ)∥2

≤ 3σ2
g + 6L2δ2,

C CONVERGENCE ANALYSIS

Proof of Theorem 1. Let us start the proof of the global model generated by semi-asynchronous
aggregation strategy from L-Lipschitzian Condition:

E[f(θq+1)] = E[f(θ̃q+1)] ≤ f(θ̃q) + E[⟨∇f(θ̃q), θ̃q+1 − θ̃q⟩]︸ ︷︷ ︸
U1

+
L

2
E∥θ̃q+1 − θ̃q∥2︸ ︷︷ ︸

U2

To bound U1:

E[⟨∇f(θ̃q), θ̃q+1 − θ̃q⟩]

=
∑
i∈Kq

E[⟨∇f(θ̃q), θ̃q+1 − θ̃q⟩] +
∑

i∈S−Kq

E[⟨∇f(θ̃q), θ̃q+1 − θ̃q⟩]

=
∑
i∈Kq

E[⟨∇f(θ̃q), θ̃q+1 − θ̃q⟩] +
∑

i∈S−Kq

E[⟨∇f(θ̃q),0⟩]

=
∑
i∈Kq

E[⟨∇f(θ̃q), θ̃q+1 − θ̃q⟩]

=
∑
i∈Kq

E[⟨∇f i(θ̃q),−ηg∆
i
q)⟩] +

∑
i∈Kq

E[⟨∇f i(θ̃q), ϵq+1 − ϵq⟩]

≤
∑
i∈Kq

E[⟨∇f i(θ̃q),−ηg(
1

Ci
q

∑
n∈Ni

q

(θiq,n,0 − θiq,n,T ))⟩] +
ηlηgT

4

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
1

ηlηgT

∑
i∈Kq

E∥ϵq+1 − ϵq∥2

≤
∑
i∈Kq

E[⟨∇f i(θ̃q),−
ηg
Ci
q

∑
n∈Ni

q

(θq,n,0 − (θq,n,0 −
T∑

t=1

ηl∇fn(θ̃q,n,t−1, ξn,t−1)⊙mq,n))
i⟩] + ηlηgT

4

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
1

ηlηgT
δ2

=
∑
i∈Kq

E[⟨∇f i(θ̃q),−
ηg
Ci
q

∑
n∈Ni

q

T∑
t=1

ηl∇f i
n(θ̃q,n,t−1, ξn,t−1)⟩] +

ηlηgT

4

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
1

ηlηgT
δ2

14
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=
∑
i∈Kq

E[⟨∇f i(θ̃q),−
ηg
Ci
q

∑
n∈Ni

q

T∑
t=1

ηl∇f i
n(θ̃q,n,t−1)⟩] +

ηlηgT

4

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
1

ηlηgT
δ2

=
∑
i∈Kq

E[⟨∇f i(θ̃q),−
ηg
Ci
q

∑
n∈Ni

q

T∑
t=1

ηl[∇f i
n(θ̃q,n,t−1)−∇f i(θ̃q) +∇f i(θ̃q)]⟩] +

ηlηgT

4

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
1

ηlηgT
δ2

= −
∑
i∈Kq

TηgηlE[⟨∇f i(θ̃q),∇f i(θ̃q)⟩]︸ ︷︷ ︸
U3

+
∑
i∈Kq

E[⟨∇f i(θ̃q),−
ηgηl
Ci
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q,n,t−1)−∇f i(θ̃q)]⟩]

︸ ︷︷ ︸
U4

+
ηlηgT

4

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
1

ηlηgT
δ2

To bound U3:

−
∑
i∈Kq

TηgηlE[⟨∇f i(θ̃q),∇f i(θ̃q)⟩] = −
∑
i∈Kq

TηgηlE∥∇f i(θ̃q)∥2

bound U4:

∑
i∈Kq

E[⟨∇f i(θ̃q),−
ηgηl
Ci
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q,n,t−1)−∇f i(θ̃q)]⟩]

=
∑
i∈Kq

ηgηlTE[< ∇f i(θ̃q),−
1

TCi
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q,n,t−1)−∇f i(θ̃q)] >

≤ ηgηlT

2

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
ηgηlT

2

∑
i∈Kq

E∥ 1

TCi
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q,n,t−1)−∇f i

n(θ̃q) +∇f i
n(θ̃q)−∇f i(θ̃q)]∥2

≤ ηgηlT

2

∑
i∈Kq

E∥∇f i(θ̃q)∥2 + ηgηlT
∑
i∈Kq

E∥ 1

TCi
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q,n,t−1)−∇f i

n(θ̃q)]∥2

︸ ︷︷ ︸
U5

+ ηgηlT
∑
i∈Kq

E∥ 1

TCi
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q)−∇f i(θ̃q)]∥2

︸ ︷︷ ︸
U6

To bound U5:

ηgηlT
∑
i∈Kq

E∥ 1

TCi
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q,n,t−1)−∇f i

n(θ̃q)]∥2

≤ ηgηlT
∑
i∈Kq

1

TCi
q

∑
n∈Ni

q

T∑
t=1

E∥[∇f i
n(θ̃q,n,t−1)−∇f i

n(θ̃q)]∥2

≤ ηgηlT
1

TC∗

N∑
n=1

T∑
t=1

∑
i∈Kq

E∥[∇f i
n(θ̃q,n,t−1)−∇f i

n(θ̃q)]∥2

≤ ηgηlT
1

TC∗

N∑
n=1

T∑
t=1

E∥[∇fn(θ̃q,n,t−1)−∇fn(θ̃q)]∥2

≤ ηgηlT
1

C∗

N∑
n=1

L2 1

T

T∑
t=1

E∥θ̃q,n,t−1 − θ̃q]∥2

≤ ηgηlT
1

C∗

N∑
n=1

L2 1

T

T∑
t=1

E∥θq,n,t−1 + ϵq,n,t−1 − θq − ϵq]∥2
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≤ 2ηgηlT
1

C∗

N∑
n=1

L2 1

T

T∑
t=1

E∥θq,n,t−1 − θq∥2︸ ︷︷ ︸
U7

+2ηgηlT
1

C∗

N∑
n=1

L2 1

T

T∑
t=1

E∥ϵq,n,t−1 − ϵq]∥2

To bound U7:

1

T

T∑
t=1

E∥θq,n,t−1 − θq∥2

≤ 2

T

T∑
t=1

E∥θq,n,t−1 − θq,n,0∥2 +
2

T

T∑
t=1

E∥θq,n,0 − θq∥2

=
2

T

T∑
t=1

E∥
t−2∑
j=0

−ηlg̃q,n,j ⊙mq,n∥2 +
2

T

T∑
t=1

E∥θq ⊙mn,q − θq∥2

≤ 2η2
l

T

T∑
t=1

E∥
t−2∑
j=0

(∇fn(θ̃q,n,j , ξn,j)−∇fn(θ̃q,n,j) +∇fn(θ̃q,n,j))⊙mq,n∥2 +
2

T

T∑
t=1

l2E∥θq∥2

≤ 4η2
l

T

T∑
t=1

E∥
t−2∑
j=0

(∇fn(θ̃q,n,j , ξn,j)−∇fn(θ̃q,n,j))⊙mq,n∥2

+
4η2

l

T

T∑
t=1

E∥
t−2∑
j=0

∇fn(θ̃q,n,j)⊙mq,n∥2 +
2

T

T∑
t=1

l2E∥θq∥2

≤ 4η2
l

T

T∑
t=1

(t− 1)L2δ2σ2
l +

2

T

T∑
t=1

l2E∥θq∥2 +
4η2

l

T

T∑
t=1

E∥
t−2∑
j=0

(∇fn(θ̃q,n,j)−∇fn(θ̃q) +∇fn(θ̃q))⊙mq,n∥2

≤ 2η2
l TL

2δ2σ2
l +

2

T

T∑
t=1

l2E∥θq∥2 +
8η2

l

T

T∑
t=1

(t− 1)

t−2∑
j=0

E∥(∇fn(θ̃q,n,j)−∇fn(θ̃q))⊙mq,n∥2

+
8η2

l

T

T∑
t=1

(t− 1)

t−2∑
j=0

E∥∇fn(θ̃q)⊙mq,n∥2

≤ 2η2
l TL

2δ2σ2
l +

2

T

T∑
t=1

l2E∥θq∥2 +
8η2

l L
2

T

T∑
t=1

(t− 1)

t−2∑
j=0

E∥θ̃q,n,j − θ̃q∥2

+ 8η2
l T

2E∥(∇fn(θ̃q)−∇f(θ̃q) +∇f(θ̃q))⊙mq,n∥2

≤ 2η2
l TL

2δ2σ2
l +

2

T

T∑
t=1

l2E∥θq∥2 +
16η2

l L
2

T

T∑
t=1

(t− 1)

t−2∑
j=0

E∥θq,n,j − θq∥2 +
16η2

l L
2

T

T∑
t=1

(t− 1)

t−2∑
j=0

E∥ϵq,n,j − ϵq∥2

+ 16η2
l T

2E∥(∇fn(θ̃q)−∇f(θ̃q))⊙mq,n∥2 + 16η2
l T

2E∥∇f(θ̃q)⊙mq,n∥2

≤ 2η2
l TL

2δ2σ2
l + 2l2E∥θq∥2 + 16η2

l L
2T 2 1

T

T∑
t=1

E∥θq,n,t−1 − θq∥2 + 16η2
l L

2T 2Eϵ + 16η2
l T

2Eg + 16η2
l T

2E∥∇f(θ̃q)⊙mq,n∥2

Let learning rate satisfies 16η2l L
2T 2 ≤ 1 ⇒ ηl ≤ 1

4LT , we can get U7:

1

T

T∑
t=1

E∥θq,n,t−1 − θq∥2 ≤2η2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg + 2l2E∥θq∥2 + 16η2

l T
2
∑
i∈Kq

E∥∇f i(θ̃q)∥2

Plugging U7 in U5, we can get:

ηgηlT
∑
i∈Kq

E∥ 1

TCi
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q,n,t−1)−∇f i

n(θ̃q)]∥2

≤ 2ηgηlT
1

C∗

N∑
n=1

L2[2η2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2(3σ2

g + 6L2δ2)
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+ 2l2E∥θq∥2 + 16η2
l T

2
∑
i∈Kq

E∥∇f(θ̃q)∥2] + 2ηgηlT
1

C∗

N∑
n=1

L2 1

T

T∑
t=1

E∥ϵq,n,t−1 − ϵq]∥2

≤ 2ηgηlTL
2 N

C∗ [2η
2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg + 2l2E∥θq∥2 + 16η2

l T
2
∑
i∈Kq

E∥∇f i(θ̃q)∥2]

To bound U6:

ηgηlT
∑
i∈Kq

E∥ 1

TCi
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q)−∇f i(θ̃q)]∥2

≤ ηgηlT
1

TCi
q

∑
n∈Ni

q

T∑
t=1

∑
i∈Kq

E∥[∇f i
n(θ̃q)−∇f i(θ̃q)]∥2

≤ ηgηlT
1

TC∗

∑
n∈Ni

q

T∑
t=1

E∥[∇f i
n(θ̃q)−∇f i(θ̃q)]∥2

≤ ηgηlTN

C∗ Eg

Plugging U5, U6 in U4:

∑
i∈Kq

E[⟨∇f i(θ̃q),−
ηgηl
Ci
q

∑
n∈Ni

q

T∑
t=1

[∇f i
n(θ̃q,n,t−1)−∇f i(θ̃q)]⟩]

≤ 2ηgηlTL
2 N

C∗ [2η
2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg + 2l2E∥θq∥2 + 16η2

l T
2
∑
i∈Kq

E∥∇f i(θ̃q)∥2]

+
ηgηlT

2

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
ηgηlTN

C∗ Eg

Plugging U3, U4 in U1:

E[⟨∇f(θ̃q), θ̃q+1 − θ̃q⟩]

≤ 2ηgηlTL
2 N

C∗ [2η
2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg + 2l2E∥θq∥2 + 16η2

l T
2
∑
i∈Kq

E∥∇f i(θ̃q)∥2]

−ηgηlT

4

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
ηgηlTN

C∗ Eg +
1

ηlηgT
δ2

To bound U2:

L

2
E∥θ̃q+1 − θ̃q∥2

=
L

2

∑
i∈Kq

E∥θ̃q+1 − θ̃q∥2 +
L

2

∑
i∈S−Kq

E∥θ̃q+1 − θ̃q∥2

=
L

2

∑
i∈Kq

E∥θ̃q+1 − θ̃q∥2

= L
∑
i∈Kq

E∥θq+1 − θq∥2 + L
∑
i∈Kq

E∥ϵq+1 − ϵq∥2

≤ Lη2
g

∑
i∈Kq

E∥∆q∥2 + Lδ2

= Lη2
g

∑
i∈Kq

E∥ − 1

Ci
q

∑
n∈Ni

q

T∑
t=1

ηl∇f i
n(θ̃q,n,t−1, ξn,t−1)∥2 + Lδ2

≤ 3Lη2
g

∑
i∈Kq

E∥ − 1

Ci
q

∑
n∈Ni

q

T∑
t=1

ηl[∇f i
n(θ̃q,n,t−1, ξn,t−1)−∇f i

n(θ̃q,n,t−1)]∥2
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+ 3Lη2
g

∑
i∈Kq

E∥ − 1

Ci
q

∑
n∈Ni

q

T∑
t=1

ηl[∇f i
n(θ̃q,n,t−1)−∇f i(θ̃q)]∥2

+ 3Lη2
g

∑
i∈Kq

E∥ − 1

Ci
q

∑
n∈Ni

q

T∑
t=1

ηl∇f i(θ̃q)∥2 + Lδ2

≤ 3Lη2
gη

2
l
NT

C∗ L2δ2σ2
l + 6Lη2

g

∑
i∈Kq

E∥ − 1

Ci
q

∑
n∈Ni

q

T∑
t=1

ηl[∇f i
n(θ̃q,n,t−1)−∇f i

n(θ̃q)]∥2

+ 6Lη2
g

∑
i∈Kq

E∥ − 1

Ci
q

∑
n∈Ni

q

T∑
t=1

ηl[∇f i
n(θ̃q)−∇f i(θ̃q)]∥2 + 3Lη2

g

∑
i∈Kq

E∥ − 1

Ci
q

∑
n∈Ni

q

T∑
t=1

ηl∇f i(θ̃q)∥2 + Lδ2

≤ 3Lη2
gη

2
l
NT

C∗ L2δ2σ2
l + 6Lη2

gη
2
l
NT 2

C∗ L2(2η2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg

+ 2l2E∥θq∥2 + 16η2
l T

2
∑
i∈Kq

E∥∇f i(θ̃q)∥2) + 6Lη2
gη

2
l
NT 2

C∗ Eg + 3Lη2
gη

2
l T

2
∑
i∈Kq

E∥∇f i(θ̃q)∥2 + Lδ2

Last we have:

E[f(θq+1)] = E[f(θ̃q+1)] ≤ f(θ̃q) + 2ηgηlTL
2 N

C∗ [2η
2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg

+ 2l2E∥θq∥2 + 16η2
l T

2
∑
i∈Kq

E∥∇f i(θ̃q)∥2]−
ηgηlT

4

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +
ηgηlTN

C∗ Eg

+ 3Lη2
gη

2
l
NT

C∗ L2δ2σ2
l + 6L3η2

gη
2
l
NT 2

C∗ (2η2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg + 2l2E∥θq∥2

+ 16η2
l T

2
∑
i∈Kq

E∥∇f i(θ̃q)∥2) + 6Lη2
gη

2
l
NT 2

C∗ Eg + 3Lη2
gη

2
l T

2
∑
i∈Kq

E∥∇f i(θ̃q)∥2 + Lδ2 +
1

ηgηlT
δ2

= f(θ̃q) + ηgηlT [−
1

4
+ 3LηgηlT + 16η2

l T
2(2L2 N

C∗ + 6L3ηgηl
NT

C∗ )]
∑
i∈Kq

E∥∇f i(θ̃q)∥2

+ ηgηlT [2l
2(2L2 N

C∗ + 6L3ηgηl
NT

C∗ )]E∥θq∥2

+ ηgηlT (2L
2 N

C∗ + 6L3ηgηl
NT

C∗ )(2η2
l TL

2δ2σ2
l + 16η2

l L
2T 2Eϵ + 16η2

l T
2Eg)

+ ηgηlT (
N

C∗ + 6Lηgηl
NT

C∗ )Eg + 3Lη2
gη

2
l
NT

C∗ L2δ2σ2
l + Lδ2 +

1

ηgηlT
δ2

a

≤ f(θ̃q)−
ηgηlT

16

∑
i∈Kq

E∥∇f i(θ̃q)∥2 +Φ

where a follows because:

32η2l T
2 N

C∗L
2 ≤ 1

16
⇒ ηl ≤

√
C∗

16TL
√
N

96L3η3l ηgT
3 N

C∗ ≤ 1

16
⇒ ηg ≤ 2

√
N√
C∗

3LηlηgT ≤ 1

16
⇒ ηlηg ≤ 1

48TL
.

Thus we can get the following inequality.

ηgηlT

16

Q∑
q=1

∑
i∈Kq

E∥∇f i(θ̃q)∥2 ≤E[f(θ1)] + 4ηgηlT l
2L

2N

C∗

Q∑
i=1

E∥θq∥2 +QLδ2 +
Q

ηgηlT
δ2

+
ηgηlTL

2Q

8
(
1

8T
δ2σ2

l + Eϵ +
1

L2
Eg) + 2ηgηlTQ(

N

C∗ )Eg + ηgηlTQ
L2N

16TC∗ δ
2σ2

l
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Dividing both sides above by TηgηlQ
16 we can get

1

Q

Q∑
q=1

∑
i∈Kq

E∥∇f i(θ̃q)∥2 ≤16E[f(θ1)]
TηlηgQ

+ 64l2(
L2N

C∗ )
1

Q

Q∑
i=1

E∥θq∥2 + 2L2(
1

8T
δ2σ2

l + Eϵ +
1

L2
Eg)

+
32N

C∗ Eg +
L2N

TC∗ δ2σ2
l +

16L

Tηlηg
δ2 +

16

η2
gη

2
l T

2
δ2

Supposing that the step size ηl =
1√
Q
, ηg =

√
C∗√
T

, when the constant C > 0 exists, and perturbation
amplitude δ proportional to the learning rate, e.g., δ = 1√

Q
,the convergence rate can be expressed as

follows:

1

Q

Q∑
q=1

∑
i∈Kq

E∥∇f i(θq)∥2 ≤O(
A0√
QTC∗ +

l2B0

C∗ +
σ2
g

C∗ +
σ2
l

TQ
+

σ2
l

TQC∗ +
1

QC∗ +
1

C∗T
+

1√
TQC∗ +

1

Q
)

where A0 = E[f(θ1)], B0 = 1
Q

∑Q
i=1 E[f(θq)].

D GENERALIZATION BOUND

Proof of Lemma 5 Let ∆i =
∣∣f i(θ ⊙m+ ϵ,X)− f i(θ,X)

∣∣
2
. We will prove using induction that

for any i ≥ 0:

∆i ≤
i∏

j=1

(
sj +

1

r

)


i∏

j=1

∥θj∥2


 |X|2

i∑

j=1

∥ϵj∥2
∥θj∥2

.

The induction base holds clearly since ∆0 = |X −X|2 = 0. For any i ≥ 1, we have the following:

∆i+1 =
∣∣(θi+1 ⊙mi+1 + ϵi+1)ϕi(f

i(θi ⊙mi + ϵi, X))− θi+1ϕi(f
i(θ,X))

∣∣
2

=
∣∣(θi+1 ⊙mi+1 + ϵi+1)

(
ϕi(f

i(θi ⊙mi + ϵi, X))− ϕi(f
i(θ,X))

)
+ ϵi+1ϕi(f

i(θ,X))
∣∣
2

≤ (∥θi+1 ⊙mi+1∥2 + ∥ϵi+1∥2)
∣∣ϕi(f

i(θi ⊙mi + ϵi, X))− ϕi(f
i(θ,X))

∣∣
2
+ ∥ϵi+1∥2

∣∣f i(θ,X))
∣∣
2

a
≤ (∥θi+1 ⊙mi+1∥2 + ∥ϵi+1∥2)

∣∣f i(θi ⊙mi + ϵi, X)− f i(θ,X)
∣∣
2
+ ∥ϵi+1∥2

∣∣f i(θ,X)
∣∣
2

= ∆i (∥θi+1 ⊙mi+1∥2 + ∥ϵi+1∥2) + ∥ϵi+1∥2
∣∣f i(θ,X)

∣∣
2
,

where a follows Lipschitz property of the activation function and using ϕ(0) = 0. The ℓ2 norm of
outputs of layer i is bounded by |X|2

∏i
j=1∥θj∥2 and by the lemma assumption we have ∥ϵi+1∥2 ≤

1
r ∥θi+1∥2. Let sj be the remaining rate of j-th layer, ∥θj ⊙mj∥2 = sj ∥θj∥. Therefore, using the
induction step, we get the following bound:

∆i+1 ≤ ∆i

(
si+1 +

1

r

)
∥θi+1∥2 + ∥ϵi+1∥2 |X|2

i∏

j=1

∥θj∥2

≤
i+1∏

j=1

(
sj +

1

r

)


i+1∏

j=1

∥θj∥2


 |X|2

i∑

j=1

∥ϵj∥2
∥θj∥2

+
∥ϵi+1∥2
∥θi+1∥2

|X|2
i+1∏

j=1

∥θi∥2

≤
i+1∏

j=1

(
sj +

1

r

)


i+1∏

j=1

∥θj∥2


 |X|2

i+1∑

j=1

∥ϵj∥2
∥θj∥2

.

Let the norm of input X be bounded by A,A > 0, we can gain

|f(θ ⊙m+ ϵ)− f(θ)|2 ≤ A

r∏

j=1

(sj +
1

r
)

r∏

j=1

∥θj∥2
r∑

j=1

∥ϵj∥2
∥θj∥2

.
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Proof of Theorem 2 Since ϵ ∼ N (0, σ2I), we get the following bound for the spectral norm of ϵi:

Pϵi∼N(0,σ2I) [∥ϵi∥2 > t] ≤ 2h̃e−t2/2h̃σ2

.

Taking a union bond over the layers, we get that, with probability ≥ 1
2 , the spectral norm of the

perturbation ϵi in each layer is bounded by σ
√

2h̃ ln(4rh̃). Let β = (
∏r

j=1∥θj∥2)1/r, denoting the
geometric mean of the θ’s spectral norm across all layers. Plugging this spectral norm bound into
Lemma 5 we have that with probability at least 1

2 ,

max
X

|f(θ ⊙m+ ϵ,X)− f(θ,X)|2 ≤ A

r∏

j=1

(sj +
1

r
)βr

∑

i

∥ϵi∥2
β

= A

r∏

j=1

(sj +
1

r
)βr−1

∑

i

∥ϵi∥2

≤ erA

r∏

j=1

(sj +
1

r
)r−1σ

√
2h̃ ln(4rh̃) ≤ γ

4
,

where we choose σ = γ

16
∏r

j=1(sj+
1
r )rAβ̃r−1

√
h̃ ln(4h̃r)

to get the last inequality. Hence, the perturba-

tion ϵ with the above value of σ satisfies the assumptions of the Lemma 4.

We now calculate the KL-term in Lemma 4 with the chosen distributions for P and ϵ, for the above
value of σ.

KL(θ + ϵ||P ) ≤ |θ|2

2σ2
=

162
∏r

j=1(sj +
1
r
)2r2A2β̃2r−2h̃ ln(4h̃r)

2γ2

r∑
i=1

∥θi∥2F

≤ O

(
r∏

j=1

(sj +
1

r
)2A2r2h̃ ln(h̃r)

β2r

γ2

r∑
i=1

∥θi∥2F
β2

)

≤ O

(
r∏

j=1

(sj +
1

r
)2A2r2h̃ ln(h̃r)

∏r
i=1 ∥θi∥

2
2

γ2

r∑
i=1

∥θi∥2F
∥θi∥22

)
.

Hence, for any β̃, with probability 1− ζ and for all θ such that, |β − β̃| ≤ 1
rβ, we have:

L(f(θ)) ≤ L̂γ(f(θ)) +O


√√√√∏r

j=1(sj +
1
r
)2A2r2h̃ ln(h̃r)

∏r
i=1 ∥θi∥

2
2

∑r
i=1

∥θi∥2F
∥θi∥22

+ ln d
ζ

dγ2

 . (22)

Considering the assumption in Theorem 2, any layer θj satisfies 1
M ≤ ∥θj∥2

β ≤ M , and approximation

β̃ satisfies
∣∣∣β − β̃

∣∣∣ ≤ 1
rβ. Thus, we use a cover of size O((rlogM)r). For ζ > 0 with probability

1− ζ, we have:

L(f(θ)) ≤ L̂γ(f(θ))+O(

√√√√
∏r

j=1(sj +
1
r )

2r2A2 ln(rh̃)
∏r

j=1∥θj∥22
∑r

i=j
sj∥θj∥2

F

∥θj∥2
2

+ r ln rd logM
ζ

dγ2
),

(23)

In order to apply the above result in the distributed scenario with N clients, we apply a union bound
to have the bound hold simultaneously for the distribution of each client. For ζ > 0 with probability
1− ζ, we have:

L(f(θ)) ≤ L̂γ(f(θ))+O(

√√√√
∏r

j=1(sj +
1
r )

2r2A2 ln(rh̃)
∏r

j=1∥θj∥22
∑r

i=j
sj∥θj∥2

F

∥θj∥2
2

+ r ln Nrd logM
ζ

dγ2
).

(24)
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E ADDITIONAL EXPERIMENTAL DETAILS

Backbone. We use two ViT (Dosovitskiy et al., 2020) variants with different capabilities, as shown
in Tab.4.

Table 4: Details of used Vision Transformer model.

Model Layer Hidden size MLP size Heads Params FLOPs

ViT-Small 4 64 128 8 0.64MB 2.637M
ViT 12 192 768 8 21.34MB 92.781M

Impact of model architecture. In order to show the effectiveness of proposed method, we addition-
ally conduct experiments using different architecture model ResNet18 on CIFAR-10 with Dirichlet
distribution (µ = 1.0). The results are shown in Table 5 and our proposed method is the best.

Table 5: Comparison of methods on different model architectures.

Methods ResNet18/CIFAR-10 ViT-Small/CIFAR-10 ViT/CIFAR-100

Full
Centralized 81.02 59.19 35.61

FedAvg 76.78(2.92) 55.70(2.96) 30.95(2.90)
FedSAM 78.35(2.89) 57.03(2.62) 32.11(2.68)

Sub.

IST 62.51(5.39) 38.06(10.27) 17.15(5.54)
OAP 64.90(3.54) 48.29(9.29) 26.09(6.97)

PruneFL 64.04(4.06) 48.20(5.16) 22.35(5.80)
FedRolex 65.30(3.16) 44.84(4.75) 21.73(2.57)
RAM-Fed 69.15(3.15) 50.19(4.16) 23.25(4.77)
SubDisMO 76.34(3.33) 51.23(4.77) 25.43(4.56)

Impact of mask policy. In our method design, we give the random mask as a mask policy example
and present the theoretical analysis. It shows the superior convergence rate and generalization error
bound of the proposed method in solving the general distributed minimax optimization problem. And
based on SubDisMO, we can change to any submodel construction method to improve the empirical
performance. Different mask policy would lead to different C∗ so the model convergence rate is
different, even different empirical performance. Here, we compare with rolling mask policy with
different step and the overlap rate. When the new local submodel overlaps 50% from the last one,
the performance is better than no overlap. It’s suggested based on our proposed SubDisMO choose
appropriate mask policy for practical application.

Table 6: Experimental results on different mask policies.

Mask policy CIFAR-10(µ = 1.0) CIFAR-10(IID)
Random 51.23(4.77) 55.99(1.85)

Rolling-no overlap 45.11(5.79) 47.35(1.70)
Rolling-50% overlap 51.57(4.17) 55.48(1.36)

Computational efficiency.Considering that each deep network includes multiple operations and
computations, we commonly use the amount of computation (FLOPS) to analyze the time complexity
and the number of parameters to analyze the space complexity. The results of each process are
shown in Table 7. In comparison to state-of-the-art distributed learning algorithm, FedSAM, where
each client needs to train the full model, our proposed method allows each client to train only a
submodel. This significantly reduces both the computational load and the number of parameters,
thereby improving efficiency in terms of both computation and storage.

Scalability. In order to explore the scalability of our proposed algorithm SubDisMO, we add the
experiment that the number of clients is 10, 100, 1000 on CIFAR-10. And we repartition the data
for each client under Dir(µ = 1.0). Considering insufficient number of data and practical large-
scale distributed systems, we use data reply method for clients instead of no repeated division. For
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Table 7: Computation comparison of SubDisMO and FedSAM with full model training.

Method Parameters FLOPs
Ours(25% submodel/Vit-Small) 55.242K 103.809M
Ours(50% submodel/Vit-Small) 88.522K 181.24M

FedSAM with full Vit-Small 155.082K 336.102M
Ours(25% submodel/Vit) 1.599M 3.047G
Ours(50% submodel/Vit) 2.93M 5.99G

FedSAM with full Vit 5.597M 11.876G

10 clients, each client maintains about 5,000 data samples, for 100 clients, each client maintains
about 3,000 data samples, and for 1,000 clients, each client maintains about 500 data samples. The
results are shown in Table 8. We can find that as the number of clients increasing, the performance
decreases. The main reason is the local amount of data samples is decreased, which further affect the
performance of the local model.

Table 8: Experimental results on scalability studies of SubDisMO.

Method 10-Clients 100-Clients 1000-Clients
RAM-Fed 50.19(4.16) 37.09(8.46) 27.02(9.88)

Ours 51.23(4.77) 47.53(6.41) 32.05(8.97)

To show the effectiveness of our proposed SubDisMO, we give the convergence curve in large-scale
distributed systems, as shown in Figure 5
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Figure 5: Training process of different number of clients.

F ADDITIONAL DISCUSSION

In this section, we discuss the limitations and broader impacts of the work.

Limitations. Although we provide rigorous theoretical proof and extensive experiments analysis, the
experiments are mainly conducted in computer vision (CV) scenario. We leave the implementation
of other tasks, such as natural language process (NLP) task as a future research exploration.

Broader Impacts. The resource-aware distributed minimax optimization algorithm, SubDisMO,
significantly advances the field of machine learning by enabling efficient training in resource-limited
environments through adaptive submodel pruning. This adaptability ensures scalability to large-
scale models, making advanced machine learning techniques accessible for a broader range of
applications and devices. This advancement can allow organizations and individuals with limited
computational resources to participate in and benefit from cutting-edge AI developments. The
smaller institutions and research groups can engage in large-scale model training without the need for
expensive hardware investments. Overall, our work paves the way for more inclusive and sustainable
AI development, fostering innovation and collaboration across various communities with otherwise
limited computational resources.
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