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Abstract

Existing Maximum-Entropy (MaxEnt) Reinforcement Learning (RL) methods
for continuous action spaces are typically formulated based on actor-critic frame-
works and optimized through alternating steps of policy evaluation and policy
improvement. In the policy evaluation steps, the critic is updated to capture the
soft Q-function. In the policy improvement steps, the actor is adjusted in accor-
dance with the updated soft Q-function. In this paper, we introduce a new MaxEnt
RL framework modeled using Energy-Based Normalizing Flows (EBFlow). This
framework integrates the policy evaluation steps and the policy improvement steps,
resulting in a single objective training process. Our method enables the calcula-
tion of the soft value function used in the policy evaluation target without Monte
Carlo approximation. Moreover, this design supports the modeling of multi-modal
action distributions while facilitating efficient action sampling. To evaluate the
performance of our method, we conducted experiments on the MuJoCo benchmark
suite and a number of high-dimensional robotic tasks simulated by Omniverse
Isaac Gym. The evaluation results demonstrate that our method achieves superior
performance compared to widely-adopted representative baselines.

1 Introduction

Maximum-Entropy (MaxEnt) Reinforcement Learning (RL) [1–17] has emerged as a prominent
method for modeling stochastic policies. Different from standard RL, MaxEnt RL integrates the en-
tropy of policies as rewards, which leads to a balanced exploration-exploitation trade-off during train-
ing. This approach has demonstrated improved robustness both theoretically and empirically [17–19].
Building on this foundation, many studies leveraging MaxEnt RL have shown superior performance
on continuous-control benchmark environments [8, 9] and real-world applications [20–22].

An active research domain in MaxEnt RL concentrates on the learning of the soft Q-function [8–15].
These methods follow the paradigm introduced in soft Q-learning (SQL) [8]. They parameterize
the soft Q-function as an energy-based model [23] and optimize it based on the soft Bellman
error [8] calculated from rewards and the soft value function. However, this approach presents two
challenges. First, sampling from an energy-based model requires a costly Monte Carlo Markov Chain
(MCMC) [24, 25] or variational inference [26] process, which can result in inefficient interactions
with environments. Second, the calculation of the soft value function can involve computationally
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infeasible integration, which requires an effective approximation method. To tackle these issues,
various methods [8–15] were proposed, all grounded in a common design philosophy. To address
the first challenge, these methods suggest operating on an actor-critic framework and optimizing it
through alternating steps of policy evaluation and policy improvement. For the second challenge,
they resort to Monte Carlo methods to approximate the soft value function using sets of random
samples. Although these two issues can be circumvented, these methods still have their drawbacks.
The actor-critic design introduces an additional optimization process for training the actor, which
may lead to optimization errors in practice [27]. Moreover, the results of Monte Carlo approximation
may be susceptible to estimation errors and variances when there are an insufficient number of
samples [28–30].

Instead of using energy-based models to represent MaxEnt RL frameworks, this paper investigates an
alternative method employing normalizing flows (i.e., flow-based models), which offer solutions to
the aforementioned challenges. Our framework is inspired by the recently introduced Energy-Based
Normalizing Flows (EBFlow) [31]. This design facilitates the derivation of an energy function from a
flow-based model while supporting efficient sampling, which enables a unified representation of both
the soft Q-function and its corresponding action sampling process. This feature allows the integration
of the policy evaluation and policy improvement steps into a single objective training process. In
addition, the probability density functions (pdf) of flow-based models can be calculated efficiently
without approximation. This characteristic permits the derivation of an exact representation for the
soft value function. Our experimental results demonstrate that the proposed framework exhibits
superior performance on the commonly adopted MuJoCo benchmark [32, 33]. Furthermore, the
evaluation results on the Omniverse Isaac Gym environments [34] indicate that our framework excels
in performing challenging robotic tasks that simulate real-world scenarios.

2 Background and Related Works

In this section, we walk through the background material and the related works. We introduce the
objective of MaxEnt RL in Section 2.1, describe existing actor-critic frameworks and soft value
estimation methods in Section 2.2, and elaborate on the formulation of Energy-Based Normalizing
Flow (EBFlow) in Section 2.3.

2.1 Maximum Entropy Reinforcement Learning

In this paper, we consider a Markov Decision Process (MDP) defined as a tuple (S,A, pT ,R, γ, p0),
where S is a continuous state space, A is a continuous action space, pT : S × S ×A → R≥0 is the
pdf of a next state st+1 given a current state st and a current action at at timestep t,R : S ×A → R
is the reward function, 0 < γ < 1 is the discount factor, and p0 is the pdf of the initial state s0.
We adopt rt to denote R(st,at), and use ρπ(st,at) to represent the state-action marginals of the
trajectory distribution induced by a policy π(at|st) [8].

Standard RL defines the objective as π∗ = argmaxπ
∑

t E(st,at)∼ρπ
[rt] and has at least one deter-

ministic optimal policy [35, 36]. In contrast, MaxEnt RL [4] augments the standard RL objective
with the entropy of a policy at each visited state st. The objective of MaxEnt RL is written as follows:

π∗
MaxEnt = argmax

π

∑
t

E(st,at)∼ρπ
[rt + αH(π( · |st))] , (1)

where H(π( · |st)) ≜ Ea∼π(·|st)[− log π(a|st)] and α ∈ R>0 is a temperature parameter for deter-
mining the relative importance of the entropy term against the reward. An extension of Eq. (1) defined
with γ is discussed in [8]. To obtain π∗

MaxEnt described in Eq. (1), the authors in [8] proposed to
minimize the soft Bellman error for all states and actions. The solution can be expressed using the
optimal soft Q-function Q∗

soft : S ×A → R and soft value function V ∗
soft : S → R as follows:

π∗
MaxEnt(at|st) = exp

(
1

α
(Q∗

soft(st,at)− V ∗
soft(st))

)
, where (2)

Q∗
soft(st,at) = rt+γEst+1∼pT

[V ∗
soft(st+1)] , V ∗

soft(st) = α log

∫
exp

(
1

α
Q∗

soft(st,a)

)
da. (3)

In practice, a policy can be modeled as πθ(at|st) = exp( 1
α (Qθ(st,at) − Vθ(st)) with parameter

θ, where the soft Q-function and the soft value function are expressed as Qθ(st,at) and Vθ(st) =
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α log
∫
exp

(
1
αQθ(st,at)

)
dat, respectively. Given an experience reply bufferD that stores transition

tuples (st,at, rt, st+1), the training objective of Qθ (which can then be used to derive Vθ and πθ) can
be written as the following equation according to the soft Bellman errors:

L(θ) = E(st,at,rt,st+1)∼D

[
1

2
(Qθ(st,at)− (rt + γVθ(st+1)))

2

]
. (4)

Nonetheless, directly using the objective in Eq. (4) presents challenges for two reasons. First, drawing
samples from an energy-based model (i.e., πθ(at|st) ∝ exp(Qθ(st,at)/α)) requires a costly MCMC
or variational inference process [26, 37], which makes the interaction with the environment inefficient.
Second, the calculation of the soft value function involves integration, which require stochastic
approximation methods [28–30] to accomplish. To address these issues, the previous MaxEnt RL
methods [8–14] adopted actor-critic frameworks and introduced a number of techniques to estimate
the soft value function. These methods are discussed in the next subsection.

2.2 Actor-Critic Frameworks and Soft Value Estimation in MaxEnt RL

Previous MaxEnt RL methods [8–15] employed actor-critic frameworks, in which the critic aims to
capture the soft Q-function, while the actor learns to sample actions based on this soft Q-function.
Available choices for modeling the actor include Gaussian models [9], Gaussian mixture mod-
els [38], variational autoencoders (VAE) [15, 13, 39], normalizing flows [10, 11], and amortized
SVGD (A-SVGD) [8, 40], all of which support efficient sampling. The separation of the actor
and the critic prevents the need for costly MCMC processes during sampling. However, this
design induces additional training steps aimed to minimize the discrepancy between them. Let
πθ(at|st) ∝ exp( 1

αQθ(st,at)) and πϕ(at|st) denote the pdfs defined through the critic and the actor,
respectively. The objective of this additional training process is formulated according to the reverse
KL divergence DKL[πϕ( · |st)||πθ( · |st)] between πϕ and πθ, and is typically reduced as follows [9]:

L(ϕ) = Est∼D
[
−Eat∼πϕ

[Qθ(st,at)− α log πϕ(at|st)]
]
. (5)

The optimization processes defined by the objective functions L(θ) and L(ϕ) in Eqs. (4) and (5)
are known as the policy evaluation steps and policy improvement steps [9], respectively. Through
alternating updates according to ∇θL(θ) and ∇ϕL(ϕ), the critic learns directly from the reward
signals to estimate the soft Q-function, while the actor learns to draw samples based on the distribution
defined by the critic.

Although the introduction of the actor enhances sampling efficiency, calculating the soft value
function in Eq. (3) still requires Monte Carlo approximations for the computationally infeasible
integration operation. Prior soft value estimation methods can be categorized into two groups: soft
value estimation in Soft Q-Learning (SQL) and that in Soft Actor-Critic (SAC), with the former
yielding a larger estimate than the latter, derived from Jensen’s inequality (i.e., Proposition A.1 in
Appendix A.1). These two soft value estimation methods are discussed in the following paragraphs.

Soft Value Estimation in SQL. Soft Q-Learning [8] leverages importance sampling to convert
the integration in Eq. (3) into an expectation, which can be estimated using a set of independent and
identically distributed (i.i.d.) samples. To ensure the estimation variance is small, the authors in [8]
proposed to utilize samples drawn from πϕ. Let {a(i)}Mi=1 be a set of M samples drawn from πϕ.
The soft value function is approximated based on the following formula:

Vθ(st) = α log

∫
exp (Qθ(st,a)/α) da = α log

∫
πϕ(a|st)

exp (Qθ(st,a)/α)

πϕ(a|st)
da

= α logEa∼πϕ

[
exp (Qθ(st,a)/α)

πϕ(a|st)

]
≈ α log

(
1

M

M∑
i=1

exp
(
Qθ(st,a

(i))/α
)

πϕ(a(i)|st)

)
.

(6)

Eq. (6) has the least variance when πϕ(· |st) ∝ exp(Qθ(st, ·)/α) [29]. In addition, as M →∞, the
law of large numbers ensures that this estimation converge to Vθ(st) [41].

Soft Value Estimation in SAC. Soft Actor-Critic [9] and its variants [10, 11, 13, 14, 12] re-
formulated the soft value function Vθ(st) = α log

∫
exp (Qθ(st,a)/α) da as its equivalent form

Ea∼πθ
[Qθ(st,a) − α log πθ(a|st)] based on the relationship that πθ(a|st) = exp( 1

α (Qθ(st,a)) −
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Vθ(st)). By assuming that the policy improvement loss L(ϕ) is small (i.e., πθ ≈ πϕ), the soft value
function Vθ can be estimated as follows:
Vθ(st) = Ea∼πθ

[Qθ(st,a)− α log πθ(a|st)]

≈ Ea∼πϕ
[Qθ(st,a)− α log πϕ(a|st)] ≈

1

M

M∑
i=1

(
Qθ(st,a

(i))− α log πϕ(a
(i)|st)

)
.

(7)

An inherent drawback of the estimation in Eq. (7) is its reliance on the assumption πϕ ≈ πθ. In
addition, the second approximation involves Monte Carlo estimation with M samples {a(i)}Mi=1,
where the computational cost increases with the number of samples M .

2.3 Energy-Based Normalizing Flows

Normalizing flows (i.e., flow-based models) are universal representations for pdf [42]. Given input
data x ∈ RD, a latent variable z ∈ RD with prior pdf pz, and an invertible function gθ = gLθ ◦ · · · ◦g1θ
modeled as a neural network with L layers, where giθ : RD → RD, ∀i ∈ {1, · · · , L}. According
to the change of variable theorem and the distributive property of the determinant operation, a
parameterized pdf pθ can be described as follows:

pθ(x) = pz (gθ(x))

L∏
i=1

∣∣∣det(Jgi
θ
(xi−1)

)∣∣∣ , (8)

where x0 ≜ x is the input, xi = giθ ◦ · · · ◦ g1θ(x) is the output of the i-th layer, and Jgi
θ
(xi−1) ≜

∂
∂xi−1 g

i
θ(x

i−1) represents the Jacobian of the i-th layer of gθ with respect to xi−1. To draw samples
from pθ, one can first sample z from pz and then derive g−1

θ (z). To facilitate efficient computation of
the pdf and the inverse of gθ, one can adopt existing architectural designs [43–48] for gθ. Popular
examples involve autoregressive layers [43–45] and coupling layers [46–48], which utilizes specially
designed architectures to speed up the calculation.

Energy-Based Normalizing Flows (EBFlow) [31] were recently introduced to reinterpret flow-based
models as energy-based models. In contrast to traditional normalizing flow research [46, 47, 49, 50]
that focuses on the use of effective non-linearities, EBFlow emphasizes the use of both linear
and non-linear transformations in the invertible transformation gθ. Such a concept was inspired
by the development of normalizing flows with convolution layers [48, 51–54] or fully-connected
layers [55, 56], linear independent component analysis (ICA) models [57, 58], as well as energy-based
training techniques [58–60]. Let Sl = {i | giθ is linear} and Sn = {i | giθ is non-linear} represent the
sets of indices of the linear and non-linear transformations in gθ, respectively. As shown in [31],
the Jacobian determinant product in Eq. (8) can be decomposed according to Sn and Sl. This
decomposition allows a flow-based model to be reinterpreted as an energy-based model, as illustrated
in the following equation:

pθ(x) = pz (gθ(x))
∏
i∈Sn

∣∣∣det(Jgi
θ
(xi−1)

)∣∣∣︸ ︷︷ ︸
Unnormalized Density

∏
i∈Sl

∣∣∣det(Jgi
θ

)∣∣∣︸ ︷︷ ︸
Const.

≜ exp (−Eθ(x))︸ ︷︷ ︸
Unnormalized Density

Z−1
θ .︸ ︷︷ ︸

Const.
(9)

In EBFlow, the energy function Eθ(x) is defined as − log(pz (gθ(x))
∏

i∈Sn
|det(Jgi

θ
(xi−1))|) and

the normalizing constant Zθ =
∫
exp(−Eθ(x))dx =

∏
i∈Sl
|detJgi

θ
|−1 is independent of x. The

input-independence of Zθ holds since giθ is either a first-degree or zero-degree polynomial for any
i ∈ Sl, and thus its Jacobian is a constant to xi−1. This technique was originally proposed to reduce
the training cost of maximum likelihood estimation for normalizing flows. However, we discovered
that EBFlow is ideal for MaxEnt RL. Its unique capability to represent a parametric energy function
with an associated sampler g−1

θ , and to calculate a normalizing constant Zθ without integration are
able to address the challenges mentioned in Section 2.2. We discuss our insights in the next section.

3 Methodology

In this section, we introduce our proposed MaxEnt RL framework modeled using EBFlow. In Sec-
tion 3.1, we describe the formulation and discuss its training and inference processes. In Section 3.2,
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we present two techniques for improving the training of our framework. Ultimately, in Section 3.3,
we offer an algorithm summary.

3.1 MaxEnt RL via EBFlow

We propose a new framework for modeling MaxEnt RL using EBFlow, which we call MEow. This
framework possesses several unique features. First, as EBFlow enables simultaneous modeling of an
unnormalized density and its sampler, MEow can unify the actor and the critic previously separated in
MaxEnt RL frameworks. This feature facilitates the integration of policy improexvement steps with
policy evaluation steps, and results in a single objective training process. Second, the normalizing
constant of EBFlow is expressed in closed form, which enables the calculation of the soft value
function without resorting to the approximation methods mentioned in Eqs. (6) and (7). Third, given
that normalizing flow is a universal approximator for probability density functions, our policy’s
expressiveness is not constrained, and can model multi-modal action distributions.

In MEow, the policy is described as a state-conditioned EBFlow, with its pdf presented as follows:

πθ(at|st) = pz (gθ(at|st))
∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1

t |st)
)∣∣∣︸ ︷︷ ︸

Unnormalized Density

∏
i∈Sl

∣∣∣det(Jgi
θ
(st))

∣∣∣︸ ︷︷ ︸
Norm. Const.

≜ exp

(
1

α
Qθ(st,at)

)
︸ ︷︷ ︸

Unnormalized Density

exp

(
− 1

α
Vθ(st)

)
︸ ︷︷ ︸

Norm. Const.

,

(10)

where the soft Q-function and the soft value function are selected as follows:

Qθ(st,at) ≜ α log pz (gθ(at|st))
∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1

t |st)
)∣∣∣ , Vθ(st) ≜ −α log

∏
i∈Sl

∣∣∣det(Jgi
θ
(st))

∣∣∣ .
(11)

Such a selection satisfies Vθ(st) = α log
∫
exp(Qθ(st,a)/α)da based on the property of EBFlow.

In addition, both Qθ and Vθ have a common output codomain R, which enables them to learn to
output arbitrary real values. These properties are validated in Proposition 3.1, with the proof provided
in Appendix A.2. The training and inference processes of MEow are summarized as follows.
Proposition 3.1. Eq. (11) satisfies the following statements: (1) Given that the Jacobian of
gθ is non-singular, Vθ(st) ∈ R and Qθ(st,at) ∈ R, ∀at ∈ A,∀st ∈ S. (2) Vθ(st) =
α log

∫
exp (Qθ(st,a)/α) da.

Training. With Qθ and Vθ defined in Eq. (11), the loss L(θ) in Eq. (4) can be calculated without
using Monte Carlo approximation of the soft value function target. Compared to the previous MaxEnt
RL frameworks that rely on Monte Carlo estimation (i.e., Eqs. (6) and (7)), our framework offers the
advantage of avoiding the errors induced by the approximation. In addition, MEow employs a unified
policy rather than two separate roles (i.e., the actor and the critic), which eliminates the need for
minimizing an additional policy improvement loss L(ϕ) to bridge the gap between πθ and πϕ. This
simplifies the training process of MaxEnt RL, and obviates the requirement of balancing between the
two optimization loops.

Inference. The sampling process of πθ can be efficiently performed by deriving the inverse of
gθ, as supported by several normalizing flow architectures [43–48]. In addition, unlike previous
actor-critic frameworks susceptible to discrepancies between πθ and πϕ, the distribution established
via g−1

θ (z|st), where z ∼ pz, is consistently aligned with the pdf defined by Qθ. As a result, the
actions taken by MEow can precisely reflect the learned soft Q-function.

3.2 Techniques for Improving the Training and Inference Processes of MEow

In this subsection, we introduce a number of training and inference techniques aimed at improving
MEow while preserving its key features discussed in the previous subsection. For clarity, we refer to
the MEow framework introduced in the last section as ‘MEow (Vanilla)’.
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Figure 1: The Jacobian determinant products
for (a) the non-linear and (b) the linear trans-
formations, evaluated during training in the
Hopper-v4 environment. Subfigure (b) is pre-
sented on a log scale for better visualization.
This experiment adopt the affine coupling
layers [47] as the nonlinear transformations.

Learnable Reward Shifting (LRS). Reward shift-
ing [61–65] is a technique for shaping the reward func-
tion. This technique enhances the learning process
by incorporating a shifting term in the reward func-
tion, which leads to a shifted optimal soft Q-function
in MaxEnt RL. Inspired by this, this work proposes
modeling a reward shifting function bθ : S → R with
a neural network to enable the automatic learning of
a reward shifting term. For notational simplicity, the
parameters are denoted using θ, and the details of the
architecture are presented in Appendix A.5.1. The soft
Q-function Qb

θ augmented by bθ is defined as follows:

Qb
θ(st,at) = Qθ(st,at) + bθ(st). (12)

The introduction of Qb
θ results in a correspond-

ing shifted soft value function V b
θ (st) ≜

α log
∫
exp(Qb

θ(st,a)/α)da = Vθ(st) + bθ(st) (i.e., Proposition A.3 in Appendix A.2),
which can be calculated without Monte Carlo estimation. Moreover, with the incor-
poration of bθ, the policy πθ remains invariant since exp( 1

α (Q
b
θ(st,at) − V b

θ (st))) =

exp( 1
α ((Qθ(st,at) + bθ(st)) − (Vθ(st) + bθ(st)))) = exp( 1

α (Qθ(st,at) − Vθ(st))), which
allows the use of g−1

θ for efficiently sampling actions. As evidenced in Fig. 1, this method effectively
addresses the issues of the significant growth and decay of Jacobian determinants of gθ (discussed
in Appendix A.3). In Section 4.4, we further demonstrate that the performance of MEow can be
significantly improved through this technique.

Shifting-Based Clipped Double Q-Learning (SCDQ). As observed in [66], the overestimation
of value functions often occurs in training. To address this issue, the authors in [66] propose clipped
double Q-learning, which employs two separate Q-functions and uses the one with the smaller
output to estimate the value function during training. This technique is also used in MaxEnt RL
frameworks [9–13]. Inspired by this and our proposed learnable reward shifting, we further propose
a shifting-based method that adopts two learnable reward shifting functions, b(1)θ and b

(2)
θ , without

duplicating the soft Q-function Qθ and soft value function Vθ defined by gθ. The soft Q-functions
Q

(1)
θ and Q

(2)
θ with corresponding learnable reward shifting functions b(1)θ and b

(2)
θ can be obtained

using Eq. (12), while the soft value function V clip
θ is written as the following formula:

V clip
θ (st) = min

(
Vθ(st) + b

(1)
θ (st), Vθ(st) + b

(2)
θ (st)

)
= Vθ(st)+min

(
b
(1)
θ (st), b

(2)
θ (st)

)
. (13)

This design also prevents the production of two policies in MEow, as having two policies can
complicate the inference procedure. In our ablation analysis presented in Section 4.4, we demonstrate
that this technique can effectively improve the training process of MEow.

Deterministic Policy for Inference. As observed in [8], deterministic actors typically performed
better as compared to its stochastic variant during the inference time. Such a problem can be
formalized as finding an action a that maximizes Q(st,a) for a given st. Since A is a continuous
space, finding such a value would require extensive calculation. In the MEow framework, this value
can be derived by making assumptions on the model architecture construction. Our key observation is
that if the Jacobian determinants of the non-linearities (i.e., giθ ∈ Sn) are constants with respect to its
inputs, and that argmaxz pz(z) can be directly obtained, then the action a that maximizes Q(st,a)
can be efficiently derived according to the following proposition.

Proposition 3.2. Given that |det(Jgi
θ
(ai−1|st))| is a constant with respect to ai−1, then

g−1
θ (argmaxz pz(z)|st) = argmaxa Qθ(st,a).

The proof is provided in Appendix A.2. It is important to note that giθ can still be a non-linear
transformation, given that |det(Jgi

θ
(ai−1|st))| is a constant. To construct such a model, a Gaussian

prior with the additive coupling transformations [46] can be used as non-linearities. Under such
a design, an action can be derived by calculating g−1

θ (µ|st), where µ represents the mean of the
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Algorithm 1 Pseudo Code of the Training Process of MEow
Input: Learnable parameters θ and shadow parameters θ′. Target smoothing factor τ . Learning rate β.

Neural networks gθ(· | ·), b(1)θ (·), and b
(2)
θ (·). Temperature parameter α. Discount factor γ.

1: for each training step do

2: ▷ Extend the Replay Buffer.
3: at = g−1

θ (z|st), z ∼ pz(·).
4: st+1 ∼ pT (·|st,at).
5: D ← D ∪ {(st,at, rt, st+1)}.

6: ▷ Update Policy.
7: (st,at, rt, st+1) ∼ D.
8: Qθ(st,at) = α log(pz (gθ(at|st))

∏
i∈Sn

| det(Jgi
θ
(ai−1

t |st))|). ▷ Eq. (11)
9: Vθ′(st+1) = −α log

∏
i∈Sl
|det(Jgi

θ′
(st+1))|. ▷ Eq. (11)

10: Q
(1)
θ (st,at) = Qθ(st,at) + b

(1)
θ (st) and Q

(2)
θ (st,at) = Qθ(st,at) + b

(2)
θ (st). ▷ Eq. (12)

11: V clip
θ′ (st+1) = Vθ′(st+1) + min

(
b
(1)

θ′ (st+1), b
(2)

θ′ (st+1)
)

. ▷ Eq. (13)

12: L(θ) = 1
2
(Q

(1)
θ (st,at)− (rt + γV clip

θ′ (st+1)))
2 + 1

2
(Q

(2)
θ (st,at)− (rt + γV clip

θ′ (st+1)))
2.▷ Eq. (4)

13: θ ← θ + β∇θL(θ).
14: θ′ ← (1− τ)θ′ + τθ.

15: end for

Gaussian distribution. We elaborate on our model architecture design in Appendix A.5.1, and provide
a performance comparison between MEow evaluated using a stochastic policy (i.e., at ∼ πθ(· |st))
and a deterministic policy (i.e., at = argmaxa Qθ(st,a)) in Section 4.4.

3.3 Algorithm Summary

We summarize the training process of MEow in Algorithm 1. The algorithm integrates the policy
evaluation steps with the policy improvement steps, resulting in a single loss training process. This
design differs from previous actor-critic frameworks, which typically perform two consecutive updates
in each training step. In Algorithm 1, the learning rate is denoted as β. A set of shadow parameters θ′
is maintained for calculating the delayed target values [67], and is updated according to the Polyak
averaging [68] of θ, i.e., θ′ ← (1− τ)θ′ + τθ, where τ is the target smoothing factor.

4 Experiments

In the following sections, we first present an intuitive example of MEow trained in a two-dimensional
multi-goal environment [8] in Section 4.1. We then compare MEow’s performance against several
continuous-action RL baselines in five MuJoCo environments [32, 33] in Section 4.2. Next, in Sec-
tion 4.3, we evaluate MEow’s performance on a number of Omniverse Isaac Gym environments [34]
simulated based on real-world robotic application scenarios. Lastly, in Section 4.4, we provide an
ablation analysis to inspect the effectiveness of each proposed technique. Among all experiments, we
maintain the same model architecture, while adjusting inputs and outputs according to the state space
and action space for each environment. We construct gθ using the additive coupling layers [46] with
element-wise linear transformations, utilize a unit Gaussian as pz, and model the learnable adaptive
reward shifting functions bθ as multi-layer perceptrons (MLPs). For detailed descriptions of the
experimental setups, please refer to Appendix A.5.

4.1 Evaluation on a Multi-Goal Environment

In this subsection, we present an example of MEow trained in a two-dimensional multi-goal en-
vironment [8]. The environment involves four goals, indicated by the red dots in Fig. 2 (a). The
reward function is defined by the negative Euclidean distance from each state to the nearest goal, and
the corresponding reward landscape is depicted using contours in Fig. 2 (a). The gradient map in
Fig. 2 (a) represents the soft value function predicted by our model. The blue lines extending from
the center represent the trajectories produced using our policy.
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Figure 2: (a) The soft value function and the trajec-
tories generated using our method on the multi-goal
environment. (b) The estimation error evaluated at
the initial state under different choices of M .

As illustrated in Fig. 2 (a), our model’s soft
value function predicts higher values around
the goals, suggesting successful learning of
the goal positions through rewards. In addi-
tion, the trajectories demonstrate our agent’s
correct transitions towards the goals, which val-
idates the effectiveness of our learned policy.
To illustrate the potential impact of approx-
imation errors that might emerge when em-
ploying previous soft value estimation meth-
ods, we compare three calculation methods
for the soft value function: (I) Our approach
(i.e., Eq. (11)): Vθ(st), (II) SQL-like (i.e.,

Eq. (6)): α log( 1
M

∑M
i=1

exp(Qθ(st,a
(i))/α)

πϕ(a(i)|st)
),

and (III) SAC-like (i.e., Eq. (7)): 1
M

∑M
i=1(Qθ(st,a

(i)) − α log πϕ(a
(i)|st)), where {a(i)}Mi=1 is

sampled from πϕ. The approximation errors of the soft value functions at the initial state are calcu-
lated using the Euclidean distances between (I) and (II), and between (I) and (III), for various values
of M . As depicted in Fig. 2 (b), the blue line and the orange line decreases slowly with respect to M .
These results suggest that Monte Carlo estimation converges slowly, making approximation methods
such as Eqs. (6) and (7) challenging to achieve accurate predictions.

4.2 Performance Comparison on the MuJoCo Environments

In this experiment, we compare MEow with several commonly-used continuous control algorithms
on five MuJoCo environments [32] from Gymnasium [33]. The baseline algorithms include SQL [8],
SAC [9], deep deterministic policy gradient (DDPG) [69], twin delayed deep deterministic policy
gradient (TD3) [66], and proximal policy optimization (PPO) [70]. The results for SAC, DDPG, TD3,
and PPO were reproduced using Stable Baseline 3 (SB3) [71], utilizing SB3’s refined hyperparameters.
The results for SQL were reproduced using our own implementation, as SB3 does not support SQL
and the official code is not reproducible. Our implementation adheres to SQL’s original paper. Each
method is trained independently under five different random seeds, and the evaluation curves for each
environment are presented in the form of the means and the corresponding confidence intervals.

As depicted in Fig. 3, MEow performs comparably to SAC and outperforms the other baseline
algorithms in most of the environments. Furthermore, in environments with larger action and state
dimensionalities, such as ‘Ant-v4’ and ‘Humanoid-v4’, MEow offers performance improvements
over SAC and exhibits fewer spikes in the evaluation curves. These results suggest that MEow is
capable of performing high-dimensional tasks with stability. To further investigate the performance
difference between MEow and SAC, we provide a thorough comparison between MEow, SAC [9],
Flow-SAC [10, 11], and their variants in Appendix A.4.2. The results indicate that the training process
involving policy evaluation and policy improvement steps may be inferior to our proposed training
process with a single objective. In the next subsection, we provide a performance examination using
the simulation environments from the Omniverse Isaac Gym [34].

8



FrankaCabinet

Ant (Isaac)
MEow SAC
Humanoid (Isaac) Ingenuity

5000

1000

-1000
0.0 2.5 7.5 10.05.0

3000

9000

7000 4000

1000

-500
0.0 2.5 7.5 10.05.0

2500

5500

4500

1500

0

0.0 1.25 3.75 5.02.5

3000

6000

3000

1000

0.0 2.5 7.5 10.05.0

2000

4000

0

Steps (1e5) Steps (1e5)

AllegroHand

350

-50

0.0 2.5 7.5 10.05.0

150

750

550

-250

Steps (1e5)

ANYmal

45

15

0.0 2.5 7.5 10.05.0

30

60

0

Steps (1e5) Steps (1e5)

R
et

ur
n

R
et

ur
n

Steps (1e5)
(N=128) (N=128) (N=128)

(N=128) (N=512) (N=512)

Figure 4: A comparison on six Isaac Gym environ-
ments. Each curve represents the mean performance
of five runs, with shaded areas indicating the 95% con-
fidence intervals. ‘Steps’ in the x-axis represents the
number of training steps, each of which consists of N
parallelizable interactions with the environments.

AllegroHand FrankaCabinet

Ant (Isaac)

ANYmal

Humanoid (Isaac) Ingenuity

state dim. = 48
action dim. = 12

state dim. = 72
action dim. = 16

state dim. = 23
action dim. =   9

state dim. = 60
action dim. =   8

state dim. = 108
action dim. =   21

state dim. = 13
action dim. =   6

Figure 5: A demonstration of the six Isaac
Gym environments introduced in Section 4.3.
The dimensionalities of the state and action
for each environment are denoted below each
subfigure.

4.3 Performance Comparison on the Omniverse Issac Gym Environments

In this subsection, we examine the performance of MEow on a variety of robotic tasks simulated
by Omniverse Isaac Gym [34], a GPU-based physics simulation platform. In addition to ‘Ant’ and
‘Humanoid’, we employ four additional tasks: ‘Ingenuity’, ‘ANYmal’, ‘AllegroHand’, and ‘Franka-
Cabinet’. All of them are designed based on real-world robotic application scenarios. ‘Ingenuity’ and
‘ANYmal’ are locomotion environments inspired by NASA’s Ingenuity helicopter and ANYbotics’
industrial maintenance robots, respectively. On the other hand, ‘AllegroHand’ and ‘FrankaCabinet’
focus on executing specialized manipulative tasks with robotic hands and arms, respectively. A
demonstration of these tasks is illustrated in Fig. 5.

In this experimental comparison, we adopt SAC as a baseline due to its excellent performance in the
MuJoCo environments. The evaluation results are presented in Fig. 4. The results demonstrate that
MEow exhibits superior performance on ‘Ant (Isaac)’ and ‘Humanoid (Isaac)’. In addition, MEow
consistently outperforms SAC across the four robotic environments (i.e., ‘Ingenuity’, ‘ANYmal’,
‘AllegroHand’, and ‘FrankaCabinet’), indicating that our algorithm possesses the ability to perform
challenging robotic tasks simulated based on real-world application scenarios.

4.4 Ablation Analysis

In this subsection, we provide an ablation analysis to examine the effectiveness of each technique
introduced in Section 3.2.

Training Techniques. Fig. 6 compares the performance of three variants of MEow: ‘MEow (Vanilla)’,
‘MEow (+LRS)’, and ‘MEow (+LRS & SCDQ)’, across five MuJoCo environments. The results show
that ‘MEow (Vanilla)’ consistently underperforms, with its total returns demonstrating negligible or
no growth throughout the training period. In contrast, the variants incorporating translation functions
demonstrate significant performance enhancements. This observation highlights the importance
of including bθ in the model design. In addition, the comparison between ‘MEow (+LRS)’ and
‘MEow (+LRS & SCDQ)’ suggests that our reformulated approach to clipped double Q-learning [66]
improves the final performance by a noticeable margin.

Inference Technique. Fig. 7 compares the performance of two variants of MEow: ‘MEow (Stochas-
tic)’ and ‘MEow (Deterministic)’. The former samples action based on at ∼ πθ(· |st) while the latter
derive action according to at = argmaxa Qθ(st,a) = g−1

θ (µ|st). As shown in the figure, MEow
with a deterministic policy outperforms its stochastic variant, suggesting that a deterministic policy
may be more effective for MEow’s inference.
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5 Conclusion

In this paper, we introduce MEow, a unified MaxEnt RL framework that facilitates exact soft value
calculations without the need for Monte Carlo estimation. We demonstrate that MEow can be
optimized using a single objective function, which streamlines the training process. To further
enhance MEow’s performance, we incorporate two techniques, learnable reward shifting and shifting-
based clipped double Q-learning, into the design. We examine the effectiveness of MEow via
experiments conducted in five MoJoCo environments and six robotic tasks simulated by Omniverse
Isaac Gym. The results validate the superior performance of MEow compared to existing approaches.

Limitations and Discussions

As discussed in Section 3.2, deterministic policies typically offer better performance compared to their
stochastic counterparts. Although our implementation of MEow supports deterministic inference, this
capability is based on the assumptions that the Jacobian determinants of the non-linear transformations
are constants with respect to their inputs, and that argmaxz pz(z) can be efficiently derived. These
assumptions may not hold for certain types of flow-based models. Therefore, exploring effective
architectural choices for MEow represents a promising direction for further investigation.

On the other hand, the training speed of MEow is around 2.3× slower than that of SAC, even though
updates according to L(ϕ) are bypassed in MEow. According to our experimental observations, the
computational bottleneck of MEow may lie in the inference speed of the flow-based model during
interactions with environments. While this speed is significantly faster than many iterative methods,
such as MCMC or variational inference, it is still slower compared to the inference speed of Gaussian
models. As a result, enhancing the inference speed of flow-based models represents a potential
avenue for further improving the training efficiency of MEow.

Finally, our hyperparameter sensitivity analysis, as presented in A.4.5, indicates that our current
approach requires different values of τ to achieve optimal performance. Since hyperparameter
tuning often demands significant computational resources, establishing a more generalized parameter
setting or developing an automatic tuning mechanism for τ presents an important direction for future
exploration.

10



Acknowledgement

The authors gratefully acknowledge the support from the National Science and Technology Council
(NSTC) in Taiwan under grant numbers MOST 111-2223-E-002-011-MY3, NSTC 113-2221-E-002-
212-MY3, and NSTC 113-2640-E-002-003. The authors would also like to express their appreciation
for the computational resources from NVIDIA Corporation and NVIDIA AI Technology Center
(NVAITC) used in this work. Furthermore, the authors extend their gratitude to the National Center
for High-Performance Computing (NCHC) for providing the necessary computational and storage
resources.

References
[1] H J Kappen. Path Integrals and Symmetry Breaking for Optimal Control Theory. Journal of

Statistical Mechanics: Theory and Experiment, 2005.

[2] Brian Ziebart, Andrew Maas, J. Bagnell, and Anind Dey. Maximum Entropy Inverse Rein-
forcement Learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2008.

[3] Marc Toussaint. Robot Trajectory Optimization using Approximate Inference. In Proceedings
of the International Conference on Machine Learning (ICML), 2009.

[4] Brian D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum
Causal Entropy. PhD thesis, USA, 2010.

[5] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On Stochastic Optimal Control and
Reinforcement Learning by Approximate Inference. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2012.

[6] Roy Fox, Ari Pakman, and Naftali Tishby. Taming the Noise in Reinforcement Learning via
Soft Updates. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI),
2016.

[7] Brendan O’Donoghue, Rémi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. PGQ: Com-
bining Policy Gradient and Q-learning. In Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[8] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement Learning
with Deep Energy-Based Policies. In Proceedings of the International Conference on Machine
Learning (ICML), 2017.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of
the International Conference on Machine Learning (ICML), 2017.

[10] Tuomas Haarnoja, Kristian Hartikainen, P. Abbeel, and Sergey Levine. Latent Space Policies
for Hierarchical Reinforcement Learning. In Proceedings of the International Conference on
Machine Learning (ICML), 2018.

[11] Bogdan Mazoure, Thang Doan, Audrey Durand, R Devon Hjelm, and Joelle Pineau. Leveraging
Exploration in Off-policy Algorithms via Normalizing Flows. In Proceedings of the Conference
on Robot Learning (CoRL), 2019.

[12] Patrick Nadeem Ward, Ariella Smofsky, and A. Bose. Improving Exploration in Soft-Actor-
Critic with Normalizing Flows Policies. 2019.

[13] Dinghuai Zhang, Aaron Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, and Ricky
T. Q. Chen. Latent State Marginalization as a Low-cost Approach to Improving Exploration. In
Proceedings of the International Conference on Learning Representations (ICLR), 2023.

[14] Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and
Sanjay Chawla. S2AC: Energy-Based Reinforcement Learning with Stein Soft Actor Critic. In
Proceedings of the International Conference on Learning Representations (ICLR), 2024.

11



[15] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2021.

[16] Wenjie Shi, Shiji Song, and Cheng Wu. Soft Policy Gradient Method for Maximum Entropy
Deep Reinforcement Learning. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2019.

[17] Benjamin Eysenbach and Sergey Levine. Maximum Entropy RL Provably Solves Some Robust
RL Problems. In Proceedings of the International Conference on Learning Representations
(ICLR), 2022.

[18] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess,
and Martin Riedmiller. Maximum a Posteriori Policy Optimisation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[19] Kyungjae Lee, Sungyub Kim, Sungbin Lim, Sungjoon Choi, and Songhwai Oh. Tsallis
Reinforcement Learning: A Unified Framework for Maximum Entropy Reinforcement Learning.
ArXiv, abs/1902.00137, 2019.

[20] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, P. Abbeel, and Sergey Levine. Soft Actor-Critic Algo-
rithms and Applications. ArXiv, abs/1812.05905, 2018.

[21] Kwan-Woo Park, MyeongSeop Kim, Jung-Su Kim, and Jae-Han Park. Path Planning for
Multi-Arm Manipulators Using Soft Actor-Critic Algorithm with Position Prediction of Moving
Obstacles via LSTM. Applied Sciences, 2022.

[22] Junior Costa de Jesus, Victor Augusto Kich, Alisson Henrique Kolling, Ricardo Bedin Grando,
Marco Antonio de Souza Leite Cuadros, and Daniel Fernando Tello Gamarra. Soft Actor-Critic
for Navigation of Mobile Robots. Journal of Intelligent and Robotic Systems, 2021.

[23] Yann LeCun, Sumit Chopra, Raia Hadsell, Aurelio Ranzato, and Fu Jie Huang. A Tutorial on
Energy-Based Learning. 2006.

[24] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of Langevin distributions
and their discrete approximations. Bernoulli, 1996.

[25] Gareth O. Roberts and Jeffrey S. Rosenthal. Optimal scaling of discrete approximations to
Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
1998.

[26] Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian
Inference Algorithm. In Proceedings of the International Conference on Neural Information
Processing Systems (NeurIPS), 2016.

[27] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. 2015.

[28] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo methods. Vol. 1: basics. Wiley-
Interscience, 1986. ISBN 0471898392.

[29] Surya T. Tokdar and Robert E. Kass. Importance Sampling: A Review. Wiley Interdisciplinary
Reviews: Computational Statistics, 2, 2010.

[30] Michael B. Giles. Multilevel Monte Carlo Methods. Acta Numerica, 24:259 – 328, 2013.

[31] Chen-Hao Chao, Wei-Fang Sun, Yen-Chang Hsu, Zsolt Kira, and Chun-Yi Lee. Training Energy-
Based Normalizing Flow with Score-Matching Objectives. In Proceedings of the International
Conference on Neural Information Processing Systems (NeurIPS), 2023.

[32] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In Proceedings of the International Conference on Intelligent Robots and Systems
(IROS), 2012.

12



[33] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan
Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-
Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G.
Younis. Gymnasium, 2023. URL https://zenodo.org/record/8127025.

[34] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, N. Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac
Gym: High Performance GPU-Based Physics Simulation For Robot Learning. Proceedings of
the International Conference on Neural Information Processing Systems (NeurIPS) Dataset and
Benchmark Track, 2021.

[35] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1994. ISBN 0471619779.

[36] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, 2018. ISBN 0262039249.

[37] Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynam-
ics. In Proceedings of the International Conference on Machine Learning (ICML), 2011.

[38] Iman Nematollahi, Erick Rosete-Beas, Adrian Roefer, Tim Welschehold, Abhinav Valada, and
Wolfram Burgard. Robot Skill Adaptation via Soft Actor-Critic Gaussian Mixture Models.
Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2022.

[39] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013.

[40] Dilin Wang and Qiang Liu. Learning to Draw Samples: With Application to Amortized MLE for
Generative Adversarial Learning. In Proceedings of the International Conference on Learning
Representations (ICLR), 2016.

[41] Michel Dekking. A Modern Introduction to Probability and Statistics. 2007.

[42] George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing Flows for Probabilistic Modeling and Inference. Journal of
Machine Learning Research (JMLR), 2019.

[43] Mathieu Germain, Karol Gregor, Iain Murray, and H. Larochelle. MADE: Masked Autoencoder
for Distribution Estimation. 2015.

[44] Diederik P. Kingma, Tim Salimans, and Max Welling. Improved Variational Inference with In-
verse Autoregressive Flow. Proceedings of the International Conference on Neural Information
Processing Systems (NeurIPS), 2016.

[45] George Papamakarios, Iain Murray, and Theo Pavlakou. Masked Autoregressive Flow for
Density Estimation. Proceedings of the International Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[46] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Components
Estimation. Workshop at the International Conference on Learning Representations (ICLR),
2015.

[47] Laurent Dinh, Jascha Narain Sohl-Dickstein, and Samy Bengio. Density Estimation using Real
NVP. Proceedings of the International Conference on Learning Representations (ICLR), 2017.

[48] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convo-
lutions. Proceedings of the International Conference on Neural Information Processing Systems
(NeurIPS), 2018.

[49] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus H. Gross, and Jan Novák. Neural
Importance Sampling. ACM Transactions on Graphics (TOG), 2018.

[50] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural Spline
Flows. Proceedings of the International Conference on Neural Information Processing Systems
(NeurIPS), 2019.

13

https://zenodo.org/record/8127025


[51] Emiel Hoogeboom, Rianne van den Berg, and Max Welling. Emerging Convolutions for
Generative Normalizing Flows. Proceedings of the International Conference on Machine
Learning (ICML), 2019.

[52] Xuezhe Ma and Eduard H. Hovy. MaCow: Masked Convolutional Generative Flow. Proceedings
of the International Conference on Neural Information Processing Systems (NeurIPS), 2019.

[53] You Lu and Bert Huang. Woodbury Transformations for Deep Generative Flows. Proceedings
of the International Conference on Neural Information Processing Systems (NeurIPS), 2020.

[54] Chenlin Meng, Linqi Zhou, Kristy Choi, Tri Dao, and Stefano Ermon. ButterflyFlow: Building
Invertible Layers with Butterfly Matrices. Proceedings of the International Conference on
Machine Learning (ICML), 2022.

[55] L. Gresele, G. Fissore, A. Javaloy, B. Schölkopf, and A. Hyvärinen. Relative Gradient Optimiza-
tion of the Jacobian Term in Unsupervised Deep Learning. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[56] T. Anderson Keller, Jorn W. T. Peters, Priyank Jaini, Emiel Hoogeboom, Patrick Forr’e, and
Max Welling. Self Normalizing Flows. In Proceedings of the International Conference on
Machine Learning (ICML), 2020.

[57] A. Hyvärinen and E. Oja. Independent Component Analysis: Algorithms and Applications.
Neural Networks: the Official Journal of the International Neural Network Society, 13 4-5:
411–30, 2000.

[58] A. Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching. Journal
of Machine Learning Research (JMLR), 2005.

[59] Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E. Hinton. Energy-based models
for sparse overcomplete representations. Journal of Machine Learning Research (JMLR), 4:
1235–1260, 2003.

[60] Will Grathwohl, Kuan-Chieh Jackson Wang, Jörn-Henrik Jacobsen, David Kristjanson Du-
venaud, and Richard S. Zemel. Learning the Stein Discrepancy for Training and Evaluating
Energy-Based Models without Sampling. In Proceedings of the International Conference on Ma-
chine Learning, 2020. URL https://api.semanticscholar.org/CorpusID:220042193.

[61] Jette Randløv and Preben Alstrøm. Learning to Drive a Bicycle Using Reinforcement Learning
and Shaping. In Proceedings of the International Conference on Machine Learning (ICML),
1998.

[62] A. Ng, Daishi Harada, and Stuart J. Russell. Policy Invariance Under Reward Transformations:
Theory and Application to Reward Shaping. In Proceedings of the International Conference on
Machine Learning (ICML), 1999.

[63] Adam Laud. Theory and Application of Reward Shaping in Reinforcement Learning. 2004.

[64] Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Optimistic Curiosity
Exploration and Conservative Exploitation with Linear Reward Shaping. In Proceedings of the
International Conference on Neural Information Processing Systems (NeurIPS), 2022.

[65] Zhe Zhang and Xiaoyang Tan. Adaptive reward shifting based on behavior proximity for offline
reinforcement learning. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2023.

[66] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

[67] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski,
Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level Control through Deep
Reinforcement Learning. Nature, 518:529–533, 2015.

14

https://api.semanticscholar.org/CorpusID:220042193


[68] Xiang Li, Wenhao Yang, Jiadong Liang, Zhihua Zhang, and Michael I. Jordan. A Statisti-
cal Analysis of Polyak-Ruppert Averaged Q-Learning. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTAT), 2021.

[69] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. Proceedings of the International Conference on Learning Representations (ICLR),
2016.

[70] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. ArXiv, abs/1707.06347, 2017.

[71] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of
Machine Learning Research (JMLR), 22(268):1–8, 2021.

[72] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. 2019.

[73] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for Activation Functions.
arXiv:1710.05941, 2017.

[74] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. ArXiv,
abs/1607.06450, 2016.

[75] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. ArXiv,
abs/1207.0580, 2012.

[76] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. CleanRL: High-quality Single-file Implementations of
Deep Reinforcement Learning Algorithms. Journal of Machine Learning Research (JMLR), 23
(274):1–18, 2022.

[77] Vincent Stimper, David Liu, Andrew Campbell, Vincent Berenz, Lukas Ryll, Bernhard
Schölkopf, and José Miguel Hernández-Lobato. normflows: A PyTorch Package for Nor-
malizing Flows. Journal of Open Source Software, 8(86):5361, 2023.

[78] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proceedings
of the International Conference on Learning Representations (ICLR), 2015.

[79] Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh, and Nestor Arana-
Arexolaleiba. skrl: Modular and Flexible Library for Reinforcement Learning. Journal
of Machine Learning Research (JMLR), 24(254):1–9, 2023.

15



A Appendix

In this Appendix, we begin with a discussion of the soft value estimation methods used in SQL and
SAC in Section A.1. We then derive a number of theoretical properties of MEow in Section A.2. Next,
we discuss the issue of numerical instability in Section A.3. Then, we present additional experimental
results in Section A.4, and summarize the experimental setups in Section A.5. Finally, we elaborate
on the potential impacts of this work in Section A.6.

A.1 The Soft Value Estimation Methods in SAC and SQL

In this section, we elaborate on the soft value estimation methods mentioned in Section 2.2. We first
show that Vθ(st) approximated using Eq. (6) is greater than that approximated using Eq. (7) for any
given state st in Proposition A.1 and Remark A.2. Then, we discuss their practical implementation.

Proposition A.1. For any st ∈ S and α ∈ R>0, the following inequality holds:

α logEa∼πϕ

[
exp (Qθ(st,a)/α)

πϕ(a|st)

]
≥ Ea∼πϕ

[Qθ(st,a)− α log πϕ(a|st)]. (A1)

Proof.

α logEa∼πϕ

[
exp (Qθ(st,a)/α)

πϕ(a|st)

]
(i)

≥ αEa∼πϕ

[
log

(
exp (Qθ(st,a)/α)

πϕ(a|st)

)]
= αEa∼πϕ

[Qθ(st,a)/α− log πϕ(a|st)]
= Ea∼πϕ

[Qθ(st,a)− α log πϕ(a|st)] ,

where (i) is due to Jensen’s inequality.

Remark A.2. The inequality in Eq. (A1) preserves after applying the Monte Carlo estimation. Namely,

α log

(
1

M

M∑
i=1

exp
(
Qθ(st,a

(i))/α
)

πϕ(a(i)|st)

)
≥ 1

M

M∑
i=1

(
Qθ(st,a

(i))− α log πϕ(a
(i)|st)

)
, (A2)

where {a(i)}Mi=1 represents a set of samples drawn from πϕ.

Unlike the estimation in Eq. (7), the estimation in Eq. (6) is guaranteed to converge to Vθ(st) as
M →∞. However, empirically, the estimation method in Eq. (7) is preferred and widely used in the
contemporary MaxEnt framework. One potential reason could be the required number of samples
needed for effective approximation. According to [8], M = 32 is an effective choice for Eq. (6),
whereas M = 1 works well for Eq. (7), as adopted by many previous works. [9–12, 14].

A.2 Theoretical Properties of MEow

In this section, we examine a number of key properties of the MEow framework. We begin by
presenting a proposition to verify MEow’s capability in modeling the soft Q-function and the soft
value function. Then, we present a proposition to derive a deterministic policy in MEow. Finally, we
offer a discussion of the impact of incorporating learnable reward shifting functions.

Proposition 3.1 Eq. (11) satisfies the following statements: (1) Given that the Jacobian of
gθ is non-singular, Vθ(st) ∈ R and Qθ(st,at) ∈ R, ∀at ∈ A,∀st ∈ S. (2) Vθ(st) =
α log

∫
exp (Qθ(st,a)/α) da.

Proof. (1) Given that the Jacobian of gθ is non-singular, Vθ(st) ∈ R and Qθ(st,at) ∈ R, ∀at ∈
A,∀st ∈ S.

If the Jacobian of gθ is non-singular, then both
∏

i∈Sl
|det(Jgi

θ
(st))| ∈ R>0 and∏

i∈Sn
|det(Jgi

θ
(ai−1

t |st))| ∈ R>0. This suggests that α log
∏

i∈Sl
|det(Jgi

θ
(st))| ∈ R and

α log pz (gθ(at|st))
∏

i∈Sn
|det(Jgi

θ
(ai−1

t |st))| ∈ R. As a result, Vθ(st) ∈ R and Qθ(st,at) ∈ R.
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(2) Vθ(st) = α log
∫
exp (Qθ(st,a)/α) da.

1 =

∫
π(a|st)da =

∫
pz (gθ(a|st))

∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1|st)

)∣∣∣ ∏
i∈Sl

∣∣∣det(Jgi
θ
(st))

∣∣∣ da.
⇔

(∏
i∈Sl

∣∣∣det(Jgi
θ
(st))

∣∣∣)−1

=

∫
pz (gθ(a|st))

∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1|st)

)∣∣∣ da.
⇔ α log

(∏
i∈Sl

∣∣∣det(Jgi
θ
(st))

∣∣∣)−1

= α log

∫
pz (gθ(a|st))

∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1|st)

)∣∣∣ da.
⇔ − α log

∏
i∈Sl

∣∣∣det(Jgi
θ
(st))

∣∣∣ = α log

∫
pz (gθ(a|st))

∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1|st)

)∣∣∣ da.
⇔ Vθ(st) = α log

∫
exp (Qθ(st,a)/α) da.

In Section 3.2, we demonstrate that argmaxa Qθ(st,a) can be efficiently obtained through
g−1
θ (argmaxz pz(z)|st). To provide theoretical support for this result, we include a proof for Propo-

sition 3.2.

Proposition 3.2 Given that |det(Jgi
θ
(ai−1|st))| is a constant with respect to ai−1, then

g−1
θ (argmaxz pz(z)|st) = argmaxa Qθ(st,a).

Proof. Let c ≜
∏

i∈Sn
|det(Jgi

θ
(ai−1|st))|.

argmax
a

Qθ(st,a) = argmax
a

α log

(
pz (gθ(a|st))

∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1|st)

)∣∣∣)
= argmax

a
α log (pz (gθ(a|st)) c)

(i)
= argmax

a
pz (gθ(a|st)) c

= argmax
a

pz (gθ(a|st))

(ii)
= argmax

a
pz (z)

(iii)
= g−1

θ (argmax
z

pz(z)|st),

where (i) is because logarithm is strictly increasing, (ii) is due to z = gθ(a|st), and (iii) is due to
a = g−1

θ (z|st).

In Section 3.2, we incorporate the learnable reward shifting function bθ in Qθ and Vθ. This incorpora-
tion results in redefined soft Q-function Qb

θ and soft value function V b
θ . In Proposition A.3, we verify

that V b
θ (st) = α log

∫
exp(Qb

θ(st,a)/α)da = Vθ(st) + bθ(st).

Proposition A.3. Given that Q and V satisfy V (st) ≜ α log
∫
exp (Q(st,a)/α) da. The augmented

functions, Qb(st,at) = Q(st,at) + b(st) and V b(st) ≜ α log
∫
exp(Qb(st,a)/α)da, where b(st)

is the the reward shifting function, satisfy V b(st) = V (st) + b(st).
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Proof.

V b(st) = α log

∫
exp

(
Qb(st,a)/α

)
da.

= α log

(∫
exp ((Q(st,a) + b(st)) /α) da

)
= α log

(
exp(b(st)/α)

∫
exp (Q(st,a)/α) da

)
= α log

∫
exp (Q(st,a)/α) da+ α log (exp(b(st)/α))

= α log

∫
exp (Q(st,a)/α) da+ b(st)

= V (st) + b(st).

A.3 The Issue of Numerical Instability

In this section, we provide the motivation for employing the learnable reward shifting function
described in Section 3.2. We show that while Qθ and Vθ defined in Eq. (11) have the theoretical capa-
bility to learn arbitrary real values (i.e., Proposition 3.1), they may experience numerical instability in
practice. This instability arises due to the exponential growth of

∏
i∈Sn

|det(Jgi
θ
(ai−1

t |st))| and the
exponential decay of

∏
i∈Sl
|det(Jgi

θ
(st))|. We first examine the relationship between Vθ(st) and∏

i∈Sl
|det(Jgi

θ
(st))| according to the following equations:

Vθ(st) = − log
∏
i∈Sl

∣∣∣det(Jgi
θ
(st)

)∣∣∣ ⇔ exp(−Vθ(st)) =
∏
i∈Sl

∣∣∣det(Jgi
θ
(st)

)∣∣∣ .
The above equation suggests that the value of

∏
i∈Sl
|det(Jgi

θ
(st))| decreases exponentially with

respect to Vθ(st), which may lead to numerical instability during training. On the other hand, the
relationship between Qθ(st,at) and

∏
i∈Sn

|det(Jgi
θ
(ai−1

t |st))| can be expressed according to the
following equations:

Qθ(st,at) = log pz (gθ(at|st)) + log
∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1

t |st)
)∣∣∣ .

⇔ Qθ(st,at)− log pz (gθ(at|st)) = log
∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1

t |st)
)∣∣∣ .

⇔ exp (Qθ(st,at)− log pz (gθ(at|st))) =
∏
i∈Sn

∣∣∣det(Jgi
θ
(ai−1

t |st)
)∣∣∣ .

The equations indicate that
∏

i∈Sn
|det(Jgi

θ
(ai−1

t |st))| increases exponentially with respect to
Qθ(st,at)− log pz (gθ(at|st)). Therefore, increasing Qθ may also lead to an exponential growth of∏

i∈Sn
|det(Jgi

θ
(ai−1

t |st))|.

LRS makes our model less susceptible to numerical calculation errors since the learnable reward
shifting function bθ, unlike Qθ and Vθ, is not represented in logarithmic scale. Consider a case
where FP32 precision is in use, ‘MEow (Vanilla)’ could fail to learn a target Vθ∗(st) > 38,∀st,
since

∏
i∈Sl
|det(Jgi

θ
(st))| = exp(−Vθ∗(st)) < 2−126 cannot be represented using FP32 precision.

Therefore, without shifting the reward function, the loss sometimes becomes undefined values, and
can lead to ineffective training (e.g., the green lines in Fig. 6). The reward shifting term can be
designed as a (state-conditioned) function or a (non-state-conditioned) value. It can also be learnable
or non-learnable. All of these designs (i.e., bθ(st), b(st), bθ, and b) can be directly applied to MEow
since none of them influences the action distribution. Based on our preliminary experiments, we
identified that a learnable state-conditioned reward shifting delivers the best performance.
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Figure A1: Performance comparison between MEow with additive coupling transformations in gθ
and MEow with affine coupling transformations in gθ on five MuJoCo environments. Each curve
represents the mean performance, with shaded areas indicating the 95% confidence intervals, derived
from five independent runs with different seeds.
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Figure A2: Performance comparison between ‘MEow’, ‘Energy Critic+Gaussian Actor’ (ECGA),
‘Energy Critic+Flow Actor’ (ECFA), ‘Flow Critic+Gaussian Actor’ (FCGA), and ‘Flow Critic+Flow
Actor’ (FCFA) on five MuJoCo environments. Each curve represents the mean performance, with
shaded areas indicating the 95% confidence intervals, derived from five independent runs with
different seeds.

A.4 Supplementary Experiments

In this section, we provide additional experimental results. In Section A.4.1, we offer a comparison
between MEow with gθ modeled using additive coupling layers and that using affine coupling layers.
In Section A.4.2, we compare the performance of MEow with four distinct types of actor-critic
frameworks formulated based on prior works [9–11]. In Section A.4.3, we provide an example
illustrating the ability of flow-based models to represent multi-modal distributions as policies. In
Section A.4.4, we present a performance comparison between SAC and its variant with LRS. Finally,
in Section A.4.5, we provide a sensitivity examination for the target smoothing parameter.

A.4.1 Comparison of Additive and Affine Transformations

In this section, we evaluate the performance of MEow with two commonly-adopted non-linear
transformations, additive [46] and affine [47] coupling layers, for constructing gθ. The results are
presented in Fig. A1. The results show that MEow with additive coupling layers achieves better
performance than that with affine coupling layers. Based on this observation, we adopt additive
coupling layers for constructing gθ throughout the experiments in Section 4 of the main manuscript.

A.4.2 Influences of Parameterization in MaxEnt RL Actor-Critic Frameworks

In this section, we compare the performance of MEow against four different actor-critic frameworks
formulated based on prior works [9–11]. The first framework is the same as SAC [9], with the
critic modeled as an energy-based model and the actor as a Gaussian. The second framework
follows the approaches of [10, 11], where the critic is also an energy-based model, but the actor is a
flow-based model. The third and fourth frameworks both utilize a flow-based model for the critic,
with the actor modeled as a Gaussian and a flow-based model, respectively. These frameworks are
denoted as: ‘Energy Critic+Gaussian Actor’ (ECGA), ‘Energy Critic+Flow Actor’ (ECFA), ‘Flow
Critic+Gaussian Actor’ (FCGA), and ‘Flow Critic+Flow Actor’ (FCFA), respectively. Regarding the
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Figure A4: Performance comparison between ‘SAC’ and ‘SAC (+LRS)’. Each curve represents the
mean performance, with shaded areas indicating the 95% confidence intervals, derived from five
independent runs with different seeds.

soft value calculation during training, the first and second frameworks adopt the value estimation
method in SAC (i.e., Eq. (7)). For the third and the fourth frameworks, their training adopts the exact
value calculation (i.e., Eq. (11)), which is the same as MEow. The results are presented in Fig. A2.

As depicted in Fig. A2, MEow exhibits superior performance and stability compared to other
actor-critic frameworks in the ‘Hopper-v4’, ‘Ant-v4’, and ‘Walker2d-v4’ environments, and shows
comparable performance with ECGA in most environments. In addition, the results that compare
the frameworks with flow-based models as actors (i.e., ECFA and FCFA) to those with Gaussians as
actors (i.e., ECGA and FCGA) suggest that Gaussians are more effective for modeling actors. This
finding is similar to that in [10]. On the other hand, the comparisons between ECGA and FCGA, and
between FCGA and FCFA, do not show a clear trend. These findings suggest that both flow-based and
energy-based models can be suitable for modeling the soft Q-function. Furthermore, the comparison
between FCFA and MEow reveals that the training process involving alternating policy evaluation
and improvement steps may be inferior to our proposed training process with a single objective.

A.4.3 Modeling Multi-Modal Distributions using Flow-based Models

(b)(a)
A

ct
io

n

State

A
ct

io
n

State

Figure A3: (a) The reward landscape of the one-step
environment described in Section A.4.3. (b) The
conditional pdf prediction using an NSF model.

In this section, we use a one-dimensional ex-
ample to demonstrate that flow-based models
are capable of learning multi-modal action
distributions. We employ a state-conditioned
neural spline flow (NSF) [50] as the model,
and train it in a single-step environment
with one-dimensional state and action spaces.
Fig. A3 (a) illustrates the reward landscape
with the state and action denoted on the x-
axis and y-axis, respectively. Fig. A3 (b) il-
lustrates the probability density function (pdf)
predicted by the model. The result demon-
strates the capability of flow-based models to effectively learn multi-modal distributions.

A.4.4 Applying Learnable Reward Shifting to SAC

In this section, we examine the performance of SAC with the proposed LRS technique. Since the
original implementation of SAC involves the clipped double Q-Learning technique, SAC with LRS is
equivalent to SAC with the shifting-based clipped double Q-Learning (SCDQ) technique discussed
in Section 3.2 of the main manuscript. The performance of ‘SAC’ and ‘SAC (+LRS)’ is presented in
Fig. A4. The results indicate that applying LRS does not improve SAC’s performance. Therefore, for
a fair evaluation, the original implementation of SAC is adopted in the comparison in Section 4 of the
main manuscript.

A.4.5 Sensitivity Examination for the Target Smoothing Parameter

In this section, we provide a performance comparison of SAC and MEow trained with different
target smoothing parameter values (i.e., τ = 0.005, 0.003, 0.0005, and 0.0001). The results shown in
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Figure A5: A performance comparison between MEow and SAC under different trained τ on five
MuJoCo environments. Each curve represents the mean performance, with shaded areas indicating
the 95% confidence intervals, derived from five independent runs with different seeds.

Fig. A5 indicate that SAC performs the best when τ = 0.005, while MEow requires different τ values
to achieve good performance across different tasks. Although both algorithms exhibit significant
performance variations with different τ values, SAC demonstrates a more consistent trend in terms of
the total returns among the tested values of τ .

A.5 Experimental Setups

In this section, we elaborate on the experimental configurations and provide the detailed hy-
perparameter setups for the experiments presented in Section 4 of the main manuscript. The
code is implemented using PyTorch [72] and is available in the following repository: https:
//github.com/ChienFeng-hub/meow.

A.5.1 Model Architecture

Among all experiments presented in Section 4 of the main manuscript, we maintain the same model
architecture, while adjusting inputs and outputs according to the state space and action space for
each environment. An illustration of this architecture is presented in Fig. A6. The model architecture
comprises three main components: (I) normalizing flow, (II) hypernetwork, and (III) reward shifting
function. For the first component, the transformation gθ includes four additive coupling layers [46]
followed by an element-wise linear layer. The prior distribution pz is modeled as a unit Gaussian.
For the second component, the hypernetwork involves two types of multi-layer perceptrons (MLPs),
labeled as (a) and (b) in Fig. A6, which produce weights for the non-linear and linear transformations,
respectively. Both MLPs employ swish activation functions [73] and have a hidden layer size of
64. The MLPs labeled as (a) incorporate layer normalization [74] and a dropout layer [75] with a
dropout rate of 0.1. For the third component, the reward shifting functions (i.e., b(1)θ and b

(2)
θ ) are

implemented using MLPs with swish activation and a hidden layer size of 256. The parameters used
in these components are collectively referred to as θ, and are optimized using the same objective
function L(θ) defined in Eq. (4), with the soft Q-function and the soft value function replaced by
Qb

θ and V b
θ , respectively. Please note that, for the sake of notational simplicity and conciseness,

the parameters of each network are all represented using θ instead of distinct symbols (e.g., θ(II)-(a),
θ(II)-(b), θ(III)-(1), and θ(III)-(2)).

A.5.2 Experiments on the Multi-Goal Environment

The experiments in Section 4.1 are performed on a two-dimensional multi-goal environment [8]. This
environment consists of four goals positioned at [0, 5], [0,−5], [5, 0], and [−5, 0], denoted as g1, g2,
g3, and g4, respectively. The reward is the sum of two components, r1(st) and r2(at), which are
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Figure A6: The architecture adopted in MEow. This architecture consists of three primary components:
(I) normalizing flow, (II) hypernetwork, and (III) reward shifting function. The hypernetwork includes
two distinct types of networks, labeled as (a) and (b), which are responsible for generating weights
for the non-linear and linear transformations within the normalizing flow, respectively. Layer
normalization is denoted as ‘L. Norm’ in (a).

Table A1: Shared hyperparameters of MEow.

Parameter Value

optimizer Adam [78]
learning rate (β) 0.001

gradient clip value 30

discount (γ) 0.99

buffer size 106

Table A2: Shared hyperparameters of SAC.

Parameter Value

optimizer Adam [78]
learning rate (β) 0.0003

gradient clip value -
discount (γ) 0.99

buffer size 106

formulated as follow:

r1(st) = max
i
− ∥st − gi∥ and r2(at) = −30× ∥at∥ . (A3)

According to Eq. (A3), r1(st) encourages policies to reach states near the goals. On the other hand,
r2(at) encourages policies to produce actions with small magnitudes.

In this experiment, we adopt a temperature parameter α = 2.5, a target smoothing factor τ = 0.0005,
a learning rate β = 0.001, a discount factor γ = 0.9, and a total of 4, 000 training steps. The
computation was carried out on NVIDIA TITAN V GPUs equipped with 12GB of memory. The
training takes approximately four minutes.

A.5.3 Experiments on the MuJoCo Environments

Software and Hardware Setups. For the experiments on the MuJoCo environments, our imple-
mentation is built on CleanRL [76], with the normalizing flow component adapted from [77]. The
computation was carried out on NVIDIA V100 GPUs equipped with 16GB of memory. The training
takes approximately 13 hours per 1 million steps, with each GPU capable of executing four training
sessions simultaneously.

Hyperparameter Setups. The shared and the environment-specific hyperparameters of MEow are
summarized in Tables A1 and A3, respectively. The hyperparamers for the baseline methods are
directly borrowed from Stable Baseline 3 (SB3) [71].
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Table A3: A list of environment-specific hyperparameters used in MEow.

Environment Target Smoothing Parameter (τ ) Temperature Parameter (α)

MuJoCo

Hopper-v4 0.005 0.25
HalfCheetah-v4 0.003 0.25

Walker2d-v4 0.005 0.1
Ant-v4 0.0001 0.05

Humanoid-v4 0.0005 0.125

Omniverse Isaac Gym

Ant 0.0005 0.075
Humanoid 0.00025 0.25
Ingenuity 0.0025 0.025
ANYmal 0.025 0.00075

AllegroHand 0.001 0.1
FrankaCabinet 0.075 0.1

Table A4: A list of environment-specific hyperparameters used in SAC.

Environment Target Smoothing Parameter (τ ) Temperature Parameter (α)

Omniverse Isaac Gym

Ant 0.0025 0.4
Humanoid 0.0025 0.025
Ingenuity 0.0025 0.1
ANYmal 0.0025 0.01

AllegroHand 0.0025 0.1
FrankaCabinet 0.025 0.1

A.5.4 Experiments on the Omniverse Isaac Gym Environments

Software and Hardware Setups. For the experiments performed on Omniverse Isaac Gym, the
implementation is built on SKRL [79] due to its compatibility with Omniverse Issac Gym [34]. The
computation was carried out on NVIDIA L40 GPUs equipped with 48GB of memory. The training
takes approximately 22 hours per 1 million training steps, with each GPU capable of executing
three training sessions simultaneously. For ‘Ant’, ‘Humanoid’, ‘Ingenuity’, and ‘ANYmal’, each
training step consists of 128 parallelizable interactions with the environments. For ‘AllegroHand’ and
‘FrankaCabinet’, each training step consists of 512 parallelizable interactions with the environments.

Hyperparameter Setups. The shared and the environment-specific hyperparameters of MEow are
summarized in Tables A1 and A3, respectively. Those of SAC are summarized in Tables A2 and A4,
respectively. Both SAC and MEow were tuned using the same search space for τ and α to ensure a
fair comparison. Specifically, a grid search was conducted with τ values ranging from 0.1 to 0.00025
and α values from 0.8 to 0.0005 for both algorithms. The setups with the highest average return were
selected for each environment.

A.6 Broader Impacts

This work represents a new research direction for MaxEnt RL. It discusses a unified method that can
be trained using a single objective function and can avoid Monte Carlo estimation in the calculation
of the soft value function, which addresses two issues in the existing MaxEnt RL methods. From
a practical perspective, our experiments demonstrate that MEow can achieve superior performance
compared to widely adopted representative baselines. In addition, the experimental results conducted
in the Omniverse Isaac environments show that our framework can perform robotic tasks simulated
based on real-world application scenarios. These results indicate the potential for deploying MEow in
real robotic tasks. Given MEow’s potential to be extended to perform challenging tasks, it is unlikely
to have negative impacts on society.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
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made in the paper.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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discussion covers the assumptions made in this paper and the computational efficiency of
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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and how they scale with dataset size.
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address problems of privacy and fairness.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions and the proofs of our theoretical results are presented in
detail in Appendices A.1∼A.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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requirements for the experiments presented in this paper are elaborated in Appendix A.5.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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material?

Answer: [Yes]

Justification: The code and installation instructions are available in an anonymous repository,
with the link provided in Appendix A.5.
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• The authors should provide scripts to reproduce all experimental results for the new
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental configurations, detailed hyperparameter setups, and hardware
requirements for the experiments presented in this paper are elaborated in Appendix A.5.
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performance, with the shaded areas indicating the 95% confidence intervals. Each of them
is derived from five independent runs with different seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The hardware requirements (e.g., the computational hardware configurations
and the execution time) for each experiment are elaborated in Appendix A.5.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors have reviewed the NeurIPS Code of Ethics and confirmed that the
research conducted in this paper complies with it.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper discusses its potential impacts in Appendix A.6.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Answer: [NA]
Justification: The paper poses no risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets).
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• The answer NA means that the paper poses no such risks.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
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is included in the asset (see Appendix A.5).
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code, installation instructions, and running commands are summarized in
an anonymous repository, with the link provided in Appendix A.5. The environments are
publicly available, and the experiments are performed on them with the default setup.
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• Including this information in the supplemental material is fine, but if the main contribu-
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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