
Speculative Streaming: Efficient and Scalable Speculative Decoding with
Multi-Stream Attention

Anonymous ACL submission

Abstract

Speculative decoding is a prominent technique001
for accelerating LLM inference by leveraging002
an auxiliary draft model, but its effectiveness003
is limited by the autoregressive nature of draft004
generation, where acceptance rates depend on005
the draft model’s size. Scaling the draft model006
improves acceptance but also increases spec-007
ulation latency, limiting overall speedup. Fur-008
thermore, fine-tuning both the draft and target009
models is often necessary to achieve high accep-010
tance rates, adding complexity to inference sys-011
tems as the number of downstream tasks grows.012
Single-model approaches like Medusa gener-013
ate speculative tokens non-autoregressively but014
lack token dependencies, limiting effectiveness.015
Alternatives like Hydra and Eagle incorporate016
token dependencies but rely on dedicated heads,017
making speculation independent of the base018
model and limiting the extent to which stronger019
base models can improve speculation.020

We introduce a novel speculative decoding021
method that integrates speculative draft gen-022
eration directly within the target model us-023
ing multi-stream attention. This improves ac-024
ceptance rates by introducing interdependen-025
cies between speculative tokens while ensur-026
ing non-autoregressive draft generation with027
minimal overhead. As target models scale028
in size and quality, speculative generation im-029
proves naturally with our method, unlike prior030
approaches. Furthermore, our approach is031
both parameter- and FLOP-efficient, requir-032
ing over 1000× fewer additional parameters033
than Medusa, making it highly suitable for034
resource-constrained devices. We design our035
method to operate in two modes: (1) Lossless036
mode, a plug-and-play method that preserves037
the output of any pre-trained model; and (2)038
Shared mode, optimizing both speedup and039
downstream output quality. We demonstrate a040
2–3.5× speedup across diverse tasks, including041
summarization, translation, question answer-042
ing, mathematical reasoning, SQL generation,043
and retrieval-augmented generation (RAG).044

Speculative Streaming does need
auxiliary

Target LLM

Speculative Streaming does need
auxiliary not

Draft
Model

Draft
Model

Draft
Model

Speculative Streaming does
not require auxiliary models

Speculative Streaming does need
auxiliary

Initial Layers

Stream Insertion

Last Layers

Speculative Streaming does need
auxiliary not require auxiliary models

V
er

ify
Sp

ec
.

V
er

ify
 &

 S
pe

c.

Stream Fused Target LLM

(a) Speculative Decoding (b) Speculative Streaming
Iteration t+1 Iteration t+1

Iteration t Iteration t

Figure 1: (a) Speculative Decoding requires a well-
aligned draft model that generates speculation autore-
gressively. (b) Speculative Streaming significantly sim-
plifies the system by performing speculation and verifi-
cation concurrently, within a single stream-fused model.

1 Introduction 045

Large transformers have become the cornerstone of 046

modern language modeling. The quality of these 047

models improves as they scale (Kaplan et al., 2020), 048

leading to the introduction of the state-of-the-art 049

multi-billion parameter models (Brown et al., 2020; 050

Thoppilan et al., 2022; Chowdhery et al., 2023; 051

Touvron et al., 2023a). While these models are 052

effective for token generation, they incur a high 053

inference cost as the model and its transient states 054

need to be loaded into computing memory for each 055

newly generated token. This poses a challenge to 056

the deployment of large autoregressive transform- 057

ers, particularly for user-facing applications with 058

stringent latency requirements. 059

Given the memory-bound nature of large 060

language model (LLM) inference, recent 061

work (Leviathan et al., 2023; Chen et al., 2023) 062

has proposed Speculative Decoding as an effective 063

technique to accelerate decoding based on concepts 064

borrowed from speculative computation (Burton, 065

1985). The core idea is to speculate multiple 066

candidate future tokens first and then verify them 067

1

in parallel using a two-model paradigm as shown068

in Figure 1a: a small auxiliary “draft” model for069

candidate speculation and a large “target” model070

for verification (Leviathan et al., 2023; Chen et al.,071

2023). However, the effectiveness of speculative072

decoding is constrained by the autoregressive073

nature of draft generation, where the draft model’s074

size directly impacts acceptance rates; scaling the075

draft model improves quality but also increases076

speculation latency, limiting the overall speedup. It077

is also resource-inefficient, requiring both models078

to be hosted in memory during token prediction.079

In this paper, we propose Speculative Stream-080

ing, a single-model speculative decoding approach081

that unifies speculation and verification, obviating082

the need for a separate draft model as shown in083

Figure 1b. This is accomplished by incorporat-084

ing multi-stream attention into the target model to085

perform n-gram prediction, which serves as future086

candidate speculation. As a result, a forward pass087

can verify the previously generated tokens while088

simultaneously speculating on the future tokens.089

Speculative Streaming (SS) improves acceptance090

rates by introducing interdependencies among spec-091

ulative tokens while ensuring non-autoregressive092

draft generation with minimal overhead. Unlike093

previous approaches, where the quality of spec-094

ulative draft is independent of target model size,095

multi-stream attention in our method ensures that096

speculative generation quality improves naturally097

as the target model scales in size and quality. The098

key advantages of Speculative Streaming are as099

follows:100

– Achieves substantial decoding speedups through101

a unified fine-tuning process that integrates multi-102

stream attention, preserving exact output in loss-103

less mode while enhancing output quality in104

shared mode.105

– Improves speculative generation quality as model106

size scales, leveraging the richer representations107

of larger pre-trained models to enhance both spec-108

ulation accuracy and verification efficiency.109

– Minimizes resource overhead, requiring fewer110

additional parameters and FLOPs compared to111

state-of-the-art speculative decoding methods,112

while still outperforming them in speedup gains.113

– Simplifies deployment by eliminating the need114

for an auxiliary draft model, avoiding the com-115

plexity of model alignment, switching, and man-116

agement during inference, as required by ap-117

proaches such as (Leviathan et al., 2023).118

2 Method 119

Our goal is to develop an end-to-end trainable, 120

single-model framework that integrates speculative 121

residual streams, aligning residual transformations 122

with future tokens to enable high-acceptance, non- 123

autoregressive speculation. We also aim to address 124

greedy decoding limitations by incorporating plau- 125

sible future residual states, enabling more informed 126

token selection through future token planning. To 127

achieve these objectives, we introduce the follow- 128

ing key components: (a) Speculative stream design 129

and initialization as described in Section 2.1 (b) 130

Parallel speculation and verification as described 131

in Section 2.2 (c) Parallel tree draft pruning, de- 132

scribed in Section 2.3 and (d) Training objective as 133

described in Section 2.4. 134

2.1 Streams Design and Initialization 135

Parameter efficient supervised fine-tuning (Hu 136

et al., 2022) of decoder-only pre-trained language 137

models involves training low-rank adapters to pre- 138

dict next target token yt given context tokens 139

(x1....xm) and previous target tokens (y1..y<t) on 140

downstream applications. At the heart of this pro- 141

cess lies the Multi-Head Attention (MHA) mecha- 142

nism (Vaswani et al., 2017) operating on the resid- 143

ual stream, which can be formally described as: 144

Mk+1
t = MHA(Mk

t ,M
k
≤t,M

k
≤t) (1) 145

where Mk
t denotes base residual stream at time 146

step t and layer k and MHA(H,H,H) denotes 147

attention between query HWQ, key HWK and 148

value HW V as described in (Vaswani et al., 2017). 149

Building upon this framework, we introduce spec- 150

ulative residual streams, which attend to the base 151

(main) residual stream via a novel multi-stream at- 152

tention (MSA) mechanism. Each speculative stream 153

is designed to generate future tokens with minimal 154

latency overhead in memory-bound decoding sce- 155

narios. Specifically, the added speculative streams 156

predict p(yt+j | y<t, x) for 1 ≤ j ≤ γ, where γ 157

denotes the number of speculative steps, while the 158

base stream continues to predict p(yt | y<t, x). 159

To seamlessly integrate speculative streams into 160

pre-trained models, we propose a lossless mode for 161

scenarios that require keeping the original output 162

distribution of the target model untouched (see Fig- 163

ure 2a). In this mode, the attention mechanism of 164

the base residual stream adheres to the standard 165

MHA formulation (Vaswani et al., 2017). However, 166

each speculative stream j at time step t attends to 167

2

predn

Stream AdaptersBase MLP

Stream Embeddings

predn+1 predn+2,n+3

Decoder MSA
 Layer

m S0 S1Attention

(a) Lossless Mode

predn

Shared AdaptersBase MLP

Stream Embeddings

predn+1 predn+2,n+3

Decoder MSA
Layer

m S0 S1
Attention

(b) Shared Mode

Figure 2: Shared and Lossless Modes of Speculative Streaming. In the lossless mode (a), speculative streams attend
to the main stream, whereas in the shared mode (b), attention is bidirectional. In the lossless mode, the base model
remains frozen while stream embeddings and stream adapters in the MSA decoder layers are trained to predict
speculative tokens. In the shared mode, we insert adapters into the base model decoder layers and train them on an
n-gram prediction objective. Notably, the adapter parameters in MSA layers are shared to influence the residual
transformation of both main and speculative streams.

the prior hidden states of both the base and specu-168

lative streams:169

Sk+1
tj = MHA(Sk

tj ,M
k
≤t⊕Sk

t(≤j),M
k
≤t⊕Sk

t(≤j)),
(2)170

where Sk
tj denotes the speculative stream j at layer171

k and time t, Mk
≤t represents the base residual172

stream up to t and ⊕ represents concatenation.173

At the final transformer layer N , the hidden state174

MN
t is used to predict yt, while each speculative175

stream’s terminal state SN
tj predicts yt+j . We refer176

to decoder layers implementing the standard MHA177

as MHA layers, whereas those incorporating the178

formulation above as MSA layers.179

While effective in accelerating decoding, MSA180

in lossless mode does not modify the base model’s181

objective of greedily generating the next token. To182

enable proactive token planning and reduce overfit-183

ting to local correlations during token generation184

(Yang et al., 2019; Qi et al., 2020), we propose a185

shared mode (see Figure 2b). In this mode, the186

training objective is extended from next-token pre-187

diction to n-gram prediction. This is achieved by188

allowing the base stream to attend to speculative189

streams, thereby enabling it to refine its residual190

transformation using anticipated future states:191

Mk+1
t = MHA(Mk

t ,M
k
≤t⊕Sk

t1...γ ,M
k
≤t⊕Sk

t1...γ).
(3)192

Here, Sk
t1...γ represents all speculative streams at 193

layer k and time t. By integrating future residual 194

states during training, this shared mode aligns the 195

base stream with speculative planning, promoting 196

both efficiency and robustness in token generation. 197

The attention mechanism of speculative streams 198

remains consistent across both shared and lossless 199

modes (see Equation (2)). Key/value projections 200

of the main stream’s residual states are cached dur- 201

ing inference to avoid re-computation, whereas we 202

design speculative stream attention specifically to 203

avoid storing additional key/value projections as- 204

sociated with individual streams. This is because 205

speculative streams are trained to learn contextual 206

features using the main stream’s key/value context 207

allowing us to not introduce additional caching 208

overhead and operate within memory bounds of 209

resource-constrained devices. 210

In lossless mode, main stream passes through 211

frozen base MLP layer and speculative streams 212

pass through the parallel stream adapters as shown 213

in Figure 2a. In contrast, shared mode fine- 214

tunes the base model for n-gram prediction via 215

shared adapters. Within MHA decoder layers, these 216

adapters modulate the residual transformation of 217

the main stream, whereas in MSA layers, they influ- 218

ence the residual transformations of both the main 219

and speculative streams, as illustrated in Figure 2b. 220

We initialize hidden states of speculative streams 221

3

at layer N −Ns instead of initializing them from222

the embedding layer, where Ns denotes the number223

of MSA layers. Specifically, stream j at time t is224

initialized at layer N −Ns as225

SN−Ns
tj = fη(M

N−Ns
t) + PN−Ns

j (4)226

where Pj is a stream identifier embedding that em-227

beds a sense of relative position into streams and228

distinguishes the computation from main stream.229

fη is a linear transformation of rank η to transform230

main stream hidden states into speculative stream231

hidden states. This initialization helps to reduce232

computation per forward pass by decreasing the233

speculative FLOPs contribution by (N −Ns)/N .234

In terms of forward pass latency, FLOPs do not235

contribute significantly when the model is memory236

bound, however, as we describe in Section 2.2, we237

sample additional tokens to shift the model into a238

compute-bound regime, therefore FLOPs reduction239

becomes crucial.240

2.2 Parallel Speculation and Verification241

In standard draft-target speculative decod-242

ing (Leviathan et al., 2023), speculation and243

verification processes happen sequentially. Specu-244

lative Streaming makes this process efficient by245

parallelizing speculation and verification. In each246

forward pass, the draft from the previous step is247

verified and a new draft is generated as shown in248

Figure 3. For instance, in step s, if draft tokens249

(ỹ1 . . . ỹδ) are accepted where 0 < δ ≤ γ, main250

stream Mδ is used to issue a correction token, and251

logits from speculative streams Sδ(1...γ) are used to252

generate draft for step s+ 1.253

Instead of using a linear sequence of speculated254

tokens for verification, we sample a tree of tokens255

from main and speculative streams, where each256

path in the tree represents one possible verifica-257

tion candidate. Tree drafting enables accepting the258

longest matching candidate sequence and more to-259

kens can be advanced during each forward pass.260

To create a tree draft, instead of sampling 1 token261

from logits of speculative streams, (z1 . . . zγ), we262

sample top k tokens and form a tree of sampled263

tokens as shown in Figure 3, such that tokens264

sampled from stream n are predecessors of tokens265

sampled from stream n + 1. We process a tree266

draft of speculative tokens in one forward pass by267

creating an additive attention mask (Vaswani et al.,268

2017), such that each node in the tree attends to269

its predecessor. Attention mask between kth to-270

ken sampled from logits of stream j, ỹjk and the271

mth token sampled from logits of stream n, ỹnm is 272

defined as: 273

aỹjkỹnm =

{
0 if j = n+1,

−∞ otherwise
(5) 274

Refer to Figure 15 for more details. 275

2.3 Parallel Tree Pruning 276

A key challenge in constructing speculative tree 277

drafts is the combinatorial explosion of candidate 278

paths: sampling k tokens from each of γ streams 279

yields a tree draft of size 1 +
∑γ

g=1 k
g. To en- 280

able parallel draft generation in a single forward 281

pass, each draft token is batched with γ speculative 282

streams in MSA layers, resulting in a total batch 283

size of (1+γ)(1+
∑γ

g=1 k
g). As batch size grows, 284

target model inference becomes compute-bound, 285

diminishing the latency gains from wider sampling. 286

To address this, we introduce a parallel tree draft 287

pruning layer that eliminates low-probability to- 288

kens based on transition likelihoods between par- 289

ent and immediate child tokens. While prior meth- 290

ods prune speculative trees based on draft model 291

confidence (Anonymous, 2024), they suffer from 292

overconfidence, where high-confidence paths may 293

ultimately be rejected by the target model, and un- 294

derconfidence, where low-confidence paths are pre- 295

maturely pruned despite being acceptable. In con- 296

trast, we prune using early-exit confidence from the 297

target model itself. Specifically, hidden states M l 298

at layer l are projected via a low-rank transforma- 299

tion oθ, and passed through the language modeling 300

head H to yield early-exit logits z̃ = H(oθ(M
l)). 301

The transition score z̃pc approximates the probabil- 302

ity of a child token c given its parent p. These early 303

acceptances align closely with final verification out- 304

comes, as residual change tends to decrease across 305

deeper layers (Bhendawade et al., 2025), making 306

early-layer agreement a reliable proxy. 307

The pruning layer can be flexibly inserted at any 308

depth, balancing pruning accuracy and latency: ear- 309

lier layers reduce compute but risk false rejections; 310

deeper layers improve precision at higher cost. In 311

all experiments in Section 3, we insert the pruning 312

layer immediately before speculative stream inser- 313

tion. Please refer to Appendix G.1 for additional 314

implementation details. 315

2.4 Training 316

In the shared mode (see Figure 2b), our instruction 317

tuning procedure entails training the adapters and 318

4

Input Tokens

Tokenizer

LM Head

Token

#1

Token

#2

Token

#n

SE

#n+1

SE

#n+2

SE

#n+3

Stream Embeddings

Tree Decoding

Pred

#n+1

Pred

#n+2

Top2

Pred

#n+2

Top1

Pred

#n+2

Top3

Pred

#n+3

Top2

Pred

#n+3

Top1

Pred

#n+3

Top3

Pred

#n+4

Top2

Pred

#n+4

Top1

Pred

#n+4

Top3

Speculative Streams

Main Stream

Speculative Streams

Base Model

Decoder MSA Layers

Decoder MHA Layers

Tree Prune

Next Iteration

Batching

Pred

#n+1

Pred

#n+2

Top1

Pred

#n+3

Top1

Pred

#n+4

Top1

Pred

#n+1

Pred

#n+2

Top1

Pred

#n+3

Top1

Pred

#n+4

Top2

Figure 3: Top level architecture: We replace top Ns multi-head attention (MHA) layers of the base model with
multi-stream attention (MSA) layers as described in (2). Speculative streams are initialized using hidden states of
layer N −Ns and stream identifier embeddings (SE), as described in (4) and used to generate speculative draft in
the form of a tree. The speculative tree draft from the previous iteration is batched for verification and pruned using
early exit based confidence before stream insertion as discussed in Section 2.3. During each forward pass previous
pruned tree draft is verified and a new tree draft is issued using speculative streams as described in Section 2.2.

stream embeddings on both the prediction loss of319

the next token and γ future tokens. The overall loss320

function is defined as follows:321

Lss = −α0

(
T∑
t=1

log pθ(yt|y<t, x)

)
322

−
γ∑

j=1

αj

(
T−j∑
t=1

log pθ(yt+j |y<t, x)

)
(6)323

where α0 and αj are set empirically to normalize324

losses of the next token and speculative token pre-325

diction. In lossless mode, only the stream adapters326

and embeddings are trained for speculative token327

prediction, while the base model remains frozen,328

with α0 set to 0 (see Figure 2a).329

Although training with Speculative Streaming is330

relatively cheap (see Appendix J), naive training in-331

creases batch dimension along sequence length axis332

by γ in MSA layers, causing attention computation333

to hit peak memory with larger batches. We em-334

ploy a segment-based attention method that helps335

reduce peak memory consumption and increases336

training throughput significantly by dividing train-337

ing sample into prompt and multiple completion338

segments. More details on segment attention can339

be found in Appendix I. Finally, the tree pruning340

adapter described in Section 2.3 is trained on next341

token prediction loss.342

3 Experiments 343

We evaluate our method on diverse tasks from open 344

speculative decoding benchmarks, as well as on a 345

set of applications vital to on-device AI assistants. 346

Datasets. To evaluate the effectiveness of Spec- 347

ulative Streaming in multi-turn interactive conver- 348

sations and tasks such as reasoning and coding, 349

we train both shared and lossless variants on the 350

ShareGPT dataset and measure decoding speedup 351

using MT-Bench (Zheng et al., 2023). 352

To ensure broader generalizability, we inte- 353

grate the lossless variant of our approach with 354

SpecBench (Xia et al., 2024), a benchmark de- 355

signed to assess the effectiveness of speculative 356

decoding methods in lossless settings. Addition- 357

ally, we compare our supervised fine-tuning objec- 358

tive described in Section 2.4 against traditional 359

next-token prediction based fine-tuning across key 360

applications for on-device AI assistants, includ- 361

ing Text Summarization using DialogSum dataset 362

(Chen et al., 2021), Structured Query Generation 363

using SqlCreateContext dataset constructed from 364

WikiSQL (Zhong et al., 2017a) and SPIDER (Yu 365

et al., 2018), and Meaning Representation using 366

E2E-NLG dataset (Dušek et al., 2020). 367

Model Configurations and Baselines. We eval- 368

uate our method on open-source models of varying 369

scales, including Llama-2-Chat (7B, 13B) (Tou- 370

vron et al., 2023b) and Vicuna (7B, 13B, 33B) (Chi- 371

5

Table 1: Comparison of wall-time speedup and gener-
ation quality scores across Llama and Vicuna models
of varying scales on MT-Bench. Results for Medusa,
Medusa-2, Hydra, Eagle and LookAhead decoding are
taken from their respective papers, with Hydra results
corresponding to the best-performing variant, Hydra++.
Notably, methods like Eagle and 2-Model SD generate
speculative tokens autoregressively, whereas Specula-
tive Streaming produces them in a non-autoregressive
(NAR) manner as shown in Table 6. As a result, even
though the mean number of accepted tokens of Specula-
tive Streaming on smaller models are slightly lower than
Eagle, wall-time speedup is higher due to the absence
of autoregressive speculation generation overhead.

Model Method Speedup (↑) Score (↑)

Vicuna-7B

Baseline 1x 6.17
2-Model SD 1.42x 6.17

Medusa 2.18x 6.17
Hydra 2.70x 6.17

Medusa-2 2.83x 6.18
Eagle 2.90x 6.17

SS-Lossless (Ours) 3.08x 6.17
SS-Shared (Ours) 3.22x 6.21

Vicuna-13B

Baseline 1x 6.39
2-Model SD 1.55x 6.39

Medusa 2.33x 6.39
Hydra 2.50x 6.39

Medusa-2 2.83x 6.43
Eagle 3.07x 6.39

SS-Lossless (Ours) 3.21x 6.39
SS-Shared (Ours) 3.29x 6.48

Vicuna-33B

Baseline 1x 7.12
2-Model SD 1.59x 7.12

Medusa 1.98x 7.12
Hydra 2.53x 7.12

Medusa-2 2.35x 7.18
Eagle 2.95x 7.12

SS-Lossless (Ours) 3.24x 7.12
SS-Shared (Ours) 3.35x 7.22

Llama-2-Chat-7B

Baseline 1x 6.27
2-Model SD 1.39x 6.27
LookAhead 1.64x 6.27

Eagle 2.78x 6.27
SS-Lossless (Ours) 2.93x 6.27
SS-Shared (Ours) 3.05x 6.29

Llama-2-Chat-13B

Baseline 1x 6.65
2-Model SD 1.47x 6.65
LookAhead 1.51x 6.65

Eagle 3.03x 6.65
SS-Lossless (Ours) 3.23x 6.65
SS-Shared (Ours) 3.30x 6.71

ang et al., 2023) to demonstrate the scalability of372

our approach. For application-specific settings, we373

test our approach on Phi-3-mini-4k-instruct (3.8B)374

(Abdin et al., 2024), Mistral (7B) (Jiang et al.,375

2023), and OPT (1.3B, 6.7B) (Zhang et al., 2022).376

We compare our approach against draft-target377

speculative decoding methods (Leviathan et al.,378

2023; Zhou et al., 2023) as well as single-379

model speculative decoding frameworks, including380

Medusa (Cai et al., 2023), LookAhead Decoding381

(Fu et al., 2023), Hydra (Ankner et al., 2024), Ea-382

gle (Li et al., 2024), Prompt Lookup Decoding 383

(PLD) (Saxena, 2023) , REST (He et al., 2024), 384

and SPACE (Yi et al., 2024). For the standard 385

draft-target approach, we use OPT-125M as the 386

draft model for OPT-1.3B and OPT-6.7B target 387

models. For Vicuna and Llama models, we adopt 388

JackFram/llama-68M (Miao et al., 2023) as the 389

draft model. All draft models are fine-tuned on the 390

ShareGPT dataset to ensure evaluation fairness. 391

Metrics. On MT-Bench, we evaluate response 392

quality using GPT-4-graded scores that assess co- 393

herence, correctness, and engagement. We con- 394

duct our experiments using FastChat (Zheng et al., 395

2023), which incorporates GPT-4 evaluation. Since 396

SpecBench is primarily designed for lossless spec- 397

ulative decoding methods, we integrate the lossless 398

version of our technique and report the wall-time 399

speedup. In application-specific settings, we evalu- 400

ate both wall-time speedups and generation quality 401

metrics. For the structured query task, we use Ex- 402

act Match (EM) accuracy, while for Dialog Sum- 403

marization and Meaning Representation tasks, we 404

report ROUGE-1 and ROUGE-LSum scores. Fi- 405

nally, to demonstrate the deployment benefits of 406

our approach, we report the parameter and FLOP 407

overhead associated with our method. 408

Inference. Inference is performed using a batch 409

size of 1 on a single Nvidia A100-80G GPU in 410

float16 using greedy sampling and T = 0, reflect- 411

ing the typical deployment setting for on-device 412

assistants. Please refer to Appendix L for batching 413

impact, Appendix E.3 for ablations on top-k sam- 414

pling with T = 1, Appendix E.5 for quantization 415

impact and Appendix N.1 for more experimental 416

details. We set Ns = 4, γ = 4 and k = 3. Please 417

refer to Appendix E for hyperparameter ablations. 418

3.1 Results 419

Effectiveness on MT Bench Table 1 presents 420

a comparative evaluation of our method on MT- 421

Bench in terms of speedup and MT-Bench scores. 422

Our experimental results demonstrate that both 423

variants of Speculative Streaming—Lossless and 424

Shared—achieve substantial acceleration across 425

model scales. The Lossless variant yields speedup 426

factors of 2.93–3.24× while preserving the base 427

model’s output. The Shared variant achieves 428

slightly higher speedups of 3.05 – 3.35×, with com- 429

parable or superior MT-Bench scores, indicating 430

that the adapter parameter sharing strategy further 431

reduces latency while maintaining or improving 432

the generation quality. Both variants consistently 433

6

Table 2: Wall-time speedup of lossless Speculative Streaming (SS) across various tasks, evaluated using the
comprehensive SpecBench framework. SS consistently outperforms other baselines, with speedups increasing as
model size grows, highlighting the scalability of our approach.

Model Task EAGLE Hydra Medusa PLD SPACE REST Lookahead SS-Lossless

Vicuna-7B

Translation 1.99x 1.94x 1.73x 1.04x 1.13x 1.31x 1.14x 2.32x

Summarization 2.23x 1.79x 1.57x 2.43x 1.62x 1.36x 1.19x 2.51x

Question Answering 2.12x 2.03x 1.75x 1.14x 1.49x 1.66x 1.24x 2.11x

Mathematical Reasoning 2.67x 2.49x 2.05x 1.61x 1.47x 1.21x 1.55x 2.89x

Retrieval Augmented Generation 2.04x 1.77x 1.51x 1.71x 1.55x 1.73x 1.09x 2.53x

Vicuna-13B

Translation 1.96x 1.90x 1.66x 1.02x 1.13x 1.17x 1.06x 2.38x

Summarization 2.44x 1.93x 1.63x 2.19x 1.68x 1.37x 1.20x 2.62x

Question Answering 2.04x 1.96x 1.63x 1.03x 1.39x 1.53x 1.12x 2.16x

Mathematical Reasoning 2.70x 2.48x 2.00x 1.57x 1.53x 1.19x 1.48x 3.37x

Retrieval Augmented Generation 2.23x 1.92x 1.58x 1.71x 1.67x 1.55x 1.12x 2.78x

Vicuna-33B

Translation 2.05x 2.01x 1.73x 1.06x 1.28x 1.27x 1.08x 2.41x

Summarization 2.51x 2.04x 1.64x 2.00x 1.76x 1.45x 1.20x 2.77x

Question Answering 2.17x 2.11x 1.66x 1.07x 1.53x 1.61x 1.16x 2.23x

Mathematical Reasoning 2.99x 2.71x 2.07x 1.55x 1.69x 1.30x 1.54x 3.45x

Retrieval Augmented Generation 2.27x 2.06x 1.62x 1.45x 1.68x 1.61x 1.15x 2.83x

outperform all baselines in terms of wall-time434

speedups. The mean number of accepted tokens of435

our approach is comparable to those of Eagle, Hy-436

dra, and 2-Model SD as shown in Table 6. Notably,437

unlike these baselines, our method generates tokens438

in a non-autoregressive (NAR) manner, avoiding439

the additional overhead associated with autoregres-440

sive (AR) speculative token generation, leading to441

higher speedups. In Appendix N, we conduct a442

comprehensive analysis comparing AR-based spec-443

ulation with a draft model to NAR-based specu-444

lation using our SS framework. Furthermore, our445

method achieves significantly higher mean number446

of accepted tokens compared to Medusa, another447

approach employing non-autoregressive specula-448

tive drafts. In Section 3.2, we provide empirical449

insights into the superior speedups and generation450

metrics achieved by our approach. Finally, our451

method incurs significantly lower memory access452

and computational overhead (see Figure 8 and Fig-453

ure 9), underscoring its efficiency, scalability, and454

deployment advantages.455

Generalizability on SpecBench We integrate456

lossless speculative streaming with SpecBench457

to assess generalizability across diverse language458

tasks. Our evaluation focuses on the lossless vari-459

ant, as SpecBench is specifically designed for460

benchmarking lossless speculative decoding meth-461

ods. As shown in Table 2, results demonstrate462

Figure 4: Generation quality of the Phi-3 model when
trained to attend to γ ground truth tokens beyond the
immediate next token during prediction. Incorporating
future ground truth tokens into the attention mechanism
leads to substantial improvements in generation quality.

consistent acceleration across all evaluated tasks 463

and model scales. Notably, Mathematical Reason- 464

ing task shows the highest speedup factors, reach- 465

ing 3.45x for Vicuna-33B, followed by Retrieval 466

Augmented Generation task at 2.83x. These im- 467

provements consistently surpass existing methods 468

across all task categories. The performance scales 469

effectively with model size, as evidenced by the 470

progression from Vicuna-7B to Vicuna-33B, where 471

larger models demonstrate enhanced speedups. 472

7

Figure 5: Cosine similarity between speculative resid-
ual states and residual state of ground truth tokens with
Speculative Streaming and Medusa. As the streams
propagate through the model, their representations be-
come increasingly aligned with the ground-truth tokens
in contrast to Medusa.

3.2 Why Does It Work?473

To deconstruct the empirical effectiveness of474

Shared Speculative Streaming (SS), we analyze475

how its architectural design influences both genera-476

tion quality and decoding efficiency. We begin by477

isolating the effect of speculative access to future478

context on next-token prediction.479

Generation Metrics: We designed an experi-480

ment where the base model predicts the next token481

while attending to a set of future γ ground truth482

tokens beyond the next token. Our hypothesis was483

that by granting the model access to these future484

tokens, the attention mechanism would enhance485

its ability to anticipate and plan for the next token,486

thus improving generation quality. Specifically, we487

postulated that:488

p(yt = gt|y<t, yt+1..t+γ , x) > p(yt = gt|y<t, x)
(7)489

Here, gt represents the ideal ground truth to-490

ken that maximizes the generation quality metrics.491

To validate this hypothesis, we modified the atten-492

tion mask, allowing the model’s residual states to493

"peek" into future residuals. As shown in Figure 4,494

this modification led to significant improvements495

in generation metrics.496

While such access to future tokens is not feasi-497

ble during inference, where future states are un-498

available, our approach enables the model to ap-499

proximate future residual states using speculative500

streams. As demonstrated in Figure 5, these spec-501

ulative streams, Stj , progressively align with the502

true residual states of the next tokens as they prop- 503

agate through the model layers. Since the shared 504

version of our method allows the primary stream, 505

Mt, to attend not only to the current context up to 506

token yt but also to the speculative streams Stj , this 507

multi-stream attention mechanism refines the trans- 508

formations within Mt, aligning them more closely 509

with the context of the upcoming γ tokens. As a re- 510

sult, the model effectively "plans" for future tokens, 511

leading to improvements in generation quality. 512

Speedup: Approaches such as Medusa generate 513

the hidden states of speculative tokens y(t+1...t+γ) 514

by applying a simple context independent transfor- 515

mation to the last hidden state of the current token 516

yt. However, this method has significant limita- 517

tions. The absence of attention mechanisms results 518

in lower similarity metrics between the speculative 519

hidden states generated by Medusa and the true 520

hidden states, which are obtained by feeding the 521

actual next token into the model (see Figure 5). In 522

contrast, our proposed technique leverages multi- 523

stream attention, wherein speculative streams are 524

allowed to attend to each other as well as to the 525

main stream. As these streams propagate through 526

the model layers, they more closely approximate 527

the true hidden states of the actual next tokens, re- 528

sulting in higher similarity, thereby increasing the 529

acceptance rate of the speculated tokens. 530

For a detailed analysis of the training dynam- 531

ics underlying these effects, including backward 532

gradient propagation through speculative paths and 533

implicit self-distillation enabled by multi-stream 534

attention, we refer the reader to the extended dis- 535

cussion in Appendix B. 536

4 Conclusion 537

We present Speculative Streaming, a novel specu- 538

lative decoding method leveraging multi-stream 539

attention to approximate future residual states. 540

Through rigorous evaluation across diverse bench- 541

marks, we show that Speculative Streaming consis- 542

tently delivers 2–3.5× speedup while retaining flex- 543

ibility to operate in both lossless and shared modes. 544

Moreover, it is highly parameter-efficient, reduc- 545

ing memory access overhead by orders of magni- 546

tude relative to prior methods while maintaining or 547

surpassing downstream task performance. Its ar- 548

chitectural simplicity, scalability, and effectiveness 549

make it well-suited for deployment in resource- 550

constrained environments, advancing the frontier 551

of speculative decoding techniques. 552

8

5 Limitations553

Speculative streaming is primarily designed to ac-554

celerate decoding on resource-constrained devices555

with high arithmetic intensity. Although most556

mainstream neural accelerators (on both edge and557

servers) follow this trend of having orders of mag-558

nitude more compute available relative to their559

memory bandwidth, in rare cases where available560

FLOPs/memory bandwidth ratio is significantly561

low, speculative streaming may not be optimal and562

optimizations that reduce compute such as early ex-563

iting (Schuster et al., 2022), skip decoding (Corro564

et al., 2023), Mixture of Depths (Raposo et al.,565

2024) could be a better choice.566

Although speculative streaming is considerably567

more parameter-efficient than other approaches, it568

does introduce a small number of additional pa-569

rameters, as detailed in Table 3. To mitigate this570

overhead, we explored an alternative approach that571

leverages rotating value projections to differentiate572

stream computation (see Appendix E.4). However,573

this method led to some degradation in fine-tuning574

performance compared to using dedicated stream575

embeddings, as shown in Figure 12a. Further in-576

vestigation is needed to refine this technique or577

develop alternative solutions that completely elimi-578

nate the parameter overhead while preserving per-579

formance.580

9

References581

Marah Abdin et al. 2024. Phi-3 technical report: A582
highly capable language model locally on your phone.583
Preprint, arXiv:2404.14219.584

Megha Agarwal, Asfandyar Qureshi, Nikhil Sardana,585
Linden Li, Julian Quevedo, and Daya Khudia. 2023a.586
Llm inference performance engineering: Best prac-587
tices.588

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk,589
Sabela Ramos, Matthieu Geist, and Olivier Bachem.590
2023b. Gkd: Generalized knowledge distillation591
for auto-regressive sequence models. arXiv preprint592
arXiv:2306.13649.593

Zachary Ankner, Rishab Parthasarathy, Aniruddha594
Nrusimha, Christopher Rinard, Jonathan Ragan-595
Kelley, and William Brandon. 2024. Hydra:596
Sequentially-dependent draft heads for medusa de-597
coding.598

Anonymous. 2024. Faster speculative decoding via599
effective draft decoder with pruned candidate tree.600
arXiv preprint under ACL ARR 2024. ACL ARR601
2024 December Submission 676.602

Apple. n.d. Use writing tools on your mac. Accessed:603
2025-02-09.604

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,605
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao606
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,607
and Juanzi Li. 2023. Longbench: A bilingual, mul-608
titask benchmark for long context understanding.609
arXiv preprint arXiv:2308.14508.610

Nikhil Bhendawade, Mahyar Najibi, Devang Naik, and611
Irina Belousova. 2025. M2r2: Mixture of multi-rate612
residuals for efficient transformer inference. arXiv613
preprint arXiv:2502.02040.614

Tom Brown, Benjamin Mann, Nick Ryder, Melanie615
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind616
Neelakantan, Pranav Shyam, Girish Sastry, Amanda617
Askell, et al. 2020. Language models are few-shot618
learners. Advances in neural information processing619
systems, 33:1877–1901.620

F Warren Burton. 1985. Speculative computation, par-621
allelism, and functional programming. IEEE Trans-622
actions on Computers, 100(12):1190–1193.623

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,624
and Tri Dao. 2023. Medusa: Simple framework for625
accelerating llm generation with multiple decoding626
heads. https://github.com/FasterDecoding/627
Medusa.628

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,629
Jean-Baptiste Lespiau, Laurent Sifre, and John630
Jumper. 2023. Accelerating large language model631
decoding with speculative sampling. arXiv preprint632
arXiv:2302.01318.633

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. 634
2021. DialogSum: A real-life scenario dialogue sum- 635
marization dataset. In Findings of the Association 636
for Computational Linguistics: ACL-IJCNLP 2021, 637
pages 5062–5074, Online. Association for Computa- 638
tional Linguistics. 639

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 640
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 641
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 642
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 643
source chatbot impressing gpt-4 with 90%* chatgpt 644
quality. 645

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 646
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 647
Barham, Hyung Won Chung, Charles Sutton, Sebas- 648
tian Gehrmann, et al. 2023. Palm: Scaling language 649
modeling with pathways. Journal of Machine Learn- 650
ing Research, 24(240):1–113. 651

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, 652
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli 653
Goharian. 2018. A discourse-aware attention model 654
for abstractive summarization of long documents. In 655
Proceedings of the 2018 Conference of the North 656
American Chapter of the Association for Computa- 657
tional Linguistics: Human Language Technologies, 658
Volume 2 (Short Papers), pages 615–621, New Or- 659
leans, Louisiana. Association for Computational Lin- 660
guistics. 661

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, 662
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher- 663
jee. 2023. Skipdecode: Autoregressive skip decoding 664
with batching and caching for efficient llm inference. 665
arXiv preprint arXiv:2307.02628v1. 666

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and 667
Li Yuan. 2023. ChatLaw: Open-source legal large 668
language model with integrated external knowledge 669
bases. arXiv preprint arXiv:2306.16092. 670

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke 671
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multi- 672
plication for transformers at scale. arXiv preprint 673
arXiv:2208.07339. 674

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, 675
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, 676
Alexander Borzunov, Torsten Hoefler, and Dan Al- 677
istarh. 2023. Spqr: A sparse-quantized representa- 678
tion for near-lossless llm weight compression. arXiv 679
preprint arXiv:2306.03078. 680

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. 681
2020. Evaluating the State-of-the-Art of End-to-End 682
Natural Language Generation: The E2E NLG Chal- 683
lenge. Computer Speech & Language, 59:123–156. 684

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 685
sive language models can be accurately pruned in 686
one-shot. In International Conference on Machine 687
Learning, pages 10323–10337. PMLR. 688

10

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://openreview.net/forum?id=acl-676
https://openreview.net/forum?id=acl-676
https://openreview.net/forum?id=acl-676
https://support.apple.com/guide/mac-help/use-writing-tools-mchldcd6c260/mac
https://doi.org/10.48550/arXiv.2502.02040
https://doi.org/10.48550/arXiv.2502.02040
https://doi.org/10.48550/arXiv.2502.02040
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and689
Dan Alistarh. 2022. Gptq: Accurate post-training690
quantization for generative pre-trained transformers.691
arXiv preprint arXiv:2210.17323.692

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.693
2023. Breaking the sequential dependency of llm694
inference using lookahead decoding.695

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.696
2023. Knowledge distillation of large language mod-697
els. arXiv preprint arXiv:2306.08543.698

Tom Gunter, Zirui Wang, Chong Wang, Ruoming699
Pang, Andy Narayanan, Aonan Zhang, Bowen Zhang,700
Chen Chen, Chung-Cheng Chiu, David Qiu, Deepak701
Gopinath, Dian Ang Yap, Dong Yin, Feng Nan, Floris702
Weers, Guoli Yin, Haoshuo Huang, Jianyu Wang,703
Jiarui Lu, John Peebles, Ke Ye, Mark Lee, Nan Du,704
Qibin Chen, Quentin Keunebroek, Sam Wiseman,705
Syd Evans, Tao Lei, Vivek Rathod, Xiang Kong, Xi-706
anzhi Du, Yanghao Li, Yongqiang Wang, Yuan Gao,707
Zaid Ahmed, Zhaoyang Xu, Zhiyun Lu, Al Rashid,708
Albin Madappally Jose, Alec Doane, Alfredo Ben-709
como, Allison Vanderby, Andrew Hansen, Ankur710
Jain, Anupama Mann, Areeba Kamal, Bugu Wu, Car-711
olina Brum, Charlie Maalouf, Chinguun Erdenebi-712
leg, Chris Dulhanty, Dominik Moritz, Doug Kang,713
Eduardo Jimenez, Evan Ladd, Fangping Shi, Felix714
Bai, Frank Chu, Fred Hohman, Hadas Kotek, Han-715
nah Gillis Coleman, Jane Li, Jeffrey Bigham, Jef-716
fery Cao, Jeff Lai, Jessica Cheung, Jiulong Shan,717
Joe Zhou, John Li, Jun Qin, Karanjeet Singh, Karla718
Vega, Kelvin Zou, Laura Heckman, Lauren Gardiner,719
Margit Bowler, Maria Cordell, Meng Cao, Nicole720
Hay, Nilesh Shahdadpuri, Otto Godwin, Pranay721
Dighe, Pushyami Rachapudi, Ramsey Tantawi, Ro-722
man Frigg, Sam Davarnia, Sanskruti Shah, Saptarshi723
Guha, Sasha Sirovica, Shen Ma, Shuang Ma, Simon724
Wang, Sulgi Kim, Suma Jayaram, Vaishaal Shankar,725
Varsha Paidi, Vivek Kumar, Xin Wang, Xin Zheng,726
Walker Cheng, Yael Shrager, Yang Ye, Yasu Tanaka,727
Yihao Guo, Yunsong Meng, Zhao Tang Luo, Zhi728
Ouyang, Alp Aygar, Alvin Wan, Andrew Walking-729
shaw, Andy Narayanan, Antonie Lin, Arsalan Fa-730
rooq, Brent Ramerth, Colorado Reed, Chris Bartels,731
Chris Chaney, David Riazati, Eric Liang, Erin Feld-732
man, Gabriel Hochstrasser, Guillaume Seguin, Irina733
Belousova, Joris Pelemans, Karen Yang, Keivan Al-734
izadeh, Liangliang Cao, Mahyar Najibi, Marco Zu-735
liani, Max Horton, Minsik Cho, Nikhil Bhendawade,736
Patrick Dong, Piotr Maj, Pulkit Agrawal, Qi Shan,737
Qichen Fu, Regan Poston, Sam Xu, Shuangning Liu,738
Sushma Rao, Tashweena Heeramun, Thomas Merth,739
Uday Rayala, Victor Cui, Vivek Rangarajan Srid-740
har, Wencong Zhang, Wenqi Zhang, Wentao Wu,741
Xingyu Zhou, Xinwen Liu, Yang Zhao, Yin Xia,742
Zhile Ren, and Zhongzheng Ren. 2024. Apple intel-743
ligence foundation language models. arXiv preprint744
arXiv:2407.21075.745

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and746
Di He. 2024. REST: Retrieval-based speculative de-747
coding. In Proceedings of the 2024 Conference of748
the North American Chapter of the Association for749

Computational Linguistics: Human Language Tech- 750
nologies (Volume 1: Long Papers), pages 1582–1595, 751
Mexico City, Mexico. Association for Computational 752
Linguistics. 753

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 754
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 755
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 756
large language models. In International Conference 757
on Learning Representations. 758

Albert Q. Jiang et al. 2023. Mistral 7b. Preprint, 759
arXiv:2310.06825. 760

Norman P Jouppi et al. 2021. Ten lessons from 761
three generations shaped google’s tpuv4i. In 2021 762
ACM/IEEE 48th Annual International Symposium on 763
Computer Architecture (ISCA). IEEE. 764

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 765
Brown, Benjamin Chess, Rewon Child, Scott Gray, 766
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 767
Scaling laws for neural language models. arXiv 768
preprint arXiv:2001.08361. 769

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 770
2023. Fast inference from transformers via spec- 771
ulative decoding. In International Conference on 772
Machine Learning, pages 19274–19286. PMLR. 773

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 774
Zhang. 2024. Eagle: Speculative sampling requires 775
rethinking feature uncertainty. 776

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 777
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom- 778
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and 779
Zhihao Jia. 2023. Specinfer: Accelerating generative 780
llm serving with speculative inference and token tree 781
verification. arXiv preprint arXiv:2305.09781. 782

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan 783
Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou. 784
2020. Prophetnet: Predicting future n-gram for 785
sequence-to-sequence pre-training. arXiv preprint 786
arXiv:2001.04063. 787

David Raposo, Sam Ritter, Blake Richards, Timothy 788
Lillicrap, Peter Conway Humphreys, and Adam San- 789
toro. 2024. Mixture-of-depths: Dynamically allocat- 790
ing compute in transformer-based language models. 791
arXiv preprint arXiv:2404.02258. 792

Apoorv Saxena. 2023. Prompt lookup decoding. 793

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, 794
Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald Met- 795
zler. 2022. Confident adaptive language modeling. 796
arXiv preprint arXiv:2207.07061. 797

Benjamin Spector and Chris Re. 2023. Accelerating llm 798
inference with staged speculative decoding. arXiv 799
preprint arXiv:2308.04623. 800

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 801
2018. Blockwise parallel decoding for deep autore- 802
gressive models. Advances in Neural Information 803
Processing Systems, 31. 804

11

https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://doi.org/10.48550/arXiv.2407.21075
https://doi.org/10.48550/arXiv.2407.21075
https://doi.org/10.48550/arXiv.2407.21075
https://doi.org/10.18653/v1/2024.naacl-long.88
https://doi.org/10.18653/v1/2024.naacl-long.88
https://doi.org/10.18653/v1/2024.naacl-long.88
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://doi.org/10.48550/arXiv.2404.02258
https://doi.org/10.48550/arXiv.2404.02258
https://doi.org/10.48550/arXiv.2404.02258
https://github.com/apoorvumang/prompt-lookup-decoding/

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico805
Kolter. 2023a. A simple and effective pruning ap-806
proach for large language models. arXiv preprint807
arXiv:2306.11695.808

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah-809
mad Beirami, Himanshu Jain, and Felix Yu. 2023b.810
Spectr: Fast speculative decoding via optimal trans-811
port. arXiv preprint arXiv:2310.15141.812

Yi Tay, Dara Bahri, Donald Metzler, et al. 2022. Scale813
efficiently: Insights from training and scaling large814
language models. arXiv preprint arXiv:2210.03863.815

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam816
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,817
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.818
2022. Lamda: Language models for dialog applica-819
tions. arXiv preprint arXiv:2201.08239.820

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier821
Martinet, Marie-Anne Lachaux, Timothée Lacroix,822
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal823
Azhar, et al. 2023a. Llama: Open and effi-824
cient foundation language models. arXiv preprint825
arXiv:2302.13971.826

Hugo Touvron et al. 2023b. Llama 2: Open foun-827
dation and fine-tuned chat models. Preprint,828
arXiv:2307.09288.829

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob830
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz831
Kaiser, and Illia Polosukhin. 2017. Attention is all832
you need. Advances in neural information processing833
systems, 30.834

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,835
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-836
badur, David Rosenberg, and Gideon Mann. 2023.837
BloombergGPT: A large language model for finance.838
arXiv preprint arXiv:2303.17564.839

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,840
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-841
fang Sui. 2024. Unlocking efficiency in large lan-842
guage model inference: A comprehensive survey of843
speculative decoding. In Findings of the Associa-844
tion for Computational Linguistics ACL 2024, pages845
7655–7671, Bangkok, Thailand and virtual meeting.846
Association for Computational Linguistics.847

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-848
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.849
Xlnet: Generalized autoregressive pretraining for lan-850
guage understanding. Advances in neural informa-851
tion processing systems, 32.852

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,853
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.854
Zeroquant: Efficient and affordable post-training855
quantization for large-scale transformers. Advances856
in Neural Information Processing Systems, 35:27168–857
27183.858

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xi- 859
aotian Yu, and Rong Xiao. 2024. Generation meets 860
verification: Accelerating large language model infer- 861
ence with smart parallel auto-correct decoding. arXiv 862
preprint arXiv:2402.11809. 863

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 864
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 865
ing Yao, Shanelle Roman, et al. 2018. Spider: A 866
large-scale human-labeled dataset for complex and 867
cross-domain semantic parsing and text-to-sql task. 868
arXiv preprint arXiv:1809.08887. 869

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 870
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 871
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 872
Opt: Open pre-trained transformer language models. 873
arXiv preprint arXiv:2205.01068. 874

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 875
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 876
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, 877
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg- 878
ing llm-as-a-judge with mt-bench and chatbot arena. 879
Preprint, arXiv:2306.05685. 880

Victor Zhong, Caiming Xiong, and Richard Socher. 881
2017a. Seq2sql: Generating structured queries 882
from natural language using reinforcement learning. 883
CoRR, abs/1709.00103. 884

Victor Zhong, Caiming Xiong, and Richard Socher. 885
2017b. Seq2sql: Generating structured queries from 886
natural language using reinforcement learning. arXiv 887
preprint arXiv:1709.00103. 888

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, 889
Aditya Krishna Menon, Afshin Rostamizadeh, San- 890
jiv Kumar, Jean-François Kagy, and Rishabh Agar- 891
wal. 2023. Distillspec: Improving speculative de- 892
coding via knowledge distillation. arXiv preprint 893
arXiv:2310.08461. 894

12

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.48550/arXiv.2402.11809
https://doi.org/10.48550/arXiv.2402.11809
https://doi.org/10.48550/arXiv.2402.11809
https://doi.org/10.48550/arXiv.2402.11809
https://doi.org/10.48550/arXiv.2402.11809
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Application Specific Evaluation895

On-device AI assistants require models that can ef-896

ficiently generalize across downstream applications897

while operating under strict latency constraints.898

A common deployment paradigm involves fine-899

tuning base models for specific applications using900

parameter-efficient adaptation techniques such as901

LoRA (Hu et al., 2022; Tay et al., 2022). In con-902

trast to conventional next-token prediction-based903

fine-tuning, we introduce a speculative fine-tuning904

objective for n-gram prediction, as detailed in Sec-905

tion 2.4, and fine-tune the shared adapters and906

stream embeddings for each downstream applica-907

tion (see Figure 2b).908

Table 3 demonstrates the performance of Shared909

Speculative Streaming in comparison to existing910

methods. Our baselines include standard next-911

token prediction fine-tuning with LoRa adapters912

and inference with autoregressive decoding, as913

well as fine-tuned models paired with fine-tuned914

Medusa and Eagle speculative decoding heads on915

each application. Our evaluation metrics include916

wall-time speedup, mean accepted tokens, gener-917

ation quality and additional parameter overhead.918

The results show that SS consistently achieves bet-919

ter acceptance rates and speedups while maintain-920

ing significantly lower parameter overhead com-921

pared to alternative approaches. Our method also922

demonstrates better wall-time latencies than tradi-923

tional draft-target speculative decoding approach924

deployed on each downstream application as shown925

in Table 5. Notably, SS not only accelerates in-926

ference but also enhances generation quality com-927

pared to conventional next-token prediction fine-928

tuning. This positions our method as a compelling929

alternative to existing LoRA-based fine-tuning ap-930

proaches employing a dedicated draft model or931

trained heads per application, offering both im-932

proved performance and reduced parameter over-933

head in speculative decoding settings. For detailed934

analysis of the draft-model based speculative de-935

coding, we refer readers to Appendix N.936

Although the parameter overhead of methods937

like Medusa may seem minimal relative to the base938

model size, it becomes increasingly significant as939

the number of downstream applications scales, es-940

pecially in resource-constrained settings. We fur-941

ther discuss the importance of parameter efficiency942

in Appendix C.943

B Learning Dynamics 944

In this section, we provide additional insights to 945

complement the analysis in Section 3.2 and further 946

elucidate why shared speculative streaming leads 947

to improvements in both generation quality and 948

decoding efficiency. 949

Gradient Flow Across Time. During training, 950

speculative streams form a differentiable path 951

through future residual approximations. This en- 952

ables gradients from future tokens to influence ear- 953

lier computations, which is not possible in standard 954

autoregressive training. As the model learns to 955

align speculative states with true future residuals, 956

it benefits from temporally richer learning signals. 957

This backward flow from speculative futures helps 958

optimize the transformations in earlier layers to be 959

more consistent with likely trajectories, improving 960

token acceptance during inference. As shown in 961

Figure 6, speculative supervision introduces gradi- 962

ent signals across early and mid-level layers sug- 963

gesting that future-token losses influence earlier 964

computations through the speculative paths. 965

Self-Distillation via Multi-Stream Attention. 966

The multi-stream attention pattern in speculative 967

streaming can be viewed as a form of internal self- 968

distillation. Rather than relying solely on the cur- 969

rent token’s hidden state, the model integrates infor- 970

mation across speculative futures through attention. 971

This process resembles ensembling over short fu- 972

ture rollouts, effectively consolidating predictive 973

signals from multiple plausible paths. It leads to 974

more stable and informed token decisions, espe- 975

cially under uncertain contexts. Figure 7 illustrates 976

how multi-stream attention in speculative stream- 977

ing resolves ambiguity in selecting a paralleliza- 978

tion strategy by integrating contextual signals from 979

near-future tokens. 980

Temporal Redundancy and Predictive Consis- 981

tency. Natural language exhibits temporal re- 982

dundancy: future tokens often confirm or disam- 983

biguate earlier ones. Speculative streaming lever- 984

ages this redundancy by learning a residual trans- 985

formation space where future tokens can be antici- 986

pated and approximated. This structure allows the 987

model to reduce the mismatch between training and 988

inference-time dynamics, improving the predictive 989

consistency of the decoding trajectory. 990

991

13

Table 3: Comparison of wall-time speedup, mean accepted tokens, and parameter overhead across models of
varying scales fine-tuned on downstream tasks. The mean accepted tokens metric serves as an accelerator-agnostic
measure of speedup, representing the average number of accepted tokens per forward pass. Task-specific evaluation
includes exact match accuracy for SqlCreateContext and ROUGE scores for DialogSum and E2E-NLG. The baseline
corresponds to standard next-token prediction-based fine-tuning with LoRa adapters, whereas SS-Shared denotes
speculative fine-tuning with shared adapters and embeddings, as detailed in Section 2.4 and Figure 2b. Notably,
Medusa and Eagle heads are trained independently of the base model for each application, following (Cai et al.,
2023; Li et al., 2024), resulting in identical downstream metrics to the baseline. In contrast, SS-shared jointly
optimizes adapters for both next-token and future-token predictions, yielding improved downstream generation
quality. Parameter overhead is reported relative to the baseline adapter overhead.

Dataset Model Method SpeedUp (↑) Mean Accepted Tokens (↑) Metric (↑) # Extra Parameters (↓)

SqlCreateContext

Mistral-Instruct-7B

Baseline 1.00 1.00 84.16 −
Medusa 2.74 3.16 84.16 5.9E8
Eagle 2.75 3.58 84.16 2.4E8

SS-Shared 2.93 3.67 84.50 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 80.92 −
Medusa 2.51 2.79 80.92 4.3E8
Eagle 2.62 3.37 80.92 1.3E8

SS-Shared 2.92 3.65 84.10 6.1E4

Llama2-7b

Baseline 1.00 1.00 85.37 −
Medusa 2.46 2.97 85.37 5.9E8
Eagle 2.59 3.31 85.37 2.4E8

SS-Shared 2.81 3.57 85.93 8.2E4

DialogSum

Mistral-Instruct-7B

Baseline 1.00 1.00 44.74/36.76 −
Medusa 1.84 2.06 44.74/36.76 5.9E8
Eagle 1.95 2.56 44.74/36.76 2.4E8

SS-Shared 2.04 2.96 44.89/37.09 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 46.08/38.28 −
Medusa 2.14 2.18 46.08/38.28 4.3E8
Eagle 2.05 2.31 46.08/38.28 1.3E8

SS-Shared 2.32 2.85 46.30/38.32 6.1E4

Llama2-7b

Baseline 1.00 1.00 44.90/37.0 −
Medusa 1.80 2.03 44.90/37.0 5.9E8
Eagle 1.86 2.57 44.90/37.0 2.4E8

SS-Shared 1.90 3.05 45.0/37.85 8.2E4

E2E-NLG

Mistral-Instruct-7B

Baseline 1.00 1.00 67.82/49.0 −
Medusa 2.74 3.16 67.82/49.0 5.9E8
Eagle 2.85 3.52 67.82/49.0 2.4E8

SS-Shared 2.93 3.67 68.37/49.09 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 68.72/49.31 −
Medusa 2.35 2.61 68.72/49.31 4.3E8
Eagle 2.42 2.76 68.72/49.31 1.3E8

SS-Shared 2.36 2.72 69.38/50.22 6.1E4

Llama2-7b

Baseline 1.00 1.00 69.47/49.54 −
Medusa 2.80 3.18 69.47/49.54 5.9E8
Eagle 2.79 3.26 69.47/49.54 2.4E8

SS-Shared 2.89 3.38 69.52/49.93 8.2E4

C Importance of Parameter Efficiency992

In production AI systems, such as Apple Intelli-993

gence (Gunter et al., 2024), BloombergGPT (Wu994

et al., 2023), ChatLaw (Cui et al., 2023), LoRA995

adapters are employed to fine-tune a shared base996

model across multiple downstream applications. In997

such systems, a dedicated draft model or Medusa998

heads are typically required for each downstream999

application to obtain high acceptance rates, result-1000

ing in substantial cumulative memory overhead.1001

For instance, using Medusa heads with a Llama-2-1002

7B model, which requires approximately 7.2 GB in1003

8-bit precision, introduces an overhead of 5.9×1081004

parameters per application, as shown in Table 3,1005

amounting to 1.2 GB in 16-bit precision. When1006

scaled to 10 applications, the cumulative overhead1007

reaches 11.8 GB since each application requires in- 1008

dependent heads. This surpasses the base model’s 1009

footprint, making deployment extremely difficult 1010

in resource-constrained environments. Notably, the 1011

number of downstream applications can far exceed 1012

10; for example, Apple Intelligence encompasses 1013

a suite of writing tools (Apple, n.d.), each necessi- 1014

tating dedicated adapters. In contrast, Speculative 1015

Streaming significantly reduces this overhead to 1016

just 8.2× 104 parameters per application, enabling 1017

scalable and efficient multi-application deployment 1018

on consumer devices. 1019

D Related Works 1020

The inference speed of large language models 1021

(LLMs) is often constrained by the sequential na- 1022

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layers

str
ea

m0

str
ea

m1

str
ea

m2

str
ea

m3

Gr
ad

ie
nt

s
Gradient Norms of MLP layers

1

2

3

4

5

6

Gr
ad

ie
nt

 N
or

m

(a) Start of training (Step 0).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layers

str
ea

m0

str
ea

m1

str
ea

m2

str
ea

m3

Gr
ad

ie
nt

s

Gradient Norms of MLP layers

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Gr
ad

ie
nt

 N
or

m

(b) Mid-training (Step 5000).

Figure 6: We visualize gradient norms across MLP
layers due to speculative stream losses at the start of
training and at step 5000. Early in training, speculative
supervision injects strong gradients not only in later
layers but also in early and mid-level MLP blocks, in-
dicating that future-token predictions influence earlier
computations via differentiable speculative paths. As
training progresses, gradients become more structured
and selective.

ture of auto-regressive decoding, which requires1023

a complete forward pass of the network for each1024

token generated. To mitigate the high inference1025

latency, various strategies have been proposed to1026

reduce the memory footprint of LLMs. Techniques1027

such as model quantization (Frantar et al., 2022;1028

Yao et al., 2022; Dettmers et al., 2023), knowl-1029

edge distillation to smaller models (Gu et al., 2023;1030

Agarwal et al., 2023b), and pruning (Frantar and1031

Alistarh, 2023; Sun et al., 2023a) have emerged as1032

effective solutions. More recently, Confident Adap-1033

tive Language Modeling (CALM) (Schuster et al.,1034

2022) has introduced a method to dynamically ad-1035

just computational resources per token through1036

early exiting in decoder layers. While CALM1037

shows promise, it is hindered by issues related to1038

key-value (KV) mismatch (Corro et al., 2023). To1039

address the KV mismatch problem, skip decoding1040

(Corro et al., 2023) allows for the bypassing of an1041

increasing number of layers based on the position1042

in the decoded sequence. While this approach elim-1043

inates KV mismatch, the predefined restrictions on1044

def main():

 directory = input("Enter the directory path: ")

 files = get_files_in_directory(directory)

 word_counts = Counter()

 with Pool() as pool:

 results = pool.map(process_file, files)

 for result in results:

 word_counts += result

 top_5_words = word_counts.most_common(5)

 print("Top 5 words with the most number of occurrences:")

 for word, count in top_5_words:

 print(f"{word}: {count}")

(a) Output from the auto-regressive (AR) model.
def main():

 directory = input("Enter the directory path: ")

 files = get_files_in_directory(directory)

 word_counts = Counter()

 with ThreadPoolExecutor() as executor:

 future_word_counts = {executor.submit(process_file, file): file for file in files}

 for future in concurrent.futures.as_completed(future_word_counts):

 word_counts += future.result()

 top_5_words = word_counts.most_common(5)

 print("Top 5 words with the most number of occurrences:")

 for word, count in top_5_words:

 print(f"{word}: {count}")

(b) Output from the speculative streaming (SS) model.

Figure 7: Speculative Streaming enables improved pre-
diction through access to future context. Illustrated is a
divergence point in decoding where both the AR and SS
models initially generate identical code. At the point of
selecting a parallelization strategy, the AR model pre-
dicts Pool, while the SS model, conditioned on upcom-
ing context related to thread-based execution, predicts
ThreadPoolExecutor. This example highlights how
speculative streaming can guide the model towards more
appropriate continuations by leveraging early glimpses
of future context.

the number of layers bypassed lead to suboptimal 1045

generation quality (Bhendawade et al., 2025). In 1046

contrast, speculative decoding methods provide a 1047

significant advantage over dynamic computing ap- 1048

proaches, as they maintain generation quality while 1049

enhancing inference efficiency. 1050

The original speculative decoding ap- 1051

proach (Chen et al., 2023; Leviathan et al., 1052

2023) utilizes a smaller draft model to generate 1053

a candidate sequence of tokens to be verified by 1054

the target model. Recent speculative decoding 1055

variants propose parallel computation along the 1056

batch axis (Sun et al., 2023b), and tree-structured 1057

batches (Miao et al., 2023; Spector and Re, 1058

2023) to improve the acceptance rates of the 1059

guessed tokens by the target model and to further 1060

boost the performance. However, these methods 1061

encounter a common limitation: the necessity 1062

of developing an accurate and independent draft 1063

model for each downstream application. First, 1064

training such a draft model aligned with the main 1065

model is not trivial (Zhou et al., 2023). Second, 1066

15

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

2-model SD Medusa Eagle SS

Parameter Overhead

Figure 8: Parameter/Memory access overhead of dif-
ferent lossless speculative decoding architectures with
Llama-13B.

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09
1.00E+10
1.00E+11
1.00E+12
1.00E+13

LookAhead
Decoding

2-model SD Medusa Eagle Naive-SS (No
optimization)

SS (with Flops
optimization)

Flops overhead

Figure 9: FLOP overhead of different lossless speculative
decoding architectures per speculative draft generation
with Llama-13B.

hosting two different models increases the system1067

complexity, and is more computationally and1068

operationally expensive to maintain as the number1069

of applications increases.1070

Recently, single-model speculative decoding1071

has gained attention. Inspired by (Qi et al.,1072

2020; Stern et al., 2018), Medusa (Cai et al.,1073

2023) extends the main model by training multi-1074

ple output heads to predict future tokens in par-1075

allel. While Medusa eliminates the need for a1076

separate draft model, each additional head intro-1077

duces significant parameter overhead, making de-1078

ployment challenging on resource-constrained de-1079

vices. Furthermore, since speculated tokens are1080

generated non-autoregressively, dependencies be-1081

tween them are not guaranteed, limiting practical1082

speedups (Ankner et al., 2024). Hydra (Ankner1083

et al., 2024) improves upon Medusa by incorporat-1084

ing an autoregressive draft head to enforce token1085

dependencies. However, the small draft head size1086

often leads to suboptimal speculation, and increas-1087

ing its size results in similar autoregressive latency1088

and parameter overhead issues similar to those ob-1089

served in (Leviathan et al., 2023; Zhou et al., 2023).1090

Eagle (Li et al., 2024) refines these approaches by 1091

integrating a dedicated speculation layer within the 1092

target model. While this eliminates the need for an 1093

external draft model, its reliance on an autoregres- 1094

sive draft generation constrains speedup gains, and 1095

the additional speculation layer increases parame- 1096

ter overhead. Lookahead decoding (Fu et al., 2023) 1097

proposes a parallel decoding strategy without intro- 1098

ducing new learnable parameters. While parameter 1099

efficiency is a key advantage, the non-learnable na- 1100

ture of the speculation process results in limited 1101

speedups. Prompt Lookup Decoding is another 1102

non-learnable strategy that circumvents additional 1103

model modifications by caching and retrieving to- 1104

ken sequences from precomputed prompt-based 1105

lookups. While computationally lightweight, it 1106

struggles with generalization beyond cached se- 1107

quences and suffers from increased retrieval latency 1108

when applied to long-tail distributions. SPACE (Yi 1109

et al., 2024) introduces structured speculative de- 1110

coding by dynamically pruning infeasible predic- 1111

tions using syntactic constraints. However, its re- 1112

liance on pre-specified constraints reduces flexibil- 1113

ity across diverse decoding tasks. REST (He et al., 1114

2024) employs reinforcement learning to optimize 1115

token speculation, but the additional training com- 1116

plexity and stability challenges hinder its practical 1117

adoption. 1118

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

W
al

lt
im

e
Sp

ee
du

p

k

Without Pruning With Pruning

Figure 10: As more tokens (k) are sampled for tree
drafting, speedup initially increases. This trend reverses
as k continues to increase as the model transits to the
compute-bound phase. Pruning less probable paths
helps reduce compute, offering more speedup.

E Ablation: 1119

E.1 Speculative Draft Size. 1120

To improve the acceptance rate of the tree draft, we 1121

try various settings of γ, the number of speculative 1122

positions, and k, the number of sampled tokens per 1123

speculative position. Figure 10 shows wall-time 1124

16

85

86

87

88

89

90

41

42

43

44

45

46

1 2 4 8 16

E
M

 A
cc

ur
ac

y

R
ou

ge
LS

um

Number of MSA layers

Dialogsum (RougeLSum) ContextSQL (EM Accuracy)

Figure 11: As the number of multi-stream attention
layers increases, metrics on downstream tasks improves.
Typically Ns = 2 to 8 yields a good trade-off between
generation metrics and FLOPs overhead.

speedup for γ = 3. As we sample more tokens1125

from each speculative position, advancement per1126

forward pass, β increases since more candidates are1127

available for verification, leading to more speedup.1128

However, as we continue to increase k, forward1129

pass latency overhead becomes more prevalent as1130

the model transitions into compute-bound phase,1131

ultimately reversing the speedup trend. This occurs1132

because naively forming a tree draft leads to an ex-1133

ponential increase in batch size with k as described1134

in 2.3. We insert a tree pruning layer to remove1135

less probable paths and reduce the size of the tree1136

draft. Pruning the tree draft reduces forward pass1137

latency, and a well calibrated threshold ensures that1138

only noisy paths in the tree get pruned. Tree prun-1139

ing helps with wall-time speedup as k continues to1140

increase as shown in Figure 10.1141

E.2 Number of MSA Layers1142

The number of MSA layers plays a crucial role1143

in balancing generation quality and computational1144

cost. Figure 11 presents the OPT-1.3B model’s1145

performance on Structured Query and Summariza-1146

tion tasks with increasing number of MSA layers.1147

While more MSA layers improves performance, the1148

additional FLOPs may outweigh the gains. Empiri-1149

cally, applying MSA to the top 2–8 layers achieves1150

an optimal trade-off. We use 4 MSA layers for all1151

experiments in Section 3.1152

E.3 Top-k Sampling1153

In the main paper, we reported speedup results us-1154

ing greedy sampling and T = 0. To further analyze1155

speedups in the Top-k sampling regime, we evalu-1156

ate various values of k and T = 1 for both Medusa1157

and Speculative Streaming approaches. Figure 121158

(b) shows the effect of increasing k on the walltime1159

speedups and call reduction ratios1. Although in- 1160

creasing k leads to lower wall-time speedups for 1161

both baseline and target methods due to stochastic 1162

rejection of tokens, our approach retains its lead 1163

achieving better call reduction ratios and walltime 1164

speedups across different values of k. 1165

E.4 Value Rotation 1166

We analyzed more ways of differing computation 1167

of main stream from speculative streams. Apart 1168

from using dedicated stream embeddings, one way 1169

to differentiate the computation while incorporat- 1170

ing a sense of relative position is simply rotating 1171

streams relative to each other. In this ablation, we 1172

initialize each stream with the main stream’s hidden 1173

state and rotate the value projection during atten- 1174

tion computation in the proportion of the relative 1175

distance from main stream as : 1176

V k
tn = V k

t e
iϵn (8) 1177

Where 1 <= n <= γ is stream index, V k
t de- 1178

notes value projection of main stream at time step 1179

t and layer k, while V k
tn denotes value projection 1180

of stream n, 0 ≤ ϵ ≤ π
2N denotes an arbitrary rota- 1181

tion step and N denotes the sum of maximum se- 1182

quence length and number of streams. Figure 12 (a) 1183

shows the effect of using value rotation on ROUGE 1184

scores on the Dialog Summarization task with the 1185

OPT-1.3B model. Downstream metric for value 1186

rotation-based approach tends to be lower than us- 1187

ing dedicated stream embeddings across different 1188

settings of MSA layers, however, the trend of in- 1189

creasing metric with added MSA layers remains 1190

the same. It is worth noting that for Ns = 16, 1191

simply rotating value projections achieves better 1192

metrics than using Ns = 4 with dedicated stream 1193

embeddings. 1194

E.5 Effect of Quantization 1195

To investigate the effects of quantization, we per- 1196

form experiments with 8-bit and 4-bit quantiza- 1197

tion using bitsandbytes (Dettmers et al., 2022) 1198

on the Text-to-SQL task (Zhong et al., 2017b) 1199

with Mistral-Instruct-7B. We compare the speedups 1200

achieved by speculative streaming (SS) to those of 1201

autoregressive decoding with baseline models em- 1202

ploying the same quantization. 1203

1The call reduction ratio represents the ratio of the num-
ber of ‘model.forward()‘ calls required for autoregressive
decoding to those required for speculative streaming. It is
equivalent to the average number of tokens generated per
‘model.forward()‘ call during target speculative streaming.

17

As demonstrated in Table 4, quantization alle-1204

viates memory bandwidth limitations inherent in1205

autoregressive decoding, resulting in a reduction1206

of speedup gains for speculative streaming com-1207

pared to the autoregressive baseline. Despite this,1208

SS still achieves a notable 2.7x speedup when us-1209

ing INT-4 quantization. Additionally, while some1210

degradation in exact match metrics is observed with1211

quantization, the speculative fine-tuning approach1212

outlined in Section 2.4 continues to outperform1213

next-token prediction-based fine-tuning in terms of1214

downstream task performance.1215

(a)

(b)

Figure 12: (a) We analyze the effect of value projection
rotation on ROUGELSum scores of the Dialog sum-
marization task using OPT-1.3B as the base model for
different numbers of MSA layers. Each stream is ro-
tated in proportion to the distance from the main stream.
(b) We study the effect of top-k sampling on wall-time
speedups and call reduction ratios (mean tokens gen-
earted per step) for Speculative Streaming (SS) and
Medusa-style approaches using OPT-1.3B as a base
model on the Meaning Representation task.

E.6 Breakdown of Speedup1216

Figure 13 presents an ablation of the primary1217

mechanisms contributing to the efficiency of Spec-1218

ulative Streaming (SS). The base chain configu-1219

ration leverages multi-stream attention between1220

Model Quantization Speedup Metric

Baseline

FP16 - 84.16

INT8 - 83.36

INT4 - 81.08

SS-Shared

FP16 2.92 84.50

INT8 2.84 83.89

INT4 2.68 82.11

Table 4: Impact of quantization on the performance of
Speculative Streaming

0

0.5

1

1.5

2

2.5

3

3.5

4

Vicuna 7B Vicuna 13B Vicuna 33B

Speedup Breakdown

chain tree decoding tree decoding + pruning

Figure 13: Ablation of effectiveness of Speculative
Streaming components across Vicuna model scales.
Chain denotes linear speculation via multi-stream atten-
tion as detailed in Section 2.1. Tree decoding enables
parallel verification across batch trajectories as detailed
in Section 2.2, while Tree pruning reduces redundant
target verifications as detailed in Section 2.3. Together,
these mechanisms compound to yield scalable speedup.

speculative and base streams, yielding substantial 1221

gains through linear speculative execution. Extend- 1222

ing this to tree-mode amortizes target verification 1223

across multiple divergent hypotheses in the batch, 1224

enabling more aggressive parallelism and improv- 1225

ing speedup. Finally, pruning introduces a low-cost 1226

early elimination of unlikely branches via early 1227

exiting, improving efficiency by reducing unneces- 1228

sary compute. 1229

F Acceptance Criteria 1230

We adopt the rejection sampling-based acceptance 1231

criterion proposed by (Chen et al., 2023) to miti- 1232

gate distributional shift between the draft and tar- 1233

get models. Specifically, we apply rejection sam- 1234

pling to select tokens from each path in the pruned 1235

tree (see Section 2.3), and the longest accepted 1236

path is used to advance decoding.To adhere to the 1237

principles of rejection sampling, we replace the 1238

draft model’s output distribution by introducing 1239

a virtual distribution, which leverages speculative 1240

streams. More concretely, we replace the draft dis- 1241

18

efficient compare exiting early exitingearly

Embedding

MHA Layers 0.. N - Ns

m0 m1 m2 m4 m5 m6m3

Tree pruning

m0 m1 m4m3

m0 m1 m4m3

s10

s11

s30

s31

s40

s41

s00

s01

MSA Layers N – Ns … N

LM Head

efficient speculative isexiting

fine, decoding

looking, tuning

parameter

parameter

efficient compare

early exiting early exiting

Parameter

efficient

early exiting
Early
Exit
Head

Z02 < threshZ01 > thresh

Z14 > threshZ13 > thresh

speculative

fine decoding

looking tuning looking tuning

parameter

efficient

Figure 14: Parallel tree draft speculation and verification: Tree draft from the previous iteration is flattened for
verification. After N − Ns MHA layers, the tree pruning procedure obviates less probable tokens based on
transition probability between parent and child tokens. In this illustration, “Zi” denotes normalized early exit logits
corresponding to main stream at index i, mi, while “Zij” denotes transition probability between token at index
i and j in flattened tree draft. The verification procedure is subsequently run on the pruned tree and speculative
tokens are sampled from streams corresponding to the latest accepted token. In the above illustration, “speculative”,
“fine, decoding” and “looking, tuning” are sampled from streams m1, s10 and s11.

tribution p(x | x1, . . . , xn+t−1) in Algorithm 2 of1242

(Chen et al., 2023) with an augmented distribution1243

q(x | x1, . . . , xn, sn0, . . . , sn(t−1)), where s repre-1244

sents the state from the prophet streams. Thus, our1245

acceptance criterion is formulated as follows:1246

r < min

(
1,

q(x | x1, . . . , xn+t−1)

q(x | x1, . . . , xn, sn0, . . . , sn(t−1))

)
,

(9)1247

where p and q represent the draft and target dis-1248

tributions from (Chen et al., 2023), r ∼ U [0, 1],1249

and 1 ≤ t ≤ γ.1250

G Implementation Details1251

G.1 Tree Draft Management1252

In this section, we go into more detail of tree draft1253

sampling, flattening, and pruning. As shown in1254

the main paper, when processing prompt (x1...xt),1255

we insert speculative streams along with the last1256

token to generate logits, zt corresponding to main1257

stream and (zt1...ztγ) corresponding to speculative1258

streams. Tree draft is sampled following the proce- 1259

dure described in Section 2.2. The sampled draft is 1260

then flattened along the sequence length dimension 1261

and the attention mask is composed such that child 1262

nodes attend to their predecessors starting with 1263

root as shown in Figure 14 and Figure 15. The 1264

root token of the tree draft is the correction issued 1265

by main stream. Each iteration after prompt pro- 1266

cessing involves verifying the previous tree draft 1267

and sampling a new one. After passing the tree 1268

draft through N − Ns layers, we use contextual 1269

features learned by middle layers to approximate 1270

transition probability between parent and child to- 1271

kens. As shown in Figure 14, since the transi- 1272

tion probability between token “parameter” and 1273

“compare” is less than a set threshold, we prune 1274

the sub-tree starting from “compare” in the fea- 1275

ture domain , and m2,m5,m6 are pruned. Notably, 1276

the key value cache of layers before the pruning 1277

layer is not trimmed at this point to keep pruning 1278

latency overhead minimal. Key value cache back- 1279

tracking is done lazily after each generation step. 1280

19

Parameter

efficient

compare

early

exiting

early

exiting

P
ar
am
et
er

ef
fic
ie
nt

co
m
pa
re

ea
rl
y

ex
it
in
g

ea
rl
y

ex
it
in
g

Figure 15: The attention mask for the tree draft is com-
posed in such a way that child tokens can attend to all
predecessors starting from the root, with the root being
the correction issued by the main stream. In this illus-
tration, “early” attends to “parameter” and “efficient”
and itself, as “parameter - efficient - early” forms one
path in the tree. “early” is also replicated to form an-
other path, “parameter - compare - early”. This attention
mask allows batching multiple paths and increases the
acceptance rate as the number of candidates increases.

Speculative streams are inserted alongside each1281

node in the pruned draft. Layers (N −Ns..N) use1282

multi-stream attention as described in Equation (3)1283

and Equation (2). The verification procedure finds1284

the longest matching path in the pruned tree that1285

main stream can accept. As shown in Figure 14,1286

path (“parameter”, “efficient”, “speculative”) is ac-1287

cepted. Correction token sampled from logits of1288

main stream corresponding to last accepted token,1289

m1 becomes new root while tokens sampled from1290

logits of streams (s10, s11) form the sub-tree.1291

1292

H FLOPs Optimization1293

Naively implemented, Speculative Streaming in-1294

curs higher FLOP overhead compared to Eagle. It1295

is worth noting that modern accelerators demon-1296

strate compute bandwidth that exceeds memory ac-1297

cess bandwidth by an order of magnitude or more1298

(Agarwal et al., 2023a; Jouppi et al., 2021), mean-1299

ing increased FLOPs do not necessarily translate to1300

increased decoding latency. Nevertheless, to ensure1301

fair comparison and efficiency in compute-bound1302

scenarios, we introduce targeted optimizations.1303

1304

H.1 Attention FLOPs Optimization1305

For medium-to-long context lengths, attention com-1306

putation dominates FLOPs in the self-attention1307

layer, surpassing the contribution from QKV pro-1308

jection layers. Specifically, matrix multiplications1309

involving queries, cached keys, and cached val-1310

ues scale with lkv × lq where lkv denotes previ- 1311

ous context length and lq denotes current query 1312

length. Since Speculative Streaming pairs spec- 1313

ulative streams with base streams, a naive imple- 1314

mentation results in more FLOPs compared to a 1315

standard attention layer. To address this, we limit 1316

the attention of speculative residual streams to se- 1317

lectively attend to the top p most relevant tokens 1318

identified by the base residual stream based on top 1319

attention coefficients2. This is possible since base 1320

and speculative residual streams are processed in 1321

same forward pass and speculative streams have ac- 1322

cess to attention coefficients of base stream. Note 1323

that, each of the speculative streams still retains the 1324

flexibility to assign distinct attention coefficients to 1325

these tokens, optimizing residual transformation at 1326

corresponding positions. 1327

1328

H.2 MLP FLOPs Optimization 1329

The stream adapters operating on the speculative 1330

residual stream are intentionally designed with 1331

lower rank to reduce FLOP overhead by a fac- 1332

tor proportional to h/Rs, where h denotes hidden 1333

size of base stream and Rs denotes rank of stream 1334

adapter. We set Rs = 8 to achieve good accep- 1335

tance rates while keeping FLOPs and parameter 1336

overhead minimal. 1337

These optimizations significantly reduce the 1338

FLOP overhead per speculative draft generation, 1339

as illustrated in Figure 9. We include these opti- 1340

mizations for all experiments involving Speculative 1341

Streaming, as detailed in Section 3. 1342

I Segment Attention 1343

Naive training with Speculative Streaming in- 1344

creases the batch dimension along the sequence 1345

length axis by a factor of γ, resulting in attention 1346

computation reaching peak memory usage with 1347

larger batches. To address this issue, we propose a 1348

segment-based attention method that significantly 1349

reduces peak memory consumption while enhanc- 1350

ing training throughput. We divide each training 1351

sample into a prompt and multiple segments of 1352

completion. Since each stream corresponding to 1353

each token must attend to the previous streams of 1354

the same token as well as to the prompt and previ- 1355

ous completion tokens, we can eliminate the need 1356

for prompt streams in our design. Furthermore, 1357

2We set to p = 64 and attend to top 64 tokens as identified
by the base residual stream.

20

Table 5: Mean walltime latency per sample and generation metrics comparison with standard draft-target (Two-
model) speculative decoding approach using OPT-125m as the draft model. Draft model is fine-tuned on each
application.

Dataset Target Method Target calls Draft Calls Walltime Latency (ms ↓) Metric (↑)

SqlContext
OPT-1.3b Two-model SD 6.59 22.35 269.24 84.98

SS-Shared 7.79 0 133.48 87.40

OPT-6.7b Two-model SD 6.60 22.41 301.10 89.13
SS-Shared 6.88 0 157.04 89.34

Dialogsum
OPT-1.3b Two-model SD 11.65 42.59 493.59 43.40/35.60

SS-Shared 13.41 0 248.26 44.07/35.99

OPT-6.7b Two-model SD 12.15 35.76 555.99 44.40/36.60
SS-Shared 14.45 0 444.67 44.42/36.81

E2E-NLG
OPT-1.3b Two-model SD 8.86 31.47 345.72 69.48/50.17

SS-Shared 9.80 0 164.23 69.32/50.51

OPT-6.7b Two-model SD 8.90 31.58 412.02 69.34/49.88
SS-Shared 10.31 0 244.80 69.45/49.78

by segmenting the completion, we retain only the1358

streams associated with the required segments in1359

memory, as illustrated in Figure 16. This design1360

significantly reduces peak memory consumption1361

and ensures the scalability of our approach when1362

training with larger batch sizes, ultimately yielding1363

improved throughput.1364

J Training cost1365

Since Speculative Streaming is parameter-efficient,1366

training involves fine-tuning only the LoRA param-1367

eters of stream adapters and embeddings. The train-1368

ing time is comparable to that of training Medusa1369

heads. We fine-tuned the Vicuna-7B model on1370

the ShareGPT dataset in approximately 4 hours1371

using segment attention, which is comparable to1372

the 3–4 hours required for training Medusa heads.1373

Additionally, we successfully trained Vicuna-33B1374

models on a single 80-GB GPU for one epoch by1375

loading the base model in NF4 precision and keep-1376

ing only the adapters of 4 MSA layers in full preci-1377

sion, completing training in approximately 7 hours.1378

Fine-tuning for application-specific tasks (see Ta-1379

ble 3) is relatively faster, requiring approximately1380

1-3 hours per application based on dataset size.1381

K Compute and Memory Profiling1382

The draft overhead associated with the standard1383

draft-target speculative decoding approach tends1384

to be non-trivial especially when the latency ratio1385

between target and draft models ctarget/cdraft <=1386

10. This is because speculation and verification1387

procedures are run in a serial manner. Figure 171388

shows the kernel utilization timeline when OPT-1389

125m is used as a draft while OPT-1.3b model is1390

used as the target. Auto-regressive draft generation 1391

decreases overall kernel utilization in draft-target 1392

approach, while additional computation involved 1393

in MSA layers increases kernel utilization in case 1394

of Speculative Streaming (see Figure 19) thereby 1395

efficiently utilizing the accelerator and speeding up 1396

the decoding process. Negligible-cost draft models 1397

may offer a better choice to keep kernel utilization 1398

at higher levels in case of draft-target approach, 1399

however, acceptance rates tend to drop as draft 1400

model size decreases. 1401

L Batching 1402

All the results presented in Section 3 are with batch 1403

size of 1 for on-device setup. We also experiment 1404

with batching for server setup where queries from 1405

multiple users are batched to increase throughput 1406

and accelerator utilization. To achieve maximum 1407

throughput with batching, we disable tree decod- 1408

ing and tree pruning and use only best speculated 1409

path for each decoding step for every sequence in 1410

a batch. Since our method primarily relies on uti- 1411

lizing flops to accelerate decoding, with batching 1412

we do see some degradation in speedup per sample 1413

as depicted in Figure 18, however we consistently 1414

achieve >2X speedups while keeping throughput 1415

same as batched autoregressive decoding. 1416

1417

M Recommended Hyperparameters 1418

Our experiments indicate that the following setup 1419

yields robust performance, achieving substantial 1420

speedups across different tasks and model sizes: 1421

• Number of streams: 4 1422

• Number of MSA layers: 4 1423

21

Prompt

Prompt

Prompt

Completion Stream0 Stream1 Stream2

S00 S10 S20C0

C0 C1 S01 S11 S21

Figure 16: Streams corresponding to prompt are not required while training. Completion is divided into multiple
segments and streams of each segment only attend to previous streams from same segment and main stream of
previous segments. Uncolored portion indicates those tokens/streams are not required to be kept in memory.

MSA Layers MSA LayersMHA Layers MHA Layers

Target call k Target call k+1

Target call k Target call k+1Draft call 0 Draft call 1 Draft call 2 Draft call 3

(a) Speculative Streaming

(b) Two Stage Speculative Decoding

Figure 17: Kernel utilization timeline for speculative streaming and the standard draft-target speculative decoding.
Draft-target approach runs speculation and verification in serial manner while it is parallelized in Speculative
Streaming. Auto-regressive draft generation often has low GPU utilization leading to decreased overall kernel
utilization while MSA layers in Speculative Streaming increase kernel utilization by generating a non-autoregressive
draft and speeding up decoding significantly.

• Stream adapter rank: 81424

• Tree Factor: 31425

• α0 = 1, α1 = 0.1 for shared mode1426

• α0 = 0, α1 = 1 for lossless mode1427

N Analysis of 2-model speculative1428

decoding1429

Speculative Streaming consistently achieves signif-1430

icantly lower walltime latency than standard draft-1431

target speculative decoding as depicted in Table 5.1432

It is worth noting that, target model calls of draft-1433

target speculative decoding are slightly lower than1434

Speculative Streaming, however, it comes at the1435

cost of auto-regressively running draft model γ1436

times to generate speculative draft. On the other1437

hand, draft generation with Speculative Streaming1438

incurs almost no additional latency overhead, as1439

target model decoding tends to be memory-bound1440

even with increased tree draft size. This translates1441

to increased kernel utilization and arithmetic inten-1442

sity as shown in Figure 19.1443

An argument could be made that a smaller draft1444

model may perform better since drafting should1445

cost less, but acceptance rates may drop as well1446

as the draft model size is decreased. To formalize1447

the comparison with standard draft-target specula-1448

tive decoding, we do the following analysis, sup- 1449

pose, Cdraft is the latency cost associated with for- 1450

ward pass through the draft model, Ctarget is the 1451

cost associated with forward pass through target 1452

model, while Css is cost associated with specula- 1453

tive streaming forward pass. ζ is the number of 1454

decoding tokens advanced during the verification 1455

step for the draft-target approach while β is the 1456

number of tokens advanced in Speculative Stream- 1457

ing. We equate latency cost associated with single 1458

token advancement to compare both approaches. 1459

(γ ∗ Cdraft + Ctarget)/ζ = Css/β (10) 1460

(γ+Ctarget/Cdraft)/ζ = (Css/Cdraft)/β 1461

Assuming γ = 4, Ctarget/Cdraft = 10, and 1462

Css ≈ Ctarget, ζ = 1.4β, meaning that advance- 1463

ments per verification step in standard draft-target 1464

approach have to be 1.4X of Speculative Streaming 1465

to achieve wall time latency parity. Note that, this 1466

analysis ignores cache adjustment overhead and 1467

prompt processing overhead, but provides valuable 1468

intuition to guide the choice between draft-target 1469

vs Speculative Streaming approaches. We also an- 1470

alyze under which settings speculative streaming 1471

is likely to offer more benefits as compared to the 1472

22

Table 6: Comparison of mean accepted tokens of vari-
ous speculative decoding approaches across Llama and
Vicuna models of varying scales on MT-Bench. Meth-
ods such as 2-Model SD, Eagle generates speculative
draft in auto-regressive (AR) manner while Medusa and
Speculative Streaming generate speculative draft in a
non auto-regressive (NAR) manner. Hydra drafts are
generated in a semi auto-regressive (SAR) manner. Re-
sults for Medusa, Medusa-2, Hydra, Eagle, and LookA-
head decoding are taken from their respective papers,
with Hydra results corresponding to the best-performing
variant, Hydra++.

Model Method Speculation Generation Mean Accepted Tokens (↑)

Vicuna-7B

2-Model SD AR 3.46
Medusa NAR 2.67
Hydra SAR 3.70

Medusa-2 NAR 3.47
Eagle AR 3.94

SS-Lossless NAR 3.52
SS-Shared NAR 3.68

Vicuna-13B

2-Model SD AR 3.67
Medusa NAR 2.72
Hydra SAR 3.72

Medusa-2 NAR 3.51
Eagle AR 3.98

SS-Lossless NAR 3.63
SS-Shared NAR 3.76

Vicuna-33B

2-Model SD AR 3.54
Medusa NAR 2.56
Hydra SAR 3.62

Medusa-2 NAR 3.01
Eagle AR 3.68

SS-Lossless NAR 3.75
SS-Shared NAR 3.78

Llama-2-Chat-7B

2-Model SD AR 3.58
LookAhead NAR 2.08

Eagle AR 3.62
SS-Lossless NAR 3.46
SS-Shared NAR 3.58

Llama-2-Chat-13B

2-Model SD AR 3.55
LookAhead NAR 1.87

Eagle AR 3.90
SS-Lossless NAR 3.77
SS-Shared NAR 3.86

standard draft-target approach. Fig. 20 shows the-1473

oretical speedups of Speculative Streaming over1474

draft-target based approach for different Target to1475

draft latency ratios. As the latency ratio increases,1476

the draft-target approach is likely to offer more1477

speedup benefits when ζ/β > 1, meaning that1478

when the draft model is accurate enough to achieve1479

more token advancements per target model verifica-1480

tion step than Speculative Streaming and also small1481

enough to yield higher latency ratios, it is likely1482

to benefit more. Creating such a model usually1483

requires significant engineering effort. In down-1484

stream application settings, finding ideal draft mod-1485

els becomes even more challenging since ζ tends1486

to vary based on application. If applications share1487

the draft model and only train adapters, the draft1488

model may not remain small enough to meet target-1489

to-draft latency ratios, making it challenging to1490

achieve better speedups.1491

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 64

Speedup with Batching

Figure 18: Walltime speedup for different batch
sizes on MT-Bench with Vicuna-7B Model.

0% 20% 40% 60% 80% 100%

2-stage SD

Medusa SD

Speculative
Streaming

Kernel Memory

Figure 19: Kernel and Memory utilization compari-
son on Nvidia A100.

N.1 Experimental Setup Details 1492

For experiments described in Section 3, our recipe 1493

involves training stream adapters and embeddings 1494

in BFloat16, using the AdamQ optimizer, a learn- 1495

ing rate of 5e-4, and a linear scheduler. For tree 1496

pruning (see Section 2.3), we use a low-rank lin- 1497

ear transformation of rank 8 to keep parameter 1498

overhead minimal. We experimented with lin- 1499

ear transformations of different ranks to initialize 1500

speculative streams from main stream as described 1501

in Equation (4), however we find that simply us- 1502

ing identity transformation achieves similar perfor- 1503

mance with much less parameter overhead. We 1504

use identity transformation for all the experiments 1505

described in Section 3. We compare MT bench 1506

and SpecBench speedups of our approach with best 1507

baseline configurations from corresponding papers. 1508

In Application specific settings (see Table 3), we 1509

report best results for Medusa and our approach 1510

over different γ and k values. We pass 32 nodes 1511

as a tree draft for speculative streaming after the 1512

pruning layer while in case of Medusa we pass 64 1513

nodes, as these configurations yield the best wall- 1514

time speedups for respective approaches. We use 1515

‘hard’ matching criteria for verification of specula- 1516

tive draft. Relaxing this criterion to ‘soft’ match- 1517

ing may yield higher speedups (Cai et al., 2023) 1518

but may compromise generation quality. We defer 1519

this exploration to future work. In application spe- 1520

23

0 20 40 60 80 100
target/draft latency ratio

1

2

3

4

5
sp

ee
du

p
ov

er
 d

ra
ft-

ta
rg

et
 S

D / = 0.6
/ = 0.8
/ = 1.0
/ = 1.2
/ = 1.4

Figure 20: Speedup: Speculative Streaming speedups
over draft model based speculative decoding for differ-
ent ζ/β and target/draft latency ratios, where ζ denotes
the number of advancements per verification step for
draft model based speculative decoding while β denotes
the same for Speculative Streaming.

cific settings, both Medusa heads and the number1521

of maximum streams are fixed to 4 and the resid-1522

ual blocks per head used in Medusa are set to 1.1523

Since Eagle requires autoregressive drafting, we1524

report the speedups in Table 3 considering opti-1525

mal autoregressive steps that balance speculation1526

and verification latencies and achieve best speedup.1527

For comparison with standard draft-target specu-1528

lative decoding (Leviathan et al., 2023), we use1529

OPT models since they come with different con-1530

figurations and sizes. OPT-125m is deployed as1531

a draft model while OPT-1.3b and OPT-6.7b are1532

used as target models since a ratio of 10-100X is1533

typically considered to be optimal. We compare1534

our approach with LookAhead decoding using best1535

configuration reported in (Fu et al., 2023).1536

O Long Context Experiments1537

To evaluate performance on long sequences, we1538

trained lossless speculative streaming on the Arxiv-1539

summarization dataset (Cohan et al., 2018) and1540

tested it on the Summarization task from the Long-1541

Bench dataset (Bai et al., 2023). Since the KV1542

cache is shared between the main and speculative1543

streams, there is no additional runtime memory1544

overhead associated with longer contexts. While1545

compute in attention layers increases due to longer1546

context, the compute in MLP layers remains the1547

same, and decoding is still memory bandwidth1548

bound. We achieved a 2.64X speedup on the Sum-1549

marization test set using gamma = 3 and k = 4.1550

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

1 2 3 4 5

Long context summarization speedup

Figure 21: Speedups for long-context summarization
tasks with varying top-k tokens sampled during drafting.

P Qualitative Examples 1551

In this section, we present qualitative examples to 1552

illustrate the effectiveness of Speculative Stream- 1553

ing. By examining specific instances, we aim to 1554

highlight how this approach enhances the overall 1555

performance of the decoding process. An exam- 1556

ple of the SQL query generation task is shown in 1557

Figure 22, while a dialog summarization exam- 1558

ple is shown in Figure 23. Each row indicates 1559

the previous sequence of accepted draft tokens (in 1560

black) and the new sequence of generated tokens in 1561

green/red. We use γ = 4 and k = 1 to illustrate the 1562

decoding process. Green tokens in each row indi- 1563

cate tokens accepted in the forward pass, while red 1564

tokens indicate tokens rejected in the forward pass. 1565

Speculative Streaming generates meaningful drafts 1566

with high acceptance rates by capturing dependen- 1567

cies between tokens quite effectively, despite gen- 1568

erating them in a non-auto-regressive manner. 1569

24

SELECT in _ count y

SELECT in _ count y _ tu ition _ per

SELECT in _ count y _ tu ition _ per_ credit _ credit _

SELECT in _ count y _ tu ition _ per_ credit _ hour __ fall _ _

SELECT in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _ FROM table _

SELECT in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _ FROM table _ 22 30 88 81 _

SELECT in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _ FROM table _ 22 30 88 81 _ 2 WHERE college = "

SELECT in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _ FROM table _ 22 30 88 81 _ 2 WHERE college = " Mer Er " College <\s>

SELECT in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _ FROM table _ 22 30 88 81 _ 2 WHERE college = " Mer Cer " <\s>

Figure 22: Speculative streaming on SQL generation task for γ = 4 and k = 1, each pass verifies the previous draft
and generates a maximum of 5 tokens. For instance in pass 4, “credit” and “_” (shown in red) are rejected and
“hour”, “_”, “fall”, “_”, “_” are speculated.

Person 2 # and

Person 2 # thinks Lincoln is a character

Person 2 # thinks Lincoln was a character and he

Person 2 # thinks Lincoln was a man of character and he

Person 2 # thinks Lincoln was a man of sound character and # person

Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him

Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him for his courage and and

Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him for his courage and rights and humility . </s>

Figure 23: Speculative streaming on Dialog Summarization task for γ = 4 and k = 1, each pass verifies the
previous draft and generates a maximum of 5 tokens. For instance, in pass 3, “is”, “a”, “character” are rejected
and “was”, “a”, “character”, “and”, “he” are speculated.

25

	Introduction
	Method
	Streams Design and Initialization
	Parallel Speculation and Verification
	Parallel Tree Pruning
	Training

	Experiments
	Results
	Why Does It Work?

	Conclusion
	Limitations
	Application Specific Evaluation
	Learning Dynamics
	Importance of Parameter Efficiency
	Related Works
	Ablation:
	Speculative Draft Size.
	Number of MSA Layers
	Top-k Sampling
	Value Rotation
	Effect of Quantization
	Breakdown of Speedup

	Acceptance Criteria
	Implementation Details
	Tree Draft Management

	FLOPs Optimization
	Attention FLOPs Optimization
	MLP FLOPs Optimization

	Segment Attention
	Training cost
	Compute and Memory Profiling
	Batching
	Recommended Hyperparameters
	Analysis of 2-model speculative decoding
	Experimental Setup Details

	Long Context Experiments
	Qualitative Examples

