Speculative Streaming: Efficient and Scalable Speculative Decoding with
Multi-Stream Attention

Anonymous ACL submission

Abstract

Speculative decoding is a prominent technique
for accelerating LLM inference by leveraging
an auxiliary draft model, but its effectiveness
is limited by the autoregressive nature of draft
generation, where acceptance rates depend on
the draft model’s size. Scaling the draft model
improves acceptance but also increases spec-
ulation latency, limiting overall speedup. Fur-
thermore, fine-tuning both the draft and target
models is often necessary to achieve high accep-
tance rates, adding complexity to inference sys-
tems as the number of downstream tasks grows.
Single-model approaches like Medusa gener-
ate speculative tokens non-autoregressively but
lack token dependencies, limiting effectiveness.
Alternatives like Hydra and Eagle incorporate
token dependencies but rely on dedicated heads,
making speculation independent of the base
model and limiting the extent to which stronger
base models can improve speculation.

We introduce a novel speculative decoding
method that integrates speculative draft gen-
eration directly within the target model us-
ing multi-stream attention. This improves ac-
ceptance rates by introducing interdependen-
cies between speculative tokens while ensur-
ing non-autoregressive draft generation with
minimal overhead. As target models scale
in size and quality, speculative generation im-
proves naturally with our method, unlike prior
approaches. Furthermore, our approach is
both parameter- and FLOP-efficient, requir-
ing over 1000x fewer additional parameters
than Medusa, making it highly suitable for
resource-constrained devices. We design our
method to operate in two modes: (1) Lossless
mode, a plug-and-play method that preserves
the output of any pre-trained model; and (2)
Shared mode, optimizing both speedup and
downstream output quality. We demonstrate a
2-3.5x speedup across diverse tasks, including
summarization, translation, question answer-
ing, mathematical reasoning, SQL generation,
and retrieval-augmented generation (RAG).

! Speculative Streaming does need i speculative Streaming does need
1 auxiliary Tte V1 auxiliary i

fie

5 Target LLM

>
! Speculativq Streaming does need 3
| atxihary N0t !

S| Draft Draft Draft

o' | Model Model Model
[t Iy IS (R PSR A PR Y AU
i Speculative Streaming dops 1| Speculativg Streaming ddes need

i v,

i not require  auxiliary  models ! » auxiliary models 1
. i
e R R I i

(a) Speculative Decoding (b) Speculative Streaming

Figure 1: (a) Speculative Decoding requires a well-
aligned draft model that generates speculation autore-
gressively. (b) Speculative Streaming significantly sim-
plifies the system by performing speculation and verifi-
cation concurrently, within a single stream-fused model.

1 Introduction

Large transformers have become the cornerstone of
modern language modeling. The quality of these
models improves as they scale (Kaplan et al., 2020),
leading to the introduction of the state-of-the-art
multi-billion parameter models (Brown et al., 2020;
Thoppilan et al., 2022; Chowdhery et al., 2023;
Touvron et al., 2023a). While these models are
effective for token generation, they incur a high
inference cost as the model and its transient states
need to be loaded into computing memory for each
newly generated token. This poses a challenge to
the deployment of large autoregressive transform-
ers, particularly for user-facing applications with
stringent latency requirements.

Given the memory-bound nature of large
language model (LLM) inference, recent
work (Leviathan et al., 2023; Chen et al., 2023)
has proposed Speculative Decoding as an effective
technique to accelerate decoding based on concepts
borrowed from speculative computation (Burton,
1985). The core idea is to speculate multiple
candidate future tokens first and then verify them



in parallel using a two-model paradigm as shown

in Figure la: a small auxiliary “draft” model for

candidate speculation and a large “target” model
for verification (Leviathan et al., 2023; Chen et al.,

2023). However, the effectiveness of speculative

decoding is constrained by the autoregressive

nature of draft generation, where the draft model’s
size directly impacts acceptance rates; scaling the
draft model improves quality but also increases
speculation latency, limiting the overall speedup. It
is also resource-inefficient, requiring both models
to be hosted in memory during token prediction.
In this paper, we propose Speculative Stream-

ing, a single-model speculative decoding approach
that unifies speculation and verification, obviating
the need for a separate draft model as shown in
Figure 1b. This is accomplished by incorporat-
ing multi-stream attention into the target model to
perform n-gram prediction, which serves as future
candidate speculation. As a result, a forward pass
can verify the previously generated tokens while
simultaneously speculating on the future tokens.
Speculative Streaming (SS) improves acceptance
rates by introducing interdependencies among spec-
ulative tokens while ensuring non-autoregressive
draft generation with minimal overhead. Unlike
previous approaches, where the quality of spec-
ulative draft is independent of target model size,
multi-stream attention in our method ensures that
speculative generation quality improves naturally
as the target model scales in size and quality. The
key advantages of Speculative Streaming are as
follows:

— Achieves substantial decoding speedups through
a unified fine-tuning process that integrates multi-
stream attention, preserving exact output in loss-
less mode while enhancing output quality in
shared mode.

— Improves speculative generation quality as model
size scales, leveraging the richer representations
of larger pre-trained models to enhance both spec-
ulation accuracy and verification efficiency.

— Minimizes resource overhead, requiring fewer
additional parameters and FLOPs compared to
state-of-the-art speculative decoding methods,
while still outperforming them in speedup gains.

— Simplifies deployment by eliminating the need
for an auxiliary draft model, avoiding the com-
plexity of model alignment, switching, and man-
agement during inference, as required by ap-
proaches such as (Leviathan et al., 2023).

2 Method

Our goal is to develop an end-to-end trainable,
single-model framework that integrates speculative
residual streams, aligning residual transformations
with future tokens to enable high-acceptance, non-
autoregressive speculation. We also aim to address
greedy decoding limitations by incorporating plau-
sible future residual states, enabling more informed
token selection through future token planning. To
achieve these objectives, we introduce the follow-
ing key components: (a) Speculative stream design
and initialization as described in Section 2.1 (b)
Parallel speculation and verification as described
in Section 2.2 (c) Parallel tree draft pruning, de-
scribed in Section 2.3 and (d) Training objective as
described in Section 2.4.

2.1 Streams Design and Initialization

Parameter efficient supervised fine-tuning (Hu
et al., 2022) of decoder-only pre-trained language
models involves training low-rank adapters to pre-
dict next target token y; given context tokens
(21....zy,) and previous target tokens (y1..y<;) on
downstream applications. At the heart of this pro-
cess lies the Multi-Head Attention (MHA) mecha-
nism (Vaswani et al., 2017) operating on the resid-
ual stream, which can be formally described as:

M = MHA(MF, ME,, ME)) (1)

where M} denotes base residual stream at time
step ¢ and layer k and M HA(H, H, H) denotes
attention between query HW<, key HWX and
value HW as described in (Vaswani et al., 2017).
Building upon this framework, we introduce spec-
ulative residual streams, which attend to the base
(main) residual stream via a novel multi-stream at-
tention (MSA) mechanism. Each speculative stream
is designed to generate future tokens with minimal
latency overhead in memory-bound decoding sce-
narios. Specifically, the added speculative streams
predict p(yi+j | y<t,x) for 1 < j < v, where y
denotes the number of speculative steps, while the
base stream continues to predict p(y; | y<¢, ).

To seamlessly integrate speculative streams into
pre-trained models, we propose a lossless mode for
scenarios that require keeping the original output
distribution of the target model untouched (see Fig-
ure 2a). In this mode, the attention mechanism of
the base residual stream adheres to the standard
MHA formulation (Vaswani et al., 2017). However,
each speculative stream j at time step ¢ attends to



predn. prednszni

Decoder MSA ™\
Layer

-’

Stream Adapters

Base MLP

N

A

) (
m Attention S0 S1 }
L ) N \
Y YY A
A8 >4
pred, » ‘ ‘ )"‘
Stream Embeddings
(a) Lossless Mode

Decoder MSA
/‘\ Layer N

/

e N/ - P}

Base MLP Shared Adapters

/ -
/I\ /‘\

_L 3
( m ‘ Attention ( So (Q
\ = \‘ ] C ‘ ] /“
=) @ B

Stream Embeddings

(b) Shared Mode

Figure 2: Shared and Lossless Modes of Speculative Streaming. In the lossless mode (a), speculative streams attend
to the main stream, whereas in the shared mode (b), attention is bidirectional. In the lossless mode, the base model
remains frozen while stream embeddings and stream adapters in the MSA decoder layers are trained to predict
speculative tokens. In the shared mode, we insert adapters into the base model decoder layers and train them on an
n-gram prediction objective. Notably, the adapter parameters in MSA layers are shared to influence the residual

transformation of both main and speculative streams.

the prior hidden states of both the base and specu-
lative streams:

SEXL = MHA(SE, M, @ Sk ME, @ S5 _ ),
2

where Sfj denotes the speculative stream j at layer
k and time ¢, Mﬁt represents the base residual
stream up to ¢ and @ represents concatenation.
At the final transformer layer /V, the hidden state
M} is used to predict 3, while each speculative
stream’s terminal state Sg predicts y; ;. We refer
to decoder layers implementing the standard MHA
as MHA layers, whereas those incorporating the
formulation above as MSA layers.

While effective in accelerating decoding, MSA
in lossless mode does not modify the base model’s
objective of greedily generating the next token. To
enable proactive token planning and reduce overfit-
ting to local correlations during token generation
(Yang et al., 2019; Qi et al., 2020), we propose a
shared mode (see Figure 2b). In this mode, the
training objective is extended from next-token pre-
diction to n-gram prediction. This is achieved by
allowing the base stream to attend to speculative
streams, thereby enabling it to refine its residual
transformation using anticipated future states:

Mtk—i_l = MHA(Mtka Mét@sfl...'yv Mét@sfl'y)
3)

Here, SflmﬂY represents all speculative streams at
layer k£ and time ¢. By integrating future residual
states during training, this shared mode aligns the
base stream with speculative planning, promoting
both efficiency and robustness in token generation.

The attention mechanism of speculative streams
remains consistent across both shared and lossless
modes (see Equation (2)). Key/value projections
of the main stream’s residual states are cached dur-
ing inference to avoid re-computation, whereas we
design speculative stream attention specifically to
avoid storing additional key/value projections as-
sociated with individual streams. This is because
speculative streams are trained to learn contextual
features using the main stream’s key/value context
allowing us to not introduce additional caching
overhead and operate within memory bounds of
resource-constrained devices.

In lossless mode, main stream passes through
frozen base MLP layer and speculative streams
pass through the parallel stream adapters as shown
in Figure 2a. In contrast, shared mode fine-
tunes the base model for n-gram prediction via
shared adapters. Within MHA decoder layers, these
adapters modulate the residual transformation of
the main stream, whereas in MSA layers, they influ-
ence the residual transformations of both the main
and speculative streams, as illustrated in Figure 2b.

We initialize hidden states of speculative streams



at layer N — N, instead of initializing them from
the embedding layer, where N denotes the number
of MSA layers. Specifically, stream j at time ¢ is
initialized at layer N — N as

Sp N = fMT Ny £ PN @)

where P; is a stream identifier embedding that em-
beds a sense of relative position into streams and
distinguishes the computation from main stream.
[fr is a linear transformation of rank 7 to transform
main stream hidden states into speculative stream
hidden states. This initialization helps to reduce
computation per forward pass by decreasing the
speculative FLOPs contribution by (N — N;)/N.
In terms of forward pass latency, FLOPs do not
contribute significantly when the model is memory
bound, however, as we describe in Section 2.2, we
sample additional tokens to shift the model into a
compute-bound regime, therefore FLOPs reduction
becomes crucial.

2.2 Parallel Speculation and Verification

In standard draft-target speculative decod-
ing (Leviathan et al., 2023), speculation and
verification processes happen sequentially. Specu-
lative Streaming makes this process efficient by
parallelizing speculation and verification. In each
forward pass, the draft from the previous step is
verified and a new draft is generated as shown in
Figure 3. For instance, in step s, if draft tokens
(Y1 ...9s) are accepted where 0 < ¢ < +, main
stream M is used to issue a correction token, and
logits from speculative streams S;(; . ) are used to
generate draft for step s + 1.

Instead of using a linear sequence of speculated
tokens for verification, we sample a tree of tokens
from main and speculative streams, where each
path in the tree represents one possible verifica-
tion candidate. Tree drafting enables accepting the
longest matching candidate sequence and more to-
kens can be advanced during each forward pass.
To create a tree draft, instead of sampling 1 token
from logits of speculative streams, (21 ... z,), we
sample top k tokens and form a tree of sampled
tokens as shown in Figure 3, such that tokens
sampled from stream n are predecessors of tokens
sampled from stream n + 1. We process a tree
draft of speculative tokens in one forward pass by
creating an additive attention mask (Vaswani et al.,
2017), such that each node in the tree attends to
its predecessor. Attention mask between k" to-
ken sampled from logits of stream j, 31, and the

mt" token sampled from logits of stream 7, §y, is
defined as:

ifj =n+l,

0
Az ., 5 =
Tjnd .
R —oo otherwise

Refer to Figure 15 for more details.

&)

2.3 Parallel Tree Pruning

A key challenge in constructing speculative tree
drafts is the combinatorial explosion of candidate
paths: sampling k tokens from each of ~ streams
yields a tree draft of size 1 4 Zgzl k9. To en-
able parallel draft generation in a single forward
pass, each draft token is batched with v speculative
streams in MSA layers, resulting in a total batch
size of (14+7)(1+32)_; k7). As batch size grows,
target model inference becomes compute-bound,
diminishing the latency gains from wider sampling.

To address this, we introduce a parallel tree draft
pruning layer that eliminates low-probability to-
kens based on transition likelihoods between par-
ent and immediate child tokens. While prior meth-
ods prune speculative trees based on draft model
confidence (Anonymous, 2024), they suffer from
overconfidence, where high-confidence paths may
ultimately be rejected by the target model, and un-
derconfidence, where low-confidence paths are pre-
maturely pruned despite being acceptable. In con-
trast, we prune using early-exit confidence from the
target model itself. Specifically, hidden states M*
at layer [ are projected via a low-rank transforma-
tion og, and passed through the language modeling
head H to yield early-exit logits Z = H (0g(M")).
The transition score Z,. approximates the probabil-
ity of a child token c given its parent p. These early
acceptances align closely with final verification out-
comes, as residual change tends to decrease across
deeper layers (Bhendawade et al., 2025), making
early-layer agreement a reliable proxy.

The pruning layer can be flexibly inserted at any
depth, balancing pruning accuracy and latency: ear-
lier layers reduce compute but risk false rejections;
deeper layers improve precision at higher cost. In
all experiments in Section 3, we insert the pruning
layer immediately before speculative stream inser-
tion. Please refer to Appendix G.1 for additional
implementation details.

2.4 Training

In the shared mode (see Figure 2b), our instruction
tuning procedure entails training the adapters and



Tree Decoding

]
/ Base Model N\ Main Stream ! Pred
b 1 i #n+1
1 1 1
1 : i T
1
i , | Pred Pred Pred 1
1 [ LM Head } ] | #n+2 #n+2 #n+2 ]
I N | Topl Top2 Top3 1
1 1 i ]
. t . ‘
1 ! ! Pred Pred Pred
H [ Decoder MSA Layers ] 1 | #n+3 #n+3 #n+3
! 1 ! Topl Top2 Top3
]
1 o'j’ Tree Prune T i
i ' : Pred Pred Pred
| [ Decoder MHA Layers ] ] ! #n+4 #n+4 #n+4
1 I Topl Top2 Top3
: t e R LR R e
o 1 1

L Token Token | . | Token 'opsE SE SE !
I #1 #2 #n o1 #indl #n+2 #n+3 Batching
1 ' 1
1 [ 1
! t '\ Stream Embeddings ! E- Pred Pred Pred
1 ——————\ | WOOSDITOEIIoISSEEC | #nt2 — #4383 — #n+4
b [ Tokenizer ] ] i Topl Topl. Topl.
\ I el
N . H

““““““ b i Next Iteration Pred pred Pred Pred

R r— :

= #n+2 — #n+3 — #n+4

s Topl Topl Top2

Figure 3: Top level architecture: We replace top Vs multi-head attention (MHA) layers of the base model with
multi-stream attention (MSA) layers as described in (2). Speculative streams are initialized using hidden states of
layer N — Ny and stream identifier embeddings (SE), as described in (4) and used to generate speculative draft in
the form of a tree. The speculative tree draft from the previous iteration is batched for verification and pruned using
early exit based confidence before stream insertion as discussed in Section 2.3. During each forward pass previous
pruned tree draft is verified and a new tree draft is issued using speculative streams as described in Section 2.2.

stream embeddings on both the prediction loss of
the next token and ~y future tokens. The overall loss
function is defined as follows:

T
Les = —aqg (Z logpe(ytly«,w))

t=1

2 T—j
—) (Z 10gP9(yt+j|y<t7$)> (6)
=1 =1

where o and «; are set empirically to normalize
losses of the next token and speculative token pre-
diction. In lossless mode, only the stream adapters
and embeddings are trained for speculative token
prediction, while the base model remains frozen,
with ag set to O (see Figure 2a).

Although training with Speculative Streaming is
relatively cheap (see Appendix J), naive training in-
creases batch dimension along sequence length axis
by ~v in MSA layers, causing attention computation
to hit peak memory with larger batches. We em-
ploy a segment-based attention method that helps
reduce peak memory consumption and increases
training throughput significantly by dividing train-
ing sample into prompt and multiple completion
segments. More details on segment attention can
be found in Appendix I. Finally, the tree pruning
adapter described in Section 2.3 is trained on next
token prediction loss.

3 Experiments

We evaluate our method on diverse tasks from open
speculative decoding benchmarks, as well as on a
set of applications vital to on-device Al assistants.

Datasets. To evaluate the effectiveness of Spec-
ulative Streaming in multi-turn interactive conver-
sations and tasks such as reasoning and coding,
we train both shared and lossless variants on the
ShareGPT dataset and measure decoding speedup
using MT-Bench (Zheng et al., 2023).

To ensure broader generalizability, we inte-
grate the lossless variant of our approach with
SpecBench (Xia et al., 2024), a benchmark de-
signed to assess the effectiveness of speculative
decoding methods in lossless settings. Addition-
ally, we compare our supervised fine-tuning objec-
tive described in Section 2.4 against traditional
next-token prediction based fine-tuning across key
applications for on-device Al assistants, includ-
ing Text Summarization using DialogSum dataset
(Chen et al., 2021), Structured Query Generation
using SqlCreateContext dataset constructed from
WikiSQL (Zhong et al., 2017a) and SPIDER (Yu
et al., 2018), and Meaning Representation using
E2E-NLG dataset (Dusek et al., 2020).

Model Configurations and Baselines. We eval-
uate our method on open-source models of varying
scales, including Llama-2-Chat (7B, 13B) (Tou-
vron et al., 2023b) and Vicuna (7B, 13B, 33B) (Chi-



Table 1: Comparison of wall-time speedup and gener-
ation quality scores across Llama and Vicuna models
of varying scales on MT-Bench. Results for Medusa,
Medusa-2, Hydra, Eagle and LookAhead decoding are
taken from their respective papers, with Hydra results
corresponding to the best-performing variant, Hydra++.
Notably, methods like Eagle and 2-Model SD generate
speculative tokens autoregressively, whereas Specula-
tive Streaming produces them in a non-autoregressive
(NAR) manner as shown in Table 6. As a result, even
though the mean number of accepted tokens of Specula-
tive Streaming on smaller models are slightly lower than
Eagle, wall-time speedup is higher due to the absence
of autoregressive speculation generation overhead.

Model Method Speedup (1)  Score (1)
Baseline 1x 6.17
2-Model SD 1.42x 6.17
Medusa 2.18x 6.17
. Hydra 2.70x 6.17
Vicuna-78 Medusa-2 2.83x 6.18
Eagle 2.90x 6.17
SS-Lossless (Ours) 3.08x 6.17
SS-Shared (Ours) 3.22x 6.21
Baseline 1x 6.39
2-Model SD 1.55x 6.39
Medusa 2.33x 6.39
. Hydra 2.50x 6.39
Vicuna-13B Medusa-2 2.83x 6.43
Eagle 3.07x 6.39
SS-Lossless (Ours) 3.21x 6.39
SS-Shared (Ours) 3.29x 6.48
Baseline 1x 7.12
2-Model SD 1.59x 7.12
Medusa 1.98x 7.12
. Hydra 2.53x 7.12
Vicuna-338 Medusa-2 2.35% 7.18
Eagle 2.95x 7.12
SS-Lossless (Ours) 3.24x 7.12
SS-Shared (Ours) 3.35x 7.22
Baseline 1x 6.27
2-Model SD 1.39x 6.27
LookAhead 1.64x 6.27
Llama-2-Chat-7B Eagle 278x 627
SS-Lossless (Ours) 2.93x 6.27
SS-Shared (Ours) 3.05x 6.29
Baseline Ix 6.65
2-Model SD 1.47x 6.65
LookAhead 1.51x 6.65
Llama-2-Chat-13B Eagle 3.03x 6.65
SS-Lossless (Ours) 3.23x 6.65
SS-Shared (Ours) 3.30x 6.71

ang et al., 2023) to demonstrate the scalability of
our approach. For application-specific settings, we
test our approach on Phi-3-mini-4k-instruct (3.8B)
(Abdin et al., 2024), Mistral (7B) (Jiang et al.,
2023), and OPT (1.3B, 6.7B) (Zhang et al., 2022).

We compare our approach against draft-target
speculative decoding methods (Leviathan et al.,
2023; Zhou et al., 2023) as well as single-
model speculative decoding frameworks, including
Medusa (Cai et al., 2023), LookAhead Decoding
(Fu et al., 2023), Hydra (Ankner et al., 2024), Ea-

gle (Li et al., 2024), Prompt Lookup Decoding
(PLD) (Saxena, 2023) , REST (He et al., 2024),
and SPACE (Yi et al., 2024). For the standard
draft-target approach, we use OPT-125M as the
draft model for OPT-1.3B and OPT-6.7B target
models. For Vicuna and Llama models, we adopt
JackFram/11lama-68M (Miao et al., 2023) as the
draft model. All draft models are fine-tuned on the
ShareGPT dataset to ensure evaluation fairness.

Metrics. On MT-Bench, we evaluate response
quality using GPT-4-graded scores that assess co-
herence, correctness, and engagement. We con-
duct our experiments using FastChat (Zheng et al.,
2023), which incorporates GPT-4 evaluation. Since
SpecBench is primarily designed for lossless spec-
ulative decoding methods, we integrate the lossless
version of our technique and report the wall-time
speedup. In application-specific settings, we evalu-
ate both wall-time speedups and generation quality
metrics. For the structured query task, we use Ex-
act Match (EM) accuracy, while for Dialog Sum-
marization and Meaning Representation tasks, we
report ROUGE-1 and ROUGE-LSum scores. Fi-
nally, to demonstrate the deployment benefits of
our approach, we report the parameter and FLOP
overhead associated with our method.

Inference. Inference is performed using a batch
size of 1 on a single Nvidia A100-80G GPU in
float16 using greedy sampling and T = 0, reflect-
ing the typical deployment setting for on-device
assistants. Please refer to Appendix L for batching
impact, Appendix E.3 for ablations on top-k sam-
pling with 7" = 1, Appendix E.5 for quantization
impact and Appendix N.1 for more experimental
details. We set N; = 4, v = 4 and k = 3. Please
refer to Appendix E for hyperparameter ablations.

3.1 Results

Effectiveness on MT Bench Table 1 presents
a comparative evaluation of our method on MT-
Bench in terms of speedup and MT-Bench scores.
Our experimental results demonstrate that both
variants of Speculative Streaming—ILossless and
Shared—achieve substantial acceleration across
model scales. The Lossless variant yields speedup
factors of 2.93-3.24x while preserving the base
model’s output. The Shared variant achieves
slightly higher speedups of 3.05 — 3.35x%, with com-
parable or superior MT-Bench scores, indicating
that the adapter parameter sharing strategy further
reduces latency while maintaining or improving
the generation quality. Both variants consistently



Table 2: Wall-time speedup of lossless Speculative Streaming (SS) across various tasks, evaluated using the
comprehensive SpecBench framework. SS consistently outperforms other baselines, with speedups increasing as
model size grows, highlighting the scalability of our approach.

Model Task EAGLE Hydra Medusa PLD SPACE REST Lookahead SS-Lossless
Translation 1.99x 1.94x  1.73x  1.04x 1.13x  1.31Ix 1.14x 2.32x
Summarization 223x  1.79x  1.57x  243x 1.62x  1.36x 1.19x 2.51x
Vicuna-7B Question Answering 2.12x  2.03x  1.75x  1.14x 1.49x  1.66x 1.24x 2.11x
Mathematical Reasoning 2.67x  249x  2.05x l.6lx 147x 1.21x 1.55x 2.89x
Retrieval Augmented Generation | 2.04x 1.77x 1.51x  L.71x  1.55x  1.73x 1.09x 2.53x
Translation 1.96x 1.90x  1.66x 1.02x 1.13x  1.17x 1.06x 2.38x
Summarization 244x  193x  1.63x  2.19x  1.68x  1.37x 1.20x 2.62x
Vicuna-13B Question Answering 2.04x  1.96x  1.63x  1.03x 1.39x  1.53x 1.12x 2.16x
Mathematical Reasoning 2.70x  2.48x  2.00x 1.57x 1.53x  1.19x 1.48x 3.37x
Retrieval Augmented Generation | 2.23x 1.92x 1.58x  1.71x  1.67x  1.55x 1.12x 2.78x
Translation 2.05x  2.01x 1.73x  1.06x 1.28x 1.27x 1.08x 2.41x
Summarization 251x  2.04x  l.64x  2.00x 1.76x  1.45x 1.20x 2.77x
Vicuna-33B Question Answering 2.17x  2.11x  1.66x 1.07x 1.53x  1.61x 1.16x 2.23x
Mathematical Reasoning 299x  271x  2.07x 1.55x  1.69x  1.30x 1.54x 3.45x
Retrieval Augmented Generation | 2.27x  2.06x 1.62x  145x 1.68x  1.61x 1.15x 2.83x

outperform all baselines in terms of wall-time
speedups. The mean number of accepted tokens of
our approach is comparable to those of Eagle, Hy-
dra, and 2-Model SD as shown in Table 6. Notably,
unlike these baselines, our method generates tokens
in a non-autoregressive (NAR) manner, avoiding
the additional overhead associated with autoregres-
sive (AR) speculative token generation, leading to
higher speedups. In Appendix N, we conduct a
comprehensive analysis comparing AR-based spec-
ulation with a draft model to NAR-based specu-
lation using our SS framework. Furthermore, our
method achieves significantly higher mean number
of accepted tokens compared to Medusa, another
approach employing non-autoregressive specula-
tive drafts. In Section 3.2, we provide empirical
insights into the superior speedups and generation
metrics achieved by our approach. Finally, our
method incurs significantly lower memory access
and computational overhead (see Figure 8 and Fig-
ure 9), underscoring its efficiency, scalability, and
deployment advantages.

Generalizability on SpecBench We integrate
lossless speculative streaming with SpecBench
to assess generalizability across diverse language
tasks. Our evaluation focuses on the lossless vari-
ant, as SpecBench is specifically designed for
benchmarking lossless speculative decoding meth-
ods. As shown in Table 2, results demonstrate

[ W
8 B 8 8
w S o ©
s s pa
s 2 @

DialogSum RougeLSum

w
L4
s

—— DialogSum RougelSum
SQL Generation Exact Match Percentage |

SQL Generation Exact Match Percentage

w
®
w

@

a2

0 1 2 3 4
14

Figure 4: Generation quality of the Phi-3 model when
trained to attend to + ground truth tokens beyond the
immediate next token during prediction. Incorporating
future ground truth tokens into the attention mechanism
leads to substantial improvements in generation quality.

consistent acceleration across all evaluated tasks
and model scales. Notably, Mathematical Reason-
ing task shows the highest speedup factors, reach-
ing 3.45x for Vicuna-33B, followed by Retrieval
Augmented Generation task at 2.83x. These im-
provements consistently surpass existing methods
across all task categories. The performance scales
effectively with model size, as evidenced by the
progression from Vicuna-7B to Vicuna-33B, where
larger models demonstrate enhanced speedups.



—— SS DialogSum
555QL

$ Medusa DialogSum

1 @& MedusaSQL

e
3

o
o

=
n

o
W

Normalized cosine similarity
=) =)
N S

e
=

. + - - T
15 19 23 27 31
layer id

o
o

Figure 5: Cosine similarity between speculative resid-
ual states and residual state of ground truth tokens with
Speculative Streaming and Medusa. As the streams
propagate through the model, their representations be-
come increasingly aligned with the ground-truth tokens
in contrast to Medusa.

3.2 Why Does It Work?

To deconstruct the empirical effectiveness of
Shared Speculative Streaming (SS), we analyze
how its architectural design influences both genera-
tion quality and decoding efficiency. We begin by
isolating the effect of speculative access to future
context on next-token prediction.

Generation Metrics: We designed an experi-
ment where the base model predicts the next token
while attending to a set of future v ground truth
tokens beyond the next token. Our hypothesis was
that by granting the model access to these future
tokens, the attention mechanism would enhance
its ability to anticipate and plan for the next token,
thus improving generation quality. Specifically, we
postulated that:

Pyt = gely<t: Y144, ) > (Y = gely<t, @)
(7N

Here, g; represents the ideal ground truth to-
ken that maximizes the generation quality metrics.
To validate this hypothesis, we modified the atten-
tion mask, allowing the model’s residual states to
"peek" into future residuals. As shown in Figure 4,
this modification led to significant improvements
in generation metrics.

While such access to future tokens is not feasi-
ble during inference, where future states are un-
available, our approach enables the model to ap-
proximate future residual states using speculative
streams. As demonstrated in Figure 5, these spec-
ulative streams, Sy, progressively align with the

true residual states of the next tokens as they prop-
agate through the model layers. Since the shared
version of our method allows the primary stream,
M;, to attend not only to the current context up to
token y; but also to the speculative streams .S, this
multi-stream attention mechanism refines the trans-
formations within M, aligning them more closely
with the context of the upcoming ~y tokens. As a re-
sult, the model effectively "plans” for future tokens,
leading to improvements in generation quality.

Speedup: Approaches such as Medusa generate
the hidden states of speculative tokens y;y1..+4-)
by applying a simple context independent transfor-
mation to the last hidden state of the current token
y;. However, this method has significant limita-
tions. The absence of attention mechanisms results
in lower similarity metrics between the speculative
hidden states generated by Medusa and the true
hidden states, which are obtained by feeding the
actual next token into the model (see Figure 5). In
contrast, our proposed technique leverages multi-
stream attention, wherein speculative streams are
allowed to attend to each other as well as to the
main stream. As these streams propagate through
the model layers, they more closely approximate
the true hidden states of the actual next tokens, re-
sulting in higher similarity, thereby increasing the
acceptance rate of the speculated tokens.

For a detailed analysis of the training dynam-
ics underlying these effects, including backward
gradient propagation through speculative paths and
implicit self-distillation enabled by multi-stream
attention, we refer the reader to the extended dis-
cussion in Appendix B.

4 Conclusion

We present Speculative Streaming, a novel specu-
lative decoding method leveraging multi-stream
attention to approximate future residual states.
Through rigorous evaluation across diverse bench-
marks, we show that Speculative Streaming consis-
tently delivers 2-3.5x speedup while retaining flex-
ibility to operate in both lossless and shared modes.
Moreover, it is highly parameter-efficient, reduc-
ing memory access overhead by orders of magni-
tude relative to prior methods while maintaining or
surpassing downstream task performance. Its ar-
chitectural simplicity, scalability, and effectiveness
make it well-suited for deployment in resource-
constrained environments, advancing the frontier
of speculative decoding techniques.



5 Limitations

Speculative streaming is primarily designed to ac-
celerate decoding on resource-constrained devices
with high arithmetic intensity. Although most
mainstream neural accelerators (on both edge and
servers) follow this trend of having orders of mag-
nitude more compute available relative to their
memory bandwidth, in rare cases where available
FLOPs/memory bandwidth ratio is significantly
low, speculative streaming may not be optimal and
optimizations that reduce compute such as early ex-
iting (Schuster et al., 2022), skip decoding (Corro
et al., 2023), Mixture of Depths (Raposo et al.,
2024) could be a better choice.

Although speculative streaming is considerably
more parameter-efficient than other approaches, it
does introduce a small number of additional pa-
rameters, as detailed in Table 3. To mitigate this
overhead, we explored an alternative approach that
leverages rotating value projections to differentiate
stream computation (see Appendix E.4). However,
this method led to some degradation in fine-tuning
performance compared to using dedicated stream
embeddings, as shown in Figure 12a. Further in-
vestigation is needed to refine this technique or
develop alternative solutions that completely elimi-
nate the parameter overhead while preserving per-
formance.



References

Marah Abdin et al. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
Preprint, arXiv:2404.14219.

Megha Agarwal, Asfandyar Qureshi, Nikhil Sardana,
Linden Li, Julian Quevedo, and Daya Khudia. 2023a.
LIm inference performance engineering: Best prac-
tices.

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk,
Sabela Ramos, Matthieu Geist, and Olivier Bachem.
2023b. Gkd: Generalized knowledge distillation
for auto-regressive sequence models. arXiv preprint
arXiv:2306.13649.

Zachary Ankner, Rishab Parthasarathy, Aniruddha
Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024.  Hydra:
Sequentially-dependent draft heads for medusa de-
coding.

Anonymous. 2024. Faster speculative decoding via
effective draft decoder with pruned candidate tree.
arXiv preprint under ACL ARR 2024. ACL ARR
2024 December Submission 676.

Apple. n.d. Use writing tools on your mac. Accessed:
2025-02-09.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
arXiv preprint arXiv:2308.14508.

Nikhil Bhendawade, Mahyar Najibi, Devang Naik, and
Irina Belousova. 2025. M2r2: Mixture of multi-rate
residuals for efficient transformer inference. arXiv
preprint arXiv:2502.02040.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

F Warren Burton. 1985. Speculative computation, par-
allelism, and functional programming. /EEE Trans-
actions on Computers, 100(12):1190-1193.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
and Tri Dao. 2023. Medusa: Simple framework for
accelerating llm generation with multiple decoding
heads. https://github.com/FasterDecoding/
Medusa.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

10

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062-5074, Online. Association for Computa-
tional Linguistics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 615-621, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal,
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher-
jee. 2023. Skipdecode: Autoregressive skip decoding
with batching and caching for efficient llm inference.
arXiv preprint arXiv:2307.02628v1.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and
Li Yuan. 2023. ChatLaw: Open-source legal large
language model with integrated external knowledge
bases. arXiv preprint arXiv:2306.16092.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Al-
istarh. 2023. Spqr: A sparse-quantized representa-
tion for near-lossless llm weight compression. arXiv
preprint arXiv:2306.03078.

Ondrej Dusek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Chal-
lenge. Computer Speech & Language, 59:123-156.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323-10337. PMLR.


https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://openreview.net/forum?id=acl-676
https://openreview.net/forum?id=acl-676
https://openreview.net/forum?id=acl-676
https://support.apple.com/guide/mac-help/use-writing-tools-mchldcd6c260/mac
https://doi.org/10.48550/arXiv.2502.02040
https://doi.org/10.48550/arXiv.2502.02040
https://doi.org/10.48550/arXiv.2502.02040
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2023. Breaking the sequential dependency of llm
inference using lookahead decoding.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Knowledge distillation of large language mod-
els. arXiv preprint arXiv:2306.08543.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming
Pang, Andy Narayanan, Aonan Zhang, Bowen Zhang,
Chen Chen, Chung-Cheng Chiu, David Qiu, Deepak
Gopinath, Dian Ang Yap, Dong Yin, Feng Nan, Floris
Weers, Guoli Yin, Haoshuo Huang, Jianyu Wang,
Jiarui Lu, John Peebles, Ke Ye, Mark Lee, Nan Du,
Qibin Chen, Quentin Keunebroek, Sam Wiseman,
Syd Evans, Tao Lei, Vivek Rathod, Xiang Kong, Xi-
anzhi Du, Yanghao Li, Yongqiang Wang, Yuan Gao,
Zaid Ahmed, Zhaoyang Xu, Zhiyun Lu, Al Rashid,
Albin Madappally Jose, Alec Doane, Alfredo Ben-
como, Allison Vanderby, Andrew Hansen, Ankur
Jain, Anupama Mann, Areeba Kamal, Bugu Wu, Car-
olina Brum, Charlie Maalouf, Chinguun Erdenebi-
leg, Chris Dulhanty, Dominik Moritz, Doug Kang,
Eduardo Jimenez, Evan Ladd, Fangping Shi, Felix
Bai, Frank Chu, Fred Hohman, Hadas Kotek, Han-
nah Gillis Coleman, Jane Li, Jeffrey Bigham, Jef-
fery Cao, Jeff Lai, Jessica Cheung, Jiulong Shan,
Joe Zhou, John Li, Jun Qin, Karanjeet Singh, Karla
Vega, Kelvin Zou, Laura Heckman, Lauren Gardiner,
Margit Bowler, Maria Cordell, Meng Cao, Nicole
Hay, Nilesh Shahdadpuri, Otto Godwin, Pranay
Dighe, Pushyami Rachapudi, Ramsey Tantawi, Ro-
man Frigg, Sam Davarnia, Sanskruti Shah, Saptarshi
Guha, Sasha Sirovica, Shen Ma, Shuang Ma, Simon
Wang, Sulgi Kim, Suma Jayaram, Vaishaal Shankar,
Varsha Paidi, Vivek Kumar, Xin Wang, Xin Zheng,
Walker Cheng, Yael Shrager, Yang Ye, Yasu Tanaka,
Yihao Guo, Yunsong Meng, Zhao Tang Luo, Zhi
Ouyang, Alp Aygar, Alvin Wan, Andrew Walking-
shaw, Andy Narayanan, Antonie Lin, Arsalan Fa-
rooq, Brent Ramerth, Colorado Reed, Chris Bartels,
Chris Chaney, David Riazati, Eric Liang, Erin Feld-
man, Gabriel Hochstrasser, Guillaume Seguin, Irina
Belousova, Joris Pelemans, Karen Yang, Keivan Al-
izadeh, Liangliang Cao, Mahyar Najibi, Marco Zu-
liani, Max Horton, Minsik Cho, Nikhil Bhendawade,
Patrick Dong, Piotr Maj, Pulkit Agrawal, Qi Shan,
Qichen Fu, Regan Poston, Sam Xu, Shuangning Liu,
Sushma Rao, Tashweena Heeramun, Thomas Merth,
Uday Rayala, Victor Cui, Vivek Rangarajan Srid-
har, Wencong Zhang, Wenqi Zhang, Wentao Wu,
Xingyu Zhou, Xinwen Liu, Yang Zhao, Yin Xia,
Zhile Ren, and Zhongzheng Ren. 2024. Apple intel-
ligence foundation language models. arXiv preprint
arXiv:2407.21075.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and
Di He. 2024. REST: Retrieval-based speculative de-
coding. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for

11

Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1582—1595,
Mexico City, Mexico. Association for Computational
Linguistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Albert Q. Jiang et al. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Norman P Jouppi et al. 2021. Ten lessons from
three generations shaped google’s tpuv4i. In 2021
ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. Eagle: Speculative sampling requires
rethinking feature uncertainty.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and
Zhihao Jia. 2023. Specinfer: Accelerating generative
Ilm serving with speculative inference and token tree
verification. arXiv preprint arXiv:2305.09781.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan
Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou.
2020. Prophetnet: Predicting future n-gram for
sequence-to-sequence pre-training. arXiv preprint
arXiv:2001.04063.

David Raposo, Sam Ritter, Blake Richards, Timothy
Lillicrap, Peter Conway Humphreys, and Adam San-
toro. 2024. Mixture-of-depths: Dynamically allocat-
ing compute in transformer-based language models.
arXiv preprint arXiv:2404.02258.

Apoorv Saxena. 2023. Prompt lookup decoding.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald Met-
zler. 2022. Confident adaptive language modeling.
arXiv preprint arXiv:2207.07061.

Benjamin Spector and Chris Re. 2023. Accelerating llm
inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.


https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://doi.org/10.48550/arXiv.2407.21075
https://doi.org/10.48550/arXiv.2407.21075
https://doi.org/10.48550/arXiv.2407.21075
https://doi.org/10.18653/v1/2024.naacl-long.88
https://doi.org/10.18653/v1/2024.naacl-long.88
https://doi.org/10.18653/v1/2024.naacl-long.88
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://doi.org/10.48550/arXiv.2404.02258
https://doi.org/10.48550/arXiv.2404.02258
https://doi.org/10.48550/arXiv.2404.02258
https://github.com/apoorvumang/prompt-lookup-decoding/

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023a. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah-
mad Beirami, Himanshu Jain, and Felix Yu. 2023b.
Spectr: Fast speculative decoding via optimal trans-
port. arXiv preprint arXiv:2310.15141.

Yi Tay, Dara Bahri, Donald Metzler, et al. 2022. Scale
efficiently: Insights from training and scaling large
language models. arXiv preprint arXiv:2210.03863.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron et al. 2023b. Llama 2: Open foun-
dation and fine-tuned chat models. Preprint,
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
BloombergGPT: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
7655-7671, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168—
27183.

12

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xi-
aotian Yu, and Rong Xiao. 2024. Generation meets
verification: Accelerating large language model infer-
ence with smart parallel auto-correct decoding. arXiv
preprint arXiv:2402.11809.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017a. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017b. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-Frangois Kagy, and Rishabh Agar-
wal. 2023. Distillspec: Improving speculative de-
coding via knowledge distillation. arXiv preprint
arXiv:2310.08461.


https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.48550/arXiv.2402.11809
https://doi.org/10.48550/arXiv.2402.11809
https://doi.org/10.48550/arXiv.2402.11809
https://doi.org/10.48550/arXiv.2402.11809
https://doi.org/10.48550/arXiv.2402.11809
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Application Specific Evaluation

On-device Al assistants require models that can ef-
ficiently generalize across downstream applications
while operating under strict latency constraints.
A common deployment paradigm involves fine-
tuning base models for specific applications using
parameter-efficient adaptation techniques such as
LoRA (Hu et al., 2022; Tay et al., 2022). In con-
trast to conventional next-token prediction-based
fine-tuning, we introduce a speculative fine-tuning
objective for n-gram prediction, as detailed in Sec-
tion 2.4, and fine-tune the shared adapters and
stream embeddings for each downstream applica-
tion (see Figure 2b).

Table 3 demonstrates the performance of Shared
Speculative Streaming in comparison to existing
methods. Our baselines include standard next-
token prediction fine-tuning with LoRa adapters
and inference with autoregressive decoding, as
well as fine-tuned models paired with fine-tuned
Medusa and Eagle speculative decoding heads on
each application. Our evaluation metrics include
wall-time speedup, mean accepted tokens, gener-
ation quality and additional parameter overhead.
The results show that SS consistently achieves bet-
ter acceptance rates and speedups while maintain-
ing significantly lower parameter overhead com-
pared to alternative approaches. Our method also
demonstrates better wall-time latencies than tradi-
tional draft-target speculative decoding approach
deployed on each downstream application as shown
in Table 5. Notably, SS not only accelerates in-
ference but also enhances generation quality com-
pared to conventional next-token prediction fine-
tuning. This positions our method as a compelling
alternative to existing LoRA-based fine-tuning ap-
proaches employing a dedicated draft model or
trained heads per application, offering both im-
proved performance and reduced parameter over-
head in speculative decoding settings. For detailed
analysis of the draft-model based speculative de-
coding, we refer readers to Appendix N.

Although the parameter overhead of methods
like Medusa may seem minimal relative to the base
model size, it becomes increasingly significant as
the number of downstream applications scales, es-
pecially in resource-constrained settings. We fur-
ther discuss the importance of parameter efficiency
in Appendix C.

13

B Learning Dynamics

In this section, we provide additional insights to
complement the analysis in Section 3.2 and further
elucidate why shared speculative streaming leads
to improvements in both generation quality and
decoding efficiency.

Gradient Flow Across Time. During training,
speculative streams form a differentiable path
through future residual approximations. This en-
ables gradients from future tokens to influence ear-
lier computations, which is not possible in standard
autoregressive training. As the model learns to
align speculative states with true future residuals,
it benefits from temporally richer learning signals.
This backward flow from speculative futures helps
optimize the transformations in earlier layers to be
more consistent with likely trajectories, improving
token acceptance during inference. As shown in
Figure 6, speculative supervision introduces gradi-
ent signals across early and mid-level layers sug-
gesting that future-token losses influence earlier
computations through the speculative paths.

Self-Distillation via Multi-Stream Attention.
The multi-stream attention pattern in speculative
streaming can be viewed as a form of internal self-
distillation. Rather than relying solely on the cur-
rent token’s hidden state, the model integrates infor-
mation across speculative futures through attention.
This process resembles ensembling over short fu-
ture rollouts, effectively consolidating predictive
signals from multiple plausible paths. It leads to
more stable and informed token decisions, espe-
cially under uncertain contexts. Figure 7 illustrates
how multi-stream attention in speculative stream-
ing resolves ambiguity in selecting a paralleliza-
tion strategy by integrating contextual signals from
near-future tokens.

Temporal Redundancy and Predictive Consis-
tency. Natural language exhibits temporal re-
dundancy: future tokens often confirm or disam-
biguate earlier ones. Speculative streaming lever-
ages this redundancy by learning a residual trans-
formation space where future tokens can be antici-
pated and approximated. This structure allows the
model to reduce the mismatch between training and
inference-time dynamics, improving the predictive
consistency of the decoding trajectory.



Table 3: Comparison of wall-time speedup, mean accepted tokens, and parameter overhead across models of
varying scales fine-tuned on downstream tasks. The mean accepted tokens metric serves as an accelerator-agnostic
measure of speedup, representing the average number of accepted tokens per forward pass. Task-specific evaluation
includes exact match accuracy for SqlCreateContext and ROUGE scores for DialogSum and E2E-NLG. The baseline
corresponds to standard next-token prediction-based fine-tuning with LoRa adapters, whereas SS-Shared denotes
speculative fine-tuning with shared adapters and embeddings, as detailed in Section 2.4 and Figure 2b. Notably,
Medusa and Eagle heads are trained independently of the base model for each application, following (Cai et al.,
2023; Li et al., 2024), resulting in identical downstream metrics to the baseline. In contrast, SS-shared jointly
optimizes adapters for both next-token and future-token predictions, yielding improved downstream generation
quality. Parameter overhead is reported relative to the baseline adapter overhead.

Dataset Model Method ~ SpeedUp (1) Mean Accepted Tokens (1) Metric (1) # Extra Parameters (])

Baseline 1.00 1.00 84.16 —

. Medusa 2.74 3.16 84.16 5.9E8

Mistral-Instruct-7B | ", 1 2.75 3.58 84.16 2.4E8

SS-Shared 2.93 3.67 84.50 8.2F4
Baseline 1.00 1.00 80.92 —

Medusa 2.51 2.79 80.92 4358

PHI-3-Instruct:-3.8B | "o 2.62 3.37 80.92 1.3E8

SqlCreateContext SS-Shared 2.92 3.65 84.10 6.1F4
Baseline 1.00 1.00 85.37 =

Llama-7h Medusa 2.46 2.97 85.37 5.9E8

Eagle 2.59 3.31 85.37 2.4E8

SS-Shared 2.81 3.57 85.93 8.254
Baseline 1.00 1.00 14.74736.76 -

. Medusa 1.84 2.06 44.74/36.76 5.9E8

Mistral-Instruct-7B | g, 1 1.95 2.56 44.74;36.76 2.4E8

SS-Shared 2.04 2.96 44.89/37.09 8.2F4
Baseline 1.00 1.00 46.08/38.28 —

Medusa 2.14 2.18 46.08/38.28 4358

PHI-3-Instruct-3.8B | g, o1 2.05 2.31 46.08;38.28 1.3E8

DialogSum SS-Shared 2.32 2.85 46.30/38.32 6.1F4
Baseline 1.00 1.00 44.90/37.0 —

Llama2-7h Medusa 1.80 2.03 44.90/37.0 5.9E8

Eagle 1.86 2.57 44.90/37.0 2.4E8

SS-Shared 1.90 3.05 45.0/37.85 8.24
Baseline 1.00 1.00 67.82/49.0 =

. Medusa 2.74 3.16 67.82/49.0 5.9E8

Mistral-Instruct-7B | g, 01, 2.85 3.52 67.82?49.0 2.4E8

SS-Shared 2.93 3.67 68.37/49.09 8.254
Baseline 1.00 1.00 68.72/19.31 —

Medusa 2.35 2.61 68.72/49.31 4.3B8

PHI-3-Instruct-3.8B | "o 2.42 2.76 68.72?49.31 1.3E8

E2E-NLG SS-Shared 2.36 2.72 69.38/50.22 6.154
Baseline 1.00 1.00 69.47/49.54 =

Llama.Th Medusa 2.80 3.18 69.47/49.54 5.9E8

Eagle 2.79 3.26 69.47/49.54 2.4E8

SS-Shared 2.89 3.38 69.52/49.93 8.254

C Importance of Parameter Efficiency

In production AI systems, such as Apple Intelli-
gence (Gunter et al., 2024), BloombergGPT (Wu
et al., 2023), ChatLaw (Cui et al., 2023), LoRA
adapters are employed to fine-tune a shared base
model across multiple downstream applications. In
such systems, a dedicated draft model or Medusa
heads are typically required for each downstream
application to obtain high acceptance rates, result-
ing in substantial cumulative memory overhead.
For instance, using Medusa heads with a Llama-2-
7B model, which requires approximately 7.2 GB in
8-bit precision, introduces an overhead of 5.9 x 108
parameters per application, as shown in Table 3,
amounting to 1.2 GB in 16-bit precision. When
scaled to 10 applications, the cumulative overhead

14

reaches 11.8 GB since each application requires in-
dependent heads. This surpasses the base model’s
footprint, making deployment extremely difficult
in resource-constrained environments. Notably, the
number of downstream applications can far exceed
10; for example, Apple Intelligence encompasses
a suite of writing tools (Apple, n.d.), each necessi-
tating dedicated adapters. In contrast, Speculative
Streaming significantly reduces this overhead to
just 8.2 x 10* parameters per application, enabling
scalable and efficient multi-application deployment
on consumer devices.

D Related Works

The inference speed of large language models
(LLMs) is often constrained by the sequential na-



Gradient Norms of MLP layers

\r%e
&
“

,\
()
S,
2%

Gradients
S
Gradient Norm

Sy
%,
€3

&,
)
2

A

S A A e R D

Layers

(a) Start of training (Step 0).

Gradient Norms of MLP layers

Gradients
IN)
)
Gradient Norm

2

oA A

Layers

(b) Mid-training (Step 5000).

Figure 6: We visualize gradient norms across MLP
layers due to speculative stream losses at the start of
training and at step 5000. Early in training, speculative
supervision injects strong gradients not only in later
layers but also in early and mid-level MLP blocks, in-
dicating that future-token predictions influence earlier
computations via differentiable speculative paths. As
training progresses, gradients become more structured
and selective.

ture of auto-regressive decoding, which requires
a complete forward pass of the network for each
token generated. To mitigate the high inference
latency, various strategies have been proposed to
reduce the memory footprint of LLMs. Techniques
such as model quantization (Frantar et al., 2022;
Yao et al., 2022; Dettmers et al., 2023), knowl-
edge distillation to smaller models (Gu et al., 2023;
Agarwal et al., 2023b), and pruning (Frantar and
Alistarh, 2023; Sun et al., 2023a) have emerged as
effective solutions. More recently, Confident Adap-
tive Language Modeling (CALM) (Schuster et al.,
2022) has introduced a method to dynamically ad-
just computational resources per token through
early exiting in decoder layers. While CALM
shows promise, it is hindered by issues related to
key-value (KV) mismatch (Corro et al., 2023). To
address the KV mismatch problem, skip decoding
(Corro et al., 2023) allows for the bypassing of an
increasing number of layers based on the position
in the decoded sequence. While this approach elim-
inates KV mismatch, the predefined restrictions on

15

def main():

directory = input("Enter the directory path: ")
files = get_files_in_directory(directory)
word_counts = Counter()
with Pool() as pool:

results = pool.map(process_file, files)
for result in results:

word_counts += result
top_5_words = word_counts.most_common(5)
print("Top 5 words with the most number of occurrences:")
for word, count in top_5_words:

print(f"{word}: {count}")

(a) Output from the auto-regressive (AR) model.
def main():
directory = input("Enter the directory path: ")
files = get_files_in_directory(directory)
word_counts = Counter()
with ThreadPoolExecutor() as executor:
future_word_counts = {executor.submit(process_file, file): file for file in files}
for future in concurrent.futures.as_completed(future_word_counts):
word_counts += future.result()
top_5_words = word_counts.most_common(5)
print("Top 5 words with the most number of occurrences:")
for word, count in top_5_words:
print(f"{word}: {count}")

(b) Output from the speculative streaming (SS) model.

Figure 7: Speculative Streaming enables improved pre-
diction through access to future context. Illustrated is a
divergence point in decoding where both the AR and SS
models initially generate identical code. At the point of
selecting a parallelization strategy, the AR model pre-
dicts Pool, while the SS model, conditioned on upcom-
ing context related to thread-based execution, predicts
ThreadPoolExecutor. This example highlights how
speculative streaming can guide the model towards more
appropriate continuations by leveraging early glimpses
of future context.

the number of layers bypassed lead to suboptimal
generation quality (Bhendawade et al., 2025). In
contrast, speculative decoding methods provide a
significant advantage over dynamic computing ap-
proaches, as they maintain generation quality while
enhancing inference efficiency.

The original speculative decoding ap-
proach (Chen et al., 2023; Leviathan et al.,
2023) utilizes a smaller draft model to generate
a candidate sequence of tokens to be verified by
the rarget model. Recent speculative decoding
variants propose parallel computation along the
batch axis (Sun et al., 2023b), and tree-structured
batches (Miao et al., 2023; Spector and Re,
2023) to improve the acceptance rates of the
guessed tokens by the target model and to further
boost the performance. However, these methods
encounter a common limitation: the necessity
of developing an accurate and independent draft
model for each downstream application. First,
training such a draft model aligned with the main
model is not trivial (Zhou et al., 2023). Second,



Parameter Overhead

2-model SD

1.00E+09
1.00E+08
1.00E+07
1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01

1.00E+00

Medusa Eagle

Figure 8: Parameter/Memory access overhead of dif-
ferent lossless speculative decoding architectures with
Llama-13B.

Flops overhead

LookAhead  2-model SD Naive-SS (No SS (with Flops
Decoding optimization) optimization)

1.00E+13
1.00E+12
1.00E+11
1.00E+10
1.00E+09
1.00E+08
1.00E+07
1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01
1.00E+00
Medusa Eagle

Figure 9: FLOP overhead of different lossless speculative
decoding architectures per speculative draft generation
with Llama-13B.

hosting two different models increases the system
complexity, and is more computationally and
operationally expensive to maintain as the number
of applications increases.

Recently, single-model speculative decoding
has gained attention. Inspired by (Qi et al.,
2020; Stern et al., 2018), Medusa (Cai et al.,
2023) extends the main model by training multi-
ple output heads to predict future tokens in par-
allel. While Medusa eliminates the need for a
separate draft model, each additional head intro-
duces significant parameter overhead, making de-
ployment challenging on resource-constrained de-
vices. Furthermore, since speculated tokens are
generated non-autoregressively, dependencies be-
tween them are not guaranteed, limiting practical
speedups (Ankner et al., 2024). Hydra (Ankner
et al., 2024) improves upon Medusa by incorporat-
ing an autoregressive draft head to enforce token
dependencies. However, the small draft head size
often leads to suboptimal speculation, and increas-
ing its size results in similar autoregressive latency
and parameter overhead issues similar to those ob-
served in (Leviathan et al., 2023; Zhou et al., 2023).

16

Eagle (Li et al., 2024) refines these approaches by
integrating a dedicated speculation layer within the
target model. While this eliminates the need for an
external draft model, its reliance on an autoregres-
sive draft generation constrains speedup gains, and
the additional speculation layer increases parame-
ter overhead. Lookahead decoding (Fu et al., 2023)
proposes a parallel decoding strategy without intro-
ducing new learnable parameters. While parameter
efficiency is a key advantage, the non-learnable na-
ture of the speculation process results in limited
speedups. Prompt Lookup Decoding is another
non-learnable strategy that circumvents additional
model modifications by caching and retrieving to-
ken sequences from precomputed prompt-based
lookups. While computationally lightweight, it
struggles with generalization beyond cached se-
quences and suffers from increased retrieval latency
when applied to long-tail distributions. SPACE (Yi
et al., 2024) introduces structured speculative de-
coding by dynamically pruning infeasible predic-
tions using syntactic constraints. However, its re-
liance on pre-specified constraints reduces flexibil-
ity across diverse decoding tasks. REST (He et al.,
2024) employs reinforcement learning to optimize
token speculation, but the additional training com-
plexity and stability challenges hinder its practical
adoption.

-~ Without Pruning -e-With Pruning

Walltime Speedup
— e e e
[OOSR T )

—

Figure 10: As more tokens (k) are sampled for tree
drafting, speedup initially increases. This trend reverses
as k continues to increase as the model transits to the
compute-bound phase. Pruning less probable paths
helps reduce compute, offering more speedup.

E Ablation:

E.1 Speculative Draft Size.

To improve the acceptance rate of the tree draft, we
try various settings of -y, the number of speculative
positions, and &, the number of sampled tokens per
speculative position. Figure 10 shows wall-time



Dialogsum (RougeLSum) -e-ContextSQL (EM Accuracy)
90

>
(=2}

e
ot
o
R=}

'
=
@
[o9]

w;
&
%
3

RougeLSum
EM Accuracy

.
)
o
=N

'
—
o
<8

1 2 4 8 16

Number of MSA layers

Figure 11: As the number of multi-stream attention
layers increases, metrics on downstream tasks improves.
Typically N, = 2 to 8 yields a good trade-off between
generation metrics and FLOPs overhead.

speedup for v = 3. As we sample more tokens
from each speculative position, advancement per
forward pass, (3 increases since more candidates are
available for verification, leading to more speedup.
However, as we continue to increase k, forward
pass latency overhead becomes more prevalent as
the model transitions into compute-bound phase,
ultimately reversing the speedup trend. This occurs
because naively forming a tree draft leads to an ex-
ponential increase in batch size with k as described
in 2.3. We insert a tree pruning layer to remove
less probable paths and reduce the size of the tree
draft. Pruning the tree draft reduces forward pass
latency, and a well calibrated threshold ensures that
only noisy paths in the tree get pruned. Tree prun-
ing helps with wall-time speedup as k continues to
increase as shown in Figure 10.

E.2 Number of MSA Layers

The number of MSA layers plays a crucial role
in balancing generation quality and computational
cost. Figure 11 presents the OPT-1.3B model’s
performance on Structured Query and Summariza-
tion tasks with increasing number of MSA layers.
While more MSA layers improves performance, the
additional FLOPs may outweigh the gains. Empiri-
cally, applying MSA to the top 2-8 layers achieves
an optimal trade-off. We use 4 MSA layers for all
experiments in Section 3.

E.3 Top-k Sampling

In the main paper, we reported speedup results us-
ing greedy sampling and 7" = 0. To further analyze
speedups in the Top-k sampling regime, we evalu-
ate various values of k£ and 1" = 1 for both Medusa
and Speculative Streaming approaches. Figure 12
(b) shows the effect of increasing k on the walltime

17

speedups and call reduction ratios'. Although in-
creasing k leads to lower wall-time speedups for
both baseline and target methods due to stochastic
rejection of tokens, our approach retains its lead
achieving better call reduction ratios and walltime
speedups across different values of k.

E.4 Value Rotation

We analyzed more ways of differing computation
of main stream from speculative streams. Apart
from using dedicated stream embeddings, one way
to differentiate the computation while incorporat-
ing a sense of relative position is simply rotating
streams relative to each other. In this ablation, we
initialize each stream with the main stream’s hidden
state and rotate the value projection during atten-
tion computation in the proportion of the relative
distance from main stream as :
‘/tﬁ — V;k eien

(®)

Where 1 <= n <= 7 is stream index, V/¥ de-
notes value projection of main stream at time step
t and layer k, while V¥ denotes value projection
of streamn, 0 < e < ﬁ denotes an arbitrary rota-
tion step and NV denotes the sum of maximum se-
quence length and number of streams. Figure 12 (a)
shows the effect of using value rotation on ROUGE
scores on the Dialog Summarization task with the
OPT-1.3B model. Downstream metric for value
rotation-based approach tends to be lower than us-
ing dedicated stream embeddings across different
settings of MSA layers, however, the trend of in-
creasing metric with added MSA layers remains
the same. It is worth noting that for Ny = 16,
simply rotating value projections achieves better
metrics than using Ny = 4 with dedicated stream
embeddings.

E.5 Effect of Quantization

To investigate the effects of quantization, we per-
form experiments with 8-bit and 4-bit quantiza-
tion using bitsandbytes (Dettmers et al., 2022)
on the Text-to-SQL task (Zhong et al., 2017b)
with Mistral-Instruct-7B. We compare the speedups
achieved by speculative streaming (SS) to those of
autoregressive decoding with baseline models em-
ploying the same quantization.

'The call reduction ratio represents the ratio of the num-
ber of ‘model.forward()‘ calls required for autoregressive
decoding to those required for speculative streaming. It is
equivalent to the average number of tokens generated per
‘model.forward()‘ call during target speculative streaming.



As demonstrated in Table 4, quantization alle-
viates memory bandwidth limitations inherent in
autoregressive decoding, resulting in a reduction
of speedup gains for speculative streaming com-
pared to the autoregressive baseline. Despite this,
SS still achieves a notable 2.7x speedup when us-
ing INT-4 quantization. Additionally, while some
degradation in exact match metrics is observed with
quantization, the speculative fine-tuning approach
outlined in Section 2.4 continues to outperform
next-token prediction-based fine-tuning in terms of
downstream task performance.

Value rotation vs dedicated stream embeddings
0.355

0.35

o
w
A
o

RougelSum
o
w
r

o
w
)
«

I
w
@

0.325

1 4 8
Number of MSA Layers

16

=@==value rotation  ==@==stream embeddings

(@
Top-k sampling speedups

35

2.5
1.5

0.5

10 20 30 40 50

—@—call reduction SS —&—call reduction Medusa

Speedup SS Speedup Medusa

(b)

Figure 12: (a) We analyze the effect of value projection
rotation on ROUGELSum scores of the Dialog sum-
marization task using OPT-1.3B as the base model for
different numbers of MSA layers. Each stream is ro-
tated in proportion to the distance from the main stream.
(b) We study the effect of top-k sampling on wall-time
speedups and call reduction ratios (mean tokens gen-
earted per step) for Speculative Streaming (SS) and
Medusa-style approaches using OPT-1.3B as a base
model on the Meaning Representation task.

E.6 Breakdown of Speedup

Figure 13 presents an ablation of the primary
mechanisms contributing to the efficiency of Spec-
ulative Streaming (SS). The base chain configu-
ration leverages multi-stream attention between

18

Model Quantization | Speedup | Metric
FP16 - 84.16

Baseline INTS - 83.36
INT4 - 81.08

FP16 292 84.50

SS-Shared INT8 2.84 83.89
INT4 2.68 82.11

Table 4: Impact of quantization on the performance of
Speculative Streaming

Speedup Breakdown

Vicuna 138 Vicuna 338

2.5

1.5

0.5

0
Vicuna 7B

mchain  mtreedecoding M tree decoding + pruning

Figure 13: Ablation of effectiveness of Speculative
Streaming components across Vicuna model scales.
Chain denotes linear speculation via multi-stream atten-
tion as detailed in Section 2.1. Tree decoding enables
parallel verification across batch trajectories as detailed
in Section 2.2, while Tree pruning reduces redundant
target verifications as detailed in Section 2.3. Together,
these mechanisms compound to yield scalable speedup.

speculative and base streams, yielding substantial
gains through linear speculative execution. Extend-
ing this to tree-mode amortizes target verification
across multiple divergent hypotheses in the batch,
enabling more aggressive parallelism and improv-
ing speedup. Finally, pruning introduces a low-cost
early elimination of unlikely branches via early
exiting, improving efficiency by reducing unneces-
sary compute.

F Acceptance Criteria

We adopt the rejection sampling-based acceptance
criterion proposed by (Chen et al., 2023) to miti-
gate distributional shift between the draft and tar-
get models. Specifically, we apply rejection sam-
pling to select tokens from each path in the pruned
tree (see Section 2.3), and the longest accepted
path is used to advance decoding.To adhere to the
principles of rejection sampling, we replace the
draft model’s output distribution by introducing
a virtual distribution, which leverages speculative
streams. More concretely, we replace the draft dis-



T T T s T T T T T T T Y - " - .
! ! <:| [ efficient J [ speculative ] exiting is
H _— — 1
i — ——— i i i
H fine decoding ! fine, decoding
i < —
' — T~ — | looking, tuning
H looking tuning looking tuning )
e e e / ( LM Head )
[ MSA Layers NN, ... N ]
SOU s|0 530 Sa0
I( \l So1 Sn Sa1 Saq
' Parameter H
' 2y, > thresh Sl 7)) < thresh H
1 L e !
\Zig>thresh _— ~_ 7, ,>thresh ~ _—" ~~__ ! Early
: early exiting ,'<:| EIXitd <:| [ Tree pruning ]
N . lea
: ™ E m m ™ ™
, \
- :
i = ' ( MHA Layers 0. N - N, ]
K T = Il
' -
1 efficient compare ! :
Embedding
: o 1 [ )
! !
N ’

exiting

exiting

compare early exiting early exiting

Figure 14: Parallel tree draft speculation and verification: Tree draft from the previous iteration is flattened for
verification. After N — N, MHA layers, the tree pruning procedure obviates less probable tokens based on
transition probability between parent and child tokens. In this illustration, “Z;” denotes normalized early exit logits
corresponding to main stream at index 7, m;, while “Z;;” denotes transition probability between token at index
¢ and j in flattened tree draft. The verification procedure is subsequently run on the pruned tree and speculative
tokens are sampled from streams corresponding to the latest accepted token. In the above illustration, “speculative”,
“fine, decoding” and “looking, tuning” are sampled from streams m1, s1g and s13.

tribution p(x | 1,...,Zp4+¢—1) in Algorithm 2 of
(Chen et al., 2023) with an augmented distribution
q(x | 21, ,Tn, 800, - - - ; Sp(t—1))> Where s repre-
sents the state from the prophet streams. Thus, our
acceptance criterion is formulated as follows:

g | z1,. . Tpgi—1) >
) Sn(t— l))

r < min (1,
q(z | x1,..
)

where p and g represent the draft and target dis-
tributions from (Chen et al., 2023), » ~ U0, 1],
and 1 <t <.

-3 Ln, Sn0;y - - -

G Implementation Details

G.1 Tree Draft Management

In this section, we go into more detail of tree draft
sampling, flattening, and pruning. As shown in
the main paper, when processing prompt (z1...z;),
we insert speculative streams along with the last
token to generate logits, z; corresponding to main
stream and (z¢1...2¢y) corresponding to speculative

19

streams. Tree draft is sampled following the proce-
dure described in Section 2.2. The sampled draft is
then flattened along the sequence length dimension
and the attention mask is composed such that child
nodes attend to their predecessors starting with
root as shown in Figure 14 and Figure 15. The
root token of the tree draft is the correction issued
by main stream. Each iteration after prompt pro-
cessing involves verifying the previous tree draft
and sampling a new one. After passing the tree
draft through N — N, layers, we use contextual
features learned by middle layers to approximate
transition probability between parent and child to-
kens. As shown in Figure 14, since the transi-
tion probability between token ‘“parameter” and
“compare” is less than a set threshold, we prune
the sub-tree starting from “compare” in the fea-
ture domain , and ma, ms, mg are pruned. Notably,
the key value cache of layers before the pruning
layer is not trimmed at this point to keep pruning
latency overhead minimal. Key value cache back-
tracking is done lazily after each generation step.



Parameter
ef nt

Parameter

efficient

compare

carly

exiting

carly

exiting

Figure 15: The attention mask for the tree draft is com-
posed in such a way that child tokens can attend to all
predecessors starting from the root, with the root being
the correction issued by the main stream. In this illus-
tration, “‘early” attends to “parameter” and “efficient”
and itself, as “parameter - efficient - early” forms one
path in the tree. “early” is also replicated to form an-
other path, “parameter - compare - early”. This attention
mask allows batching multiple paths and increases the
acceptance rate as the number of candidates increases.

Speculative streams are inserted alongside each
node in the pruned draft. Layers (N — Ng..N) use
multi-stream attention as described in Equation (3)
and Equation (2). The verification procedure finds
the longest matching path in the pruned tree that
main stream can accept. As shown in Figure 14,
path (“parameter”, “efficient”, “speculative”) is ac-
cepted. Correction token sampled from logits of
main stream corresponding to last accepted token,
m1 becomes new root while tokens sampled from

logits of streams (s19, s11) form the sub-tree.

H FLOPs Optimization

Naively implemented, Speculative Streaming in-
curs higher FLOP overhead compared to Eagle. It
is worth noting that modern accelerators demon-
strate compute bandwidth that exceeds memory ac-
cess bandwidth by an order of magnitude or more
(Agarwal et al., 2023a; Jouppi et al., 2021), mean-
ing increased FLOPs do not necessarily translate to
increased decoding latency. Nevertheless, to ensure
fair comparison and efficiency in compute-bound
scenarios, we introduce targeted optimizations.

H.1 Attention FLOPs Optimization

For medium-to-long context lengths, attention com-
putation dominates FLOPs in the self-attention
layer, surpassing the contribution from QKV pro-
jection layers. Specifically, matrix multiplications
involving queries, cached keys, and cached val-

20

ues scale with [, x [, where [}, denotes previ-
ous context length and [, denotes current query
length. Since Speculative Streaming pairs spec-
ulative streams with base streams, a naive imple-
mentation results in more FLOPs compared to a
standard attention layer. To address this, we limit
the attention of speculative residual streams to se-
lectively attend to the top p most relevant tokens
identified by the base residual stream based on top
attention coefficients”. This is possible since base
and speculative residual streams are processed in
same forward pass and speculative streams have ac-
cess to attention coefficients of base stream. Note
that, each of the speculative streams still retains the
flexibility to assign distinct attention coefficients to
these tokens, optimizing residual transformation at
corresponding positions.

H.2 MLP FLOPs Optimization

The stream adapters operating on the speculative
residual stream are intentionally designed with
lower rank to reduce FLOP overhead by a fac-
tor proportional to h/ R, where h denotes hidden
size of base stream and R, denotes rank of stream
adapter. We set R; = 8 to achieve good accep-
tance rates while keeping FLOPs and parameter
overhead minimal.

These optimizations significantly reduce the
FLOP overhead per speculative draft generation,
as illustrated in Figure 9. We include these opti-
mizations for all experiments involving Speculative
Streaming, as detailed in Section 3.

I Segment Attention

Naive training with Speculative Streaming in-
creases the batch dimension along the sequence
length axis by a factor of v, resulting in attention
computation reaching peak memory usage with
larger batches. To address this issue, we propose a
segment-based attention method that significantly
reduces peak memory consumption while enhanc-
ing training throughput. We divide each training
sample into a prompt and multiple segments of
completion. Since each stream corresponding to
each token must attend to the previous streams of
the same token as well as to the prompt and previ-
ous completion tokens, we can eliminate the need
for prompt streams in our design. Furthermore,

2We set to p = 64 and attend to top 64 tokens as identified
by the base residual stream.



Table 5: Mean walltime latency per sample and generation metrics comparison with standard draft-target (Two-
model) speculative decoding approach using OPT-125m as the draft model. Draft model is fine-tuned on each

application.
Dataset Target Method Target calls  Draft Calls  Walltime Latency (ms |) Metric (1)
OPT-1.3b Two-model SD 6.59 22.35 269.24 84.98
SqlContext ) SS-Shared 7.79 0 133.48 87.40
OPT-6.7b Two-model SD 6.60 22.41 301.10 89.13
’ SS-Shared 6.88 0 157.04 89.34
OPT-1.3b Two-model SD 11.65 42.59 493.59 43.40/35.60
Dialogsum ' SS-Shared 13.41 0 248.26 44.07/35.99
OPT-6.7b Two-model SD 12.15 35.76 555.99 14.40736.60
’ SS-Shared 14.45 0 444.67 44.42/36.81
OPT-1.3b Two-model SD 8.86 31.47 345.72 69.48/50.17
E2E-NLG ) SS-Shared 9.80 0 164.23 69.32/50.51
OPT-6.7b Two-model SD 8.90 31.58 412.02 69.34/49.88
) SS-Shared 10.31 0 244.80 69.45/49.78

by segmenting the completion, we retain only the
streams associated with the required segments in
memory, as illustrated in Figure 16. This design
significantly reduces peak memory consumption
and ensures the scalability of our approach when
training with larger batch sizes, ultimately yielding
improved throughput.

J Training cost

Since Speculative Streaming is parameter-efficient,
training involves fine-tuning only the LoRA param-
eters of stream adapters and embeddings. The train-
ing time is comparable to that of training Medusa
heads. We fine-tuned the Vicuna-7B model on
the ShareGPT dataset in approximately 4 hours
using segment attention, which is comparable to
the 3—4 hours required for training Medusa heads.
Additionally, we successfully trained Vicuna-33B
models on a single 80-GB GPU for one epoch by
loading the base model in NF4 precision and keep-
ing only the adapters of 4 MSA layers in full preci-
sion, completing training in approximately 7 hours.
Fine-tuning for application-specific tasks (see Ta-
ble 3) is relatively faster, requiring approximately
1-3 hours per application based on dataset size.

K Compute and Memory Profiling

The draft overhead associated with the standard
draft-target speculative decoding approach tends
to be non-trivial especially when the latency ratio
between target and draft models ciqrget /Cdra it <=
10. This is because speculation and verification
procedures are run in a serial manner. Figure 17
shows the kernel utilization timeline when OPT-
125m is used as a draft while OPT-1.3b model is

21

used as the target. Auto-regressive draft generation
decreases overall kernel utilization in draft-target
approach, while additional computation involved
in MSA layers increases kernel utilization in case
of Speculative Streaming (see Figure 19) thereby
efficiently utilizing the accelerator and speeding up
the decoding process. Negligible-cost draft models
may offer a better choice to keep kernel utilization
at higher levels in case of draft-target approach,
however, acceptance rates tend to drop as draft
model size decreases.

L Batching

All the results presented in Section 3 are with batch
size of 1 for on-device setup. We also experiment
with batching for server setup where queries from
multiple users are batched to increase throughput
and accelerator utilization. To achieve maximum
throughput with batching, we disable tree decod-
ing and tree pruning and use only best speculated
path for each decoding step for every sequence in
a batch. Since our method primarily relies on uti-
lizing flops to accelerate decoding, with batching
we do see some degradation in speedup per sample
as depicted in Figure 18, however we consistently
achieve >2X speedups while keeping throughput
same as batched autoregressive decoding.

M Recommended Hyperparameters

Our experiments indicate that the following setup
yields robust performance, achieving substantial
speedups across different tasks and model sizes:

e Number of streams: 4
* Number of MSA layers: 4



L rem ] e [T o~ ]
L e e & @ )

Figure 16: Streams corresponding to prompt are not required while training. Completion is divided into multiple
segments and streams of each segment only attend to previous streams from same segment and main stream of
previous segments. Uncolored portion indicates those tokens/streams are not required to be kept in memory.

MHA Layers MSA Layers

MHA Layers

MSA Layers

Target call k

(a) Speculative Streaming

Target call k+1

T §

i

k

L RN A

Target call k Draft call 0

Draft call 1

Draft call 2 Draft call 3 Target call k+1

(b) Two Stage Speculative Decoding

Figure 17: Kernel utilization timeline for speculative streaming and the standard draft-target speculative decoding.
Draft-target approach runs speculation and verification in serial manner while it is parallelized in Speculative
Streaming. Auto-regressive draft generation often has low GPU utilization leading to decreased overall kernel
utilization while MSA layers in Speculative Streaming increase kernel utilization by generating a non-autoregressive

draft and speeding up decoding significantly.

Stream adapter rank: 8

Tree Factor: 3

ag = 1, a1 = 0.1 for shared mode
ap = 0, a1 = 1 for lossless mode

N Analysis of 2-model speculative
decoding

Speculative Streaming consistently achieves signif-
icantly lower walltime latency than standard draft-
target speculative decoding as depicted in Table 5.
It is worth noting that, target model calls of draft-
target speculative decoding are slightly lower than
Speculative Streaming, however, it comes at the
cost of auto-regressively running draft model y
times to generate speculative draft. On the other
hand, draft generation with Speculative Streaming
incurs almost no additional latency overhead, as
target model decoding tends to be memory-bound
even with increased tree draft size. This translates
to increased kernel utilization and arithmetic inten-
sity as shown in Figure 19.

An argument could be made that a smaller draft
model may perform better since drafting should
cost less, but acceptance rates may drop as well
as the draft model size is decreased. To formalize
the comparison with standard draft-target specula-

22

tive decoding, we do the following analysis, sup-
pose, Cgrq ¢ is the latency cost associated with for-
ward pass through the draft model, Ciqrget is the
cost associated with forward pass through target
model, while Cj; is cost associated with specula-
tive streaming forward pass. ( is the number of
decoding tokens advanced during the verification
step for the draft-target approach while [ is the
number of tokens advanced in Speculative Stream-
ing. We equate latency cost associated with single
token advancement to compare both approaches.

('7 * Cdraft + Ctarget)/c = Css/ﬁ
(’7+Ctarget/cdraft)/€ = (Oss/cdraft)/ﬂ

ASSleil’lg v =4, Ctarget/Cdraft = 10, and
Css = Charget- ¢ = 1.4/3, meaning that advance-
ments per verification step in standard draft-target
approach have to be 1.4X of Speculative Streaming
to achieve wall time latency parity. Note that, this
analysis ignores cache adjustment overhead and
prompt processing overhead, but provides valuable
intuition to guide the choice between draft-target
vs Speculative Streaming approaches. We also an-
alyze under which settings speculative streaming
is likely to offer more benefits as compared to the

10)



Table 6: Comparison of mean accepted tokens of vari-
ous speculative decoding approaches across Llama and
Vicuna models of varying scales on MT-Bench. Meth-
ods such as 2-Model SD, Eagle generates speculative
draft in auto-regressive (AR) manner while Medusa and
Speculative Streaming generate speculative draft in a
non auto-regressive (NAR) manner. Hydra drafts are
generated in a semi auto-regressive (SAR) manner. Re-
sults for Medusa, Medusa-2, Hydra, Eagle, and LookA-
head decoding are taken from their respective papers,
with Hydra results corresponding to the best-performing
variant, Hydra++.

Model Method Speculation Generation Mean Accepted Tokens (1)
2-Model SD AR 3.46
Medusa NAR 2.67
Hydra SAR 3.70
Vicuna-7B Medusa-2 NAR 3.47
Eagle AR 3.94
SS-Lossless NAR 3.52
SS-Shared NAR 3.68
2-Model SD AR 3.67
Medusa NAR 2.72
Hydra SAR 3.72
Vicuna-13B Medusa-2 NAR 3.51
Eagle AR 3.98
SS-Lossless NAR 3.63
SS-Shared NAR 3.76
2-Model SD AR 3.54
Medusa NAR 2.56
Hydra SAR 3.62
Vicuna-33B Medusa-2 NAR 3.01
Eagle AR 3.68
SS-Lossless NAR 3.75
SS-Shared NAR 3.78
2-Model SD AR 3.58
LookAhead NAR 2.08
Eagle AR 3.62
Llama-2-Chat-TB | o 1 ossless NAR 3.46
SS-Shared NAR 3.58
2-Model SD AR 3.55
LookAhead NAR 1.87
. ’ Eagle AR 3.90
Llama-2-Chat-13B | 5o 1 ocsless NAR 3.77
SS-Shared NAR 3.86

standard draft-target approach. Fig. 20 shows the-
oretical speedups of Speculative Streaming over
draft-target based approach for different Target to
draft latency ratios. As the latency ratio increases,
the draft-target approach is likely to offer more
speedup benefits when (/8 > 1, meaning that
when the draft model is accurate enough to achieve
more token advancements per target model verifica-
tion step than Speculative Streaming and also small
enough to yield higher latency ratios, it is likely
to benefit more. Creating such a model usually
requires significant engineering effort. In down-
stream application settings, finding ideal draft mod-
els becomes even more challenging since ( tends
to vary based on application. If applications share
the draft model and only train adapters, the draft
model may not remain small enough to meet target-
to-draft latency ratios, making it challenging to
achieve better speedups.

23

Speedup with Batching

T

3.5
2.5
1.5

0.5

16 64
Figure 18: Walltime speedup for different batch
sizes on MT-Bench with Vicuna-7B Model.

Kernel = Memory

Speculative
Streaming

Medusa SD

2-stage SD = =

0% 20% 40%

Figure 19: Kernel and Memory utilization compari-
son on Nvidia A100.

N.1 Experimental Setup Details

For experiments described in Section 3, our recipe
involves training stream adapters and embeddings
in BFloat16, using the AdamQ optimizer, a learn-
ing rate of 5e-4, and a linear scheduler. For tree
pruning (see Section 2.3), we use a low-rank lin-
ear transformation of rank 8 to keep parameter
overhead minimal. We experimented with lin-
ear transformations of different ranks to initialize
speculative streams from main stream as described
in Equation (4), however we find that simply us-
ing identity transformation achieves similar perfor-
mance with much less parameter overhead. We
use identity transformation for all the experiments
described in Section 3. We compare MT bench
and SpecBench speedups of our approach with best
baseline configurations from corresponding papers.
In Application specific settings (see Table 3), we
report best results for Medusa and our approach
over different v and & values. We pass 32 nodes
as a tree draft for speculative streaming after the
pruning layer while in case of Medusa we pass 64
nodes, as these configurations yield the best wall-
time speedups for respective approaches. We use
‘hard’ matching criteria for verification of specula-
tive draft. Relaxing this criterion to ‘soft’ match-
ing may yield higher speedups (Cai et al., 2023)
but may compromise generation quality. We defer
this exploration to future work. In application spe-



(6]
L

— (/B =006

¢/B=0.8

4 — ¢/B=1.0
— {B=12

— {PB=14

w
L

N
L

speedup over draft-target SD

=
s

20 40 60 80 100

target/draft latency ratio

0

Figure 20: Speedup: Speculative Streaming speedups
over draft model based speculative decoding for differ-
ent (/[ and target/draft latency ratios, where ¢ denotes
the number of advancements per verification step for
draft model based speculative decoding while 3 denotes
the same for Speculative Streaming.

cific settings, both Medusa heads and the number
of maximum streams are fixed to 4 and the resid-
ual blocks per head used in Medusa are set to 1.
Since Eagle requires autoregressive drafting, we
report the speedups in Table 3 considering opti-
mal autoregressive steps that balance speculation
and verification latencies and achieve best speedup.
For comparison with standard draft-target specu-
lative decoding (Leviathan et al., 2023), we use
OPT models since they come with different con-
figurations and sizes. OPT-125m is deployed as
a draft model while OPT-1.3b and OPT-6.7b are
used as target models since a ratio of 10-100X is
typically considered to be optimal. We compare
our approach with LookAhead decoding using best
configuration reported in (Fu et al., 2023).

O Long Context Experiments

To evaluate performance on long sequences, we
trained lossless speculative streaming on the Arxiv-
summarization dataset (Cohan et al., 2018) and
tested it on the Summarization task from the Long-
Bench dataset (Bai et al., 2023). Since the KV
cache is shared between the main and speculative
streams, there is no additional runtime memory
overhead associated with longer contexts. While
compute in attention layers increases due to longer
context, the compute in MLP layers remains the
same, and decoding is still memory bandwidth
bound. We achieved a 2.64X speedup on the Sum-
marization test set using gamma = 3 and k = 4.

24

Long context summarization speedup

1 2 3 4 5

Figure 21: Speedups for long-context summarization
tasks with varying top-k tokens sampled during drafting.

P Qualitative Examples

In this section, we present qualitative examples to
illustrate the effectiveness of Speculative Stream-
ing. By examining specific instances, we aim to
highlight how this approach enhances the overall
performance of the decoding process. An exam-
ple of the SQL query generation task is shown in
Figure 22, while a dialog summarization exam-
ple is shown in Figure 23. Each row indicates
the previous sequence of accepted draft tokens (in
black) and the new sequence of generated tokens in
green/red. We use v = 4 and k = 1 to illustrate the
decoding process. Green tokens in each row indi-
cate tokens accepted in the forward pass, while red
tokens indicate tokens rejected in the forward pass.
Speculative Streaming generates meaningful drafts
with high acceptance rates by capturing dependen-
cies between tokens quite effectively, despite gen-
erating them in a non-auto-regressive manner.



SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

in _county

in _county _tuition _per

in _county _tuition _ per_ credit _ eredit—

in _county _tuition _ per_credit _hour __ fall _—

in _ county _ tuition _ per_ credit _ hour __fall _2009 _ FROM table _

in _county _ tuition _ per_ credit _hour __fall _2009 _ FROM table _ 22 30 88 81 _

in _county _ tuition _ per_ credit _ hour __fall _2009 _ FROM table _22 3088 81 _2 WHERE college ="

in _county _ tuition _ per_ credit _ hour __ fall _2009 _ FROM table _ 22 3088 81 _2 WHERE college =" Mer Er"' College<\s>

SELECT in _county _ tuition _ per_ credit _hour __fall _2009 _ FROM table _22 3088 81 _2 WHERE college =" Mer Cer " <\s>

Figure 22: Speculative streaming on SQL generation task for v = 4 and k = 1, each pass verifies the previous draft
and generates a maximum of 5 tokens. For instance in pass 4, “credit” and “_” (shown in red) are rejected and

Léhourn

, “7”’ ((fall”’ “_7’7 44_77 are Specu]ated.

# Person 2 # and

# Person 2 # thinks Lincoln is-a—character

# Person 2 # thinks Lincoln was a charaecter—and—he

# Person 2 # thinks Lincoln was a man of character-and-he

# Person 2 # thinks Lincoln was a man of sound character and # person

# Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him

# Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him for his courage and and

# Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him for his courage and rights and humility . </s>

Figure 23: Speculative streaming on Dialog Summarization task for v = 4 and £ = 1, each pass verifies the

previous draft and generates a maximum of 5 tokens. For instance, in pass 3, “is

and “was”, “a”, “character”, “and”, “he” are speculated.

25

b))

, “a”, “character” are rejected



	Introduction
	Method
	Streams Design and Initialization
	Parallel Speculation and Verification
	Parallel Tree Pruning
	Training

	Experiments
	Results
	Why Does It Work?

	Conclusion
	Limitations
	Application Specific Evaluation
	Learning Dynamics
	Importance of Parameter Efficiency
	Related Works
	Ablation: 
	Speculative Draft Size.
	Number of MSA Layers
	Top-k Sampling
	Value Rotation
	Effect of Quantization
	Breakdown of Speedup

	Acceptance Criteria
	Implementation Details
	Tree Draft Management

	FLOPs Optimization
	Attention FLOPs Optimization
	MLP FLOPs Optimization

	Segment Attention
	Training cost
	Compute and Memory Profiling
	Batching
	Recommended Hyperparameters
	Analysis of 2-model speculative decoding
	Experimental Setup Details

	Long Context Experiments
	Qualitative Examples

