

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DHG-BENCH: A COMPREHENSIVE BENCHMARK FOR DEEP HYPERGRAPH LEARNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Deep graph models have achieved great success in network representation learning.
012 However, their focus on pairwise relationships restricts their ability to learn
013 pervasive higher-order interactions in real-world systems, which can be natu-
014 rally modeled as hypergraphs. To tackle this issue, Hypergraph Neural Networks
015 (HNNs) have garnered substantial attention in recent years. Despite the pro-
016 posal of numerous HNNs, the absence of consistent experimental protocols and
017 multi-dimensional empirical analysis impedes deeper understanding and further
018 development of HNN research. While several toolkits for deep hypergraph learning
019 (DHGL) have been introduced to facilitate algorithm evaluation, they provide
020 only limited quantitative evaluation results and insufficient coverage of advanced
021 algorithms, datasets, and benchmark tasks. To fill the gap, we introduce DHG-
022 Bench, the first comprehensive benchmark for HNNs. Specifically, DHG-Bench
023 systematically investigates the characteristics of HNNs in terms of four dimen-
024 sions: effectiveness, efficiency, robustness, and fairness. We comprehensively
025 evaluate 17 state-of-the-art HNN algorithms on 22 diverse datasets spanning node-
026 , edge-, and graph-level tasks, under unified experimental settings. Extensive
027 experiments reveal both the strengths and limitations of existing algorithms, of-
028 fering valuable insights and directions for future research. Furthermore, to facili-
029 tate reproducible research, we have developed an easy-to-use library for training
030 and evaluating different HNN methods. The DHG-Bench library is available at:
031 https://anonymous.4open.science/r/DHG_Bench-F739.

1 INTRODUCTION

035 Graph-structured data has become a ubiquitous tool for modeling the complex relational dependencies
036 among entities in various domains, such as social analysis (Fan et al., 2019), e-commerce (Liu et al.,
037 2021), and finance (Li et al., 2024b). Graph Neural Networks (GNNs) have emerged as the dominant
038 approach for learning on such data, owing to their exceptional ability to leverage both the graph
039 topology and node attributes. However, many real-world systems involve multi-way or group-wise
040 interactions beyond the pairwise connections of graphs. For instance, multiple authors co-write a
041 paper in co-authorship networks (Yang et al., 2022), and groups of proteins interact collectively in
042 biological systems (Kim et al., 2024b). These higher-order interactions can be naturally modeled by
043 hypergraphs, where each hyperedge connects an arbitrary number of nodes. As hypergraphs become
044 increasingly prevalent, there is a growing demand for predictive tasks on them, such as estimating
045 node properties or identifying missing hyperedges (Kim et al., 2024b). However, directly applying
046 GNNs to such tasks inevitably collapses higher-order interactions into pairwise relations, resulting in
047 significant information loss and thus sub-optimal performance (Chien et al., 2022).

048 To mitigate the aforementioned problem, Hypergraph Neural Networks (HNNs) (Yadati et al., 2019;
049 Chien et al., 2022; Wang et al., 2023b; Tang et al., 2025) have become the prevailing paradigm for
050 deep hypergraph learning (DHGL), attracting considerable research interest in recent years. These
051 methods employ neural architectures to transform nodes, hyperedges, and their associated features
052 into vector representations (i.e., embeddings) that effectively preserve higher-order semantics. HNNs
053 have demonstrated state-of-the-art performance across diverse industrial and scientific applications,
including product recommendation (Khan et al., 2025), 3D object detection (Fixelle, 2025), and
disease diagnosis (Han et al., 2025).

Despite the emerging studies of HNN algorithms, the comprehensive benchmark for evaluating these methods remains absent, bringing out the following problems: (i) Existing works utilize different datasets, compared baselines, and experimental setups (e.g., data splitting strategies and parameter settings), which makes it challenging to achieve a fair comparison. (ii) Existing works primarily focus on the effectiveness evaluation of HNN algorithms, while lacking empirical understanding of their efficiency and trustworthiness (e.g., robustness and fairness), both of which are essential for real-world deployment. This prevents practitioners from understanding the advantages and limitations of HNN algorithms from multiple perspectives and makes it difficult to select appropriate methods for different application scenarios. Hence, there is an urgent necessity within the community to develop a standardized and comprehensive benchmark for HNNs.

In recent years, several open-sourced toolkits, including HyFER (Hwang et al., 2021), DHG (Gao et al., 2022), and TopoX (Hajij et al., 2024), have been proposed to facilitate benchmarkable deep hypergraph learning. However, these works provide only limited or even no quantitative performance comparisons, which thus compromises their practical value for practitioners. Furthermore, they fail to incorporate many state-of-the-art HNN algorithms and provide insufficient coverage of benchmark datasets and evaluation tasks. Specifically, HyFER supports only the implementation of three HNN models, while the other two libraries include only HNNs proposed before 2023. Moreover, none of these toolkits integrate heterophilic hypergraph datasets, which represent a particularly challenging setting (Li et al., 2025c), nor do they support graph-level tasks (e.g., hypergraph classification). These limitations significantly restrict the reproducibility and comprehensive evaluation of advanced HNNs.

To bridge the gap, we propose DHG-Bench, which serves as the first open-sourced and comprehensive benchmark for HNNs. Our benchmark encompasses 17 representative HNN methods and 22 diverse hypergraph datasets covering node-level, edge-level, and graph-level tasks. We employ standardized computational operators and APIs, along with consistent data splitting and processing strategies, to ensure fair comparison. Beyond effectiveness, our benchmark supports multi-faceted analysis, allowing researchers to investigate the efficiency, robustness, and fairness of current HNN algorithms. Through extensive experiments, we derive the following key insights: (i) Existing HNN algorithms exhibit substantial performance variability across datasets and tasks, reflecting their limited generalization ability. (ii) Most HNN methods struggle to strike a satisfactory balance between predictive performance and computational efficiency. (iii) The performance of HNN algorithms is affected by different types of data perturbations, with feature-level and supervision-level perturbations causing particularly adverse impacts. (iv) HNN algorithms tend to result in more severe fairness issues than deep models without higher-order message passing, such as MLPs. Our main contributions are summarized as follows:

- **Comprehensive Benchmark.** DHG-Bench enables a fair and unified comparison among 17 state-of-the-art HNN methods by standardizing the experimental settings across 22 widely used hypergraph datasets of diverse characteristics. To the best of our knowledge, this is the first comprehensive benchmark for deep hypergraph learning.
- **Multi-dimensional Evaluation and Analysis.** We conduct a systematic analysis of existing HNN methods from various dimensions, encompassing effectiveness, efficiency, robustness, and fairness. Extensive experiments uncover the potential strengths and limitations of existing HNN algorithms, offering valuable insights to inform and inspire future research in this field.
- **Open-sourced Benchmark Library.** We release DHG-Bench, an easy-to-use open-sourced benchmark library to support future HNN research. With our toolkit, users can evaluate their algorithms or datasets with less effort.

2 PRELIMINARY

Let $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathbf{X})$ represent a hypergraph with vertex set $\mathcal{V} = \{v_i\}_{i=1}^{|\mathcal{V}|}$ and hyperedge set $\mathcal{E} = \{e_j\}_{j=1}^{|\mathcal{E}|}$. $\mathbf{X} \in \mathbb{R}^{|\mathcal{V}| \times F}$ is the node feature matrix with F -dimension. In this benchmark, we focus on three supervised learning tasks, covering node-, edge-, and graph-level prediction.

Node Classification. Given the labeled node set $\mathcal{V}_L \subset \mathcal{V}$ with labels $\mathbf{Y}_L \in \mathbb{R}^C$, where each node v_i is associated with a label y_i from one of the C classes, the goal of node classification is to train a classifier $f_\theta : v \mapsto \mathbb{R}^C$ to predict labels \mathbf{Y}_U of the remaining unlabeled nodes $\mathcal{V}_U = \mathcal{V} \setminus \mathcal{V}_L$.

108 **Hyperedge Prediction.** Given a hypergraph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathbf{X})$, we denote $\mathcal{E}' \subset 2^{\mathcal{V}} \setminus \mathcal{E}$ as the **target set**
 109 which typically consists of (a) unobserved hyperedges or (b) new hyperedges that will arrive in the
 110 near future. Each element in $2^{\mathcal{V}} \setminus \mathcal{E}$ is referred to as a **hyperedge candidate**, denoted by c , as it may
 111 belong to \mathcal{E}' . The hyperedge prediction task aims to train a hyperedge classifier $f'_\theta : e \mapsto \{0, 1\}$ to
 112 predict whether a candidate c belongs to the target set \mathcal{E}' or not.

113 **Hypergraph Classification.** Let \mathcal{H} as the hypergraph set. Given the labeled hypergraph set \mathcal{H}_L and
 114 their labels $\mathbf{Y}_L \in \mathbb{R}^C$, where each hypergraph \mathcal{G}_i is assigned a label y_i . The hypergraph classification
 115 task aims to train a hypergraph classifier $f''_\theta : \mathcal{G} \mapsto \mathbb{R}^C$ to predict labels \mathbf{Y}_U of the unlabeled
 116 hypergraphs $\mathcal{H}_U = \mathcal{H} \setminus \mathcal{H}_L$.
 117

118 3 BENCHMARK DESIGN

121 In this section, we introduce the DHG-Bench in terms of datasets (Section 3.1), algorithms (Sec-
 122 tion 3.2), and research questions (Section 3.3) that guide the benchmark study.

124 3.1 BENCHMARK DATASETS

126 To comprehensively evaluate HNNs, we integrate 22 benchmark datasets from various domains
 127 spanning node-, edge-, and graph-level tasks. In this section, we introduce each dataset category and
 128 the corresponding data splitting strategy. Detailed descriptions are provided in Appendix A.1.

129 **Node-level Classification Datasets.** For the node classification task, we select 13 hypergraph datasets
 130 that cover diverse domains and characteristics. Specifically, we include 8 homophilic datasets: two
 131 co-citation networks (Cora and Pubmed (Yadati et al., 2019)); two co-authorship networks (Cora-CA
 132 and DBLP (Yadati et al., 2019)); two graphics datasets (NTU2012 and ModelNet40 (Feng et al.,
 133 2019)); and two hypergraphs that capture user interactions, namely Walmart for co-purchasing (Chien
 134 et al., 2022) and Trivago for co-clicking (Kim et al., 2023). In addition, we consider 5 heterophilic
 135 datasets, including two information networks (Actor (Li et al., 2025c) and Yelp (Chien et al., 2022)),
 136 an e-commerce network (Amazon-ratings (Li et al., 2025c)), and two social networks (Twitch-gamers
 137 and Pokec (Li et al., 2025c)). Moreover, to investigate algorithmic fairness, we include three fairness-
 138 sensitive datasets (German, Bail, and Credit (Wei et al., 2022)), which contain sensitive node attributes
 139 such as gender, race, and age. Following (Feng et al., 2019; Chien et al., 2022; Tang et al., 2025), we
 140 adopt a split of 50%/25%/25% for training, validation, and testing in the node classification task.

141 **Hyperedge-level Prediction Datasets.** For the hyperedge prediction task, we use 6 datasets: four
 142 widely adopted homophilic academic networks (Cora, Pubmed, Cora-CA, and DBLP-CA) (Hwang
 143 et al., 2022; Ko et al., 2025) and two newly introduced heterophilic datasets, Actor and Pokec (Li
 144 et al., 2025c), which enable a more comprehensive evaluation due to their low hyperedge homophily.
 145 Following (Hwang et al., 2022; Ko et al., 2025; Yu et al., 2025), we randomly split the hyperedges (i.e.,
 146 positive samples) into training (60%), validation (20%), and test (20%) sets. In addition, we adopt
 147 negative sampling (NS) (Yadati et al., 2020; Hwang et al., 2022), which is devised to enhance the
 148 distinguishing ability of the model by introducing non-existing hyperedges as contrastive information
 149 for model training. Specifically, for each training, validation, and test set, we sample an equal number
 150 of negative examples as the positive ones. Following (Ko et al., 2025), we employ a mixed NS
 151 strategy that integrates three common heuristic methods, namely sized NS (SNS), motif NS (MNS),
 152 and clique NS (CNS) (Patil et al., 2020), to increase the diversity of negative samples.

153 **Hypergraph-level Classification Datasets.** For the hypergraph classification task, we consider 6
 154 benchmark datasets introduced in (Feng et al., 2024). RHG-10 and RHG-3 are two synthetic datasets
 155 consisting of distinct high-order structural patterns (e.g., Hyper Pyramid, Hyper Flower, and Hyper
 156 Wheel). IMDB-Dir-Form and IMDB-Dir-Genre are two datasets constructed by the co-director
 157 relationship from the original IMDB dataset¹. Steam-Player is a player-based dataset, where each
 158 hypergraph captures tag co-occurrence relationships among games played by a user. Twitter-Friend
 159 is a social media dataset where each hypergraph represents the friendship network of a specific
 160 Twitter user. For hypergraph classification, following (Feng et al., 2024), we adopt an 80%/10%/10%
 161 train/validation/test data split.

¹<https://www.imdb.com/>

162 3.2 BENCHMARK ALGORITHMS
163164 We integrate 17 state-of-the-art HNN algorithms across three mainstream categories: spectral-based,
165 spatial-based, and tensor-based methods. In addition, we include MLP and two GNN-based methods,
166 CEGCN and CEGAT (Chien et al., 2022), as baselines. Detailed descriptions are provided in
167 Appendix A.2. We rigorously reproduce all methods according to their papers and source codes.168 **Spectral-based HNNs.** Spectral-based HNNs perform message propagation and feature transformation
169 by applying spectral convolution defined through Laplacian operators of hypergraphs (Wang
170 et al., 2024). We implement 10 representative algorithms including HGNN (Feng et al., 2019),
171 HyperGCN (Yadati et al., 2019), HCHA (Bai et al., 2021), LEGCN (Yang et al., 2022), HyperND
172 (Prokopchik et al., 2022), PhenomNN (Wang et al., 2023b), SheafHyperGNN (Duta et al.,
173 2023), HJRL (Yan et al., 2024), DPHGNN (Saxena et al., 2024), and TF-HNN (Tang et al., 2025).
174175 **Spatial-based HNNs.** Unlike spectral methods, spatial-based HNNs focus on local connectivity without
176 entering the spectral domain, typically learning representations through two-stage neighborhood
177 aggregation: updating hyperedges from incident nodes and updating nodes from incident hyperedges.
178 We incorporate 5 typical algorithms including HNHN (Dong et al., 2020), UniGNN (Huang & Yang,
179 2021), AllSetTransformer (Chien et al., 2022), ED-HNN (Wang et al., 2023a), and HyperGT (Liu
180 et al., 2024). For UniGNN with multiple variants (e.g., UniGAT, UniGIN, and UniGCNII), we report
181 only UniGCNII, the most competitive variant identified in the original paper, while our open-sourced
182 library also supports the implementations of other variants.183 **Tensor-based HNNs.** Tensor-based methods leverage tensor operations that provide a structured and
184 effective means of capturing the complexity of hypergraph interactions (Wang et al., 2025). We select
185 two representative algorithms: EHNN (Kim et al., 2022) and T-HyperGNN (Wang et al., 2024).186 3.3 RESEARCH QUESTIONS
187188 We systematically design the DHG-Bench to comprehensively evaluate the existing HNN algorithms
189 and inspire future research. In particular, we aim to investigate the following research questions.
190191 **RQ1: How much progress has been made by existing HNN methods?**192 **Motivation and Experiment Design.** Previous research on HNNs has been limited by inconsistent
193 experimental settings and insufficient coverage of datasets, algorithms, and tasks, thereby hindering
194 fair and comprehensive evaluation of different methods. Given the standardized experimental
195 environment provided by DHG-Bench, the first question is to revisit the progress of existing HNN
196 methods and identify potential directions for enhancement. A high-quality HNN method is expected
197 to perform consistently well across different datasets and application scenarios. To answer this
198 question, we evaluate the performance of HNN methods on diverse, widely used hypergraph datasets
199 across three benchmark tasks: node classification, hyperedge prediction, and hypergraph classification.
200 Detailed experimental settings can be found in Appendix B.1.201 **RQ2: How efficient are these HNN methods in terms of time and space?**202 **Motivation and Experiment Design.** Training the message-passing module of HNNs makes loss
203 computation interdependent for connected nodes, resulting in intensive computational demands
204 and substantial memory constraints. However, the efficiency and scalability of HNN algorithms
205 have been largely overlooked. A thorough understanding of the trade-off between computational
206 cost and predictive performance is essential for assessing their suitability for real-time and large-
207 scale applications. To answer this question, we perform node classification, the most widely used
208 benchmark task, on datasets of varying scales (Cora, DBLP-CA, Yelp, and Trivago), reporting the
209 training time to reach the best validation performance and the peak GPU memory consumption.
210211 **RQ3: Are existing HNN methods robust to different types of data perturbations?**212 **Motivation and Experiment Design.** Real-world hypergraph data inevitably contains noise, task-
213 irrelevant information, or even mistakes (Cai et al., 2022). A reliable HNN should maintain stable
214 performance when exposed to such noisy data, particularly in high-stakes domains such as healthcare
215 and finance (Cai et al., 2025), where inaccurate decisions can adversely affect individual lives or

216

217
218
Table 1: Evaluation results of node classification: mean accuracy (%) \pm standard deviation. The best
results are shown in **bold** and the runner-ups are underlined. OOM denotes the out-of-memory issue.

Method	Cora	Pubmed	Cora-CA	DBLP-CA	Walmart	Trivago	Actor	Gamers	Pokec	Yelp
MLP	75.33 \pm 0.88	86.62 \pm 0.26	75.57 \pm 1.08	85.54 \pm 0.15	63.21 \pm 0.12	36.76 \pm 0.66	86.06 \pm 0.30	52.57\pm0.49	59.64 \pm 0.48	31.84 \pm 0.45
CEGCN	76.90 \pm 0.75	86.03 \pm 0.39	78.40 \pm 1.25	89.75 \pm 0.33	<u>70.40\pm0.18</u>	<u>47.24\pm1.09</u>	<u>67.41\pm0.29</u>	51.02 \pm 0.53	<u>57.37\pm0.38</u>	OOM
CEGAT	77.22 \pm 1.03	86.09 \pm 0.51	78.02 \pm 1.24	89.61 \pm 0.22	<u>65.83\pm0.92</u>	OOM	73.87 \pm 0.83	51.05 \pm 0.61	57.34 \pm 0.52	OOM
HGNN	77.90 \pm 1.17	86.17 \pm 0.52	82.84 \pm 0.46	91.00 \pm 0.27	77.12 \pm 0.12	57.67 \pm 1.61	77.83 \pm 0.37	52.38 \pm 0.56	57.87 \pm 0.76	33.71 \pm 0.24
HyperGCN	78.38 \pm 1.63	87.42 \pm 0.42	81.65 \pm 1.58	89.51 \pm 0.18	68.75 \pm 0.56	42.39 \pm 1.25	81.82 \pm 0.39	51.32 \pm 0.72	57.51 \pm 0.54	29.29 \pm 0.55
HCHA	77.84 \pm 1.23	86.33 \pm 0.54	83.01 \pm 0.58	91.18 \pm 0.30	77.66 \pm 0.18	52.50 \pm 3.43	78.30 \pm 0.47	52.35 \pm 0.71	58.19 \pm 0.45	33.13 \pm 0.23
LEGCN	74.36 \pm 1.03	87.52 \pm 0.50	74.59 \pm 1.04	85.16 \pm 0.14	62.98 \pm 0.09	33.45 \pm 1.45	85.34 \pm 0.45	51.31 \pm 0.65	59.66\pm0.63	OOM
HyperND	79.23 \pm 0.63	86.73 \pm 0.56	83.19 \pm 0.71	91.34 \pm 0.19	75.10 \pm 0.54	<u>87.19\pm1.89</u>	83.19 \pm 0.92	52.39 \pm 0.60	57.65 \pm 1.08	OOM
PhenomNN	78.97 \pm 1.41	87.81 \pm 0.12	84.05 \pm 1.05	91.83\pm0.25	OOM	OOM	83.14 \pm 0.49	51.80 \pm 0.73	58.43 \pm 0.92	OOM
SheafHyperGNN	79.03 \pm 0.90	87.10 \pm 0.47	84.08 \pm 0.58	91.09 \pm 0.31	OOM	OOM	85.00 \pm 0.32	52.07 \pm 0.53	59.06 \pm 0.37	OOM
HJRL	78.67 \pm 1.47	87.98\pm0.49	83.72 \pm 0.74	OOM	OOM	OOM	71.54 \pm 0.64	51.62 \pm 0.61	57.57 \pm 0.47	OOM
DPHGNN	76.40 \pm 1.36	86.72 \pm 0.33	82.13 \pm 1.13	OOM	OOM	OOM	83.65 \pm 0.59	52.36 \pm 0.59	58.20 \pm 0.58	OOM
TF-HNN	79.47\pm1.31	87.90 \pm 0.37	84.19\pm0.89	91.38 \pm 0.24	77.04 \pm 0.12	<u>90.79\pm0.79</u>	85.96 \pm 0.41	52.34 \pm 0.53	59.17 \pm 0.52	35.16\pm0.54
HNHN	75.24 \pm 1.38	85.66 \pm 1.28	76.51 \pm 1.34	85.84 \pm 0.07	65.21 \pm 0.28	53.75 \pm 1.43	81.20 \pm 0.36	51.12 \pm 0.65	58.55 \pm 0.93	25.86 \pm 0.63
UniGNN	<u>79.41\pm1.24</u>	87.57 \pm 0.54	83.49 \pm 1.58	<u>91.71\pm0.20</u>	76.26 \pm 0.58	36.15 \pm 0.56	84.61 \pm 0.44	<u>52.50\pm0.57</u>	58.56 \pm 0.73	31.09 \pm 0.61
AllSetTransformer	78.02 \pm 1.43	87.79 \pm 0.30	82.95 \pm 0.62	91.51 \pm 0.22	78.61\pm0.13	59.92 \pm 4.02	85.66 \pm 0.41	51.74 \pm 0.75	58.55 \pm 0.56	33.18 \pm 0.88
ED-HNN	78.58 \pm 0.52	87.65 \pm 0.23	82.98 \pm 0.93	91.55 \pm 0.19	77.90 \pm 0.21	75.99 \pm 2.60	85.77 \pm 0.46	50.54 \pm 0.23	58.68 \pm 0.40	<u>34.84\pm0.93</u>
HyperGT	75.57 \pm 1.11	86.06 \pm 0.54	75.42 \pm 0.62	84.53 \pm 0.30	OOM	OOM	84.43 \pm 0.47	51.19 \pm 0.57	57.73 \pm 0.76	OOM
EHNN	76.51 \pm 1.52	87.12 \pm 0.31	81.68 \pm 0.81	90.47 \pm 0.43	<u>77.95\pm0.14</u>	OOM	86.21\pm0.49	52.14 \pm 0.76	58.23 \pm 1.07	34.09 \pm 3.19
T-HyperGNN	74.20 \pm 1.37	86.28 \pm 0.62	75.01 \pm 1.44	85.44 \pm 0.14	<u>73.48\pm0.33</u>	OOM	85.32 \pm 0.48	51.82 \pm 0.38	58.82 \pm 0.49	OOM

broader societal systems. Evaluating the robustness of HNNs not only reveals potential vulnerabilities in existing methods but also guides the development of more resilient models. To answer this question, we simulate realistic data perturbations from three perspectives: structure, feature, and supervision signals. For each perturbation type, we vary the noise intensity and subsequently train and test HNNs on the corresponding modified hypergraph. Detailed experimental settings are in Appendix B.4.

RQ4: Do existing HNN methods yield unbiased predictions across demographic groups?

Motivation and Experiment Design. Fairness has recently emerged as a critical concern in graph machine learning (GML) (Dong et al., 2023). Prior studies have shown that representations learned by GNNs can result in biased predictions, often favoring certain demographic groups defined by sensitive attributes (e.g., gender and race) (Ling et al., 2023; Zhu et al., 2024; Yang et al., 2024). Such bias hinders the deployment of GML models in high-stakes applications such as crime prediction (Suresh & Guttag, 2019) and credit evaluation (Yeh & Lien, 2009). Despite its importance, fairness in deep hypergraph learning has received little attention. To the best of our knowledge, this work presents the first benchmark evaluation of fairness in this context, which is crucial for developing ethically sound and trustworthy HNN models. To answer this question, we conduct node classification on three fairness-sensitive datasets (German, Bail, and Credit (Wei et al., 2022)), each of which contains demographic-sensitive attributes. We assess algorithmic fairness using two widely adopted group fairness metrics: demographic parity (Δ_{DP}) (Dwork et al., 2012), and equalized odds (Δ_{EO}) (Hardt et al., 2016). The detailed descriptions of the two metrics can be found in Appendix B.5.

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 EFFECTIVENESS EVALUATION (RQ1)

To investigate the effectiveness of existing HNNs, we compare their performance across benchmark tasks at the node, edge, and graph levels. Due to space constraints, additional node classification results on NTU2012, ModelNet40, and Ratings (Table A5), as well as the complete results of hyperedge prediction (Table A6) and hypergraph classification (Table A7), are available in Appendix C.1.

4.1.1 EFFECTIVENESS ON NODE CLASSIFICATION TASK

Results (Table 1 and Table A5). ① Across diverse datasets, HNNs generally outperform both CEGCN and CEGAT, suggesting that naively extending GNNs to hypergraphs via clique expansion disrupts high-order structures and degrades predictive performance. This highlights the necessity of designing neural architectures with dedicated high-order message passing. ② HNNs achieve notable improvements over MLP on homophilic datasets, but on heterophilic datasets, most HNNs even underperform MLP, which only leverages node features. This reveals the adverse impact of heterophilic connections on hypergraph representation learning and underscores the need to rethink

270 HNN design in such settings. ③ TF-HNN consistently ranks among the top-performing methods
 271 across diverse datasets, achieving optimal or near-optimal results. Moreover, unlike other advanced
 272 HNNs (e.g., PheomNN, DPHGNN, and HyperGT) that fail on large-scale datasets due to out-of-
 273 memory issues, TF-HNN remains scalable. These findings underscore the promise of its decoupled
 274 architecture for enhanced generalization and scalability.

275 4.1.2 EFFECTIVENESS ON HYPEREDGE PREDICTION TASK

276 **Results** (Table A6). ① Advanced HNN methods that generally achieve superior performance on node
 277 classification fail to maintain the same level of competitiveness in hyperedge prediction. Specifically,
 278 the two earliest methods, HGNN and HyperGCN, along with the tensor-based EHNN introduced in
 279 2022, collectively achieve all the best results and the majority of second-best results across the six
 280 hyperedge prediction datasets. In contrast, recent HNNs (e.g., ED-HNN, HJRL, DPHGNN, TF-HNN)
 281 often show a notable performance gap compared to the above three. For example, on DBLP-CA,
 282 TF-HNN achieves an AUROC of 75.70% and an AP of 74.97%, which are 13.76% and 16.70% lower
 283 than those of the best-performing model, HyperGCN. ② Across hyperedge prediction benchmarks,
 284 HNN algorithms display considerable performance divergence depending on the dataset, and none
 285 consistently deliver the best results. For instance, while EHNN achieves state-of-the-art performance
 286 on Cora and Pubmed, it obtains only 77.83% AUROC on Cora-CA, ranking 11th among 17 HNNs
 287 and 14.90% lower than the top-performing HyperGCN.

288 4.1.3 EFFECTIVENESS ON HYPERGRAPH CLASSIFICATION TASK

289 **Results** (Table A7). ① HNN algorithms perform markedly better on synthetic datasets than on
 290 real-world ones. On RHG-10, most models achieve over 90% accuracy and Macro-F1, and on RHG-3,
 291 many even exceed 98%. In contrast, on real-world datasets, accuracies rarely surpass 70%, reflecting
 292 the structural complexity of real hypergraphs. This gap underscores the need for more realistic and
 293 challenging benchmarks to rigorously evaluate hypergraph classification. ② HNN methods generally
 294 outperform GNN-based approaches built on clique expansion, as the latter often distorts global
 295 hypergraph structures, whereas higher-order message passing in HNNs preserves these dependencies
 296 and enhances discriminative power. ③ HNNs' performance varies considerably across datasets,
 297 with no method demonstrating consistent superiority. For instance, while DPHGNN achieves the
 298 best accuracy on IMDB-Dir-Form, it falls to 11th on IMDB-Dir-Genre and 14th on Steam-Player
 299 across all evaluated HNNs, underscoring the substantial impact of dataset characteristics on model
 300 performance. ④ Many HNN methods fail to achieve a desirable trade-off between accuracy and
 301 Macro-F1. For example, on the Twitter dataset, HNN achieves 58.47% accuracy (third highest
 302 among all HNN models) but only 39.40% Macro-F1, the lowest overall.

303 **Key Insights for RQ1:** HNN algorithms display varying levels of effectiveness across predictive
 304 tasks. While advanced HNNs achieve strong results on node-level tasks, they often fail to deliver
 305 superior performance on edge- and graph-level tasks. Moreover, the predictive capability of HNNs
 306 is highly sensitive to dataset characteristics, with data heterophily substantially impairing learning
 307 on hypergraphs. These findings highlight the need for future research to enhance the generalization
 308 and adaptability of hypergraph models across diverse tasks and datasets.

311 4.2 EFFICIENCY AND SCALABILITY EVALUATION (RQ2)

312 **Results** (Figure 1). ① CEGCN and CEGAT face scalability challenges on large datasets (e.g., Yelp
 313 and Trivago), where clique expansion produces dense edges and leads to significant training memory
 314 overhead. ② Most advanced HNN methods struggle to achieve a satisfactory balance between
 315 model utility and efficiency. For example, on the Yelp dataset, ED-HNN and EHNN provide only
 316 marginal accuracy gains over the simple HGNN, yet their training times are over 9 \times and 23 \times longer,
 317 respectively, reflecting a substantial rise in computational cost. In addition, many HNNs suffer from
 318 memory bottlenecks on large-scale datasets. Specifically, on Yelp, 8 out of 17 methods encounter
 319 out-of-memory (OOM) issues. On Trivago, although 10 HNNs remain computationally scalable,
 320 most fail to deliver satisfactory predictive performance. Only TF-HNN (90.79%) and HyperND
 321 (87.19%) achieve accuracy above 60%. This may result from the intricate patterns of large-scale
 322 graphs. ③ Tensor-based approaches exhibit more pronounced efficiency and scalability limitations
 323 than the other two kinds of methods. T-HyperGNN can only scale to the medium-sized DBLP-CA

Figure 1: Training time and space analysis on Cora, DBLP-CA, Yelp, and Trivago.

dataset, where it runs approximately 406 times slower than the fastest method, HGNN. Moreover, on Yelp, EHNN incurs the longest training time and fails to scale to the large-scale Trivago dataset. ④ Among all evaluated methods, TF-HNN generally achieves a superior trade-off between utility and both time and space efficiency. For example, on the large-scale Trivago dataset, it achieves the best predictive performance with no more than 1.6 GB of memory and under 30 seconds of runtime, ranking first in memory efficiency and second in training time among all HNN methods.

Key Insights for RQ2: Most existing HNN algorithms, when applied to large-scale datasets, either suffer from efficiency and scalability issues or fail to deliver satisfactory utility. Investigating decoupled architectures that separate high-order information propagation from training modules presents a promising avenue for achieving efficient, scalable, and high-performing HNNs.

4.3 ROBUSTNESS EVALUATION (RQ3)

In this section, we assess HNN robustness by simulating structural, feature, and supervision perturbations, as detailed in Appendix B.4. While our experiments primarily focus on the node classification task due to space limits, DHG-Bench supports flexible extension to other tasks. We evaluate 10 representative models on four datasets (Cora, Pubmed, Actor, and Pokec). The results on Pubmed and Pokec (Figures A2, A3, and A4) are provided in Appendix C.2.

4.3.1 ROBUSTNESS ANALYSIS WITH RESPECT TO STRUCTURE PERTURBATIONS

Results (Figure 2 and Figure A2). ① Most HNN algorithms exhibit strong robustness against random structural noise, experiencing only marginal performance drops or even remaining nearly unaffected under high perturbation rates. For example, when 90% of hyperlinks are randomly removed from Cora, 7 out of 10 methods degrade by less than 7%. Similarly, when 90% of random hyperlinks are injected into Actor, only 2 models show a noticeable decline in performance. ② Spectral-based approaches are generally more vulnerable to structural perturbations. On Pubmed, for instance, increasing the ratio of noisy hyperlinks results in a pronounced performance decline across four spectral-based methods (HGNN, PhenomNN, DPHGNN, and TF-HNN), whereas most other methods remain stable. This may be because spectral methods rely on the hypergraph’s global eigenstructure, which is highly sensitive to topological noise. ③ The robustness of HNN algorithms varies with both the type of structural perturbation (deletion vs. addition) and the choice of dataset. For example, on the Actor dataset, SheafHyperGNN suffers substantial performance degradation under hyperlink deletion but demonstrates strong robustness under hyperlink addition. In another case, PhenomNN exhibits strong robustness on Cora in the addition scenario while showing the opposite trend on Actor.

Figure 2: Structure robustness analysis on Cora and Actor.

Figure 3: Feature robustness analysis on Cora and Actor.

Figure 4: Supervision robustness analysis on Cora and Actor.

4.3.2 ROBUSTNESS ANALYSIS WITH RESPECT TO FEATURE PERTURBATIONS

Results (Figure 3 and Figure A3). ① Feature perturbations under equal noise or sparsity levels result in greater performance degradation than structural ones, indicating a more critical role of node features in model prediction. ② With increasing noise intensity, model accuracy decreases sharply at the beginning and then stabilizes, as highly corrupted features approximate randomness and lose predictive utility. ③ As the feature masking rate increases, model performance degrades progressively faster, with a slow decline at low ratios and a sharp drop under high sparsity. ④ Compared to feature sparsity, feature noise poses a greater challenge for HNN algorithms, with equivalent levels of noise typically resulting in lower predictive accuracy across different datasets.

4.3.3 ROBUSTNESS ANALYSIS WITH RESPECT TO SUPERVISION PERTURBATIONS

Results (Figure 4 and Figure A4). ① As noise intensity increases or supervision becomes sparser, all models show a clear downward trend in performance, with label noise exerting a more pronounced impact. ② Increasing label noise generally causes a rapid yet steady decline in performance, which appears approximately linear in most cases. ③ The impact of supervision sparsity is modest at lower levels but intensifies at higher ratios, resulting in an accelerating decline in model performance. This trend highlights the challenges faced by current HNNs in low-label scenarios. ④ Label noise and sparsity tend to degrade performance more substantially on homophilic datasets than on heterophilic ones, reflecting the reliance of model predictions on data homophily.

Key Insights for RQ3: Most HNN algorithms demonstrated remarkable robustness to random structural noise, but are considerably more vulnerable to feature perturbations. In addition, at the label level, even simple small-scale poisoning attacks can substantially degrade predictive performance, and HNNs face significant challenges under extreme label sparsity. These findings underscore the need for designing robust HNN architectures or training techniques capable of providing strong defenses against diverse forms of noisy data.

Figure 5: Average rankings on Acc, Δ_{DP} , Δ_{EO} across the German, Bail, and Credit datasets, where lower values indicate better ranks (ascending order).

4.4 FAIRNESS EVALUATION (RQ4)

In this section, we analyze algorithmic fairness and report full quantitative results in terms of accuracy (Acc), Δ_{DP} , and Δ_{EO} in Table A8 of Appendix C.3. To better illustrate the strengths and limitations of each algorithm, we present Figure 5, which shows their average rankings across the three metrics on datasets where they can run, considering only HNNs executable on at least two datasets.

Results (Figure 5 and Table A8). ① While HNN algorithms achieve higher predictive performance, they generally suffer from more severe fairness issues compared to MLP, which is free from message passing. Figure 5 shows that MLP ranks best on the two fairness metrics but worst on accuracy. For example, on the Credit dataset, MLP achieves lower Δ_{DP} and Δ_{EO} values than HCHA, the fairest among the evaluated HNN models, as shown in Table A8. ② The fairness performance of HNN algorithms varies considerably across datasets, with no method achieving consistently superior performance on all benchmarks. For instance, Table A8 illustrates that while HCHA achieves the best fairness performance on the Credit dataset across both metrics, its Δ_{DP} and Δ_{EO} rank as the second- and third-worst, respectively, on the German dataset. Moreover, Figure 5 shows that most algorithms exhibit substantial variance in their rankings, further highlighting the instability of fairness across datasets. ③ HNN algorithms show inconsistent behavior across fairness metrics, and strong performance on one does not guarantee superiority on another. For example, on the Bail dataset, although HNNH achieves the lowest Δ_{DP} among all HNN methods, its Δ_{EO} ranks as the third worst among the 17 HNN models.

Key Insights for RQ4: Existing HNN algorithms tend to produce more biased predictions than MLPs, indicating that high-order information propagation may exacerbate the amplification of biases from sensitive information. Moreover, fairness performance varies substantially across datasets and metrics. These findings highlight the need for developing debiased algorithms that can achieve stronger fairness across diverse high-stakes real-world applications.

5 A GUIDE FOR PRACTITIONERS

Drawing on the comprehensive benchmarking results and analyses presented in this work, we offer practical guidance for selecting appropriate HNN models for new tasks. For clarity, we organize our recommendations by task type.

Node-level prediction tasks. We recommend TF-HNN as the first-choice model. Across a wide range of datasets, TF-HNN consistently achieves top-ranked node classification performance, demonstrating its strong ability to learn highly discriminative node representations. Moreover, its training-free message-passing architecture offers substantial efficiency and scalability benefits, making it well-suited for large-scale or resource-constrained applications. Importantly, our experiments show that, compared with other HNNs, TF-HNN does not exhibit pronounced weaknesses in robustness or fairness, making it a reliable choice for most node-level scenarios.

486 **Edge-level or higher-order relation prediction tasks (e.g., hyperlink prediction, hyperedge**
 487 **prediction).** We suggest starting with EHNN, HGNN, and HyperGCN. Together, these models
 488 account for most of the best and second-best results on hyperedge prediction benchmarks. Their
 489 performance, however, varies across homophilic and heterophilic settings: on homophilic datasets,
 490 EHNN and HyperGCN generally perform better; on heterophilic datasets, HGNN and EHNN tend
 491 to yield stronger results. Our robustness analysis further indicates that HGNN is more sensitive
 492 to structural perturbations, and may therefore be less dependable under distribution shifts or noisy
 493 hypergraph structures. As a result, EHNN and HyperGCN are generally safer and more robust
 494 defaults, while HGNN should be chosen with awareness of dataset stability.

495 **Graph-level prediction tasks.** No single architecture consistently outperforms all others across
 496 datasets and evaluation metrics in hypergraph classification. Nonetheless, HJRL, DPHGNN, and
 497 AllSetTransformer frequently appear among the top-performing models, reflecting their strong
 498 ability to capture and discriminate global structural patterns that drive hypergraph-level prediction.
 499 However, our robustness experiments reveal that DPHGNN can be sensitive to structural and feature
 500 perturbations, and practitioners are therefore advised to carefully assess its stability before deployment.
 501 Among these models, AllSetTransformer often provides a more favorable utility–efficiency trade-off,
 502 making it particularly appealing in computationally constrained environments.

504 6 CONCLUSION AND FUTURE DIRECTIONS

505 This paper introduces DHG-Bench, the first comprehensive benchmark for deep hypergraph learning,
 506 which integrates and compares 17 representative HNNs across 22 hypergraph datasets encompassing
 507 various domains, sizes, and structural properties, under consistent experimental settings. We com-
 508 prehensively evaluate the effectiveness, efficiency, robustness, and fairness of HNN algorithms, and our
 509 analysis reveals the strengths and weaknesses of different HNNs in a wide range of scenarios, offering
 510 valuable insights into their practical applicability and design trade-offs. Furthermore, we develop
 511 and release a package, DHG-Bench, that includes all experimental protocols, baseline algorithms,
 512 datasets, and reproducibility scripts to facilitate future research. Drawing upon our empirical analyses,
 513 we point out some promising future directions for the deep hypergraph learning community.

- 516 • **Developing adaptive HNN methods for diverse datasets and tasks.** Our experiments in
 517 Section 4.1 reveal that existing HNN architectures show substantial performance disparities
 518 across datasets and tasks, limiting their applicability in diverse scenarios. Future research
 519 should focus on designing adaptive HNN architectures and training techniques that can better
 520 accommodate the unique characteristics of datasets from different domains and varying task
 521 granularities, thereby enhancing the generalization ability of HNNs.
- 522 • **Improving the efficiency of HNN methods.** Observations in Section 4.2 indicate that many
 523 advanced HNN methods fail to balance efficiency and predictive performance, and often run
 524 out of memory on large-scale datasets. As the size of hypergraphs continues to grow exponen-
 525 tially, a key area of future research is the reduction of memory and computational complexity
 526 in HNN algorithms while maintaining satisfactory model utility. Inspired by the favorable ef-
 527 ficiency–effectiveness trade-off achieved by TF-HNN, it would be promising to devise more
 528 powerful decoupled architectures specifically tailored for HNN.
- 529 • **Developing more robust HNN methods.** Our experimental results in Section 4.3 show that HNN
 530 algorithms are affected by different types of data perturbations and are particularly vulnerable
 531 to those at the feature and supervision levels. Future work should emphasize enhancing the
 532 robustness of HNNs to resist varying degrees of data noise and even adversarial attacks, thereby
 533 ensuring reliable performance in a wide range of industrial applications.
- 534 • **Developing fairness-aware HNN methods.** Empirical evidence in Section 4.4 suggests that
 535 HNNs are more prone to biased predictions than traditional MLPs. Future research should
 536 investigate the theoretical mechanisms through which high-order message passing exacerbates
 537 fairness issues and then develop fairness-aware HNN methods that mitigate such discriminatory
 538 behavior. Progress in this direction is essential to ensure the safe adoption of HNNs in high-stakes
 539 real-world applications such as crime prediction and credit evaluation.

540 ETHICS STATEMENT
541542 This work does not raise any specific ethical concerns. All datasets used in our experiments are
543 publicly available and have been released for academic purposes. None of the datasets contains
544 personally identifiable information or offensive content.
545546 REPRODUCIBILITY STATEMENT
547548 We describe our data splitting strategy in Section 3.1, the experiment design for multi-dimensional
549 analysis in Section 3.3, and detailed experimental setups in Appendix B. All datasets, algorithm im-
550 plementations, and hyperparameter configurations are publicly available at https://anonymous.4open.science/r/DHG_Bench-F739.
551552

- 553 The datasets are provided in the repository as a compressed file, `data.zip`, and data
554 loading and preprocessing are handled by the code in the `lib_dataset` folder.
- 555 The implementation of the training and evaluation pipeline for algorithms is available in the
556 `lib_utils` folder in the repository.
- 557 Additional instructions for reproducing experiments are included in the `README.md`.
558

559 REFERENCES
560

561 Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
562 *Pattern Recognition*, 110:107637, 2021.

563 Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
564 closure and higher-order link prediction. *PNAS*, 115(48):E11221–E11230, 2018.

565 Derun Cai, Moxian Song, Chenxi Sun, Baofeng Zhang, Shenda Hong, and Hongyan Li. Hypergraph
566 structure learning for hypergraph neural networks. In *IJCAI*, pp. 1923–1929, 2022.

567 Tingyi Cai, Yunliang Jiang, Ming Li, Lu Bai, Changqin Huang, and Yi Wang. Hypernear: Unnotice-
568 able node injection attacks on hypergraph neural networks. In *ICML*, 2025.

569 Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
570 smoothing problem for graph neural networks from the topological view. In *AAAI*, volume 34, pp.
571 3438–3445, 2020.

572 Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
573 framework for hypergraph neural networks. In *ICLR*, 2022.

574 Enyan Dai, Charu Aggarwal, and Suhang Wang. Nrgnn: Learning a label noise resistant graph neural
575 network on sparsely and noisily labeled graphs. In *SIGKDD*, pp. 227–236, 2021.

576 Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
577 In *ICML Workshop: Graph Representation Learning and Beyond.*, 2020.

578 Yushun Dong, Jing Ma, Song Wang, Chen Chen, and Jundong Li. Fairness in graph mining: A survey.
579 *TKDE*, 35(10):10583–10602, 2023.

580 Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Liò. Sheaf hypergraph networks. *NeurIPS*,
581 36:12087–12099, 2023.

582 Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
583 awareness. In *ITCS*, pp. 214–226, 2012.

584 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
585 networks for social recommendation. In *The WebConf*, pp. 417–426, 2019.

586 Y Feng, Z Zhang, X Zhao, R Ji, Y Gao, and Gvcnn. Group-view convolutional neural networks for
587 3d shape recognition. In *CVPR*, pp. 264–272, 2018.

594 Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
 595 In *AAAI*, volume 33, pp. 3558–3565, 2019.
 596

597 Yifan Feng, Jiashu Han, Shihui Ying, and Yue Gao. Hypergraph isomorphism computation. *TPAMI*,
 598 46(5):3880–3896, 2024.

599 Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. *arXiv*
 600 preprint *arXiv:1903.02428*, 2019.

601 602 Joshua Fixelle. Hypergraph vision transformers: Images are more than nodes, more than edges. In
 603 *CVPR*, pp. 9751–9761, 2025.

604 605 Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. Hggn+: General hypergraph neural networks.
 606 *TPAMI*, 45(3):3181–3199, 2022.

607 608 Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén Ballester,
 609 Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, et al. Topox: a suite of python
 packages for machine learning on topological domains. *JMLR*, 25(374):1–8, 2024.

610 611 Xiangmin Han, Rundong Xue, Jingxi Feng, Yifan Feng, Shaoyi Du, Jun Shi, and Yue Gao. Hyper-
 612 graph foundation model for brain disease diagnosis. *TNNLS*, 2025.

613 614 Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. *NeurIPS*,
 29, 2016.

615 616 Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
 617 In *IJCAI*. International Joint Conferences on Artificial Intelligence Organization, 2021.

618 619 Hyunjin Hwang, Seungwoo Lee, and Kijung Shin. Hyfer: A framework for making hypergraph
 620 learning easy, scalable and benchmarkable. In *WWW Workshop on Graph Learning Benchmarks*,
 2021.

621 622 Hyunjin Hwang, Seungwoo Lee, Chanyoung Park, and Kijung Shin. Ahp: Learning to negative
 623 sample for hyperedge prediction. In *SIGIR*, pp. 2237–2242, 2022.

624 625 Kareem L Jordan and Tina L Freiburger. The effect of race/ethnicity on sentencing: Examining
 626 sentence type, jail length, and prison length. *Journal of Ethnicity in Criminal Justice*, 13(3):
 179–196, 2015.

627 628 Krishna Juluru, Hao-Hsin Shih, Krishna Nand Keshava Murthy, and Pierre Elnajjar. Bag-of-words
 629 technique in natural language processing: a primer for radiologists. *RadioGraphics*, 41(5):1420–
 1426, 2021.

630 631 Bilal Khan, Jia Wu, Jian Yang, and Xiaoxiao Ma. Heterogeneous hypergraph neural network for
 632 social recommendation using attention network. *TORS*, 3(3):1–22, 2025.

633 634 Jinwoo Kim, Saeyoon Oh, Sungjun Cho, and Seunghoon Hong. Equivariant hypergraph neural
 635 networks. In *ECCV*, pp. 86–103. Springer, 2022.

636 637 Sunwoo Kim, Dongjin Lee, Yul Kim, Jungho Park, Taeho Hwang, and Kijung Shin. Datasets, tasks,
 638 and training methods for large-scale hypergraph learning. *Data mining and knowledge discovery*,
 37(6):2216–2254, 2023.

639 640 Sunwoo Kim, Shinhwan Kang, Fanchen Bu, Soo Yong Lee, Jaemin Yoo, and Kijung Shin. Hypeboy:
 641 Generative self-supervised representation learning on hypergraphs. In *ICLR*, 2024a.

642 643 Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
 644 on hypergraph neural networks: An in-depth and step-by-step guide. In *SIGKDD*, pp. 6534–6544,
 2024b.

645 646 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 2014.

647 648 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 649 In *ICLR*, 2017.

648 Yunyong Ko, Hanghang Tong, and Sang-Wook Kim. Enhancing hyperedge prediction with context-
 649 aware self-supervised learning. *TKDE*, 2025.

650

651 Dongjin Lee and Kijung Shin. I'm me, we're us, and i'm us: Tri-directional contrastive learning on
 652 hypergraphs. In *AAAI*, volume 37, pp. 8456–8464, 2023.

653

654 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
 655 transformer: A framework for attention-based permutation-invariant neural networks. In *ICML*, pp.
 656 3744–3753. PMLR, 2019.

657

658 Jure Leskovec. SNAP Datasets: Stanford large network dataset collection. <http://snap.stanford.edu/data>, 2014. [Online].

659

660 Bing Li, Xin Xiao, Chao Zhang, Ming Xiao, and Le Zhang. Dghnn: A deep graph and hypergraph
 661 neural network for pan-cancer related gene prediction. *Bioinformatics*, pp. btaf379, 2025a.

662

663 Fan Li, Xiaoyang Wang, Dawei Cheng, Wenjie Zhang, Ying Zhang, and Xuemin Lin. Hypergraph
 664 self-supervised learning with sampling-efficient signals. In *IJCAI*, pp. 4398–4406, 2024a.

665

666 Fan Li, Zhiyu Xu, Dawei Cheng, and Xiaoyang Wang. Adarisk: risk-adaptive deep reinforcement
 667 learning for vulnerable nodes detection. *TKDE*, 36(11):5576–5590, 2024b.

668

669 Ming Li, Yujie Fang, Yi Wang, Han Feng, Yongchun Gu, Lu Bai, and Pietro Lio. Deep hypergraph
 670 neural networks with tight framelets. In *AAAI*, volume 39, pp. 18385–18392, 2025b.

671

672 Ming Li, Yongchun Gu, Yi Wang, Yujie Fang, Lu Bai, Xiaosheng Zhuang, and Pietro Lio. When
 673 hypergraph meets heterophily: New benchmark datasets and baseline. In *AAAI*, volume 39, pp.
 674 18377–18384, 2025c.

675

676 Zhixun Li, Liang Wang, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin
 677 Zhou, Qiang Liu, Shu Wu, et al. Gslb: the graph structure learning benchmark. *NeurIPS*, 36:
 678 30306–30318, 2023.

679

680 Hongyi Ling, Zhimeng Jiang, Youzhi Luo, Shuiwang Ji, and Na Zou. Learning fair graph representa-
 681 tions via automated data augmentations. In *ICLR*, 2023.

682

683 Weiwen Liu, Yin Zhang, Jianling Wang, Yun He, James Caverlee, Patrick PK Chan, Daniel S Yeung,
 684 and Pheng-Ann Heng. Item relationship graph neural networks for e-commerce. *TNNLS*, 33(9):
 685 4785–4799, 2021.

686

687 Zexi Liu, Bohan Tang, Ziyuan Ye, Xiaowen Dong, Siheng Chen, and Yanfeng Wang. Hypergraph
 688 transformer for semi-supervised classification. In *ICASSP*, pp. 7515–7519. IEEE, 2024.

689

690 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang,
 691 and Doina Precup. Revisiting heterophily for graph neural networks. *NeurIPS*, 35:1362–1375,
 692 2022.

693

694 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis and
 695 applications. In *ICML*, pp. 23803–23828. PMLR, 2023.

696

697 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 698 Killeen, Zeming Lin, Natalia Gimelshein, and Luca et al. Antiga. Pytorch: An imperative style,
 699 high-performance deep learning library. In *NeurIPS*, volume 32, 2019.

700

701 Prasanna Patil, Govind Sharma, and M Narasimha Murty. Negative sampling for hyperlink prediction
 702 in networks. In *PAKDD*, pp. 607–619. Springer, 2020.

703

704 Karelia Pena-Pena, Daniel L Lau, and Gonzalo R Arce. T-hgsp: Hypergraph signal processing using
 705 t-product tensor decompositions. *IEEE Transactions on Signal and Information Processing over
 706 Networks*, 9:329–345, 2023.

707

708 Konstantin Prokopchik, Austin R Benson, and Francesco Tudisco. Nonlinear feature diffusion on
 709 hypergraphs. In *ICML*, pp. 17945–17958. PMLR, 2022.

702 Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann,
 703 and Michael M Bronstein. Edge directionality improves learning on heterophilic graphs. In
 704 *Learning on graphs conference*, pp. 25–1. PMLR, 2024.

705 Siddhant Saxena, Shounak Ghatak, Raghu Kolla, Debashis Mukherjee, and Tanmoy Chakraborty.
 706 Dphgnn: A dual perspective hypergraph neural networks. In *SIGKDD*, pp. 2548–2559, 2024.

708 Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convolutional
 709 neural networks for 3d shape recognition. In *ICCV*, pp. 945–953, 2015.

710 Xiangguo Sun, Hong Cheng, Bo Liu, Jia Li, Hongyang Chen, Guandong Xu, and Hongzhi Yin.
 711 Self-supervised hypergraph representation learning for sociological analysis. *TKDE*, 35(11):
 712 11860–11871, 2023.

714 Harini Suresh and John V Guttag. A framework for understanding unintended consequences of
 715 machine learning. *arXiv preprint arXiv:1901.10002*, 2(8):73, 2019.

717 Bohan Tang, Zexi Liu, Keyue Jiang, Siheng Chen, and Xiaowen Dong. Training-free message passing
 718 for learning on hypergraphs. In *ICLR*, 2025.

719 Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Mustafa Hajij, Martin Carrasco, Pavlo Va-
 720 sylenko, Mathilde Papillon, Ghada Zamzmi, Michael T Schaub, Jonas Verhellen, et al. Topobench:
 721 A framework for benchmarking topological deep learning. *arXiv preprint arXiv:2406.06642*, 2024.

723 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 724 Bengio. Graph attention networks. In *ICLR*, 2018.

725 Fuli Wang, Karelia Pena-Pena, Wei Qian, and Gonzalo R Arce. T-hypergnns: Hypergraph neural
 726 networks via tensor representations. *TNNLS*, 2024.

728 Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
 729 Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
 730 graph neural networks. *arXiv preprint arXiv:1909.01315*, 2019.

731 Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
 732 diffusion neural operators. In *ICLR*, 2023a.

734 Yifan Wang, Gonzalo R Arce, and Guangmo Tong. Generalization performance of hypergraph neural
 735 networks. In *The WebConf*, pp. 1273–1291, 2025.

737 Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, and David Wipf. From hypergraph energy
 738 functions to hypergraph neural networks. In *ICML*, pp. 35605–35623. PMLR, 2023b.

739 Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and Zhangyang Wang. Augmen-
 740 tations in hypergraph contrastive learning: Fabricated and generative. *NeurIPS*, 35:1909–1922,
 741 2022.

742 Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. *NeurIPS*, 33:
 743 20437–20448, 2020.

745 Linhuang Xie, Shihao Gao, Jie Liu, Ming Yin, and Taisong Jin. K-hop hypergraph neural network: A
 746 comprehensive aggregation approach. In *AAAI*, volume 39, pp. 21679–21687, 2025.

748 Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
 749 Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
 750 *NeurIPS*, 32, 2019.

751 Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha
 752 Talukdar. Nhp: Neural hypergraph link prediction. In *CIKM*, pp. 1705–1714, 2020.

754 Yuguang Yan, Yuanlin Chen, Shibo Wang, Hanrui Wu, and Ruichu Cai. Hypergraph joint represen-
 755 tation learning for hypervertices and hyperedges via cross expansion. In *AAAI*, volume 38, pp.
 9232–9240, 2024.

756 Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
 757 same coin: Heterophily and oversmoothing in graph convolutional neural networks. In *ICDM*, pp.
 758 1287–1292. IEEE, 2022.

759

760 Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Semi-supervised hypergraph node
 761 classification on hypergraph line expansion. In *CIKM*, pp. 2352–2361, 2022.

762

763 Cheng Yang, Jixi Liu, Yunhe Yan, and Chuan Shi. Fairsin: Achieving fairness in graph neural
 764 networks through sensitive information neutralization. In *AAAI*, volume 38, pp. 9241–9249, 2024.

765

766 I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
 767 accuracy of probability of default of credit card clients. *Expert systems with applications*, 36(2):
 768 2473–2480, 2009.

769

770 Song Kyung Yu, Da Eun Lee, Yunyoung Ko, and Sang-Wook Kim. Hygen: Regularizing negative
 771 hyperedge generation for accurate hyperedge prediction. In *Companion Proceedings of the ACM
 772 on Web Conference 2025*, pp. 1500–1504, 2025.

773

774 Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet: A
 775 neural network for directed graphs. *NeurIPS*, 34:27003–27015, 2021.

776

777 Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical framework.
 778 *International journal of machine learning and cybernetics*, 1(1):43–52, 2010.

779

780 Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
 781 classification, and embedding. *NeurIPS*, 19, 2006.

782

783 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 784 homophily in graph neural networks: Current limitations and effective designs. *NeurIPS*, 33:
 7793–7804, 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDIX

A DATASETS AND ALGORITHMS

A.1 BENCHMARK DATASETS

Table A1: Statistics of the standard node-level datasets: $|e|$ denotes the hyperedge size, while $\mathcal{H}_{\text{edge}}$ indicates the hyperedge homophily ratio introduced in (Li et al., 2025c). I_{node} , P_{node} , and H_{node} indicate the isolated nodes, the nodes involved only in pairwise interactions, and the nodes participating in higher-order interactions, respectively.

Dataset	# Nodes	# Edges	# Features	Avg. $ e $	$\mathcal{H}_{\text{edge}}$	$\# I_{\text{node}}$	$\# P_{\text{node}}$	$\# H_{\text{node}}$	# Classes
Cora	2,708	1,579	1,433	3.03	0.75	1,274	205	1,229	7
Pubmed	19,717	7,963	500	4.35	0.78	15,877	201	3,639	3
Cora-CA	2,708	1,072	1,433	4.28	0.78	320	278	2,110	7
DBLP-CA	41,302	22,363	1,425	4.45	0.87	0	3,876	37,426	6
NTU2012	2,012	2,012	100	5.00	0.79	0	0	2,012	67
ModelNet40	12,311	12,311	100	5.00	0.87	0	0	12,311	40
Walmart	88,860	69,906	100	6.59	0.60	0	3,295	85,565	11
Trivago	172,738	233,202	300	3.12	0.98	0	25,532	147,206	160
Actor	16,255	10,164	50	5.25	0.46	563	600	15,092	3
Ratings	22,299	2,090	111	3.10	0.37	19,175	176	2,948	5
Gamers	16,812	2,627	7	6.23	0.49	456	624	15732	2
Pokec	14,998	2,406	65	2.29	0.45	11,798	1,948	1,252	2
Yelp	50,758	679,302	1,862	6.66	0.29	0	19	50,739	9

Table A2: Statistics of fairness-sensitive datasets. **Sens** denotes the sensitive attribute.

Dataset	# Nodes	# Edges	# Features	Sens	Label
German	1,000	1,000	27	Gender	Credit status
Bail	18,876	18,876	18	Race	Bail decision
Credit	30,000	30,000	13	Age	Future default

Table A3: Statistics of graph-level datasets. Avg. $|\mathcal{V}|$, $|\mathcal{E}|$, and $|e|$ represent the average number of nodes, hyperedges, and hyperedge sizes, respectively.

Dataset	# Hypergraphs	Avg. $ \mathcal{V} $	Avg. $ \mathcal{E} $	Avg. $ e $	# Classes
RHG-10	2,000	31.3	29.8	5.2	10
RHG-3	1,500	35.5	17.9	6.9	3
IMDB-Dir-Form	1,869	15.7	39.2	3.7	3
IMDB-Dir-Genre	3,393	17.3	36.4	3.8	3
Steam-Player	2,048	13.8	46.4	4.5	2
Twitter-Friend	1,310	21.6	84.3	4.3	2

We adopt 22 publicly available benchmark datasets to comprehensively evaluate HNN algorithms. The statistics of node-level datasets, fairness-sensitive datasets, and graph-level datasets are reported in Tables A.1, A.2, and A.3, respectively. Detailed descriptions of these datasets are provided below.

- **Cora/Pubmed/Cora-CA/DBLP-CA** (Yadati et al., 2019): Cora and Pubmed are co-citation networks where nodes represent papers and hyperedges connect papers cited together. Cora-CA and DBLP-CA are co-authorship hypergraphs, with nodes as papers and hyperedges linking all papers co-authored by the same author. Node features are Bag-of-Words (BoW) (Zhang et al., 2010) representations of the documents, and labels indicate paper categories.
- **NTU2012/ModelNet40** (Feng et al., 2019): The ModelNet40 and the NTU2012 are two computer vision and graphics datasets. ModelNet40 contains 12,311 3D objects from 40 popular categories,

864 while NTU2012 consists of 2,012 3D shapes from 67 categories. For each object, features are
 865 extracted using both the Group-View Convolutional Neural Network (GVCNN)([Feng et al., 2018](#))
 866 and the Multi-View Convolutional Neural Network (MVCNN)([Su et al., 2015](#)). Following ([Feng](#)
 867 et al., 2019), we construct hyperedges by aggregating the nearest neighbors of each node based
 868 on Euclidean distance.

- **Walmart** ([Chien et al., 2022](#)): The Walmart dataset models a hypergraph where nodes represent products and hyperedges capture sets of products purchased together. Node labels indicate product categories. Following ([Chien et al., 2022](#)), each node feature is a 100-dimensional vector obtained by adding Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ with $\sigma = 0.6$ to one-hot encodings of the labels.
- **Trivago** ([Kim et al., 2023](#)): Trivago is a hotel-web search hypergraph where each node indicates a hotel, and each hyperedge corresponds to a user. If a user (hyperedge) has visited the website of a particular hotel (node), the corresponding node is added to the respective user hyperedge. Furthermore, each hotel’s class is labeled based on the country in which it is located.
- **Actor** ([Li et al., 2025c](#)): The actor co-occurrence network is derived from a heterogeneous movie-actor-director-writer network ², capturing intricate collaborations within films. Nodes represent individuals involved in film production (actors, directors, and writers), and hyperedges denote their joint participation in a single film. Node attributes are extracted from Wikipedia keywords, and labels indicate each individual’s specific role.
- **Amazon-ratings (Ratings)** ([Li et al., 2025c](#)): This dataset, sourced from the Amazon co-purchasing network in the SNAP repository ([Leskovec, 2014](#)), includes products like books, music CDs, DVDs, and VHS tapes. Nodes represent individual products, and hyperedges link those frequently purchased together. The task is to predict each product’s average user rating, classified into ten levels. Node features are extracted using the BoW technique applied to product descriptions ([Juluru et al., 2021](#)).
- **Twitch-gamers (Gamers)** ([Li et al., 2025c](#)): The Twitch-gamers dataset is a connected undirected hypergraph representing user interactions on the Twitch streaming platform. Nodes denote user accounts, and hyperedges are formed based on mutual follows within specific timeframes. Each node is associated with features such as view counts, timestamps, language preferences, activity duration, and inactivity status. The goal is to predict whether a channel hosts explicit content (binary classification).
- **Pokec** ([Li et al., 2025c](#)): The Pokec dataset is derived from Slovakia’s largest online social networking platform and is used to model social relationships and attributes. Nodes represent individual users, and hyperedges correspond to each user’s full set of friends. Node labels indicate user-reported gender, while node features are extracted from profile information, including age, hobbies, interests, education level, region, etc.
- **Yelp** ([Chien et al., 2022](#)): The Yelp dataset is a hypergraph where nodes represent restaurants and hyperedges link those visited by the same user. Node labels denote average star ratings (1.0–5.0 in 0.5 steps). Features include geographic coordinates, one-hot encodings of city/state, and BoW vectors from the top-1000 restaurant name tokens.
- **German** ([Wei et al., 2022](#)): The nodes in the dataset represent clients in the German Bank, and hyperedges are constructed by linking individuals with the most similar credit accounts to each person in the dataset. The task is to classify credit risk levels as high or low based on the sensitive attribute “gender” (Male/Female).
- **Bail** ([Wei et al., 2022](#)): The nodes in the datasets are defendants who got released on bail at the U.S state courts during 1990–2009 ([Jordan & Freiburger, 2015](#)). Hyperedges are constructed based on the similarity of past criminal records among individuals. The task is to classify whether defendants are on bail or not with the sensitive attribute “race” (White/Black).
- **Credit** ([Wei et al., 2022](#)): The nodes in the dataset represent credit card users, and hyperedges are formed based on the similarity of users’ spending and payment patterns. The task is to classify the default status with the sensitive attribute “age” (<25 / >25).
- **RHG-10/RHG-3** ([Feng et al., 2024](#)): RHG-10 dataset encompasses ten distinct synthetic factor hypergraph structures (i.e., Hyper Flower, Hyper Pyramid, Hyper Checked Table, Hyper Wheel, Hyper Lattice, Hyper Windmill, Hyper Firm Pyramid, Hyper RChecked Table, Hyper Cycle, and

²<https://www.aminer.org/lab-datasets/soinf/>

Figure A1: A timeline of the representative hypergraph neural networks.

Hyper Fern). To evaluate the algorithm’s ability to recognize significant high-order structures, the RHG-3 dataset is constructed by randomly generating hypergraphs for three distinctively various hypergraph structures: Hyper Pyramid, Hyper Checked Table, and Hyper Wheel.

- **IMDB-Dir-Form/IMDB-Dir-Genre** (Feng et al., 2024): These two datasets contain hypergraphs constructed by the co-director relationship from the original IMDB dataset. The director of each movie is a hypergraph. "Form" included in the dataset's name indicates that the movie category is identified by its form, like animation, documentary, and drama. "Genre" denotes that the movie is classified by its genres, like adventure, crime, and family.
- **Steam-Player** (Feng et al., 2024): The Steam-Player dataset is a player dataset where each player is a hypergraph. The vertex is the games played by the player, and the hyperedge is constructed by linking the games with shared tags. The target of the dataset is to identify each user's preference: single-player game or multiplayer game.
- **Twitter-Friend** (Feng et al., 2024): The Twitter-Friend dataset is a social media dataset. Each hypergraph is the friends of a specified user. The hyperedge is constructed by linking the users who are friends. The label associated with the hypergraph is to identify whether the user posted the blog about "National Dog Day" or "Respect Tyler Joseph".

A.2 BENCHMARK ALGORITHMS

Figure A1 illustrates 17 HNN algorithms integrated into our DHG-Bench, including 10 spectral-based, 5 spatial-based, and 2 tensor-based methods. We introduce these methods in detail below.

A.2.1 SPECTRAL-BASED ALGORITHMS

- **HGNN** (Feng et al., 2019): HGNN is a framework for representation learning that extends spectral convolution to hypergraphs. By leveraging the hypergraph Laplacian and approximating spectral filters with truncated Chebyshev polynomials, it effectively captures high-order correlations inherent in complex data.
- **HyperGCN** (Yadati et al., 2019): HyperGCN approximates each hyperedge of the hypergraph by a set of pairwise edges connecting the vertices of the hyperedge, and treats the learning problem as a graph learning task on the approximated graph.
- **HCHA** (Bai et al., 2021): HCHA is a hypergraph neural network that introduces two end-to-end trainable operators: hypergraph convolution and hypergraph attention. Hypergraph convolution efficiently propagates information by leveraging high-order relationships and local clustering structures, with standard graph convolution shown as a special case. Hypergraph attention further enhances representation learning by dynamically adjusting hyperedge connections through an attention mechanism, enabling task-relevant information aggregation and yielding more discriminative node embeddings.
- **LEGCN** (Yang et al., 2022): LEGCN is a hypergraph learning model based on the Line Expansion (LE). By modeling vertex-hyperedge pairs, LEGCN bijectively transforms a hypergraph into a simple graph, preserving the symmetric co-occurrence structure and avoiding information loss. This enables existing graph learning algorithms to operate directly on hypergraphs.
- **HyperND** (Prokopchik et al., 2022): HyperND develops a nonlinear diffusion process on hypergraphs that propagates both features and labels along the hypergraph structure. The novel diffusion incorporates a broad class of nonlinearities to increase the modeling capability, and the limiting point serves as a node embedding from which we make predictions with a linear model.

- **PhenomNN** (Wang et al., 2023b): PhenomNN is a hypergraph learning framework grounded in a family of expressive, parameterized hypergraph-regularized energy functions. It formulates node embeddings as the minimizers of these energy functions, which are optimized jointly with a parameterized classifier through a supervised bilevel optimization process. This approach provides a principled way to model high-order relationships in hypergraphs while enabling end-to-end training.
- **SheafHyperGNN** (Duta et al., 2023): SheafHyperGNN introduces a cellular sheaf framework for hypergraphs, enabling the modeling of complex dynamics while preserving their higher-order connectivity. Then, it generalizes the two commonly used hypergraph Laplacians to incorporate the richer structure sheaves offer and constructs two powerful neural networks capable of inferring and processing hypergraph sheaf structure.
- **HJRL** (Yan et al., 2024): HJRL introduces a novel cross expansion method, which transforms both hypervertices and edges of a hypergraph to vertices in a standard graph. Then, a joint learning model is proposed to embed both hypervertices and hyperedges into a shared representation space. In addition, the algorithm employs a hypergraph reconstruction objective to preserve structural information in the model.
- **DPHGNN** (Saxena et al., 2024): DPHGNN is a hybrid framework designed for effective feature representation in resource-constrained hypergraph settings. It introduces equivariant operator learning to capture lower-order semantics by inducing topology-aware inductive biases. It employs a dual-layered feature update mechanism: a static update layer provides spectral biases and relational features, while a dynamic update layer fuses explicitly aggregated features from the underlying topology into the hypergraph message-passing process.
- **TF-HNN** (Tang et al., 2025): TF-HNN is the first model to decouple hypergraph structural processing from model training, substantially improving training efficiency. Specifically, it introduces a unified, training-free message-passing module (TF-MP-Module) by identifying feature aggregation as the core operation in HNNs. The TF-MP-Module removes learnable parameters and nonlinear activations, and compresses multi-layer propagation into a single step, offering a simplified and efficient alternative to existing architectures.

A.2.2 SPATIAL-BASED ALGORITHMS

- **HNHN** (Dong et al., 2020): HNHN is a hypergraph convolution network with nonlinear activation functions applied to both hypernodes and hyperedges, combined with a normalization scheme that can flexibly adjust the importance of high-cardinality hyperedges and high-degree vertices depending on the dataset.
- **UniGNN** (Huang & Yang, 2021): UniGNN is a unified message-passing framework that generalizes standard GNNs to hypergraphs. It models the two-stage aggregation process by first computing hyperedge representations using a permutation-invariant function over the features of incident vertices, and then updating each vertex by aggregating its associated hyperedge representations. This formulation enables seamless adaptation of existing GNN architectures to hypergraph structures.
- **AllSetTransformer** (Chien et al., 2022): AllSetTransformer is a novel HNN paradigm that implements each layer as a composition of two multiset functions. By incorporating the Set Transformer (Lee et al., 2019) into its architecture, it achieves greater modeling flexibility and enhanced expressive power.
- **ED-HNN** (Wang et al., 2023a): ED-HNN is an architecture designed to approximate any continuous, permutation-equivariant hypergraph diffusion operator. The model is efficiently implemented by combining the star expansion (bipartite representation) of hypergraphs with standard message-passing neural networks, and supports scalable training via shared weights across layers.
- **HyperGT** (Liu et al., 2024): HyperGT is a Transformer-based HNN architecture designed to capture global correlations among nodes and hyperedges. To preserve local structural information, it incorporates incidence-matrix-based positional encoding and a structure regularization term. These designs enable comprehensive hypergraph representation learning by jointly modeling global interactions and local connectivity patterns.

1026 A.2.3 TENSOR-BASED ALGORITHMS
1027

- 1028 • **EHNN** (Kim et al., 2022): EHNN is the first framework to realize equivariant GNNs for gen-
1029 eral hypergraph learning. It establishes a connection between sparse hypergraphs and dense,
1030 fixed-order tensors, enabling the design of a maximally expressive equivariant linear layer. To
1031 ensure scalability and generalization to arbitrary hyperedge orders, EHNN further introduces
1032 hypernetwork-based parameter sharing.
- 1033 • **T-HyperGNN** (Wang et al., 2024): T-HyperGNN is a general framework that integrates tensor
1034 hypergraph signal processing (t-HGSP) (Pena-Pena et al., 2023) to encode hypergraph structures
1035 using tensors. It models node interactions through multiplicative interaction tensors, elevating
1036 aggregation from traditional linear operations to higher-order polynomial mappings, thereby
1037 enhancing expressive power. To ensure scalability, T-HyperGNN introduces tensor-message-
1038 passing by exploiting tensor sparsity, enabling efficient processing of large hypergraphs with
1039 computational and memory costs comparable to matrix-based HNNs.

1040 In addition, we include MLP and two GNN-based methods, CEGCN and CEGAT (Chien et al., 2022),
1041 as baselines in our comparative study. Both CEGCN and CEGAT are expansion-based approaches
1042 that transform a hypergraph into a pairwise graph via clique expansion (Zhou et al., 2006), where
1043 each hyperedge is converted into a clique over its incident nodes. Specifically, CEGCN applies
1044 GCN (Kipf & Welling, 2017) to the expanded graph, while CEGAT employs GAT (Veličković et al.,
1045 2018) to model node importance within the cliques.

1046 B DETAILS OF THE EXPERIMENTAL SETTINGS
10471048 B.1 GENERAL EXPERIMENTAL SETTINGS
1049

1050 We strive to follow the original implementations of various HNN methods from their respective
1051 papers or source codes and integrate them into a unified training and evaluation framework. All
1052 parameters are randomly initialized. We use the cross-entropy loss function (Mao et al., 2023)
1053 for all three benchmark classification tasks. Adam optimizer (Kingma, 2014) is adopted with an
1054 appropriate learning rate and weight decay to achieve the best performance on the validation split.
1055 Detailed hyperparameter settings and experimental environments are provided in Appendix B.2 and
1056 Appendix B.3, respectively. For evaluation, we follow prior studies in choosing task-specific metrics:
1057 accuracy for node classification (Feng et al., 2019; Chien et al., 2022; Wang et al., 2023a); AUROC
1058 (area under the ROC curve) and AP (average precision) for hyperedge prediction (Hwang et al.,
1059 2022; Ko et al., 2025; Yu et al., 2025; Tang et al., 2025); and both accuracy and Macro-F1 score for
1060 hypergraph classification (Feng et al., 2024). Higher values of these metrics indicate better predictive
1061 performance. In addition, to assess algorithmic fairness, we adopt two commonly used group fairness
1062 metrics: demographic parity (Δ_{DP}) (Dwork et al., 2012) and equalized odds (Δ_{EO}) (Hardt et al.,
1063 2016), with detailed definitions provided in Appendix B.5. For each method and dataset, we record
1064 the mean results and the standard deviation across 5 runs.

1065 B.2 HYPERPARAMETER SETTING
1066

1067 We carefully tune hyperparameters to ensure a rigorous and unbiased evaluation of the integrated
1068 HNN methods. For algorithms without explicit hyperparameter guidelines in their original papers or
1069 source code, we perform a grid search with a reasonable budget across all datasets to identify optimal
1070 configurations. The search spaces are provided in Table A4. For detailed interpretations, please refer
1071 to the corresponding papers, and the complete hyperparameter configurations are available in our
1072 publicly released GitHub repository.

1073 B.3 EXPERIMENTAL ENVIRONMENT
1074

1075 All the experiments are conducted with the following computational resources and configurations:
1076

- 1077 • Operating system: Ubuntu 24.04 LTS.
- 1078 • CPU information: Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz with 128G Memory.
- 1079 • GPU information: Quadro RTX 6000 with 24GB of Memory.

1080

1081

1082

Table A4: Hyperparameter search space of different methods.

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Method	Hyperparameter	Search Space
General Settings	Epochs	100, 200, 300, 400, 500, 800, 1000
	Learning Rate	0.1, 0.01, 0.001, 0.0001
	Layers	1, 2, 3, 4
	Dropout Rate	0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
	Weight Decay	0, 0.0005
	Hidden Units	64, 128, 256, 512, 1024
	Activation	LeakyReLU, ReLU, PReLU, Sigmoid, Softmax
	Hyperedge Pooling	max, mean, max-min
HCHA	Hypergraph Pooling	max, mean
	heads	1, 2, 4, 8, 16
HyperND	HyperND_ord	1, 2, 3, 5, 10
	HyperND_tol	0.001, 0.0001, 0.00001, 0.000001
	HyperND_steps	50, 100, 150, 200
	alpha	0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
HJRL	λ_0	0.001, 0.01, 0.1, 1, 10
	λ_0	0, 0.1, 1, 10, 20, 50, 80, 100
PhenomNN	λ_1	0, 0.1, 1, 10, 20, 50, 80, 100
	prop_steps	2, 4, 8, 16, 32, 64, 128
	alpha	0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
	init_hedge	rand, avg
SheafHyperGNN	sheaf_pred_block	MLP_var1, MLP_var2, MLP_var3, cp_decomp
	sheaf_transformer_head	1, 2, 4, 8, 16
	stalk_dim	1, 2, 4, 8
	mlp_hidden_size	64, 128, 256, 512, 1024
TF-HNN	# layers of classifier	1, 2, 3, 4
	alpha	-3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5
HNHN	beta	-2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0
	alpha	0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9
UniGNN	beta	0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9
	attention_heads	1, 2, 4, 8, 16
AllSetTransformer	alpha	0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
	# layers of $\hat{\phi}$	0, 1, 2, 3
	# layers of $\hat{\rho}$	0, 1, 2, 3
	# layers of $\hat{\varphi}$	0, 1, 2, 3
DPHGNN	attention_heads	1, 2, 4, 8, 16
	# layers of TAA module	1, 2, 3, 4
	# layers of SIB module	1, 2
	# layers of DFF module	1, 2
HyperGT	attention_heads	1, 2, 4, 8, 16
	ehnn_qk_channels	64, 128, 256
EHNN	ehnn_n_heads	1, 2, 4, 8, 16
	ehnn_pe_dim	64, 128
	ehnn_inner_channel	64, 128, 256
	ehnn_hidden_channel	64, 128, 256
	M: maximum cardinality	1, 2, 3, 4, 5
T-HyperGNN	combine	concat, sum

1134 • Software: CUDA 12.1, Python 3.9.21, Pytorch (Paszke et al., 2019) 2.2.2, Pytorch Geometric (Fey
 1135 & Lenssen, 2019) 2.6.1.

1136

1137 **B.4 ROBUSTNESS EVALUATION SETTINGS**

1138

1139 In our robustness study, we simulate data perturbation scenarios from three perspectives: structure,
 1140 feature, and supervision signal. Each perturbation setting is repeated 5 times with different random
 1141 seeds to account for randomness, and we report the average results. Our experiments primarily focus
 1142 on the node classification task. The detailed experimental setups are as follows.

1143 **Structure-level Robustness Evaluation Setting.** To analyze structure-level robustness, following
 1144 (Cai et al., 2022), we randomly remove or add a proportion of node–hyperedge connections (i.e.,
 1145 hyperlinks) in the original hypergraph and then train and evaluate HNN algorithms on the perturbed
 1146 structures. The modification ratio ranges from 0 to 0.9 to simulate varying levels of noise intensity.

1147 **Feature-level Robustness Evaluation Setting.** To study feature-level robustness, we simulate
 1148 two realistic types of feature perturbations: feature noise and feature sparsity. For feature noise,
 1149 following (Wu et al., 2020), we add independent Gaussian noise to each feature dimension of all
 1150 nodes with gradually increasing amplitude. Specifically, we use the mean of the maximum feature
 1151 value of each node as the reference amplitude r , and add Gaussian noise $\lambda \cdot r \cdot \epsilon$ to each feature
 1152 dimension, where $\epsilon \sim \mathcal{N}(0, 1)$ and λ denotes the feature noise ratio. We evaluate model performance
 1153 as λ varies from 0 to 0.9 with a step size of 0.1. For feature sparsity, following (Li et al., 2023), we
 1154 randomly mask a certain proportion of node features by filling them with zeros, with the sparsity
 1155 ratio ranging from 0 to 0.9 at an interval of 0.1.

1156 **Supervision-level Robustness Evaluation Setting.** We study supervision-level robustness by
 1157 simulating realistic noise and sparsity scenarios. For label noise, following (Dai et al., 2021), a certain
 1158 proportion of training samples are randomly assigned incorrect labels by uniformly flipping them
 1159 to one of the other classes. The noise ratio varies from 0 to 0.2 in increments of 0.05. Sparsity is
 1160 introduced by reducing the ratio of training nodes, with the sparsity rate ranging from 0 to 0.8 with a
 1161 step size of 0.2.

1162 **B.5 FAIRNESS EVALUATION METRICS**

1163

1164 For fairness evaluation, we adopt two widely used group fairness metrics: demographic parity
 1165 (DP) (Dwork et al., 2012), and equalized odds (EO) (Hardt et al., 2016). We focus on a binary
 1166 classification task, with target label $y \in \{0, 1\}$ and binary sensitive attribute $s \in \{0, 1\}$.

1167 **Demographic Parity.** If the predicted result \hat{y} is independent of sensitive attributes s , i.e., $\hat{y} \perp s$,
 1168 then we can consider demographic parity is achieved. Formally, this criterion can be expressed as:

1169
$$P(\hat{y} = 1 \mid s = 0) = P(\hat{y} = 1 \mid s = 1). \quad (1)$$

1170 If a model satisfies demographic parity, the acceptance rate of different protected groups is the same.
 1171 The deviation measure Δ_{DP} in the quantitative evaluation is given by:

1172
$$\Delta_{DP} = |P(\hat{y} = 1 \mid s = 0) - P(\hat{y} = 1 \mid s = 1)|, \quad (2)$$

1173 where a smaller value indicates a fairer prediction distribution across groups.

1174 **Equalized Odds.** If the predicted outcome \hat{y} and the sensitive attribute s are conditionally independent
 1175 given the ground-truth label y , i.e., $\hat{y} \perp s \mid y$, then we consider equalized odds is achieved. The
 1176 formula for this criterion is as follows:

1177
$$P(\hat{y} = 1 \mid s = 1, y = 1) = P(\hat{y} = 1 \mid s = 0, y = 1). \quad (3)$$

1178 If a model achieves equalized odds, the True Positive Rate (TPR) and False Positive Rate (FPR) are
 1179 equal across different protected groups. The deviation measure Δ_{EO} is calculated as:

1180
$$\Delta_{EO} = |P(\hat{y} = 1 \mid s = 1, y = 1) - P(\hat{y} = 1 \mid s = 0, y = 1)|, \quad (4)$$

1181 where a smaller value reflects more equitable predictive behavior across sensitive groups under the
 1182 same ground-truth condition.

1188
1189

B.6 DISCUSSION ON ROBUSTNESS AND FAIRNESS EVALUATION

1190
1191
1192

In this section, for the newly introduced robustness and fairness metrics, we discuss how an ideal HNN model is expected to behave during evaluation.

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

B.6.1 DISCUSSION ON ROBUSTNESS METRICS

1206
1207
1208
1209
1210
1211
1212
1213
1214

Structure Robustness. (1) In homophilous settings, meaningful higher-order relations benefit classification. Under drop perturbations, a desirable HNN should maintain accuracy that is no lower than that of structure-agnostic baselines (e.g., MLPs), and ideally remain as stable as possible. This indicates that when higher-order structure exists, the model is indeed able to effectively leverage it. Under addition perturbations, which introduce noisy or spurious links, an ideal HNN is expected to identify and down-weight these noisy edges during message passing. Consequently, the model should also maintain stable performance and stay close to the clean-hypergraph accuracy, demonstrating resilience to the adverse effects of structural noise. (2) In heterophilous settings, many higher-order connections are not helpful and may even be harmful. In this case, as the perturbation ratio increases, a robust HNN is expected to show a performance trend that remains stable or even improves. Such a trend indicates that disrupting harmful heterophilous links enables the model to better capture the remaining homophilous patterns, reflecting stronger robustness to misleading structural signals.

1215
1216
1217
1218
1219

Feature Robustness. For feature robustness evaluation, an ideal HNN is one whose predictive performance degrades slowly as feature noise increases or feature sparsity becomes more severe. Under our benchmark setting, we expect a good HNN to maintain an average performance clearly above the baseline obtained when all features are replaced with random noise, indicating that the model can effectively exploit meaningful feature signals. Likewise, as the feature sparsity ratio increases, the model’s performance should decline gradually while remaining above the extreme case where only a single feature dimension is preserved and, within this feasible range, stay as close as possible to the clean-hypergraph performance. Such behavior reflects the model’s ability to utilize informative features even under highly degraded or partially missing feature conditions.

1220
1221
1222
1223
1224
1225
1226

Label Robustness. For label robustness evaluation, we regard an ideal HNN as one whose predictive performance remains insensitive to different levels of label noise and label sparsity. Under our benchmark setting, a strong HNN should retain test accuracy close to its clean-data performance, showing either minimal degradation or no noticeable drop as the proportion of noisy labels increases or as the fraction of labeled training nodes decreases.

1227
1228

B.6.2 DISCUSSION ON FAIRNESS METRICS

1229
1230
1231
1232
1233

For fairness evaluation, an ideal HNN maintains strong predictive performance while exhibiting no algorithmic bias across different sensitive demographic groups. Specifically, under our benchmark setting, a good HNN should achieve high node classification accuracy while simultaneously attaining low values on the fairness metrics demographic parity (Δ_{DP}) and equalized odds (Δ_{EO}).

1234
1235
1236
1237
1238
1239
1240

B.7 DISCUSSION ON MEMORY MITIGATION STRATEGIES

1241

In our DHG-Bench, our primary mitigation strategy for handling memory-intensive settings is the unified support for sparse-matrix storage and training. Sparse operations are broadly compatible with all HNN models and effectively reduce memory overhead without affecting training dynamics, making them a practical and reliable choice. Below, we detail this strategy and explain why certain other techniques were not adopted.

Support for Sparse Matrix. DHG-Bench implements full sparse support for all HNNs, including sparse incidence matrices and sparse matrix computations during message passing. Representing the incidence matrix in a sparse format substantially reduces memory consumption, particularly for large-scale datasets. Sparse tensor operations also eliminate the need to materialize dense intermediate matrices during aggregation, which lowers peak memory usage in both the forward and backward passes. This design allows DHG-Bench to scale to larger hypergraphs than would be feasible with dense representations and serves as our main approach to preventing the OOM issue.

Why Mini-batching is not Used. Following the standard practice in most related HNN studies, DHG-Bench employs full-batch training for all models. Hypergraphs differ fundamentally from

1242
1243 Table A5: Additional node classification results on NTU2012, ModelNet40, and Ratings.
1244

Method	NTU2012	ModelNet40	Ratings
MLP	88.59 \pm 1.27	96.88 \pm 0.23	28.47 \pm 0.76
CEGCN	84.93 \pm 1.12	92.34 \pm 0.24	26.65 \pm 1.61
CEGAT	84.14 \pm 1.77	92.02 \pm 0.26	28.23 \pm 0.50
HGNN	90.13 \pm 0.89	97.43 \pm 0.20	28.05 \pm 0.28
HyperGCN	75.78 \pm 4.82	91.15 \pm 3.88	27.34 \pm 0.72
HCHA	90.53 \pm 1.00	97.68 \pm 0.16	28.33 \pm 0.34
LEGCN	89.82 \pm 0.91	96.82 \pm 0.24	28.21 \pm 0.50
HyperND	88.98 \pm 1.56	97.18 \pm 0.58	28.32 \pm 0.38
PhenomNN	88.78 \pm 0.67	98.28 \pm 0.18	28.49 \pm 0.41
SheafHyperGNN	90.81 \pm 0.58	98.30 \pm 0.19	28.35 \pm 0.57
HJRL	88.15 \pm 1.18	96.33 \pm 0.30	26.90 \pm 0.55
DPHGNN	84.77 \pm 1.06	97.19 \pm 0.17	28.57 \pm 1.07
TF-HNN	91.69\pm0.75	98.38 \pm 0.11	28.56 \pm 0.68
HNHN	87.27 \pm 1.53	97.30 \pm 0.27	27.29 \pm 0.70
UniGNN	89.86 \pm 0.44	98.42 \pm 0.08	28.39 \pm 0.64
AllSetTransformer	90.17 \pm 1.03	98.07 \pm 0.21	27.32 \pm 1.11
ED-HNN	91.45\pm0.70	98.51\pm0.15	28.38 \pm 0.31
HyperGT	86.00 \pm 2.05	96.83 \pm 0.17	26.58 \pm 0.33
EHNN	87.99 \pm 0.39	97.97 \pm 0.17	28.95\pm0.81
T-HyperGNN	89.15 \pm 1.09	97.76 \pm 0.34	24.63 \pm 1.22

1265 graphs because hyperedges connect multiple nodes simultaneously. However, there is currently no
 1266 widely adopted, hypergraph-specific mini-batch sampling strategy that preserves hyperedge integrity
 1267 or provides unbiased training signals. Existing sampling methods designed for graphs do not directly
 1268 transfer to hypergraphs, as they often break hyperedge structures or distort higher-order relationships.
 1269 DHG-Bench therefore follows the full-batch protocol to ensure comparability with prior works.
 1270 Developing principled mini-batch sampling strategies for hypergraphs is an important direction, and
 1271 we plan to explore this in future extensions of DHG-Bench.

1272 **Why Mixed-Precision is not Used.** Mixed-precision training can reduce memory usage in some
 1273 deep learning models. However, many HNNs rely on sparse operations and irregular message-passing
 1274 kernels, and while PyTorch technically allows FP16 sparse tensors, most sparse operators either lack
 1275 full FP16 support or exhibit numerical instability in half-precision settings. To keep the evaluation
 1276 fair and consistent across all models, we choose not to include the mixed precision strategy.

1278 C SUPPLEMENTARY EXPERIMENTAL RESULTS

1280 C.1 EXPERIMENTAL RESULTS ON EFFECTIVENESS EVALUATION

1282 Table A5 shows the node classification results of all HNN algorithms on three datasets: NTU2012,
 1283 ModelNet, and Ratings.

1284 Table A6, A7 reports the full result of hyperedge prediction and hypergraph classification, respectively.
 1285 Tensor-based methods are not considered in the hypergraph classification task, as they lack flexibility
 1286 in supporting multi-graph training.

1288 C.2 EXPERIMENTAL RESULTS ON ROBUSTNESS EVALUATION

1290 Figures A2, A3, and A4 show the robustness evaluation results at the structure, feature, and supervi-
 1291 sion levels on the Pubmed and Pokec datasets, respectively.

1293 C.3 EXPERIMENTAL RESULTS ON FAIRNESS EVALUATION

1295 Table A8 presents the full experimental results of fairness evaluation in terms of three metrics:
 accuracy (Acc), demographic parity (Δ_{DP}), and equalized odds (Δ_{EO}).

1296

1297

Table A6: Evaluation results of hyperedge prediction.

Method	Cora		PubMed		Cora-CA		DBLP-CA		Actor		Pokec	
	AUROC	AP										
MLP	68.01 \pm 1.23	71.32 \pm 1.13	66.00 \pm 0.44	69.21 \pm 0.61	71.15 \pm 1.73	72.80 \pm 1.27	69.19 \pm 0.19	70.66 \pm 0.36	54.75 \pm 2.29	53.63 \pm 1.56	69.69 \pm 2.56	69.07 \pm 3.03
CEGCN	66.10 \pm 2.43	65.50 \pm 2.85	60.14 \pm 3.97	60.25 \pm 3.60	67.27 \pm 3.78	71.23 \pm 2.69	64.06 \pm 1.11	65.07 \pm 1.69	50.02 \pm 2.00	50.05 \pm 0.02	73.03 \pm 2.76	70.08 \pm 2.95
CEGAT	72.48 \pm 0.52	71.02 \pm 0.64	62.20 \pm 6.25	61.63 \pm 5.99	69.81 \pm 1.13	70.38 \pm 1.33	66.50 \pm 8.80	65.29 \pm 8.21	56.34 \pm 5.33	56.36 \pm 5.07	81.01 \pm 0.43	79.61 \pm 1.60
HGNN	73.70 \pm 1.19	71.73 \pm 1.57	66.08 \pm 9.84	63.67 \pm 0.02	89.16 \pm 1.11	89.85 \pm 0.82	75.44 \pm 3.00	73.96 \pm 4.91	72.42\pm1.96	68.79\pm1.83	86.09 \pm 0.92	84.32 \pm 0.95
HyperGCN	77.34\pm1.30	77.15\pm0.33	66.46 \pm 8.87	64.84 \pm 7.98	92.73\pm0.95	93.42\pm0.89	89.46\pm0.18	91.39\pm0.34	55.01 \pm 8.76	56.29 \pm 7.44	91.45\pm0.70	90.76 \pm 0.70
HCHA	73.57 \pm 1.08	72.24 \pm 1.80	63.35 \pm 1.61	63.13 \pm 1.47	85.85 \pm 3.27	84.77 \pm 5.66	73.30 \pm 3.72	72.09 \pm 3.07	69.86 \pm 0.98	66.72 \pm 0.74	88.81 \pm 0.28	88.25 \pm 0.41
LEGCN	67.16 \pm 2.85	68.76 \pm 4.89	56.39 \pm 3.28	54.33 \pm 2.41	74.29 \pm 0.59	75.95 \pm 0.62	50.70 \pm 1.40	50.47 \pm 0.94	48.25 \pm 3.00	49.76 \pm 1.29	74.94 \pm 1.44	73.89 \pm 1.04
HyperND	69.10 \pm 1.28	72.71 \pm 1.48	72.12 \pm 0.78	73.53 \pm 0.63	84.01 \pm 0.61	84.98 \pm 0.07	78.63 \pm 0.71	79.42 \pm 0.94	53.12 \pm 2.56	52.64 \pm 2.33	75.77 \pm 1.56	73.51 \pm 1.62
PhenomNN	75.71 \pm 0.91	75.22 \pm 1.42	74.29 \pm 0.85	72.93 \pm 1.27	80.27 \pm 1.62	79.59 \pm 1.11	75.86 \pm 0.86	75.54 \pm 0.88	56.65 \pm 3.04	55.75 \pm 2.87	70.83 \pm 2.52	70.17 \pm 2.36
SheafHyperGNN	70.53 \pm 5.23	70.93 \pm 4.04	68.26 \pm 1.92	68.07 \pm 1.18	79.21 \pm 4.53	75.42 \pm 6.73	76.30 \pm 1.97	75.41 \pm 1.76	59.83 \pm 6.77	59.84 \pm 5.73	83.44 \pm 2.49	85.11 \pm 1.80
HJRL	58.48 \pm 2.52	61.02 \pm 2.60	59.28 \pm 0.84	58.63 \pm 1.50	82.41 \pm 1.98	85.67 \pm 1.11	OOM	OOM	48.26 \pm 0.77	50.00 \pm 0.31	84.88 \pm 3.38	86.18 \pm 2.61
DPHGNN	66.48 \pm 5.83	67.23 \pm 5.11	60.37 \pm 7.77	59.86 \pm 7.07	82.89 \pm 2.28	83.78 \pm 2.50	OOM	OOM	42.44 \pm 5.81	46.60 \pm 3.03	73.35 \pm 4.59	73.28 \pm 3.74
TF-HNN	76.94 \pm 0.88	76.57 \pm 0.71	73.75 \pm 0.73	75.54 \pm 0.72	74.97 \pm 1.85	71.13 \pm 1.65	75.70 \pm 2.77	74.69 \pm 2.61	54.03 \pm 1.71	54.06 \pm 1.57	68.00 \pm 0.97	67.41 \pm 1.20
HNHN	70.13 \pm 1.67	68.84\pm1.09	55.67 \pm 0.39	53.52 \pm 0.31	84.33 \pm 1.40	83.49 \pm 1.00	82.85 \pm 0.78	82.13 \pm 0.58	69.89\pm0.98	66.45 \pm 0.74	82.25 \pm 1.34	81.72 \pm 1.53
UniGNN	73.51 \pm 0.87	75.23 \pm 1.51	74.20 \pm 0.82	71.76 \pm 1.16	80.59 \pm 0.98	82.37 \pm 1.11	81.08 \pm 0.79	79.39 \pm 0.46	50.24 \pm 1.26	50.01 \pm 0.56	85.64 \pm 1.20	84.36 \pm 1.48
AllSetTransformer	72.55 \pm 2.99	74.86 \pm 1.85	71.09 \pm 2.99	73.15 \pm 2.49	76.13 \pm 7.70	75.02 \pm 8.68	77.12 \pm 4.41	55.84 \pm 5.99	58.73 \pm 4.39	83.65 \pm 4.34	83.36 \pm 4.72	
ED-HNN	67.24 \pm 1.91	69.89 \pm 2.24	70.09 \pm 0.43	72.61 \pm 0.48	72.94 \pm 1.37	81.86 \pm 0.67	84.75 \pm 0.50	51.74 \pm 2.79	52.27 \pm 2.54	85.27 \pm 1.48	84.95 \pm 1.43	
HyperGT	60.68 \pm 4.44	63.02 \pm 4.00	64.38 \pm 0.58	67.79 \pm 0.59	65.99 \pm 2.48	69.66 \pm 2.20	74.27 \pm 0.24	72.90 \pm 0.17	65.18 \pm 1.60	63.24 \pm 0.53	81.37 \pm 5.83	82.73 \pm 5.83
EHNN	78.99\pm0.99	79.54\pm0.93	76.50\pm0.62	75.94\pm0.70	77.83 \pm 3.01	78.29 \pm 3.72	87.96 \pm 0.98	89.00 \pm 0.64	65.69 \pm 0.48	65.37 \pm 0.35	88.63 \pm 1.58	91.31\pm0.88
T-HyperGNN	58.91 \pm 1.23	62.17 \pm 1.58	58.35 \pm 4.43	55.81 \pm 3.71	66.87 \pm 0.88	69.65 \pm 0.53	67.17 \pm 5.79	68.45 \pm 3.85	49.16 \pm 0.22	50.20 \pm 0.41	65.21 \pm 1.21	66.90 \pm 1.56

1311

Table A7: Evaluation results of hypergraph classification. Acc and F1_ma denote the accuracy and Macro-F1, respectively. Tensor-based methods are omitted as they cannot be applied to this task.

Method	RHG-10		RHG-3		IMDB-Dir-Form		IMDB-Dir-Genre		Steam-Player		Twitter-Friend	
	Acc	F1_ma										
MLP	91.70 \pm 1.00	91.43 \pm 1.09	95.73 \pm 1.86	95.72 \pm 1.84	63.62 \pm 1.69	56.98 \pm 3.93	75.12 \pm 0.78	71.10 \pm 0.74	52.34 \pm 0.55	51.60 \pm 0.68	57.25 \pm 1.81	52.88\pm4.57
CEGCN	91.50 \pm 1.55	90.48 \pm 1.42	98.63 \pm 0.73	98.65 \pm 0.77	62.66 \pm 1.82	55.31 \pm 3.58	75.06 \pm 0.78	68.98 \pm 1.67	48.16 \pm 3.87	47.03 \pm 3.79	54.66 \pm 5.66	42.16 \pm 2.71
CEGAT	88.70 \pm 1.71	88.43 \pm 1.72	98.80 \pm 0.61	98.83 \pm 0.59	63.51 \pm 1.54	56.97 \pm 4.83	74.61 \pm 4.29	68.61 \pm 4.73	49.51 \pm 4.71	46.85 \pm 4.93	57.32 \pm 2.59	38.22 \pm 2.54
HGNN	94.60 \pm 1.66	94.47 \pm 1.84	98.93 \pm 0.68	98.97 \pm 0.65	63.72 \pm 0.62	57.92\pm3.24	76.76 \pm 2.66	72.02 \pm 3.37	51.65 \pm 2.51	50.91 \pm 2.92	55.42 \pm 2.03	46.81 \pm 4.27
HyperGCN	85.50 \pm 1.10	95.42 \pm 1.09	99.47 \pm 0.50	99.48 \pm 0.49	62.87 \pm 0.44	57.20 \pm 2.46	77.53 \pm 0.98	72.97 \pm 1.08	51.17 \pm 3.32	50.48 \pm 3.12	56.95 \pm 4.17	50.12 \pm 5.88
HCHA	96.60 \pm 1.00	96.48 \pm 1.08	99.33 \pm 0.42	99.37 \pm 0.38	61.60 \pm 2.16	55.37 \pm 2.17	78.12\pm1.96	73.20 \pm 3.00	52.43 \pm 2.38	51.77 \pm 2.52	58.17 \pm 2.33	49.57 \pm 6.84
LEGCN	92.40 \pm 1.16	92.06 \pm 1.19	96.80 \pm 0.99	96.78 \pm 0.29	61.81 \pm 1.32	56.05 \pm 7.95	76.38 \pm 1.68	72.03 \pm 1.54	53.11 \pm 1.58	52.70 \pm 1.87	56.64 \pm 3.72	53.38\pm4.92
HyperND	91.00 \pm 0.98	90.74 \pm 1.04	92.80 \pm 1.95	92.75 \pm 1.90	60.74 \pm 3.32	55.02 \pm 4.95	75.65 \pm 0.51	71.37 \pm 1.10	53.88 \pm 2.15	49.71 \pm 2.05	55.27 \pm 3.79	43.61 \pm 6.51
PhenomNN	91.10 \pm 0.73	90.77 \pm 0.77	93.47 \pm 1.90	93.45 \pm 1.90	61.28 \pm 1.97	53.71 \pm 3.13	74.59 \pm 0.61	70.15 \pm 0.88	51.65 \pm 3.06	48.94 \pm 4.55	57.40 \pm 3.84	48.26 \pm 4.66
SheafHyperGNN	96.00 \pm 1.38	95.96 \pm 1.32	99.73 \pm 0.33	99.74 \pm 0.30	62.34 \pm 2.06	56.47 \pm 3.49	77.00 \pm 1.14	72.78 \pm 1.17	53.11 \pm 2.39	52.56 \pm 2.74	56.49 \pm 2.51	51.43 \pm 4.42
HJRL	96.10 \pm 0.88	95.98 \pm 0.85	99.60 \pm 0.53	99.57 \pm 0.52	63.09 \pm 2.03	56.54 \pm 3.62	77.82\pm1.47	73.73\pm1.92	51.84 \pm 3.52	51.13 \pm 3.29	57.10 \pm 2.79	44.19 \pm 7.19
DPHGNN	96.80 \pm 0.66	96.71 \pm 0.71	99.49 \pm 0.66	99.61 \pm 0.64	64.04\pm2.70	57.41\pm3.96	76.18 \pm 1.30	71.59 \pm 1.82	51.36 \pm 1.72	49.03 \pm 3.63	59.24\pm2.88	46.12 \pm 8.49
TF-HNN	95.90 \pm 0.80	95.88 \pm 0.78	98.80 \pm 0.61	98.84 \pm 0.61	62.34 \pm 3.81	55.32 \pm 3.81	76.41 \pm 1.31	71.89 \pm 1.45	54.85\pm1.82	52.72\pm2.54	56.18 \pm 3.53	44.17 \pm 8.95
HNHN	94.00 \pm 1.90	94.08 \pm 1.88	99.92\pm0.02	99.95\pm0.02	62.34 \pm 2.98	55.24 \pm 3.88	73.65 \pm 1.47	69.68 \pm 1.18	52.82 \pm 1.61	52.68 \pm 1.69	58.47 \pm 4.65	39.40 \pm 3.14
UniGNN	95.50 \pm 1.38	95.40 \pm 1.44	98.80 \pm 0.27	98.83 \pm 0.27	61.06 \pm 2.88	55.75 \pm 4.01	77.12 \pm 0.88	72.93 \pm 1.43	51.46 \pm 2.44	48.85 \pm 2.59	55.88 \pm 4.14	46.48 \pm 4.90
AllSetTransformer	97.30\pm0.98	97.26\pm1.04	98.80 \pm 0.27	98.81 \pm 0.26	62.23 \pm 1.01	56.26 \pm 2.93	76.47 \pm 1.38	72.26 \pm 1.22	53.43 \pm 2.77	48.21 \pm 2.07	60.15\pm1.70	51.52 \pm 7.00
ED-HNN	96.50 \pm 0.77	96.41 \pm 0.78	99.07 \pm 0.53	99.10 \pm 0.51	62.13 \pm 2.36	57.00 \pm 4.71	77.12 \pm 1.11	72.87 \pm 0.44	52.82 \pm 2.66	48.73 \pm 2.36	57.40 \pm 2.66	42.57 \pm 5.09
HyperGT	91.60 \pm 1.											

Figure A4: Supervision robustness analysis on Pubmed and Pokec.

Table A8: Fairness Evaluation.

Method	German			Bail			Credit		
	Acc \uparrow	$\Delta_{DP} \downarrow$	$\Delta_{EO} \downarrow$	Acc \uparrow	$\Delta_{DP} \downarrow$	$\Delta_{EO} \downarrow$	Acc \uparrow	$\Delta_{DP} \downarrow$	$\Delta_{EO} \downarrow$
MLP	67.68 \pm 3.46	1.78\pm1.30	2.59 \pm 0.99	89.40 \pm 1.76	6.16\pm0.93	1.79 \pm 0.84	79.69 \pm 0.85	3.43\pm0.83	2.07\pm0.43
CEGCN	69.60 \pm 2.78	6.19 \pm 4.59	6.46 \pm 5.48	OOM	OOM	OOM	OOM	OOM	OOM
CEGAT	69.12 \pm 2.44	9.00 \pm 4.77	8.52 \pm 3.82	OOM	OOM	OOM	OOM	OOM	OOM
HGNN	69.76 \pm 2.50	9.59 \pm 3.51	6.90 \pm 3.82	91.02 \pm 0.54	7.83 \pm 0.80	2.60 \pm 1.05	80.21 \pm 0.41	5.04 \pm 2.07	3.46 \pm 1.05
HyperGCN	70.40 \pm 3.23	6.39 \pm 2.87	3.57 \pm 1.61	94.72 \pm 0.79	7.90 \pm 0.95	1.23\pm0.52	80.42 \pm 0.34	5.38 \pm 2.61	3.89 \pm 1.60
HCHA	70.56 \pm 2.51	9.37 \pm 3.74	6.72 \pm 3.05	91.52 \pm 0.92	7.62 \pm 0.95	1.40 \pm 0.80	80.08 \pm 0.43	3.58\pm1.87	2.47\pm0.78
LEGCN	70.88 \pm 3.22	7.53 \pm 2.54	3.25 \pm 2.00	95.02 \pm 0.46	7.87 \pm 0.62	1.28 \pm 0.52	80.48\pm0.37	4.31 \pm 2.24	3.15 \pm 1.12
HyperND	71.04 \pm 2.61	7.37 \pm 4.70	3.67 \pm 3.10	89.75 \pm 2.41	7.92 \pm 1.52	3.19 \pm 2.22	80.02 \pm 0.49	4.14 \pm 2.22	2.50 \pm 0.72
PhenomNN	70.96 \pm 2.85	3.54 \pm 3.07	1.60 \pm 1.94	91.71 \pm 1.13	10.83 \pm 1.64	1.94 \pm 0.40	OOM	OOM	OOM
SheafHyperGNN	70.64 \pm 3.29	8.14 \pm 3.25	5.23 \pm 2.05	OOM	OOM	OOM	OOM	OOM	OOM
HJRL	69.92 \pm 3.46	3.52 \pm 2.70	3.05 \pm 1.82	OOM	OOM	OOM	OOM	OOM	OOM
DPHGNN	70.24 \pm 3.25	2.25\pm0.49	1.38\pm0.77	93.41 \pm 0.93	8.07 \pm 1.20	2.05 \pm 1.22	OOM	OOM	OOM
TF-HNN	70.48 \pm 3.14	5.27 \pm 3.09	4.19 \pm 2.23	95.33 \pm 0.25	7.96 \pm 0.65	1.03\pm0.67	80.46 \pm 0.36	4.93 \pm 2.44	3.43 \pm 1.43
HNHN	69.52 \pm 3.62	4.01 \pm 2.76	1.59\pm1.60	90.76 \pm 1.30	6.03\pm1.43	3.04 \pm 1.34	78.00 \pm 0.23	5.70 \pm 3.11	4.67 \pm 3.10
UniGNN	71.07 \pm 2.70	5.08 \pm 3.03	2.80 \pm 1.32	91.30 \pm 1.47	9.42 \pm 1.68	3.94 \pm 2.18	80.44 \pm 0.37	3.90 \pm 2.40	2.85 \pm 1.33
AllSetTransformer	70.48 \pm 3.11	4.47 \pm 3.39	3.50 \pm 3.38	96.26\pm1.83	8.36 \pm 0.85	1.95 \pm 1.10	80.40 \pm 0.44	4.46 \pm 2.96	3.44 \pm 1.60
ED-HNN	70.16 \pm 3.15	4.06 \pm 3.05	4.07 \pm 2.75	94.26 \pm 0.77	8.05 \pm 0.64	1.51 \pm 0.26	OOM	OOM	OOM
HyperGT	68.88 \pm 2.01	5.05 \pm 2.88	4.36 \pm 2.59	94.33 \pm 0.62	7.68 \pm 1.13	1.64 \pm 1.37	79.83 \pm 0.39	4.17 \pm 2.50	2.69 \pm 1.97
EHNN	70.40 \pm 3.07	2.87 \pm 5.73	2.34 \pm 4.69	93.62 \pm 1.75	9.29 \pm 1.60	2.88 \pm 1.23	80.34 \pm 0.47	4.51 \pm 2.77	3.13 \pm 1.75
T-HyperGNN	71.20\pm1.82	8.99 \pm 6.52	6.80 \pm 5.02	OOM	OOM	OOM	OOM	OOM	OOM

Experiment Settings. We first split the node labels into 20%/20%/60% for the train/validation/test sets. The validation and test sets are then kept fixed, and different levels of label scarcity are simulated by masking a portion of the training labels. Specifically, we adjust the masking ratio so that the visible training labels constitute 20%, 15%, 10%, 5%, and 1% of all nodes. This design allows us to systematically examine how HNNs behave as labeled data becomes increasingly limited. We evaluate 8 representative HNN algorithms spanning three major categories (spectral-based, spatial-based, and tensor-based) on the Cora and Actor datasets, and report model performance in terms of accuracy.

Table A9: Label-scarce node classification on Cora.

Method	20%	15%	10%	5%	1%
HGNN	74.84	73.24	70.09	64.75	42.30
PhenomNN	75.35	74.07	71.96	67.55	44.96
SheafHyperGCN	76.06	74.66	71.29	66.37	43.67
TF-HNN	76.31	75.07	71.77	64.48	39.29
UniGNN	76.08	74.04	70.89	64.85	43.18
AllSetTransformer	73.48	72.33	68.46	61.70	40.44
ED-HNN	74.20	72.41	69.93	63.65	42.79
T-HyperGNN	69.02	66.99	62.50	52.89	36.60

Results and Analysis. From Tables A9 and A10, we derive the following key observations: (1) As label scarcity increases, all HNN models exhibit a clear degradation in performance, with the decline becoming more significant under extremely low-label settings; notably, all methods experience substantial drops when the labeled ratio decreases from 5% to 1%. (2) Across both datasets, PhenomNN consistently shows the strongest robustness under highly label-scarce conditions (1% and 5%). In contrast, TF-HNN, although it achieves SOTA performance in label-abundant scenarios (see Table 1 in the original manuscript), suffers a severe accuracy collapse when supervision is limited and ranks as the second-worst method on Cora at the 1% label ratio. (3) The performance degradation on the homophilous Cora dataset is more pronounced than on the heterophilous Actor

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

Table A10: Label-scarce node classification on Actor.

Method	20%	15%	10%	5%	1%
HGNN	77.90	77.79	77.52	76.39	70.12
PhenomNN	82.99	82.89	82.56	81.77	76.89
SheafHyperGCN	84.16	83.67	82.95	80.48	72.27
TF-HNN	85.34	84.74	83.95	81.74	74.88
UniGNN	82.85	82.65	82.64	81.69	76.34
AllSetTransformer	84.06	83.46	82.25	79.55	75.47
ED-HNN	84.74	84.30	83.38	81.14	75.53
T-HyperGNN	84.87	84.39	83.48	81.29	73.63

dataset. This may be because heterophilous links introduce misleading feature mixing, which reduces the usefulness of label information during training and makes Actor less sensitive to label scarcity.

C.5 ADDITIONAL RESULTS FOR DIRECTION-AWARE GNNs

In this section, we additionally include two widely used direction-aware GNNs, MagNet (Zhang et al., 2021) and DirGNN (Rossi et al., 2024), as supplementary baselines. Both models are evaluated on node-level, edge-level, and graph-level tasks, with the corresponding results reported in Table A11, Table A12, and Table A13, respectively.

Table A11: Node classification performance of direction-aware GNNs.

Method	Cora	Pubmed	DBLP-CA	Walmart	Actor	Pokec
MagNet	77.10 ± 1.35	86.12 ± 0.16	89.99 ± 0.31	71.81 ± 0.27	67.62 ± 0.56	57.01 ± 0.69
DirGNN	78.17 ± 0.81	86.50 ± 0.46	90.75 ± 0.28	73.78 ± 0.09	84.92 ± 0.49	58.47 ± 0.87

Table A12: Hyperedge prediction performance of direction-aware GNNs.

Method	Cora		Pubmed		Actor		Pokec	
	AUROC	AP	AUROC	AP	AUROC	AP	AUROC	AP
MagNet	56.45 ± 0.02	55.18 ± 0.01	53.64 ± 0.02	54.79 ± 0.01	50.76 ± 0.02	50.21 ± 0.02	79.95 ± 0.01	80.78 ± 0.01
DirGNN	63.02 ± 0.02	61.38 ± 0.03	55.03 ± 0.02	55.28 ± 0.02	51.72 ± 0.02	51.33 ± 0.02	80.14 ± 0.01	79.65 ± 0.01

Table A13: Hypergraph classification performance of direction-aware GNNs.

Method	RHG-10		IMDB-Dir-Genre		Steam-Player		Twitter-Friend	
	Acc	F1_ma	Acc	F1_ma	Acc	F1_ma	Acc	F1_ma
MagNet	93.20 ± 0.02	92.95 ± 0.02	75.94 ± 0.01	71.45 ± 0.00	51.75 ± 0.02	51.12 ± 0.03	55.11 ± 0.02	46.64 ± 0.03
DirGNN	94.80 ± 0.01	94.48 ± 0.01	76.53 ± 0.02	72.59 ± 0.02	52.33 ± 0.01	52.24 ± 0.01	54.81 ± 0.04	46.02 ± 0.03

Results and Analysis. From the results shown in the tables above, we derive the following key findings: (1) In node classification, the two newly added direction-aware GNNs generally fall short of most HNN methods across the six datasets, reflecting the advantage of HNN architectures in modeling higher-order structures. We also observe that DirGNN achieves competitive performance on heterophilous datasets such as Actor and Pokec, likely because its separation mechanism in neighbor aggregation helps mitigate the adverse feature mixing effects induced by heterophily. (2) In hyperedge prediction, direction-aware GNNs perform notably worse than HNNs and, in many cases, even underperform traditional MLPs. A key reason is that their directional aggregation mechanism, which separates incoming and outgoing neighbors, reinforces a pairwise and asymmetric view of interactions. This asymmetry limits the model’s ability to form coherent representations of multi-node groups and makes it difficult to capture the joint, order-invariant dependencies required for accurate hyperedge prediction. (3) In hypergraph classification, direction-aware GNNs remain less competitive than state-of-the-art HNNs, which benefit from explicit modeling of higher-order interactions that are crucial for capturing complex hypergraph structures.

1458 C.6 ANALYZING PERFORMANCE DEGRADATION ON HETEROGENEOUS DATASETS
14591460 In this section, we investigate the underlying causes of performance degradation on heterophilous
1461 hypergraphs and test two key hypotheses: oversmoothing and feature collapse.1462 At the first step, we evaluate how the accuracy of four representative HNN architectures changes
1463 as the number of layers increases on two heterophilous datasets, Actor and Pokec, with the goal of
1464 examining whether oversmoothing occurs. According to Tables A14 and A15, although increasing
1465 depth generally causes a gradual performance decline in HNNs (i.e., oversmoothing), all HNN
1466 variants already underperform the MLP baseline under the 1-layer message passing. This suggests
1467 that depth is not the primary factor behind the performance gap.1468
1469 Table A14: Node classification on Actor with varying layer depths.
1470

Method	1	2	3	4	5
MLP	81.23 \pm 0.39	86.06 \pm 0.36	84.90 \pm 0.41	84.55 \pm 0.54	84.28 \pm 0.69
HGNN	77.63 \pm 0.74	73.84 \pm 0.37	70.82 \pm 0.70	68.59 \pm 0.68	67.33 \pm 0.45
SheafHyperGNN	85.00 \pm 0.32	84.71 \pm 0.43	83.61 \pm 0.48	82.88 \pm 0.41	82.15 \pm 0.63
AllSetTransformer	85.79 \pm 0.77	85.63 \pm 0.35	85.68 \pm 0.55	85.38 \pm 0.35	85.49 \pm 0.21
ED-HNN	85.69 \pm 0.45	85.82 \pm 0.28	85.53 \pm 0.37	84.93 \pm 0.47	82.60 \pm 9.96

1471
1472 Table A15: Node classification on Pokec with varying layer depths.
1473

Method	1	2	3	4	5
MLP	57.91 \pm 0.61	59.64 \pm 0.48	58.81 \pm 0.58	58.52 \pm 0.85	58.94 \pm 0.87
HGNN	57.43 \pm 0.67	57.48 \pm 0.82	57.26 \pm 0.78	56.88 \pm 1.24	56.79 \pm 0.68
SheafHyperGNN	59.02 \pm 0.42	58.94 \pm 0.67	58.26 \pm 0.61	58.03 \pm 0.83	57.93 \pm 0.73
AllSetTransformer	58.75 \pm 0.48	58.58 \pm 0.55	58.50 \pm 0.85	58.54 \pm 0.58	58.35 \pm 0.34
ED-HNN	58.52 \pm 0.32	58.71 \pm 0.30	58.74 \pm 0.50	58.24 \pm 0.50	58.11 \pm 0.58

1485 To further examine the underlying factors, we first compute the Mean Average Distance (MAD) (Chen
1486 et al., 2020), a widely adopted metric for measuring the smoothness (i.e., similarity) of graph
1487 representations. Specifically, we report the MAD values for both the raw input features and the
1488 representations obtained after the first layer. Next, to assess the extent of feature mixing under
1489 heterophily, we measure the similarity between each node and its heterophilous neighbors using the
1490 cosine distance. Formally, the heterophilous similarity is defined as:

1491
1492
$$\text{Sim}^{\text{diff}} = \text{avg}_{(i,j): j \in \mathcal{N}^{\text{diff}}(i)} \cos(h_i^{(l)}, h_j^{(l)}) \quad (5)$$

1493 where $\mathcal{N}^{\text{diff}}(i) = \{j \in \mathcal{N}(i) \mid y_j \neq y_i\}$ denotes the set of heterophilous neighbors whose labels
1494 differ from that of node i . The results are reported in Tables A16 and A17.1495
1496 Table A16: MAD and Sim^{diff} values on Actor.
1497

Layer	HGNN		SheafHyperGNN		AllSetTransformer		ED-HNN		MLP	
	MAD	Sim^{diff}	MAD	Sim^{diff}	MAD	Sim^{diff}	MAD	Sim^{diff}	MAD	Sim^{diff}
0	0.8114	0.0584	0.8114	0.0584	0.8114	0.0584	0.8114	0.0584	0.8114	0.0584
1	0.4700	0.4013	0.3976	0.4274	0.2379	0.4892	0.5540	0.0515	0.7456	-0.0829

1504 Table A17: MAD and Sim^{diff} values on Pokec.
1505

Layer	HGNN		SheafHyperGNN		AllSetTransformer		ED-HNN		MLP	
	MAD	Sim^{diff}	MAD	Sim^{diff}	MAD	Sim^{diff}	MAD	Sim^{diff}	MAD	Sim^{diff}
0	0.2697	0.0775	0.2697	0.0775	0.2697	0.0775	0.2697	0.0775	0.2697	0.0775
1	0.1054	0.6364	0.1490	0.7573	0.0058	0.9796	0.0592	0.7818	0.2034	0.2990

1510 Our empirical analysis reveals two key observations: (1) After only 1-layer hypergraph message
1511 passing, MAD decreases sharply compared to the raw input features, indicating that node rep-
resentations rapidly become more homogeneous. This demonstrates that HNN message passing

1512 introduces representation smoothness at a very early stage. (2) The similarity between nodes and
 1513 their heterophilous neighbors increases substantially, suggesting that heterophilous links cause strong
 1514 cross-class feature mixing and pull representations of different classes closer together. Such mix-
 1515 ing reduces class separability and ultimately impairs the effectiveness of HNN-based classifiers in
 1516 heterophilous settings.

1517 These observations align closely with prior theoretical and empirical findings on heterophilic GNNs.
 1518 Existing studies (e.g., (Zhu et al., 2020; Luan et al., 2022; Yan et al., 2022)) suggest that heterophily
 1519 may negatively affect message-passing architectures, because features of nodes from different classes
 1520 are falsely mixed, leading to feature collapse and making nodes increasingly indistinguishable. Our
 1521 results directly validate this hypothesis in the hypergraph setting: the sharp MAD reduction and
 1522 pronounced cross-class similarity we observe mirror the failure patterns reported in these works.

1524 C.7 HYPEREDGE PREDICTION UNDER DIFFERENT DATA SPLITS

1526 In this section, we conduct hyperedge prediction experiments under temporal and inductive split set-
 1527 tings to account for potential temporal and inductive drift, thereby enabling more realistic evaluation
 1528 scenarios.

1530 C.7.1 TEMPORAL SPLITS EVALUATION

1532 **Experiment Settings.** Since the datasets in our current benchmark are static hypergraphs and
 1533 therefore do not support temporal splits, we introduce two widely used temporal hypergraph datasets:
 1534 the email network Email-Enron and the drug network NDC-Classes (Benson et al., 2018). Their
 1535 detailed statistics are reported in Table A18. Based on timestamp information, we sort all hyperedges
 1536 in ascending temporal order and let T denote the maximum timestamp. Hyperedges with timestamps
 1537 $\leq 0.6T$ are used for training, those within $(0.6T, 0.8T]$ form the validation set, and those with
 1538 timestamps $> 0.8T$ constitute the test set, resulting in a 60%/20%/20% temporal split.

1541 Table A18: Statistics of the two temporal hypergraphs.

Dataset	# Nodes	# Edges	# Timestamps
Email-Enron	1,161	49,724	5,891
NDC-Classes	143	10,883	10,788

1548 Table A19: Hyperedge prediction performance under temporal splits.

Method	Email-Enron		NDC-Classes	
	AUROC	AP	AUROC	AP
HGNN	87.30\pm0.10	86.42\pm0.21	94.22\pm0.25	93.75\pm0.49
SheafHyperGNN	80.17 \pm 0.52	80.85 \pm 0.85	91.97 \pm 0.17	92.03 \pm 0.06
TF-HNN	78.87 \pm 0.99	79.07 \pm 0.53	87.28 \pm 0.32	88.77 \pm 0.92
UniGNN	82.52 \pm 0.59	82.02 \pm 0.92	92.17 \pm 0.05	90.36 \pm 0.46
ED-HNN	76.97 \pm 1.13	76.29 \pm 0.23	75.93 \pm 2.11	76.04 \pm 0.74
EHNN	80.58 \pm 0.63	79.19 \pm 0.10	86.06 \pm 6.05	88.47 \pm 3.84

1560 **Results and Analysis.** As shown in Table A19, HGNN outperforms all other HNN architectures
 1561 on both temporal hypergraphs, suggesting a stronger capability to capture group-level temporal
 1562 interaction patterns, making it more suitable for real-world higher-order relational prediction. In
 1563 contrast, ED-HNN consistently achieves substantially lower predictive performance across both
 1564 datasets. Moreover, all HNN models exhibit noticeably lower accuracy on Email-Enron compared to
 1565 NDC-Classes, which may be attributed to the increased temporal complexity introduced by its larger
 1566 number of nodes and hyperedges, thereby making inductive prediction more challenging.

1566

C.7.2 INDUCTIVE SPLITS EVALUATION

1567

1568 **Experiment Settings.** In the inductive setting, we divide the nodes of each dataset into three disjoint
 1569 subsets for training, validation, and testing. Hyperedges in each split are constrained to include only
 1570 nodes within the corresponding subset, ensuring a strictly disjoint node–hyperedge partition. In
 1571 our experiments, we adopt a 40%/20%/40% split for the training, validation, and testing node sets,
 1572 respectively.

1573

1574

Table A20: Hyperedge prediction performance under inductive splits.

Method	Cora		Pubmed		Actor	
	AUROC	AP	AUROC	AP	AUROC	AP
HGNN	74.07 \pm 8.50	76.81 \pm 9.75	65.18 \pm 9.41	63.09 \pm 9.67	71.22 \pm 5.37	70.37 \pm 4.71
SheafHyperGNN	60.13 \pm 4.90	65.06 \pm 3.79	65.59 \pm 1.25	66.84 \pm 0.11	67.04 \pm 2.63	71.44 \pm 3.54
TF-HNN	80.81 \pm 4.68	84.19 \pm 5.95	71.74 \pm 0.67	73.37 \pm 1.09	70.98 \pm 1.91	71.41 \pm 2.17
UniGNN	67.63 \pm 5.91	72.69 \pm 3.01	59.28 \pm 3.11	61.62 \pm 0.46	57.26 \pm 2.50	60.60 \pm 2.49
ED-HNN	54.33 \pm 3.93	59.44 \pm 1.23	75.22 \pm 1.89	76.74 \pm 2.02	67.89 \pm 3.64	68.33 \pm 3.65
EHNN	68.85 \pm 1.17	71.02 \pm 2.96	64.66 \pm 10.14	63.92 \pm 9.83	64.73 \pm 4.65	63.60 \pm 5.11

1583

1584 **Results and Analysis.** As shown in Table A20, TF-HNN typically ranks first or second across
 1585 inductive hyperedge prediction datasets, indicating strong generalization to inductive distribution
 1586 shift. In contrast, UniGNN performs noticeably worse in the inductive setting, particularly on
 1587 Pubmed and Actor, suggesting that it is more sensitive to inductive drift. Moreover, our results
 1588 suggest that inductive robustness may vary across datasets, as the same architecture does not always
 1589 perform consistently on different hypergraphs. For example, ED-HNN achieves the best performance
 1590 on Pubmed but the lowest on Cora. These observations collectively demonstrate that inductive
 1591 hyperedge prediction remains a non-trivial challenge for current HNNs, and model behavior can vary
 1592 substantially across datasets.

1592

C.8 BENCHMARKING HNNs IN SELF-SUPERVISED SETTINGS

1593

1594 In this section, we evaluate HNN models under self-supervised learning settings, incorporating
 1595 pretraining–fine-tuning tracks into the benchmark to better reflect modern training practices.

1596

1597 **Experiment Settings.** We adopt two recently proposed hypergraph self-supervised learning methods,
 1598 TriCL (Lee & Shin, 2023) and SE-HSSL (Li et al., 2024a), to pretrain different HNN architectures.
 1599 The pretrained models are then fine-tuned on both node classification and hyperedge prediction tasks.
 1600 For node classification, following (Lee & Shin, 2023; Li et al., 2024a), we use a 10%/10%/80% split
 1601 of labeled nodes for training, validation, and testing, and report accuracy. For hyperedge prediction,
 1602 we follow (Kim et al., 2024a) and adopt a 60%/20%/20% split of hyperedges, evaluating performance
 1603 with AUROC and Average Precision (AP).

1604

1605 **Results and Analysis.** Based on the results reported in Tables A21 and A22, we observe that:
 1606 (1) Different self-supervised training frameworks lead to noticeable variations in HNN backbone
 1607 performance. Overall, models pretrained with SE-HSSL and subsequently fine-tuned achieve stronger
 1608 and more consistent downstream performance than those trained under TriCL in most cases. (3)
 1609 Even under the same SSL framework, HNNs may exhibit divergent performance across downstream
 1610 tasks. For example, within TriCL, EHNN performs relatively worse on node classification but
 1611 achieves top-ranked performance on hyperedge prediction. (3) Across both SSL frameworks, HNN
 1612 architectures obtain substantially lower hyperedge prediction accuracy on the heterophilous Actor
 1613 dataset. This suggests that existing self-supervised objectives may struggle to effectively capture
 1614 higher-order relationships in strongly heterophilous hypergraphs.

1614

C.9 PERFORMANCE SENSITIVITY TO HYPEREDGE SIZE DISTRIBUTIONS

1615

1616 In this section, we empirically analyze the sensitivity of different HNN models to datasets containing
 1617 a few very large hyperedges versus many small ones.

1618

1619 **Experiment Settings.** We construct modified datasets to systematically evaluate model sensitivity.
 1620 Specifically, we define super-large hyperedges as those containing at least 10% of all nodes in the

1620

1621

Table A21: Node classification performance under self-supervised learning.

Strategy	Method	Cora	Pubmed	Actor
TriCL	HGNN	68.74 \pm 2.42	80.74 \pm 1.02	73.28 \pm 2.13
	SheafHyperGNN	62.13 \pm 4.34	77.14 \pm 1.57	81.17 \pm 0.26
	TF-HNN	64.79 \pm 2.33	80.48 \pm 1.23	78.60 \pm 1.46
	UniGNN	67.55 \pm 3.38	81.48 \pm 1.83	78.92 \pm 0.55
	ED-HNN	64.54 \pm 3.20	80.17 \pm 0.78	81.76 \pm 0.92
	EHNN	62.37 \pm 4.28	80.37 \pm 0.73	78.03 \pm 3.73
SE-HSSL	HGNN	72.79\pm 0.43	82.67 \pm 0.24	81.12 \pm 0.67
	SheafHyperGNN	67.65 \pm 1.57	83.11 \pm 1.11	80.45 \pm 1.04
	TF-HNN	68.00 \pm 1.19	81.81 \pm 0.68	79.88 \pm 0.50
	UniGNN	70.51 \pm 0.75	85.27\pm 0.10	<u>82.30\pm 0.79</u>
	ED-HNN	<u>70.95\pm 1.76</u>	<u>83.71\pm 0.16</u>	83.01\pm 0.93
	EHNN	69.85 \pm 2.72	82.03 \pm 1.73	81.39 \pm 1.24

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

Table A22: Hyperedge prediction performance under self-supervised learning.

Strategy	Method	Cora		Pubmed		Actor	
		AUROC	AP	AUROC	AP	AUROC	AP
TriCL	HGNN	81.25 \pm 6.13	81.64 \pm 6.17	66.80 \pm 5.44	65.45 \pm 4.02	52.73 \pm 5.37	53.43 \pm 5.31
	SheafHyperGNN	69.87 \pm 9.72	70.96 \pm 9.37	51.21 \pm 4.47	52.45 \pm 3.87	50.45 \pm 1.52	50.55 \pm 1.01
	TF-HNN	79.53 \pm 6.74	79.75 \pm 6.77	71.42 \pm 1.30	72.14 \pm 1.10	48.67 \pm 2.33	49.64 \pm 1.34
	UniGNN	77.50 \pm 6.75	77.41 \pm 7.05	68.97 \pm 0.59	68.28 \pm 0.26	45.43 \pm 3.15	48.74 \pm 1.68
	ED-HNN	78.82 \pm 6.78	80.24 \pm 6.63	67.74 \pm 1.06	68.89 \pm 1.45	51.39 \pm 3.60	52.82 \pm 2.73
	EHNN	81.25 \pm 4.53	81.28 \pm 4.90	71.01 \pm 1.95	67.87 \pm 3.16	53.27 \pm 4.63	51.99 \pm 2.81
SE-HSSL	HGNN	85.31\pm 4.68	85.22\pm 4.92	73.18\pm 0.76	70.07 \pm 0.72	62.20\pm 4.31	60.29\pm 2.61
	SheafHyperGNN	55.18 \pm 5.24	57.51 \pm 3.75	56.42 \pm 3.69	55.30 \pm 2.71	42.16 \pm 3.67	47.11 \pm 1.59
	TF-HNN	84.74 \pm 4.99	84.29 \pm 5.36	72.24 \pm 0.70	73.83\pm 1.02	50.97 \pm 3.99	<u>54.05\pm 2.89</u>
	UniGNN	82.20 \pm 5.62	81.61 \pm 5.96	69.38 \pm 3.58	69.52 \pm 2.97	47.41 \pm 0.67	50.11 \pm 0.39
	ED-HNN	78.33 \pm 7.22	76.64 \pm 4.53	68.52 \pm 0.39	69.74 \pm 0.49	52.97 \pm 0.67	52.19 \pm 1.10
	EHNN	67.94 \pm 6.35	67.72 \pm 6.27	69.21 \pm 4.05	66.16 \pm 5.33	50.03 \pm 0.04	50.02 \pm 0.03

1651

1652

1653

Table A23: Hyperedge size sensitivity analysis on Cora.

Method	0	2	4	6	8	10
HGNN	77.90	77.22	75.66	74.74	72.35	67.86
TF-HNN	79.47	79.20	78.49	77.93	76.63	76.04
AllSetTransformer	78.02	77.87	77.34	76.45	76.10	75.24
ED-HNN	78.58	77.93	77.25	76.69	75.78	75.10
EHNN	76.51	76.01	75.98	75.98	76.13	76.04

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

Table A24: Hyperedge size sensitivity analysis on DBLP-CA.

Method	0	2	4	6	8	10
HGNN	91.00	90.42	89.81	88.93	88.32	87.30
TF-HNN	91.38	90.28	89.96	89.44	89.03	88.57
AllSetTransformer	91.51	90.95	90.34	89.48	88.31	87.29
ED-HNN	91.55	91.09	90.72	89.98	89.43	88.84
EHNN	90.47	90.47	90.44	90.48	90.50	90.51

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

hypergraph. We sort all hyperedges in descending order by size and iteratively merge them; once the merged hyperedge exceeds the super-large threshold, we restart the merging process for the next one. By controlling the number of constructed super-large hyperedges (0, 2, 4, 6, 8, and 10), where

1674

1675

Table A25: Hyperedge size sensitivity analysis on Actor.

1676

1677

Method	0	2	4	6	8	10
HGNN	77.83	77.91	77.94	77.93	77.90	77.72
TF-HNN	85.96	85.96	85.68	85.22	85.57	85.61
AllSetTransformer	85.66	85.69	85.68	85.63	85.84	85.70
ED-HNN	85.77	85.79	85.80	85.76	85.74	85.77
EHNN	86.21	86.05	86.19	86.18	86.07	85.93

1682

1683

1684

Table A26: Hyperedge size sensitivity analysis on Pokec.

1685

1686

1687

1688

1689

1690

1691

1692

1693

0 corresponds to the original dataset, we obtain variants that introduce only a few extremely large hyperedges while keeping all remaining ones small.

1694

Results and Analysis. From Tables A23 to A26, we observe that: (1) On homophilic datasets, introducing only a few extremely large hyperedges while keeping the rest small consistently degrades model performance. As the proportion of these super-large hyperedges increases, performance generally continues to decline. This is likely because a small number of oversized hyperedges disrupt fine-grained local structure, causing the models to lose the class-consistent neighborhood signals that homophilic settings rely on. (2) On heterophilic datasets, increasing the proportion of super-large hyperedges generally maintains stable performance and may even yield slight improvements. A plausible explanation is that, in heterophilic settings, the presence of a small number of oversized hyperedges further weakens the influence of the original heterophilic connections during message passing, thereby reducing the impact of noisy or label-inconsistent neighbors. (3) Among all evaluated architectures, the tensor-based EHNN demonstrates the strongest robustness to extreme hyperedge-size skew: its performance remains stable across all constructed settings on both homophilic and heterophilic datasets.

1708

1709

C.10 ANALYZING HNN BEHAVIOR ON EXTREME-DEGREE NODES

1710

1711

1712

Table A27: Performance on very high-degree vs. very low-degree nodes ($p = 1\%$).

1713

1714

Method	Cora		DBLP-CA		Actor		Pokec	
	Very High	Very Low						
HGNN	85.58	72.05	93.61	88.04	73.37	64.93	59.96	58.23
PhenomNN	85.59	73.47	93.97	89.70	93.18	66.51	64.60	57.42
SheafHyperGNN	85.48	74.38	94.16	88.22	82.42	74.10	64.29	58.41
TF-HNN	85.55	75.11	94.42	87.44	93.71	73.97	67.03	57.80
UniGNN	86.22	74.12	94.22	89.49	93.73	65.35	67.34	57.61
AllSetTransformer	85.36	73.25	95.37	89.12	94.18	72.55	68.24	57.11
ED-HNN	85.36	73.21	94.73	88.88	95.42	70.80	67.63	57.22
EHNN	83.58	69.93	95.24	86.73	95.84	75.66	63.99	57.62

1720

1721

1722

1723

In this section, we conduct experiments to compare the behavior of different HNNs on nodes with very high versus very low degrees.

1724

1725

1726

1727

Experiment Settings. To investigate this question, we design an experiment that explicitly contrasts model behavior on nodes with substantially different degrees. Specifically, we define very high-degree nodes as those whose degrees fall within the top- $p\%$ of the dataset, and very low-degree nodes as those in the bottom- $p\%$. To ensure robustness, we consider two thresholds, $p = 1$ and $p = 5$. Our study evaluates 8 representative HNN architectures spanning three major categories across four

1728

1729

Table A28: Performance on very high-degree vs. very low-degree nodes ($p = 5\%$).

1730

1731

Method	Cora		DBLP-CA		Actor		Pokec	
	Very High	Very Low						
HGNN	81.82	72.05	93.38	88.13	76.93	76.39	58.39	57.80
PhenomNN	80.74	73.47	93.69	89.64	90.24	80.22	64.74	57.98
SheafHyperGNN	82.86	74.38	93.48	88.22	87.87	83.08	63.58	58.43
TF-HNN	81.91	75.11	93.78	87.45	90.88	83.97	65.87	57.80
UniGNN	81.15	74.17	93.58	89.48	90.45	79.05	66.01	57.63
AllSetTransformer	81.37	73.19	93.85	89.17	91.52	83.23	66.78	57.29
ED-HNN	81.02	73.21	93.88	88.89	91.71	82.99	65.77	57.18
EHNN	81.34	70.12	93.95	86.63	91.81	83.49	63.06	57.62

1732

1733

benchmark datasets. For each setting, we report the classification accuracy separately on the very high-degree and very low-degree subsets of the test nodes.

1740

1741

Results and Analysis. From the results summarized in Tables A27 and A28, we draw two key observations: (1) Across all datasets and all HNN architectures, we consistently observe a structural unfairness phenomenon: models achieve substantially higher accuracy on very high-degree nodes compared to very low-degree nodes. A plausible explanation is that high-degree nodes benefit more from message passing because they can aggregate richer and more reliable higher-order structural information, whereas low-degree nodes struggle to leverage structural signals and are more vulnerable to noise introduced by sparse or unreliable neighbors. (2) The performance disparity becomes more pronounced under stricter degree thresholds. When the threshold is reduced from 5% to 1%, the gap between very high-degree and very low-degree nodes typically increases substantially. This suggests that the most extreme-degree nodes exhibit the strongest disparity, further underscoring the critical role of degree heterogeneity in shaping HNN behavior.

1752

1753

1754

1755

1756

1757

1758

D ADDITIONAL DISCUSSION AND ANALYSIS

1759

1760

1761

D.1 WHY DO HNNs PERFORM DIFFERENTLY ACROSS DATASETS

1762

1763

1764

In this section, we systematically examine why HNN performance varies across datasets, as noted in the key insights for RQ1. Our analysis suggests that such variation may arise from both dataset characteristics and architectural design choices.

1765

1766

1767

1768

1769

1770

1771

1772

1773

Dataset-driven factors. (1) Many advanced HNNs perform well on highly homophilous datasets but exhibit sharp degradation on heterophilous graphs, with performance frequently dropping below that of MLPs. This may be because heterophilous links mix features from different classes, leading to feature collapse and reduced class separability. (2) Performance for most HNN architectures consistently drops on large and structurally complex hypergraphs. For example, Trivago contains a large number of label categories, increasing classification difficulty, while Yelp exhibits extremely dense hyperedges that may over-mix signals during propagation. Interestingly, TF-HNN performs comparatively well on both datasets, suggesting that training-free hypergraph message passing may be more suitable for large, noisy, or highly complex real-world hypergraphs.

1774

1775

1776

1777

1778

1779

1780

1781

Architecture-driven factors. (1) Methods that involve explicit hypergraph expansion (e.g., HyperGCN, LEGCN, HJRL, DPHGNN) may unintentionally distort higher-order relationships by converting hyperedges into pairwise structures. This design often preserves performance on datasets dominated by isolated or pairwise interactions (e.g., Pubmed), but leads to noticeable degradation on datasets where many nodes participate in rich higher-order interactions (e.g., Cora, DBLP-CA, and NTU2012). (2) Spatial-based models (e.g., UniGNN, AllSetTransformer, ED-HNN) and TF-HNN generally provide more stable performance across homophilous and heterophilous datasets. Their skip-connection style message passing retains raw node information, helping mitigate feature dilution during higher-order propagation.

1782 D.2 TRADE-OFFS AMONG PERFORMANCE, SCALABILITY, AND DATA CHARACTERISTICS
1783

1784 For spectral-based models, most advanced approaches (e.g., PhenomNN, SheafHyperGNN, HJRL)
1785 consistently outperform earlier variants such as HGNN, HyperGCN, and HCHA on homophilous
1786 datasets. However, this accuracy gain relies on more complex expansion mechanisms and Laplacian
1787 operators, which substantially reduce scalability. As shown in Table 1, they frequently encounter
1788 OOM issues on large or dense hypergraphs such as Trivago and Yelp. TF-HNN provides a lightweight
1789 alternative, achieving top-ranked performance on most datasets while maintaining strong scalability
1790 due to its training-free message-passing design. Spatial-based architectures generally offer a more
1791 favorable scalability–performance balance. Models such as UniGNN, AllSetTransformer, and
1792 ED-HNN deliver accuracy comparable to advanced spectral methods on homophilous data with
1793 substantially lower memory consumption. Tensor-based methods (e.g., EHNN and T-HyperGNN)
1794 perform worse on homophilous datasets, but relative to spectral- and spatial-based HNNs, they
1795 often achieve better performance on heterophilous benchmarks, particularly EHNN, which also
1796 demonstrates stronger scalability than T-HyperGNN. Although MLPs perform substantially worse
1797 than HNNs on homophilous datasets, they often excel on heterophilous benchmarks and outperform
1798 many HNN architectures. Furthermore, by removing high-order message passing, MLPs achieve
1799 markedly better scalability.

1800 E RELATED WORKS
1801

1802 Hypergraph neural networks (HNNs) (Yadati et al., 2019; Prokopchik et al., 2022; Wang et al.,
1803 2023a; Xie et al., 2025) have been promising tools for handling learning tasks involving higher-order
1804 data, with notable applications in various fields, such as social network analysis (Sun et al., 2023),
1805 bioinformatics (Li et al., 2025a), and recommender systems (Li et al., 2025b). However, there exists
1806 no established benchmark specifically dedicated to comprehensively evaluating hypergraph neural
1807 networks. In this section, we introduce a broader range of related studies concerning the comparative
1808 evaluations of HNNs, providing sufficient context for our benchmark work.

1809 Kim et al. (Kim et al., 2024b) recently presented the first survey dedicated to HNNs, with an in-depth
1810 and step-by-step guide. The survey comprehensively reviews existing HNN architectures, training
1811 strategies, and applications, establishing a foundational understanding crucial for advancing the field
1812 of HNNs. To further understand the expressive power of HNNs, Wang et al. (Wang et al., 2025)
1813 conduct the first theoretical analysis on the generalization performance of distinct HNN architectures,
1814 offering practical guidance for improving HNNs’ effectiveness. Nevertheless, systematic empirical
1815 evaluations of different HNN algorithms remain scarce, leaving a limited understanding of their
1816 comparative performance in practice. To facilitate the reproducibility and empirical evaluation of
1817 HNN algorithms, several open-sourced libraries have been developed in recent years. HyFER (Hwang
1818 et al., 2021) is a well-modularized framework for implementing and evaluating HNNs, dividing the
1819 entire learning process into data, model, and task components. Moreover, to address the scalability
1820 problem that most existing implementations suffer from, HyFER is built on top of Deep Graph
1821 Library (DGL) (Wang et al., 2019), which is a highly efficient open-sourced library for GNNs.
1822 DHG (Gao et al., 2022) is an open-sourced PyTorch-based toolbox designed for general HNNs. It
1823 supports various hypergraph preprocessing methods (e.g., sampling, expansion) and convolution
1824 operators, facilitating the evaluation of HNNs. TopoX (Hajij et al., 2024) is a suite of Python
1825 packages for machine learning on topological domains. These packages enhance and generalize
1826 functionalities found in mainstream hypergraph computations and learning tools, enabling them
1827 on topological domains. TopoBench (Telyatnikov et al., 2024) is a modular Python library that
1828 standardizes benchmarking and accelerates research in Topological Deep Learning (TDL). It supports
1829 training and comparing Topological Neural Networks (TNNs) across diverse domains, including
1830 graphs, simplicial complexes, cellular complexes, and hypergraphs. However, these libraries do not
1831 fully cover the latest HNN algorithms, datasets, and evaluation tasks, and they provide only limited
1832 empirical results without offering an in-depth and comprehensive analysis of existing HNN methods.

1833 To fill the gap, we develop DHG-Bench, the first comprehensive benchmark tailored explicitly for
1834 HNNs. Distinguished by its broad coverage, DHG-Bench spans a wide range of algorithms, datasets,
1835 and evaluation tasks, thereby establishing a standardized and versatile framework for deep hypergraph
learning research. Moreover, it provides comprehensive and systematic empirical evaluations that
uncover the strengths and limitations of different algorithms. By offering such in-depth quantitative

Figure A5: The package structure of DHG-Bench, which mainly consists of four modules.

analyses, our benchmark fosters deeper insights into the challenges and opportunities of HNNs, thereby advancing the state-of-the-art in this emerging field.

F PACKAGE

We have developed DHG-Bench³, an open-sourced package that provides a comprehensive and unbiased platform for evaluating HNN algorithms and supporting future research in this domain.

As shown in Figure A5, the code structure is well-designed to ensure fair experimental setups across different algorithms, easy reproduction of the experimental results, and support for flexible assembly of models for experiments. The DHG-Bench consists of the following four key modules. ① The Config module includes the files that define the necessary hyperparameters and settings. ② The Data module is used to load and preprocess datasets. ③ The Algorithm module has 17 built-in state-of-the-art algorithms, covering three representative categories: spectral-based, spatial-based, and tensor-based methods. ④ The evaluation module supports multi-faceted testing of algorithmic performance, encompassing effectiveness, efficiency, robustness, and fairness.

G THE USE OF LLMs

We used large language models (LLMs) solely as a writing assistant to polish the paper, specifically for grammar checking and typo correction. In addition, LLMs were occasionally consulted to rephrase sentences for improved readability and to ensure a consistent academic tone. No part of the technical content, experimental design, or analysis was generated by LLMs. Their role was strictly limited to minor linguistic refinement.

³https://anonymous.4open.science/r/DHG_Bench-F739