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ABSTRACT

Complex chemical space and limited knowledge scope with biases holds immense
challenge for human scientists, yet in automated materials discovery. Existing
intelligent methods relies more on numerical computation, leading to inefficient
exploration and results with hard-interpretability. To bridge this gap, we intro-
duce a principles-guided material discovery system powered by language infer-
ential multi-agent system (MAS), namely PriM. Our framework integrates auto-
mated hypothesis generation with experimental validation in a roundtable system
of MAS, enabling systematic exploration while maintaining scientific rigor. Based
on our framework, the case study of nano helix demonstrates higher materials ex-
ploration rate and property value while providing transparent reasoning pathways.
This approach develops an automated-and-transparent paradigm for material dis-
covery, with broad implications for rational design of functional materials. Code
is publicly available at our GitHub.

1 INTRODUCTION

The discovery of materials with targeted-property stands as a cornerstone of scientific progress.
Yet, the complexity of material space of structures and properties, poses a formidable challenge to
traditional discovery paradigms (Xue et al., 2016; Wang et al., 2022). Human-driven approaches,
while foundational, are inherently constrained by cognitive biases, fragmented knowledge domains,
and the practical impossibility of exhaustively probing this multidimensional space (Brunin et al.,
2019).

Contemporary data-driven strategies such as active learning (AL) and reinforcement learning (RL),
though powerful, neglect the integration of foundational scientific principles and reduces exploration
to a black-box process, prioritizing statistical correlations over mechanism understanding (Chitturi
et al., 2023; Lookman et al., 2019; Fare et al., 2024; Beeler et al., 2024; Kim et al., 2023). For
instance, while AL iteratively refines search spaces using acquisition functions, it often operates
as a reactive framework, lacking proactive hypothesis generation. Similarly, the reward-driven ex-
ploration in RL may optimize toward narrow objectives without contextual alignment with broader
material design principles. This results in inefficiencies, such as redundant sampling of unproduc-
tive regions, and solutions that lack interpretability, limiting their utility in guiding actionable scien-
tific insights. Recent techniques such as tools augmented large language models (LLMs), so-called
agents, demonstrate remarkable capability in hypothesis generation and scientific reasoning (Zhou
et al., 2024; Yang et al., 2023; Luo et al., 2025; Yang et al., 2024; Zhang et al., 2024b). However,
they are limited to explore the materials space with continuous experiments as feedback in scientific
discovery to reach a goal, primarily due the awareness of scientific mechanisms and the design of
leveraging scientific principles (Cohrs et al., 2024; Kumbhar et al., 2025; Baek et al., 2024; Su et al.,
2024). These limitations underscore a critical gap:
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Figure 1: Overview of PriM. Two phases: hypothesis generation and experimental validation. The
Planner initiates a hypothesis loop involving a Literature Agent (gathering prior knowledge) and Hy-
pothesis Agent (formulating testable hypotheses). Validated hypotheses then undergo experimental
testing: the Experiment Agent designs conditions, while the Optimizer Agent employs method, i.e.,
Monte Carlo Tree Search (MCTS), to optimize outcomes. The process iterates through reasoning
and roundtable discussions to refine experiments. Crucially, hypotheses are grounded in physico-
chemical principles, balancing exploration and exploitation to drive discovery.

Critical gap: The need for an automated discovery framework that
(1) maintains scientific rigor through principle-guided exploration,
(2) ensures experimental efficiency via coordinated multi-agent reasoning, while
(3) preserving mechanistic transparency for human-interpretable insights.

This three-fold challenge necessitates a fundamental rethinking of how automated systems can em-
bed scientific principles while maintaining operational efficiency and interpretability in materials
discovery.

To address this, we propose a paradigm shift toward a scientific principles-guided materials dis-
covery framework, powered by a language-inferential MAS, namely PriM. Unlike conventional
numerical approaches, our workflow embeds domain knowledge and physicochemical principles
into the exploration process, enabling agents to generate hypotheses with searched literatures or
conducted experiments, reason through natural language context, and collaboratively refine strate-
gies under iterative roundtable. With curly designed prompt engineering, this system integrates two
phases, i.e., hypothesis generation and experimental validation, creating a closed-loop cycle that bal-
ances exploration with rigorous scientific reasoning. This design gives hypothesis-oriented working
guidance for agent collaboration. By leveraging language models for reasoning, PriM provides
explicit, human-readable decision pathways, bridging the gap between data-driven optimization and
subject-related knowledge. In summary, our contributions are as follows:

1. A novel scientific discovery framework, PriM, that synergies principle-guided exploration
with multi-agent systems for automated materials discovery.

2. Empirical validation through nanohelix material discovery demonstrates 56.3% improve-
ment in property optimization compared to Vanilla Agent and 9.1% improvement over
Vanilla MAS, highlighting the effectiveness of principle-guided exploration..

3. Comprehensive experiments establish advantages of PriM in both computational effi-
ciency and scientific interpretability over existing methods.

2 RELATED WORK

2.1 LANGUAGE MODELS FOR MATERIALS DISCOVERY

Recent language model (LM) advances have enhanced hypothesis generation in materials science
through knowledge distillation from literature (Yang et al., 2024; Zhou et al., 2024; Pu et al., 2024).
While retrieval-augmented LMs like DARWIN and HoneyComb (Xie et al., 2023; Zhang et al.,
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2024a) improve domain-specific reasoning, they struggle to integrate prior principles or experimen-
tal constraints, risking hallucinated proposals (Bran et al., 2023). Hybrid frameworks address this by
coupling LMs with computational tools (Beeler et al., 2024; Fare et al., 2024), yet remain limited to
single-agent architectures that lack systematic exploration of complex chemical spaces (Luo et al.,
2025). Surveys highlight persistent gaps in interpretability (Zhang et al., 2024c; Han et al., 2024),
underscoring the need for principled guidance beyond tool chaining (Ramos et al., 2024).

2.2 MULTI-AGENT SYSTEM FOR SCIENTIFIC DISCOVERY

Multi-agent systems (MAS) show promise in decomposing discovery tasks (Lu et al., 2024; Su
et al., 2024; Wang et al., 2024), but existing implementations prioritize either parallel experimenta-
tion (Li et al., 2020) or black-box optimization (Lookman et al., 2019), lacking transparent reasoning
pathways. Physics-aware MAS architectures (Ghafarollahi & Buehler, 2024a;b;c) incorporate do-
main knowledge but rely on rigid workflows that limit adaptive hypothesis generation. Modular
frameworks like HoneyComb (Zhang et al., 2024a) enable tool integration but face coordination
inefficiencies in cross-agent validation. While recent works advocate LLM-enhanced agents (Baek
et al., 2024; Kumbhar et al., 2025), none synergize language-guided hypothesis space construction
with physics-based verification—a critical gap our work addresses.

Prior efforts either focus on data-driven exploration (Kim et al., 2023; Schmidgall et al., 2025;
Gomes et al., 2019) or human-AI collaboration (Chitturi et al., 2023; Ni et al., 2024) without uni-
fying interpretable reasoning and automated validation. Our principles-guided MAS uniquely com-
bines (1) language-inferential hypothesis generation constrained by physicochemical principles, (2)
dynamic agent societies for parallelized exploration-exploitation, and (3) closed-loop validation with
explainable decision trails—advancing beyond single-agent RL (Fare et al., 2024) and static MAS
designs (Su et al., 2024; Lu et al., 2024). This design directly resolves the efficiency-interpretability
trade-off in (Xue et al., 2016) while outperforming Bayesian optimization (Chitturi et al., 2023) in
multi-fidelity settings.

3 METHODOLOGY

3.1 SYSTEM OVERVIEW

Our framework, PriM, employs a LLM-based MAS to explore the materials structural-property
space. As depicted in Figure 1, the framework comprises two primary components: hypothesis
generation and experimental validation, coordinated by a central Planner agent that orchestrates the
workflow and validates experimental outcomes.

3.2 ARCHITECTURE

We formally define PriM as F = {P,H, E ,S}, where P denotes the central Planner agent, H
represents the hypothesis generation phase, E encompasses the experimental validation phase, and
S defines the state space.

Hypothesis generation. The hypothesis generation phase H = {L,H} incorporates two essential
components: the Literature Agent L : K → I, which maps the knowledge space K to insights
I, and the Hypothesis Agent H : I → T , which generates testable propositions T . This phase
starts with the Literature Agent synthesizes insights from existing literature based on the predefined
research goal and constraints. Hypothesis Agent here is to formulate testable propositions grounded
in physicochemical principles. These LLM-based agents rely on carefully designed prompt engi-
neering and iterative checking mechanism to ensure that hypotheses generated are both innovative
and aligned with established scientific knowledge.

Experimental validation. The experimental validation phase E = {E, V,O,A} integrates four key
elements: the Experiment Agent E : T × X → D, Virtual Laboratory V : X → Y , Optimizer
Agent O : X × Y → X ∗, and Analysis Agent A : D → R. Here, X represents the parameter
space, Y denotes the property space, and R encompasses the analysis reports. Powered by the Ex-
periment Agent, the experimental variables and their initial values are carefully designed based on
the hypothesis generated in the first phase. The Virtual Laboratory is used to conduct experiments
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by given structure parameter and yield the property value. The experiment process is supported by
the Optimizer Agent, which is to find the optimal parameters with the best property value. The Op-
timizer Agent collaborates closely with the Analysis Agent, which interprets the experiment results,
identifies the statistical patterns discovered, and generates a research experiment report, which is
used for the next iteration to refine hypothesis and experiment.

The iterative process follows the formulation St+1 = P(St,Rt), with each iteration step t con-
sisting of hypothesis generation Tt = H(L(Kt)), experimentation Dt = E(Tt,Xt), optimization
X ∗

t = O(Xt, V (Xt)), and analysis Rt = A(Dt). This mathematical framework ensures system-
atic scientific exploration while maintaining interpretability through the integration of LLM-based
reasoning capabilities.

The framework implements a cyclical workflow wherein hypotheses undergo systematic experi-
mental validation, with results informing subsequent hypothesis generation. This iterative approach
facilitates continuous refinement of scientific understanding while adhering to rigorous experimen-
tal validation protocols. Inter-agent communication is facilitated through an integrated network of
language models, with the Planner agent ensuring coherent system-wide coordination. This archi-
tectural design enables PriM to effectively navigate the complex landscape of structure-property
relationships and physicochemical principles, synthesizing theoretical insights with empirical vali-
dation.

3.3 PRINCIPLE-GUIDED REASONING

Traditional materials discovery methods, including RL and MCTS, rely on exhaustive numerical ex-
ploration of vast chemical spaces (Xue et al., 2016; Kim et al., 2023), suffering from interpretability
deficits and inefficiency in constrained design scenarios.

PriM addresses these limitations through a triad of principle-driven mechanisms: (1) The Literature
Agent retrieves and distills physicochemical principles from experimental studies and theoretical
frameworks; (2) Hypothesis generation is constrained via chain-of-principles prompting (Wei et al.,
2022), enforcing explicit adherence to symmetry rules, thermodynamic feasibility, and synthesis
compatibility through constraint set C; (3) The Analysis Agent validates outcomes through mapping
experimental observations to mechanistic models that expose causal relationships. This framework
achieves a principles-guided exploration, rather than exploration with only experiment results.

3.4 AUTOMATED VALIDATION PIPELINE

PriM transforms the traditionally iterative validation process through a closed-loop integration
of virtual experimentation and strategic optimization. The Experiment Agent operates a physics-
informed virtual lab, leveraging surrogate models trained on multi-fidelity datasets (Huang et al.,
2023) to predict material properties with experimental accuracy. Concurrently, the Optimizer
Agent navigates the constrained parameter space via MCTS (Browne et al., 2012), prioritizing
high-potential candidates identified by the Hypothesis Agent while dynamically pruning subopti-
mal branches.

⋄ Take-Away: To identify optimal experimental conditions, our PriM framework em-
ploys physicochemical principles for initial hypothesis generation, followed by an effi-
cient numerical optimization process that converges within a small number of rounds.

4 EXPERIMENT SETTINGS

To empirically assess the effectiveness of PriM compared to single experimental agent and basic
MAS, we perform experiments using nano helix materials structural-property as a case study. A
Virtual Lab is constructed with a trained model that predicts property values based on structural
parameters, with further details provided in Appendix D. The dataset for training this model is
from a project in cooperation with a certain institution. The project is currently in the process of
submission. Due to the cooperation agreement, the dataset is not yet public. This Virtual Lab serves
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as a platform for structure-property-driven materials discovery. We compare PriM with a baseline
MAS approach under simple-and-workable settings to evaluate its relative efficiency.

We set the following research goal and constraints, which will then be summarized and formalized
by UserProxy Agent:

Research Goal (task description): Find the structural parameters corresponding to the strongest
chirality (g-factor characteristics) in the nanohelix material system.

Research Constraints: Explicitly show the underlying physicochemical principles regarding the
structure and property relationships.

For the Literature Agent, we use LLM to generate the query words, which are then processed through
the Semantic Scholar API to retrieve at most 4 relevant publications. The searched literature will
be passed to LLM to summarize literature insights. The Hypothesis Agent is carefully designed
by prompts, which guides the LLM to generate hypotheses based on research goal and constraints,
literature insights, past experiment results, and domain knowledge about the subject.

The Experiment Agent is based on the Virtual Lab, which performs experiments on parameters
related to the hypothesis. The Optimizer Agent is implemented based on MCTS, which searches
within the pre-defined parameter space and aims to discover the optimal g-factor with the given
condition. The Analysis Agent analyzes the experiment results using the data analysis tools, with
further details provided in Appendix C. It will then provide a research experiment report, which in
the next iteration will instruct the Hypothesis Agent to revise the hypothesis for improvement.

Agents. The agents are set to interact based on a LLM-based Planner, which uses latest chatting
histories to plan the MAS. We use GPT-4o as the language model for all agents. The prompt engi-
neering for each agent and the Planner can be found at Appendix A.

Baselines. To evaluate the effectiveness of PriM, we compare its performance against two baseline
approaches, with implementations detailed in Appendix B: (1) Vanilla Agent: focused solely on
suggesting and conducting experiments with MCTS as parameter searching to find the best g-factor,
which serves as an experimental baseline. (2) Vanilla MAS: a multi-agent system similar to PriM
but without the Hypothesis Agent, serving as a general multi-agent framework. All baselines and
PriM conduct MCTS for 100 iterations for a fair comparison.

Evaluation metric. All experiments are conducted based on nanohelix optimization with Virtual
Lab. The key performance metrics include the final material property value (g-factor) µ and the
number of experimental steps required to reach it. Additionally, we define the exploration rate ϵ
to quantify the agent’s exploration of experimental conditions by calculating the average pairwise
distance between all experiment conditions. The metric is formulated by

ϵ =
1

N(N − 1)

∑
i̸=j

∥xi − xj∥ (1)

where N is the total number of experiments, xi and xj are the experimental conditions (i.e., structural
parameters), the sum is calculated over all pairs where i ̸= j.

5 RESULTS AND ANALYSIS

5.1 PERFORMANCE COMPARISON

We compare our method PriMwith baselines across 5 independent runs with random initializations.
Our evaluation focuses on exploration rate and convergence iteration count. Traditional optimization
methods, such as Bayes Optimization (Frazier, 2018) (BO), Deep Q-Net (Mnih et al., 2015) (DQN)
serve as traditional baseline comparison, though our primary interest lies in comparing the broader
search dynamics rather than strictly numerical performance. This approach enables us to assess
how principle-guided exploration compares to conventional search strategies in materials discovery
contexts.
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Table 1: Comparison of PriM with Baselines Methods (mean ± std)

Method Rationality Optimal Value (µ) Exploration Rate (ϵ) Iteration

BO N/A 1.081 (± 0.065) 467.35 (± 23.52) 14.29 (± 2.34)
DQN N/A 1.050 (± 0.021) 6.75 (± 0.30) 20.00 (± 0.00)
Vanilla Agent Naive Logics 0.644 (± 0.054) 24.47 (± 7.34) 9.20 (± 2.56)
Vanilla MAS Naive Logics 0.923 (± 0.170) 264.65 (± 22.42) 65.40 (± 18.91)
PriM (Ours) Principles 1.007 (± 0.103) 49.68 (± 10.07) 85.50 (± 8.58)

⋄ Take-Away: PriM achieves near-optimal material properties while maintaining sci-
entific rationality, unlike traditional optimization methods. Its lower exploration rate
compared to Vanilla MAS demonstrates how principle-guided approaches enable more
efficient and targeted parameter space traversal, balancing performance with mechanis-
tic understanding.
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Figure 2: Comparison of nanohelices discov-
ery progress with g-factor optimization. PriM
achieves a high g-factor value in significantly
fewer steps compared to baseline methods, high-
lighting the benefits of its physicochemical
grounding.

From Table 1, PriM achieves a near-optimal
property value (1.007) while significantly out-
performing Vanilla Agent, which shows a
36.0% lower optimal value (0.644). Although
traditional optimization methods like BO and
DQN reach slightly higher optimal values, they
lack scientific rationality in their approach. No-
tably, while Vanilla MAS requires fewer itera-
tions than PriM (65.40 vs. 85.50), it demon-
strates a substantially higher exploration rate
(264.65 vs. 49.68), indicating inefficient pa-
rameter space traversal. This suggests that
Vanilla MAS, despite exploring more exten-
sively, fails to leverage scientific principles
for targeted optimization. As shown in Fig-
ure 2, PriM’s principle-guided approach en-
ables more systematic and efficient exploration,
requiring significantly fewer total samples to
achieve comparable performance to traditional
methods while maintaining interpretable scien-
tific reasoning throughout the discovery process.

These results validate our framework’s design and emphasize the necessity of embedding domain-
specific principles into the hypothesis-generation phase. By structuring exploration through sci-
entific reasoning, PriM balances exploration and exploitation more effectively than conventional
multi-agent or single-agent approaches, leading to higher optimal material properties and improved
interpretability in scientific discovery.

5.2 NANO HELIX MATERIAL DISCOVERY

This case study presents the iterative hypothesis-validation process in nano-helix material discov-
ery, demonstrating how PriM systematically refines hypotheses to achieve an optimized g-factor
through principle-guided reasoning. Unlike conventional heuristic-based approaches, PriM follows
an iterative cycle where hypotheses are generated, tested, and refined based on both literature in-
sights and experimental feedback, ensuring physicochemically-grounded exploration.

We analyze the Hypothesis-related results shown in Figure 4 and Optimizer Agent’s process shown
in Figure 3, where PriM incrementally adjusts the helix radius, pitch, number of turns, fiber radius,
and curl parameter over multiple iterations. The initial hypothesis is guided by structural stability
principles in mesogenic complexes, proposing that increasing helix radius enhances chirality due
to improved molecular interactions. However, subsequent iterations reveal a complex interplay be-
tween helix geometry and chiral optical properties, necessitating further refinements to optimize
g-factor performance. Figure 3 shows the optimization progress in each iteration.
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Figure 4: Step-by-Step Principle Evolution. Each step records the principles behind the hypothesis,
the changes of parameter values, and the achieved g-factor, highlighting key improvements and
showcases PriM’s ability to balance exploration and exploitation.

In Iteration 1, the system suggests that increasing the helix radius to 42.59 should enhance the
g-factor due to optimized structural stability and molecular interactions. However, the resulting
g-factor (0.418) remains suboptimal. Iteration 2 refines this hypothesis, introducing the number of
turns (n turns) as another key parameter, resulting in a g-factor improvement to 0.625, demonstrating
the interdependence between the number of turns and helical chirality.
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Figure 3: Evolution of Experiment Values Across
Iterations by Optimizer Agent.

As the iterations progress, the Hypothesis
Agent and the Optimizer Agent systematically
adjusts parameters based on experimental vali-
dation. In Iteration 4, the introduction of fiber
radius and height parameters significantly mod-
ulates helical symmetry, leading to a g-factor
of 0.95. By Iteration 8, PriM arrives at an
optimized configuration, achieving a maximum
g-factor of 0.974, yielding a 133% improve-
ment from the initial value. We take an ex-
ample to show a detailed literature-hypothesis-
experiment with our PriM framework:

Literature Insights. Before the hypothesis
is proposed, some insights are summarized by
Literature Agent. In this example, a paper
Quantum-Chemical Study of the Photophysi-
cal Behavior of Mesogenic Europium(III) Com-
plexes with β-Diketones and Lewis Bases with
its summarization establish that coordination polyhedra govern optical properties in complex
materials. This provides the foundation for the hypothesis that helix radius directly influences chi-
rality (g-factor) in nanohelices. The relationship stems from three key principles: first, chirality
represents a fundamental optical property in helical nanostructures; second, coordination geometry
significantly alters light-matter interactions in helical arrangements; and third, the radius parameter
precisely determines the spatial organization of coordination sites.
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Hypothesis Generation. Based on the literature review, the generated hypothesis is: By optimizing
the helix radius to an initial value of 55 (within the range of 20 to 90), the nanohelices material
system will exhibit the strongest chirality (g-factor characteristics), as the helix radius significantly
influences the coordination polyhedra and optical properties, aligning with the physicochemical
principles of structure-property relationships highlighted in the literature. This can also interpret
why the system choose helix radius as the first attempt.

Analysis Report. The investigation after the hypothesis, experiment and optimization demonstrates
a systematic approach from theory to experimental verification. As the provided report says, the
literature review identified coordination polyhedra as critical determinants of optical properties,
particularly in materials with helical geometries. This understanding informed the hypothesis that
helix radius optimization (predicted at 55 nm) would maximize chirality (g-factor). Subsequent
experiments revealed a more complex relationship than initially proposed, with optimal chirality
occurring at 42.59 nm. This 22.6% deviation from our hypothesis, coupled with the contradictory
correlation coefficients (negative Pearson but positive Spearman/Kendall), suggests that while the
fundamental principle candidates was correctly identified, the actual behavior follows a non-linear
pattern that requires more sophisticated modeling beyond our initial linear prediction framework.

System Effectiveness. The PriM iterative research system has demonstrated remarkable efficacy
in optimizing nanohelix materials for enhanced chirality. Through successive cycles of literature
analysis, hypothesis generation, and experimental validation, the system refined its understanding
of structure-property relationships—evolving from an initial hypothesis predicting optimal helix ra-
dius at 55 nm to discovering the actual optimum at 33.43 nm with a maximum g-factor of 0.974. This
progression showcases PriM’s ability to efficiently navigate complex parameter spaces by integrat-
ing theoretical insights from coordination chemistry with empirical data validation. Most notably,
our system identified critical synergistic relationships between multiple structural parameters (pitch,
helix radius, curl, and number of turns) that would have been difficult to discern through traditional
research methodologies. The average 24.85% improvement in g-factor between iterations validates
PriM’s scientific approach and highlights its potential for accelerating materials discovery across
diverse technological domains.

The complete iterative refinement process is summarized in Figure 4, which illustrates the evolution
of hypotheses, suggested conditions from MCTS, and their corresponding optimal g-factor values,
alongside the physicochemical principles underlying each refinement.

6 IMPACT STATEMENT

To the best of our knowledge, this work represents the first exploration of principle-driven materials
discovery (PMD) using language models. Our PriM framework demonstrates a significant advance-
ment in automated materials discovery by integrating scientific principles into the exploration pro-
cess through multi-agent collaboration. By embedding physicochemical principles into hypothesis
generation and experimental validation, PriM not only achieves superior performance in identify-
ing optimal material properties but also maintains interpretability throughout the discovery process.
This approach bridges the gap between black-box optimization and scientific understanding, paving
the way for AI-assisted discovery that remains grounded in established scientific methodology.

7 LIMITATIONS AND FUTURE WORK

We acknowledge several limitations in our current implementation. The reliance on LLM inference
introduces potential biases or hallucinated correlations between structure variables and property
values. Although PriM includes verification mechanisms, further work is needed to quantify and
mitigate these biases. Additionally, while our case study focused on nanohelix optimization, broader
validation across diverse material systems would strengthen our claims about generalizability.

Future work will explore several promising directions. We plan to incorporate advanced reasoning
mechanisms that refines hypothesis selection through structured causal inference, potentially im-
proving exploration efficiency. Integration with automated laboratory platforms would enable phys-
ical validation of our approach in real-world settings. Furthermore, we aim to extend PriM to more
complex scientific systems where mechanistic understanding is limited, such as complex catalytic
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reactions or biological materials, where principle-guided exploration could be particularly valuable.
By bridging automated reasoning with scientific knowledge, PriM represents a step toward more
interpretable, efficient, and scientifically grounded AI systems for materials discovery.

8 CONCLUSIONS

This work presents PriM, a principle-guided multi-agent system that advances materials discov-
ery by embedding scientific reasoning within a structured hypothesis-validation framework. Unlike
traditional black-box searching approaches, PriM increases interpretability and transparency, bal-
ancing exploration and exploitation. With this approach, materials with targeting property are not
only discovered but also validated through suggested physicochemical principles. Our experiments
about nano helix material discovery demonstrate that PriM accelerates discovery efficiency, yield-
ing higher optimal property values compared to single-agent and conventional multi-agent baselines.
The Hypothesis Agent plays a crucial role in refining search trajectories while avoiding unproductive
exploration, as confirmed by our ablation studies. By bridging automated reasoning with scientific
knowledge, PriM lays the groundwork for the next generation of AI-driven discovery frameworks,
fostering faster, more reliable, and more interpretable scientific innovation.
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A PROMPT ENGINEERING

A.1 USER PROXY AGENT

A.1.1 SUMMARIZE RESEARCH GOAL

System Prompt

Now you are an expert in research goal refinement for scientists. You should clarify and
summarize research goals to make them precise and suitable for querying scientific databases
like the Semantic Scholar API.

11



AI for Accelerated Materials Design Workshop at ICLR 2025

User Prompt

Here, I would like to refine a given research goal for clarity and specificity. I need you to
generate a clarified research goal by following these requirements:

• Maintain all critical scientific details and domain-specific terminology.
• Ensure the clarified goal is concise and uses keywords relevant to the research con-

text.
• Remove extraneous or general descriptive phrases.
• Align the clarified goal with requirements for effective querying using scientific

databases.
• Format the clarified goal as a concise, keyword-focused statement.

A.1.2 SUMMARIZE RESEARCH CONSTRAINTS

System Prompt

Now you are an expert in research constraint refinement for scientists. You should clarify
and summarize research constraints to make them precise and suitable for querying scientific
databases.

User Prompt

Here, I would like to refine the constraints of a research project for clarity and specificity. I
need you to generate clarified research constraints by following these requirements:

• Identify and emphasize the key limitations and boundaries of the research project.
• Ensure the clarified constraints are concise and use domain-specific terminology.
• Remove redundant or overly general phrases that do not contribute to a specific

understanding of the constraints.
• Align the clarified constraints with requirements for effective querying using sci-

entific databases.
• Format the clarified constraints as a concise, keyword-focused statement.

A.2 LITERATURE AGENT

A.2.1 GET SEMANTIC SCHOLAR SEARCH KEYWORDS

System Prompt

Now you are an expert in generating search keywords for scientific database queries. Your
task is to use refined research goals and research constraints to create precise and effective
search queries for the Semantic Scholar API in the required format.
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User Prompt

Here, I need you to generate search queries for a literature review. Please follow these
requirements:

• Use the provided clarified research goal and constraints to identify relevant search
queries.

• Ensure the output is formatted as a single search string separated by commas, suit-
able for the Semantic Scholar API.

• Maintain brevity and precision, using domain-specific terms.
• Ensure the search terms cover both the research goal and constraints effectively.
• The query words you suppose should be as few as possible, as Semantic Scholar

may not find enough literature with too many constraints.

A.2.2 SUMMARIZE SEARCHED RESULTS

System Prompt

You are an expert in summarizing literature review results from scientific database searches.
Your task is to process and summarize results retrieved from the Semantic Scholar API,
focusing on the mechanisms by which various factors affect nanohelices materials.

User Prompt

Here, I would like to summarize the search results from a literature review. The summaries
should focus on the mechanisms and their impact on nanohelices materials. Please adhere
to the following REQUIREMENTS:

• Include the article title, authors, and publication year.
• Provide a 1–2 sentence summary of the article’s focus on mechanisms, specifically

how different factors or processes affect nanohelices materials.
• Use precise scientific language to ensure clarity and relevance.
• Avoid including unrelated details; prioritize findings directly tied to the effects on

nanohelices materials.
• Format the summaries for easy reference and further exploration.

A.3 HYPOTHESIS AGENT

A.3.1 GENERATE HYPOTHESIS

System Prompt

You are an expert in materials science with a focus on helical structures and chiral properties.
Your task is to generate clear, specific, and testable hypotheses for nanohelices research.
Each hypothesis should be grounded in scientific principles of helix geometry, chirality, and
material behavior, and it must guide the design of experiments to evaluate these properties.
Incorporate insights from literature, ensure alignment with research goals and constraints,
and propose parameters within the defined space for virtual experiments.
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User Prompt

Here, I would like to generate a clear and testable hypothesis based on the provided research
information. Please follow these REQUIREMENTS:

• Ensure the hypothesis aligns with the given research goal.
• Address all the specified research constraints.
• Incorporate insights or patterns identified in the provided literature review.
• Specifically consider the principles of helix geometry and chirality in the hypothe-

sis.
• Focus on testing one parameter from the provided parameter space that is most

relevant to the research goal.
• Include the parameter label and an initial value for the experiment, supported by

literature or logical reasoning.
• Format the output as a single CONCISE hypothesis statement.

A.3.2 REFINE HYPOTHESIS

System Prompt

You are an expert in refining hypotheses for nanohelices research. Your primary task is to
enhance hypotheses by incorporating insights from the research report of the previous iter-
ation of experiments, and theoretical principles related to helix structure and chirality. The
refined hypothesis must be precise, TESTABLE, and explicitly address the research objec-
tives, constraints, and experimental outcomes. Pay special attention to the interplay between
helix geometry (e.g., pitch, n turns, helix radius) and material properties, such as mechan-
ical strength, optical activity, and chirality. Where applicable, use the Circular Dichroism
(CD) spectrum as a guiding factor. Propose adjustments for future experiments to validate
the hypothesis and explore hidden connections among parameters.
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User Prompt

Based on the following research report from the previous iteration of experiments, refine the
hypothesis to better align with the research goal, constraints, and experimental outcomes.
The hypothesis you revised MUST be CONCISE!
The refined hypothesis must:

• Be CONCISE and focused on a specific parameter from the given parameter space:
– angle: [0.123160654, 1.009814211]
– curl: [0.628318531, 8.078381109]
– fiber_radius: [20, 60]
– height: [43.32551229, 954.9296586]
– helix_radius: [20, 90]
– n_turns: [3, 10] (integer values only)
– pitch: [60, 200]
– total_fiber_length: [303.7757835, 1127.781297]
– total_length: [300, 650]

• Clearly articulate how the selected parameter influences material properties and
contributes to achieving the research goal.

• You may suggest parameters within the defined space for virtual experiments.
• Apart from the experiment variables from the past iteration, you are encouraged to

consider other parameters from the parameter space.
• Suggest specific values or adjustments for the parameter based on supporting evi-

dence from experiments or literature.
• Explore potential hidden connections or interdependencies among parameters and

propose hypotheses to investigate them.
• Format the output as a single CONCISE hypothesis statement.

A.4 EXPERIMENT AGENT

A.4.1 INITIALIZE EXPERIMENT

System Prompt

Now you are an expert in designing scientific experiments. Your task is to identify the
experimental variables to be tested based on a given hypothesis. The output must include
the parameter names and their proposed initial values from the hypothesis.
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User Prompt

Here, I need you to identify the experimental variables from a hypothesis. Please follow
these REQUIREMENTS:

• Extract the specific parameters to be tested from the hypothesis, and the initial
values of these parameters MUST be NUMERICAL values.

• ONLY output the parameter names and their initial values in the format:
{’variables’: [’var1’, ’var2’], ’values’: [val1, val2]},
do not include anything else.

• The variable and corresponding parameter you are suggesting MUST lie in the pre-
defined parameter space:

– angle: [0.123160654, 1.009814211]
– curl: [0.628318531, 8.078381109]
– fiber_radius: [20, 60]
– height: [43.32551229, 954.9296586]
– helix_radius: [20, 90]
– n_turns: [3, 10] (integer values only)
– pitch: [60, 200]
– total_fiber_length: [303.7757835, 1127.781297]
– total_length: [300, 650]

A.5 ANALYSIS AGENT

A.5.1 GENERATE RESEARCH REPORT

System Prompt

You are a research report writer specializing in materials science experiments.

User Prompt

You are now requested to compile a comprehensive research report based on our research
settings, experiment results, and analysis.
Research Context:

• Research Goal: research_goal
• Constraints: research_constraints
• Literature Review Summary: literature_insights
• Hypothesis: hypothesis

Data Analysis: The analysis results obtained from the data analysis tools are attached below:
data_analysis_results.
Requirements for the Report:

• Provide a concise summary of the experimental results.
• Highlight important insights from the data and analysis.
• Include tables summarizing experimental setups, key parameters, and results.
• Suggest next steps for the research based on the current findings.

The report should be saved as a structured markdown file. AND THE REPORT MUST BE
CONCISE!
Make sure the report is well-structured, easy to read, and conveys the necessary details for
further analysis and replication.
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B BASELINE IMPLEMENTATIONS

In this section, we detail the implementation of the baselines used for comparison, namely the
Vanilla Agent and the Vanilla MAS.

B.1 VANILLA AGENT

We define the Vanilla Agent baseline as

FSLLM = {E,O},

where:

• E is the Experiment Agent that executes experiments based on the predefined research
goal.

• O is the Optimizer Agent that refines the experimental parameter space via Monte Carlo
Tree Search (MCTS)-based optimization.

In this baseline, the hypothesis generation phase is omitted, and the resultant g-factor value Dt at
iteration t is produced directly as:

Dt = E(Xt),

where Xt is the parameter space at the t-th iteration. And X1 is defined according to the pre-defined
research goal and constraints.

The iterative MCTS-based parameter update is then given by:

Xt+1 = O (Xt,Dt) ,

where the Optimizer Agent continuously adjusts Xt based on observed outcomes.

B.2 VANILLA MAS

The Vanilla MAS baseline is defined as

FMAS = {P,U , L,H,E,A,O},

where:

• P is the Planner agent managing overall workflow and agent coordination.
• U is the User Proxy Agent that specifies the research goals and constraints.
• L is the Literature Agent which retrieves and summarizes relevant literature.
• H is the Hypothesis Agent that, in the full framework, generates testable propositions;

however, in this ablated baseline, the operational role of H is removed.
• E is the Experiment Agent that executes experiments.
• A is the Analysis Agent that processes experimental data and generates analysis reports.
• O is the Optimizer Agent that optimizes the parameter space.

In the ablated Vanilla MAS, by bypassing the hypothesis generation, the workflow is defined by:

St+1 = P
(
St,Rt

)
,

with operations occurring as:

1. The User Proxy Agent U sets the research goal and constraints.
2. The Literature Agent L extracts insights from scientific literature.
3. The Hypothesis Agent H is bypassed, and the system proceeds directly to the Experiment

Agent E.
4. The Optimizer Agent O refines the parameter space Xt based on experimental feedback.
5. The Analysis Agent A evaluates experimental outcomes, generating report Rt.
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C EXPERIMENT DATA ANALYSIS

To quantitatively analyze the experimental data and extract meaningful insights, we employ a suite
of statistical and computational tools. The Analysis Agent utilizes these tools to process experimen-
tal records, determine statistical distributions, compute correlation metrics, fit polynomial models,
and identify optimal experimental conditions. The following subsections provide a detailed mathe-
matical description of these methods.

C.1 DATA DISTRIBUTION ANALYSIS

To access the variability and normalization of experimental parameters, we employ standardization
techniques. Given a dataset of experimental variables X = (X1, . . . , Xn) and the corresponding
experimental results Y = (y1, . . . , yn), the standardized value X ′

i for each parameter is computed
as:

X ′
i =

Xi − µX

σX
, Y ′ =

Y − µY

σY
,

where µX and σX are the mean and standard deviation of X , and µY , σY are those of Y . This
transformation ensures that each parameter follows a standard normal distribution, facilitating fair
comparisons across different experimental variables.

C.2 CORRELATION ANALYSIS

To evaluate the dependence between experimental parameters and outcomes, we compute three
correlation coefficients:

C.2.1 PEARSON CORRELATION COEFFICIENT

The Pearson correlation coefficient rp measures the linear dependence between a variable X and a
response Y :

rp =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(XiX̄)2
√∑n

i=1(Yi − Ȳ )2
,

where X̄ and Ȳ are the mean values of X and Y , respectively.

C.2.2 SPEARMAN RANK CORRELATION

The Spearman correlation coefficient rs evaluates the monotonic relationship between two vari-
ables by ranking values before computing the Pearson correlation:

rs = 1− 6
∑

d2i
n(n2 − 1)

,

where di is the difference between the ranks of corresponding X and Y values.

C.2.3 KENDALL’S TAU

Kendall’s Tau τK assesses the strength of ordinal association:

τK =
C −D

C +D
,

where C and D are the number of concordant and discordant pairs.

A pair (xi, yi) and (xj , yj) is said to be concordant if (xi−xj)(yi−yj) > 0, is said to be discordant
if (xi − xj)(yi − yj) < 0.

C.3 CRITICAL VALUE IDENTIFICATION

To determine the optimal experimental conditions, we extract the maximum experimental result
g = maxi Yi, the corresponding optimal parameter is given by

X⋆ = {Xi⋆ | i⋆ = argmax
i

Yi},

which identifies the parameter values associated with highest observed response.
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C.4 POLYNOMIAL CURVE FITTING

To model the nonlinear relationship between experimental variables and the g-factor results, we
perform polynomial regression. Given an independent variable X and the response Y , we fit a
polynomial function of degree d:

Y ≈ f(X) = cdX
d + cd−1X

d−1 + . . .+ c1X + c0,

where the coefficients c0, c1, . . . , cd are obtained using least squares fitting:

min
c0,c1,...,cd

d∑
i=1

(Yi − f(Xi))
2.

D VIRTUAL LAB

The Virtual Lab is a computational environment designed to evaluate material properties based on
structural parameters. Preparing the virtual lab consists of data preprocessing, model training, and
inference components to predict the g-factor of nanomaterials.

We develop a http server based on flask app to host an API to support the numerical experiments.
All requests of getting property value is through the local http server.
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