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Abstract
Recent works hypothesize that directly learning the advantage function can induce en-
dogenous representations that only depend on variables that are causally related to the
agent’s action. However, previous empirical evidence is limited to small linear envi-
ronments. We investigate this hypothesis in a more complex image-based environment,
showing that advantage function learning leads to improved generalization and robust-
ness. In addition, by using a sparsity-regularized Transformer as the function approxi-
mator, we qualitatively demonstrate that the learned advantage function attends only to
the decision-relevant part of the observations, leading to improved interpretability.

1 Introduction

As reinforcement learning (RL) (Sutton et al., 1998) agents are deployed in increasingly complex,
real-world environments, developing agents that can act in a robust and generalizable manner in the
face of changes in the environment, such as visual distractors, presents a critical challenge. The
present work combines recent advances in advantage function learning (Pan et al., 2022) and sparse
transformers (Lei et al., 2024) to train robust agents in complex image-based domains by attending
only to relevant parts of the image.

Recently, the notion of causality has garnered significant interest within the context of RL (Zeng
et al., 2024) as it offers a principled framework for understanding generalization in learning sys-
tems. In this light, recent works (Pan et al., 2022) elicit the role of the advantage function in
causal reinforcement learning. In particular, Pan & Schölkopf (2023) shows that, under the ExoMDP
framework (Trimponias & Dietterich, 2023), the advantage function inherently only depends on en-
dogenous variables, i.e., variables that are within the agent’s control. In other words, the advantage
function, and by extension any policy that derives from it, is invariant to distractor variables. The
authors investigated the properties of learned representations in simple linear environments, show-
ing that learning advantage functions successfully induces endogenous representations that isolate
the relevant part of the state space. This provides a promising first step towards learning robust and
generalizable representations in complex high-dimensional environments.

In this work, we investigate advantage-function-induced representations in image-based environ-
ments. In this context, extracting the dependencies of a learned advantage function is challenging,
as the decision-relevant part of the state can be rendered in different parts of the image over time.
One possible solution is to use the attention mechanisms (Bahdanau et al., 2014) in the Transformer
architecture (Vaswani et al., 2017) as a proxy for the learned dependency structure. However, em-
pirical evidence shows that, across various settings such as natural language (Jain & Wallace, 2019)
and world models (Lei et al., 2024), Transformers often attend to spurious features and do not faith-
fully reflect the causal structure of the problem at hand. To remedy this, Lei et al. (2024) develop a
sparsity-regularization scheme to induce attention patterns that capture the underlying dependencies.
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Taken together, advantage function learning and sparse attention play complementary roles: the
advantage function provides a learning target that depends only on decision-relevant variables, while
sparse attention provides a way to interpret the learned dependencies. Empirically, we evaluate our
method in CoinRun (Cobbe et al., 2020), an image-based environment with procedurally generated
levels to evaluate generalization, showing that our method outperforms a baseline which learns the Q
function via SARSA (Rummery & Niranjan, 1994) in terms of generalization and that our model can
extract interpretable dependency structures that attend only to task-relevant parts of the observation.

2 Background

We consider the Exogenous MDP (ExoMDP) setting, which provides a more fine-grained view
of the decision-making process by separating variables into those that are causally related to the
agent’s actions (endogenous variables) and those that are not (exogenous variables). Figure 1 shows
a comparison between the causal graphs of a normal MDP and an ExoMDP. More specifically,
in an ExoMDP, the state space, transition probability, and the reward function can be factorized
into, S = Se × Sx, p(st+1|st, at) = p(set+1|set , at)p(sxt+1|sxt ), and r(s, a) = re(s

e, a) + rx(s
x),

respectively (with se ∈ Se and sx ∈ Sx).
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Figure 1: Graphical models of MDPs (left) and ExoMDPs (right). Colors and superscripts indicate
whether the variable or relationship is endogenous (red) or exogenous (blue).

2.1 Direct Advantage Estimation

Pan et al. (2022) showed that the advantage function can be seen as quantifying causal effects of
actions on the return and proposed Direct Advantage Estimation (DAE), an on-policy method that
can estimate the advantage function directly. Specifically, the learning process is formulated as
minimizing the following constrained least-squares objective:

L(Â, V̂ ) = Eπ

(n−1∑
t=0

γt
(
rt − Ât

)
+ γnVtarget(sn)− V̂ (s0)

)2
 s.t.

∑
a

Â(s, a)π(a|s) = 0,

(1)

where Vtarget is the bootstrapping target, and (Â, V̂ ) are the variables to be minimized. Minimizing
this objective can be seen as a multi-step estimate of (Aπ , V π). Pan & Schölkopf (2023) subse-
quently showed that, unlike other value functions such as V or Q, the advantage function is inher-
ently endogenous (i.e., it only depends on the endogenous part of an ExoMDP), and hypothesized
that learning the advantage function using DAE can lead to representations that are also endogenous.
This is empirically verified in a toy linear ExoMDP by showing that the representations learned by
DAE are less dependent on exogenous variables compared to representations induced via learning
the Q function. However, scaling this approach up to more complex image-based environments
remains an open challenge.
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2.2 Sparse Transformer

Transformers (Vaswani et al., 2017) have emerged as a prominent architecture across many deep
learning applications. While earlier works have shown that aggregating attention patterns across
transformer layers via Attention Rollout (Abnar & Zuidema, 2020) can, to some extent, extract
learned dependencies between variables, Lei et al. (2024) demonstrated that standard transformers
often attend to spurious features, and propose a sparsity regularization scheme to induce attention
patterns that better represent the underlying local dependency structure. Specifically, given the key,
query and value embeddings {kli, qli, vli} for each variable i at layer l, a binary adjacency matrix is
sampled according to

Λl
ij ∼ Bern(σ(qli

T
klj)), (2)

where Λij = 0 indicates that there is no attention edge from the variable i to the variable j. These
adjacency matrices are then element-wise multiplied to the standard attention weights and act as
learnable gates that selectively block the flow of information between variables. By regularizing 1 the
expected number of edges between variables, sparse transformers effectively prune out unnecessary
dependencies. Across multiple transformer layers, these adjacency matrices can be aggregated via

Λ̄ =
∏
l

(Λl + I), (3)

where I is the identity matrix and Λl is the sampled adjacency matrix at layer l. Λ̄ij is the number of
paths from variable i to j across the entire transformer. Note that Λ̄ij = 0 implies that the prediction
for variable j is completely independent of the variable i.

2.3 CoinRun

The CoinRun environment is a 2D platformer from the ProcGen suite (Cobbe et al., 2020; 2019) that
uses procedural generation to generate different levels (layouts, background images, appearances of
entities, etc.) This provides a natural way to examine the generalization capability of an RL agent by
varying the number of training levels seen by the agents. We can then measure their generalization
performance by evaluating them at test levels that are not seen during training. In CoinRun, the
agent gets a reward of 10 if a coin is successfully collected; otherwise, the reward is 0. An episode
ends if the agent collects a coin or touches a trap or an enemy.

3 Method

We use a Vision Transformer (ViT) (Dosovitskiy et al., 2020) as the function approximator to jointly
learn an advantage function and a value function. Specifically, image observations (64×64) are first
segmented into patches (8×8) which are subsequently encoded into patch embeddings via early
convolutions (Xiao et al., 2021). These patch tokens serve as the input to the Transformer encoder.
To extract the advantage and value functions, we append two learnable query tokens (one for advan-
tage and one for value) to the patch tokens. This is akin to the [cls] token, which extracts image
information for classification in a standard ViT. The transformer outputs for the query tokens are
mapped to the correct dimensions, i.e., one for the value function and the number of actions for the
advantage function, via separate MLPs. Figure 2 illustrates the overall pipeline of our approach.

The ViT, convolution embedding, and query tokens are jointly trained to minimize the DAE objective
(eq.1) plus an attention penalty term via a PPO style (Schulman et al., 2017) on-policy value-based
algorithm. We use the aggregated path matrix (eq.3) to extract and visualize the learned depen-
dencies of the advantage and value functions. In the following section, we empirically show that
our approach achieves improved generalization and is able to learn an advantage function that only
depends on a small number of decision-relevant image patches.

1The hard attention samples are made differentiable via the Gumbel max trick (Jang et al., 2017).
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Figure 2: The overall architecture of the proposed method. A sparse transformer operates over
patched tokens and query tokens which outputs the learned advantage and value functions. The
learned dependencies of the value functions are extracted via the sparse attention patterns. For
illustrative purposes, we only show 9 patches.

4 Experiments

We compare the performance of our Direct Advantage Estimation (DAE) method against a baseline
that estimates the Q-function. The baseline uses the same architecture as our method (replace the
A/V token by a Q token), but replaces DAE with multi-step SARSA to learn the Q-function. To
evaluate the generalization performance of the learned policies, we train the policies on a fixed
number of procedurally generated CoinRun levels, and test on unseen levels. We train for 250
iterations, where each iteration corresponds to 8192 (parallel actors) × 64 (multi-step) = 524288
frames. We evaluate the agent at the end of each iteration by averaging the scores over 1000 episodes
from randomly sampled test levels. Each configuration is repeated for 3 random seeds.

Generalization & Learning Efficiency We present the results in figure 3 (top row), showing
that DAE is not only more data efficient in terms of training frames, but also demonstrates better
generalization performance across different training levels. Interestingly, we find that while the
generalization performance of both methods is similar when the number of training levels is very
low (102 levels) or very high (104 levels), DAE is able to generalize to new levels better when
trained on a moderate number of levels (103 levels). This corroborates our hypothesis that learning
the advantage function leads to more efficient generalization.

Exogenous Reward The CoinRun environment, while capable of generating diverse levels
through procedural generation, does not include distractive rewards (e.g., rx in an ExoMDP). To
further test the robustness of both DAE and SARSA, we consider a more challenging version of
CoinRun, where we add an additional exogenous reward that depends on the randomly sampled
background image of a level. Note that, since the background image does not depend on the agent’s
actions, this reward function is exogenous by the definition of an ExoMDP. From Figure 3 (bottom
row), we find that SARSA struggles to generalize in this case even with 104 training levels, while
DAE shows similar trends of generalization with respect to the number of training levels. This sug-
gests that estimating the advantage directly via DAE can be beneficial when there are rewards that
are not causally related to the agent’s actions.

Dependency Visualization To qualitatively investigate whether the advantage function learned
via DAE depends on only decision-relevant parts of the image, we visualize the sparse attention pat-
terns learned by the sparse transformer as described in Section 3. Figure 4 shows an example of how
A, V , and Q depend on the observation. Here, we see that the advantage function’s dependency
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Figure 3: Test performance without exogenous rewards (top) and with exogenous rewards (bottom).
Left: Learning efficiency. Right: Final evaluation score. Lines and shadings (error bars) represent
the mean and min/max score over 3 seeds.

map is much more sparse compared to the V or the Q function. In this example, the advantage
function only depends on the velocity of the character (rendered in the upper-left corner), the trap
next to the character, and the boundary of the level on the right (we note that all levels end with a
vertical wall on the right). On the other hand, the value function can depend on various details of
the observation, including various entities (e.g., the traps and the coin), and the background image
(due to the exogenous rewards). The Q function learned by SARSA shows similar patterns to the
value function learned by DAE, demonstrating strong dependency on the irrelevant details of the
observation. Since the policies were constructed either with Q (for SARSA) or A (for DAE), the
advantage function’s ability to ignore irrelevant features offers a possible explanation for the better
generalization performance of DAE. In Appendix A.4, we present extra examples of learned depen-
dencies and compare the attention patterns induced by our approach against standard Transformers,
demonstrating that sparse regularization significantly improves interpretability.

5 Discussion

In the present work, we compared the generalization performance of DAE and SARSA. We found
DAE to (1) converge more efficiently in terms of numbers of training levels, and (2) be less sensitive
to exogenous rewards. By utilizing the sparse transformer architecture, we qualitatively examined
the dependency maps of the different value functions and found that, as the theory suggests, the
advantage function learned by DAE is more robust compared to the Q function learned by SARSA.



Reinforcement Learning Journal 2025

Figure 4: Dependency map with exogenous rewards. The top row shows the adjacency matrix from
the corresponding token to the visual patches. The bottom row shows the masked observations. (a)
DAE. (b) SARSA.
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Supplementary Materials
The following content was not necessarily subject to peer review.

A Additional Experiment Details

A.1 Environment Setting

We use a simplified version of the CoinRun environment by enabling the velocity information via
paint_vel_info, furthermore, we constrain the action space to actions that are relevant to Coin-
Run (i.e., the 9 actions that control the character instead of the full 15 actions). These changes were
made to reduce partial observability and ease exploration. To further reduce partial observability,
we also stack the last 4 observations.

For the exogenous reward experiments, the exogenous reward is defined as a function of the back-
ground index (ranging from 0 to 61). More specifically, we define rx = 0.1 × ( bkg_idx

32 − 1). To
simulate the effect of infinite horizons, the value of the terminal state is defined by rx

1−γ instead of 0.

A.2 Pseudocode

Algorithm 1 A simple on-policy value-based algorithm (PPO style)

Require: backup
Initialize network parameter θ, τ
for iteration i=1, 2, ... do

if backup == SARSA then
πi(a|·)← softmaxa(Qθi−1(·, a)/eτ )

else if backup == DAE then
πi(a|·)← softmaxa(Aθi−1

(·, a)/eτ )
end if
Collect k-step partial trajectories using πi with parallelized environments
θ ← θi−1

for n=1, 2, ..., gradients do
Sample B a batch of k-step trajectories
if backup == SARSA then

L(θ) = EB

[(
Qθ(s0, a0)−

(∑k−1
t=0 γtrt +

∑
a πi(a|sk)Qθi−1

(sk, a)
))2]

πτ (a|s)← softmaxa(Qθ(s, a)/e
τ )

else if backup == DAE then
Enforce constraint by Aθ(s, a)← Aθ(s, a)−

∑
a Aθ(s, a)πi(a|s)

L(θ) = EB

[(
Vθ(s0)−

(∑k−1
t=0 γt(rt −Aθ(st, at)) + γkVθi−1(sk)

))2]
πτ (a|s)← softmaxa(Aθ(s, a)/e

τ )
end if
LS ←

∑
i,j,l σ(q

l
i
T
klj)

Gradient update θ with respect to L(θ) + βSLS
Gradient update τ with respect to τ + βKLEB [KL(πi||πτ )]

end for
θi ← θ

end for

We use softmax policies for exploration and smoothing the policy changes, which were found to be
crucial for the DAE objective (Pan & Schölkopf, 2024). The parameter τ is the log of the temperature
for the softmax function, which is minimized along with a KL penalty to ensure the policy does not
change too much between iterations.
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A.3 Hyperparameter & Network Architecture

We follow the original ViT block design, which consists of a multi-head self-attention layer followed
by an MLP block. The patchify the image using a three layer 2D convolutional network as suggested
by Xiao et al. (2021). We use LayerScale (Touvron et al., 2021) in the ViT blocks, which we found to
stabilize training at initialization. The learning rate follows a one cycle schedule with linear warmup
for the first 10% gradient steps followed by linear annealing to 0. Value heads are all MLPs with a
single hidden layer.

ViT

Conv. Stem (channels, kernel size, stride)
[256, 4, 4]
[512, 2, 2]
[512, 1, 1]

ViT blocks 2
Attention heads 4
MLP dimension 2048

Other Hyperparameters

Parallel actors 8192
Backup length 64

Epochs 2
Batch size 32

Learning rate 1.25×10−4

Learning rate (τ ) 10−2

Adam (β1, β2, ϵ) (0.9, 0.95, 10−5)
βKL 5
βS Linearly increased from 0 to 0.1

Table 1: Network Architecture & Hyperparameters

A.4 Extra Examples

Figure 5, 6, 7 present extra examples of the learned dependency. We observe that the learned sparse
advantage function consistently attends to the rendered velocity information (top left corner) and
relevant features that need to be avoided, such as enemy sprites, traps, and lava. We also compare
against the attention pattern learned by a vanilla Transformer using Attention Rollout (Abnar &
Zuidema, 2020)(rendered on the top row of the figures using a log color scale to visualize small but
non-zero attention weights), showing that it is difficult to reliably extract the learned dependencies
without using sparsity regularization.
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Figure 5: Extra example of learned sparse dependence. Here, the sparse advantage attends to an
enemy sprite that is in front of the agent.

Figure 6: Extra example of learned sparse dependence. Here, the sparse advantage attends to lava
covered floor.
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Figure 7: Extra example of learned sparse dependence. Here, the sparse advantage attends to traps
to be avoided.


