Under review as a conference paper at ICLR 2026

DHG-BENCH: A COMPREHENSIVE BENCHMARK FOR
DEEP HYPERGRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep graph models have achieved great success in network representation learn-
ing. However, their focus on pairwise relationships restricts their ability to learn
pervasive higher-order interactions in real-world systems, which can be natu-
rally modeled as hypergraphs. To tackle this issue, Hypergraph Neural Networks
(HNNs) have garnered substantial attention in recent years. Despite the pro-
posal of numerous HNNS, the absence of consistent experimental protocols and
multi-dimensional empirical analysis impedes deeper understanding and further
development of HNN research. While several toolkits for deep hypergraph learning
(DHGL) have been introduced to facilitate algorithm evaluation, they provide
only limited quantitative evaluation results and insufficient coverage of advanced
algorithms, datasets, and benchmark tasks. To fill the gap, we introduce DHG-
Bench, the first comprehensive benchmark for HNNs. Specifically, DHG-Bench
systematically investigates the characteristics of HNNs in terms of four dimen-
sions: effectiveness, efficiency, robustness, and fairness. We comprehensively
evaluate 17 state-of-the-art HNN algorithms on 22 diverse datasets spanning node-
, edge-, and graph-level tasks, under unified experimental settings. Extensive
experiments reveal both the strengths and limitations of existing algorithms, of-
fering valuable insights and directions for future research. Furthermore, to facili-
tate reproducible research, we have developed an easy-to-use library for training
and evaluating different HNN methods. The DHG-Bench library is available at:
https://anonymous.4open.science/r/DHG_Bench-F739.

1 INTRODUCTION

Graph-structured data has become a ubiquitous tool for modeling the complex relational dependencies
among entities in various domains, such as social analysis (Fan et al., 2019), e-commerce (Liu et al.,
2021), and finance (Li et al., 2024b). Graph Neural Networks (GNNs) have emerged as the dominant
approach for learning on such data, owing to their exceptional ability to leverage both the graph
topology and node attributes. However, many real-world systems involve multi-way or group-wise
interactions beyond the pairwise connections of graphs. For instance, multiple authors co-write a
paper in co-authorship networks (Yang et al., 2022), and groups of proteins interact collectively in
biological systems (Kim et al., 2024b). These higher-order interactions can be naturally modeled by
hypergraphs, where each hyperedge connects an arbitrary number of nodes. As hypergraphs become
increasingly prevalent, there is a growing demand for predictive tasks on them, such as estimating
node properties or identifying missing hyperedges (Kim et al., 2024b). However, directly applying
GNNs to such tasks inevitably collapses higher-order interactions into pairwise relations, resulting in
significant information loss and thus sub-optimal performance (Chien et al., 2022).

To mitigate the aforementioned problem, Hypergraph Neural Networks (HNNs) (Yadati et al., 2019;
Chien et al., 2022; Wang et al., 2023b; Tang et al., 2025) have become the prevailing paradigm for
deep hypergraph learning (DHGL), attracting considerable research interest in recent years. These
methods employ neural architectures to transform nodes, hyperedges, and their associated features
into vector representations (i.e., embeddings) that effectively preserve higher-order semantics. HNNs
have demonstrated state-of-the-art performance across diverse industrial and scientific applications,
including product recommendation (Khan et al., 2025), 3D object detection (Fixelle, 2025), and
disease diagnosis (Han et al., 2025).

https://anonymous.4open.science/r/DHG_Bench-F739

Under review as a conference paper at ICLR 2026

Despite the emerging studies of HNN algorithms, the comprehensive benchmark for evaluating these
methods remains absent, bringing out the following problems: (i) Existing works utilize different
datasets, compared baselines, and experimental setups (e.g., data splitting strategies and parameter
settings), which makes it challenging to achieve a fair comparison. (ii) Existing works primarily
focus on the effectiveness evaluation of HNN algorithms, while lacking empirical understanding of
their efficiency and trustworthiness (e.g., robustness and fairness), both of which are essential for
real-world deployment. This prevents practitioners from understanding the advantages and limitations
of HNN algorithms from multiple perspectives and makes it difficult to select appropriate methods for
different application scenarios. Hence, there is an urgent necessity within the community to develop
a standardized and comprehensive benchmark for HNNs.

In recent years, several open-sourced toolkits, including HyFER (Hwang et al., 2021), DHG (Gao
et al., 2022), and TopoX (Hajij et al., 2024), have been proposed to facilitate benchmarkable deep
hypergraph learning. However, these works provide only limited or even no quantitative performance
comparisons, which thus compromises their practical value for practitioners. Furthermore, they fail
to incorporate many state-of-the-art HNN algorithms and provide insufficient coverage of benchmark
datasets and evaluation tasks. Specifically, HyFER supports only the implementation of three HNN
models, while the other two libraries include only HNNs proposed before 2023. Moreover, none of
these toolkits integrate heterophilic hypergraph datasets, which represent a particularly challenging
setting (Li et al., 2025c), nor do they support graph-level tasks (e.g., hypergraph classification). These
limitations significantly restrict the reproducibility and comprehensive evaluation of advanced HNN .

To bridge the gap, we propose DHG-Bench, which serves as the first open-sourced and comprehensive
benchmark for HNNs. Our benchmark encompasses 17 representative HNN methods and 22 diverse
hypergraph datasets covering node-level, edge-level, and graph-level tasks. We employ standardized
computational operators and APIs, along with consistent data splitting and processing strategies,
to ensure fair comparison. Beyond effectiveness, our benchmark supports multi-faceted analysis,
allowing researchers to investigate the efficiency, robustness, and fairness of current HNN algorithms.
Through extensive experiments, we derive the following key insights: (i) Existing HNN algorithms
exhibit substantial performance variability across datasets and tasks, reflecting their limited general-
ization ability. (ii) Most HNN methods struggle to strike a satisfactory balance between predictive
performance and computational efficiency. (iii) The performance of HNN algorithms is affected by
different types of data perturbations, with feature-level and supervision-level perturbations causing
particularly adverse impacts. (iv) HNN algorithms tend to result in more severe fairness issues than
deep models without higher-order message passing, such as MLPs. Our main contributions are
summarized as follows:

* Comprehensive Benchmark. DHG-Bench enables a fair and unified comparison among 17
state-of-the-art HNN methods by standardizing the experimental settings across 22 widely used
hypergraph datasets of diverse characteristics. To the best of our knowledge, this is the first
comprehensive benchmark for deep hypergraph learning.

* Multi-dimensional Evaluation and Analysis. We conduct a systematic analysis of existing
HNN methods from various dimensions, encompassing effectiveness, efficiency, robustness, and
fairness. Extensive experiments uncover the potential strengths and limitations of existing HNN
algorithms, offering valuable insights to inform and inspire future research in this field.

* Open-sourced Benchmark Library. We release DHG-Bench, an easy-to-use open-sourced
benchmark library to support future HNN research. With our toolkit, users can evaluate their
algorithms or datasets with less effort.

2 PRELIMINARY

Let G(V, &, X) represent a hypergraph with vertex set V = {v; } Li‘l and hyperedge set € = {e; }I;‘T:\ 1-
X € RIVI*XF i the node feature matrix with F-dimension. In this benchmark, we focus on three

supervised learning tasks, covering node-, edge-, and graph-level prediction.

Node Classification. Given the labeled node set V;, C V with labels Y, € R, where each node v;
is associated with a label y; from one of the C classes, the goal of node classification is to train a
classifier fp : v — R to predict labels Y of the remaining unlabeled nodes Vi = V' \ Vi

Under review as a conference paper at ICLR 2026

Hyperedge Prediction. Given a hypergraph G(V, £, X), we denote &' C 2V \ £ as the target set
which typically consists of (a) unobserved hyperedges or (b) new hyperedges that will arrive in the
near future. Each element in 2V \ & is referred to as a hyperedge candidate, denoted by c, as it may
belong to &£’. The hyperedge prediction task aims to train a hyperedge classifier fy : e — {0, 1} to
predict whether a candidate ¢ belongs to the target set £’ or not.

Hypergraph Classification. Let 7 as the hypergraph set. Given the labeled hypergraph set H, and
their labels Y, € R”, where each hypergraph G; is assigned a label 3;. The hypergraph classification
task aims to train a hypergraph classifier f; : G — RC to predict labels Y of the unlabeled
hypergraphs Hy = H \ Hr.

3 BENCHMARK DESIGN

In this section, we introduce the DHG-Bench in terms of datasets (Section 3.1), algorithms (Sec-
tion 3.2), and research questions (Section 3.3) that guide the benchmark study.

3.1 BENCHMARK DATASETS

To comprehensively evaluate HNNs, we integrate 22 benchmark datasets from various domains
spanning node-, edge-, and graph-level tasks. In this section, we introduce each dataset category and
the corresponding data splitting strategy. Detailed descriptions are provided in Appendix A.1.

Node-level Classification Datasets. For the node classification task, we select 13 hypergraph datasets
that cover diverse domains and characteristics. Specifically, we include 8 homophilic datasets: two
co-citation networks (Cora and Pubmed (Yadati et al., 2019)); two co-authorship networks (Cora-CA
and DBLP (Yadati et al., 2019)); two graphics datasets (NTU2012 and ModelNet40 (Feng et al.,
2019)); and two hypergraphs that capture user interactions, namely Walmart for co-purchasing (Chien
et al., 2022) and Trivago for co-clicking (Kim et al., 2023). In addition, we consider 5 heterophilic
datasets, including two information networks (Actor (Li et al., 2025¢c) and Yelp (Chien et al., 2022)),
an e-commerce network (Amazon-ratings (Li et al., 2025c)), and two social networks (Twitch-gamers
and Pokec (Li et al., 2025¢)). Moreover, to investigate algorithmic fairness, we include three fairness-
sensitive datasets (German, Bail, and Credit (Wei et al., 2022)), which contain sensitive node attributes
such as gender, race, and age. Following (Feng et al., 2019; Chien et al., 2022; Tang et al., 2025), we
adopt a split of 50%/25%/25% for training, validation, and testing in the node classification task.

Hyperedge-level Prediction Datasets. For the hyperedge prediction task, we use 6 datasets: four
widely adopted homophilic academic networks (Cora, Pubmed, Cora-CA, and DBLP-CA) (Hwang
et al., 2022; Ko et al., 2025) and two newly introduced heterophilic datasets, Actor and Pokec (Li
et al., 2025c), which enable a more comprehensive evaluation due to their low hyperedge homophily.
Following (Hwang et al., 2022; Ko et al., 2025; Yu et al., 2025), we randomly split the hyperedges (i.e.,
positive samples) into training (60%), validation (20%), and test (20%) sets. In addition, we adopt
negative sampling (NS) (Yadati et al., 2020; Hwang et al., 2022), which is devised to enhance the
distinguishing ability of the model by introducing non-existing hyperedges as contrastive information
for model training. Specifically, for each training, validation, and test set, we sample an equal number
of negative examples as the positive ones. Following (Ko et al., 2025), we employ a mixed NS
strategy that integrates three common heuristic methods, namely sized NS (SNS), motif NS (MNS),
and clique NS (CNS) (Patil et al., 2020), to increase the diversity of negative samples.

Hypergraph-level Classification Datasets. For the hypergraph classification task, we consider 6
benchmark datasets introduced in (Feng et al., 2024). RHG-10 and RHG-3 are two synthetic datasets
consisting of distinct high-order structural patterns (e.g., Hyper Pyramid, Hyper Flower, and Hyper
Wheel). IMDB-Dir-Form and IMDB-Dir-Genre are two datasets constructed by the co-director
relationship from the original IMDB dataset '. Steam-Player is a player-based dataset, where each
hypergraph captures tag co-occurrence relationships among games played by a user. Twitter-Friend
is a social media dataset where each hypergraph represents the friendship network of a specific
Twitter user. For hypergraph classification, following (Feng et al., 2024), we adopt an 80%/10%/10%
train/validation/test data split.

"https://www.indb.com/

https://www.imdb.com/

Under review as a conference paper at ICLR 2026

3.2 BENCHMARK ALGORITHMS

We integrate 17 state-of-the-art HNN algorithms across three mainstream categories: spectral-based,
spatial-based, and tensor-based methods. In addition, we include MLP and two GNN-based methods,
CEGCN and CEGAT (Chien et al., 2022), as baselines. Detailed descriptions are provided in
Appendix A.2. We rigorously reproduce all methods according to their papers and source codes.

Spectral-based HNNs. Spectral-based HNNs perform message propagation and feature transforma-
tion by applying spectral convolution defined through Laplacian operators of hypergraphs (Wang
et al., 2024). We implement 10 representative algorithms including HGNN (Feng et al., 2019),
HyperGCN (Yadati et al., 2019), HCHA (Bai et al., 2021), LEGCN (Yang et al., 2022), Hy-
perND (Prokopchik et al., 2022), PhenomNN (Wang et al., 2023b), SheafHyperGNN (Duta et al.,
2023), HIRL (Yan et al., 2024), DPHGNN (Saxena et al., 2024), and TF-HNN (Tang et al., 2025).

Spatial-based HNNs. Unlike spectral methods, spatial-based HNNs focus on local connectivity with-
out entering the spectral domain, typically learning representations through two-stage neighborhood
aggregation: updating hyperedges from incident nodes and updating nodes from incident hyperedges.
We incorporate 5 typical algorithms including HNHN (Dong et al., 2020), UniGNN (Huang & Yang,
2021), AllSetTransformer (Chien et al., 2022), ED-HNN (Wang et al., 2023a), and HyperGT (Liu
et al., 2024). For UniGNN with multiple variants (e.g., UniGAT, UniGIN, and UniGCNII), we report
only UniGCNII, the most competitive variant identified in the original paper, while our open-sourced
library also supports the implementations of other variants.

Tensor-based HNNs. Tensor-based methods leverage tensor operations that provide a structured and
effective means of capturing the complexity of hypergraph interactions (Wang et al., 2025). We select
two representative algorithms: EHNN (Kim et al., 2022) and T-HyperGNN (Wang et al., 2024).

3.3 RESEARCH QUESTIONS

We systematically design the DHG-Bench to comprehensively evaluate the existing HNN algorithms
and inspire future research. In particular, we aim to investigate the following research questions.

RQ1: How much progress has been made by existing HNN methods?

Motivation and Experiment Design. Previous research on HNNs has been limited by inconsistent
experimental settings and insufficient coverage of datasets, algorithms, and tasks, thereby hindering
fair and comprehensive evaluation of different methods. Given the standardized experimental
environment provided by DHG-Bench, the first question is to revisit the progress of existing HNN
methods and identify potential directions for enhancement. A high-quality HNN method is expected
to perform consistently well across different datasets and application scenarios. To answer this
question, we evaluate the performance of HNN methods on diverse, widely used hypergraph datasets
across three benchmark tasks: node classification, hyperedge prediction, and hypergraph classification.
Detailed experimental settings can be found in Appendix B.1.

RQ2: How efficient are these HNN methods in terms of time and space?

Motivation and Experiment Design. Training the message-passing module of HNNs makes loss
computation interdependent for connected nodes, resulting in intensive computational demands
and substantial memory constraints. However, the efficiency and scalability of HNN algorithms
have been largely overlooked. A thorough understanding of the trade-off between computational
cost and predictive performance is essential for assessing their suitability for real-time and large-
scale applications. To answer this question, we perform node classification, the most widely used
benchmark task, on datasets of varying scales (Cora, DBLP-CA, Yelp, and Trivago), reporting the
training time to reach the best validation performance and the peak GPU memory consumption.

RQ3: Are existing HNN methods robust to different types of data perturbations?

Motivation and Experiment Design. Real-world hypergraph data inevitably contains noise, task-
irrelevant information, or even mistakes (Cai et al., 2022). A reliable HNN should maintain stable
performance when exposed to such noisy data, particularly in high-stakes domains such as healthcare
and finance (Cai et al., 2025), where inaccurate decisions can adversely affect individual lives or

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results of node classification: mean accuracy (%) + standard deviation. The best
results are shown in bold and the runner-ups are underlined. OOM denotes the out-of-memory issue.

Method Cora Pubmed Cora-CA DBLP-CA Walmart Trivago Actor Gamers Pokec Yelp
MLP 75.33+088 86.62+0.26 75.57+1.08 85.54+0.15 63.21+0.12 36.76+0.66 86.06+0.36 52.57+049 59.64+048 31.84+045
CEGCN 76.90+075 86.03+0.39 78.40+125 89.75+033 70.40+0.18 47.24+1.09 67.41+029 51.02+053 57.37+038 OOM
CEGAT 77224103 86.09+0.51 78.02+124 89.61+022 65.8340.92 OOM 73.87+083 51.05+0.61 57.34+052 OOM
HGNN 77.90+1.17 86.17+052 82.84+046 91.00+027 77.12+0.12 57.67+161 77.83+037 52.38+056 57.87+076 33.71+0.24
HyperGCN 78.38+1.63 87.42+042 81.65+1.58 89.51+0.18 68.75+056 42.39+125 81.82+039 51.32+072 57.51+054 29.29+055
HCHA 77.84+123 86.33+054 83.01+058 91.18+030 77.66+0.18 52.50+3.43 78.30+047 52.35+071 58.19+045 33.13+023
LEGCN 74364103 87.52+050 74.59+1.04 85.16+014 62.98+0.09 33.45+145 85.34+045 51.31+065 59.66+0.63 OOM
HyperND 79.23+0.63 86.73+056 83.19+071 91.34+0.19 75.104+054 87.19+1.89 83.19+092 52.39+0.60 57.65+1.08 OOM
PhenomNN 78974141 87.81+0.12 84.05+1.05 91.83+0.25 OOM OOM 83.14+049 51.80+0.73 58.43+0.92 OOM
SheafHyperGNN 79.03+0.90 87.10+047 84.08+050 91.09+0.31 OOM OOM 85.00+032 52.07+053 59.06+0.37 OOM
HIRL 78.67+1.47 87.98+0.49 83.72+0.74 OOM OOM OOM 71.54+0.64 51.62+0.61 57.57+047 OOM
DPHGNN 76.40+136 86.72+033 82.13+1.13 OOM OOM OOM 83.65+£059 52.36+059 58.20+0.58 OOM
TF-HNN 7947131 87.90+037 84.19+089 91.38+024 77.04+012 90.79+0.79 85.96+041 52.34+053 59.17+052 35.16-+0.54
HNHN 75.24+138 85.60+1.28 76.51+1.34 85.84+007 65.21+028 53.75+143 81.20+036 51.12+065 58.55+093 25.86+0.63
UniGNN 7941+124 87.57+054 83.49+158 91.714020 76.264+058 36.15+0.56 84.61+046 52.50+057 58.56+0.73 31.09+0.61
AllSetTransformer ~ 78.02+143 87.79+030 82.95+0.62 91.51+022 78.61+0.13 59.92+4.02 85.66+041 51.74+075 58.55+056 33.18+0.88
ED-HNN 78.58+052 87.65+023 82.98+093 91.55+0.19 77.90+021 75994260 85.77+046 50.54+023 58.68+040 34.84+093
HyperGT 75.57+111 86.06+0.54 75424062 84.53+0.30 OOM OOM 84.43+047 51.19+057 57.73+0.76 OOM
EHNN 76.51+1.52 87.12+031 81.68+081 90.47+043 77.95+0.14 OOM 86.21+0.49 52.14+076 58.23+1.07 34.09+3.19

T-HyperGNN 74.20+137 86.28+062 75.01+144 85441014 73.4840.33 OOM 85.32+048 51.82+038 58.8240.49 OOM

broader societal systems. Evaluating the robustness of HNNs not only reveals potential vulnerabilities
in existing methods but also guides the development of more resilient models. To answer this question,
we simulate realistic data perturbations from three perspectives: structure, feature, and supervision
signals. For each perturbation type, we vary the noise intensity and subsequently train and test HNNs
on the corresponding modified hypergraph. Detailed experimental settings are in Appendix B.4.

RQ4: Do existing HNN methods yield unbiased predictions across demographic groups?

Motivation and Experiment Design. Fairness has recently emerged as a critical concern in graph
machine learning (GML) (Dong et al., 2023). Prior studies have shown that representations learned by
GNNs can result in biased predictions, often favoring certain demographic groups defined by sensitive
attributes (e.g., gender and race) (Ling et al., 2023; Zhu et al., 2024; Yang et al., 2024). Such bias
hinders the deployment of GML models in high-stakes applications such as crime prediction (Suresh
& Guttag, 2019) and credit evaluation (Yeh & Lien, 2009). Despite its importance, fairness in deep
hypergraph learning has received little attention. To the best of our knowledge, this work presents
the first benchmark evaluation of fairness in this context, which is crucial for developing ethically
sound and trustworthy HNN models. To answer this question, we conduct node classification on
three fairness-sensitive datasets (German, Bail, and Credit (Wei et al., 2022)), each of which contains
demographic-sensitive attributes. We assess algorithmic fairness using two widely adopted group
fairness metrics: demographic parity (App) (Dwork et al., 2012), and equalized odds (Ago) (Hardt
et al., 2016). The detailed descriptions of the two metrics can be found in Appendix B.5.

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 EFFECTIVENESS EVALUATION (RQ1)

To investigate the effectiveness of existing HNNs, we compare their performance across benchmark
tasks at the node, edge, and graph levels. Due to space constraints, additional node classification re-
sults on NTU2012, ModelNet40, and Ratings (Table A5), as well as the complete results of hyperedge
prediction (Table A6) and hypergraph classification (Table A7), are available in Appendix C.1.

4.1.1 EFFECTIVENESS ON NODE CLASSIFICATION TASK

Results (Table 1 and Table AS). @ Across diverse datasets, HNNs generally outperform both
CEGCN and CEGAT, suggesting that naively extending GNNs to hypergraphs via clique expansion
disrupts high-order structures and degrades predictive performance. This highlights the necessity
of designing neural architectures with dedicated high-order message passing. @ HNNs achieve
notable improvements over MLP on homophilic datasets, but on heterophilic datasets, most HNN’s
even underperform MLP, which only leverages node features. This reveals the adverse impact of
heterophilic connections on hypergraph representation learning and underscores the need to rethink

Under review as a conference paper at ICLR 2026

HNN design in such settings. @ TF-HNN consistently ranks among the top-performing methods
across diverse datasets, achieving optimal or near-optimal results. Moreover, unlike other advanced
HNNSs (e.g., PheomNN, DPHGNN, and HyperGT) that fail on large-scale datasets due to out-of-
memory issues, TF-HNN remains scalable. These findings underscore the promise of its decoupled
architecture for enhanced generalization and scalability.

4.1.2 EFFECTIVENESS ON HYPEREDGE PREDICTION TASK

Results (Table A6). @ Advanced HNN methods that generally achieve superior performance on node
classification fail to maintain the same level of competitiveness in hyperedge prediction. Specifically,
the two earliest methods, HGNN and HyperGCN, along with the tensor-based EHNN introduced in
2022, collectively achieve all the best results and the majority of second-best results across the six
hyperedge prediction datasets. In contrast, recent HNNs (e.g., ED-HNN, HIRL, DPHGNN, TF-HNN)
often show a notable performance gap compared to the above three. For example, on DBLP-CA,
TF-HNN achieves an AUROC of 75.70% and an AP of 74.97%, which are 13.76% and 16.70% lower
than those of the best-performing model, HyperGCN. @ Across hyperedge prediction benchmarks,
HNN algorithms display considerable performance divergence depending on the dataset, and none
consistently deliver the best results. For instance, while EHNN achieves state-of-the-art performance
on Cora and Pubmed, it obtains only 77.83% AUROC on Cora-CA, ranking 11th among 17 HNNs
and 14.90% lower than the top-performing HyperGCN.

4.1.3 EFFECTIVENESS ON HYPERGRAPH CLASSIFICATION TASK

Results (Table A7). @ HNN algorithms perform markedly better on synthetic datasets than on
real-world ones. On RHG-10, most models achieve over 90% accuracy and Macro-F1, and on RHG-3,
many even exceed 98%. In contrast, on real-world datasets, accuracies rarely surpass 70%, reflecting
the structural complexity of real hypergraphs. This gap underscores the need for more realistic and
challenging benchmarks to rigorously evaluate hypergraph classification. @ HNN methods generally
outperform GNN-based approaches built on clique expansion, as the latter often distorts global
hypergraph structures, whereas higher-order message passing in HNNs preserves these dependencies
and enhances discriminative power. € HNNs’ performance varies considerably across datasets,
with no method demonstrating consistent superiority. For instance, while DPHGNN achieves the
best accuracy on IMDB-Dir-Form, it falls to 11th on IMDB-Dir-Genre and 14th on Steam-Player
across all evaluated HNNs, underscoring the substantial impact of dataset characteristics on model
performance. @ Many HNN methods fail to achieve a desirable trade-off between accuracy and
Macro-F1. For example, on the Twitter dataset, HNHN achieves 58.47% accuracy (third highest
among all HNN models) but only 39.40% Macro-F1, the lowest overall.

Key Insights for RQ1: HNN algorithms display varying levels of effectiveness across predictive
tasks. While advanced HNNs achieve strong results on node-level tasks, they often fail to deliver
superior performance on edge- and graph-level tasks. Moreover, the predictive capability of HNNs
is highly sensitive to dataset characteristics, with data heterophily substantially impairing learning
on hypergraphs. These findings highlight the need for future research to enhance the generalization
and adaptability of hypergraph models across diverse tasks and datasets.

4.2 EFFICIENCY AND SCALABILITY EVALUATION (RQ2)

Results (Figure 1). @ CEGCN and CEGAT face scalability challenges on large datasets (e.g., Yelp
and Trivago), where clique expansion produces dense edges and leads to significant training memory
overhead. @ Most advanced HNN methods struggle to achieve a satisfactory balance between
model utility and efficiency. For example, on the Yelp dataset, ED-HNN and EHNN provide only
marginal accuracy gains over the simple HGNN, yet their training times are over 9x and 23x longer,
respectively, reflecting a substantial rise in computational cost. In addition, many HNNs suffer from
memory bottlenecks on large-scale datasets. Specifically, on Yelp, 8 out of 17 methods encounter
out-of-memory (OOM) issues. On Trivago, although 10 HNNs remain computationally scalable,
most fail to deliver satisfactory predictive performance. Only TF-HNN (90.79%) and HyperND
(87.19%) achieve accuracy above 60%. This may result from the intricate patterns of large-scale
graphs. @ Tensor-based approaches exhibit more pronounced efficiency and scalability limitations
than the other two kinds of methods. T-HyperGNN can only scale to the medium-sized DBLP-CA

Under review as a conference paper at ICLR 2026

MLP ¢ CEGAT @ HCHA O LEGCN <« PhenomNN + HJRL @ TF-HNN @ UniGNN ® ED-HNN % EHNN
B CEGCN A HGNN @ HyperGCN @ HyperND & SheafHyperGNN > DPHGNN ¥V HNHN B AllSetTransformer A HyperGT Q T-HyperGNN
Cora 92 DBLP-CA Yelp Trivago
€] R | @ 90 @
7 @ o g o 4 o A .° * @
Ll ae m 0 moe 32{% o 75
o
g;Z] * > 88 30 ® 60 ‘ ‘ |
o
275 * v A 861% Y, 'y 28 45 °®
74 o ¢ A 26 4 * @ o)
A& 10 A 10 g 10 10 10 N\
Training Time (s) Training Time (s) Training Time (s) Training Time (s)
Cora 92 DBLP-CA Yelp Trivago
—
~79 4..-._'_ ® ® S‘ o0 N ERRN *'.. 90 @
=
< ;3 &2 0 o m o 32{% ol
© 88 60
576 > R 301 o AQV B
L5V 861x %o 28 45 ® =
741 40 Al 26 v * e e Q
3%1“1%‘»“1 6#»\“1 40 10 40" 10° 40" 10° 7_*1"3 3*10;.*‘»“3 6*‘»‘)3
Training Space (MB) Training Space (MB) Training Space (MB) Training Space (MB)

Figure 1: Training time and space analysis on Cora, DBLP-CA, Yelp, and Trivago.

dataset, where it runs approximately 406 times slower than the fastest method, HGNN. Moreover,
on Yelp, EHNN incurs the longest training time and fails to scale to the large-scale Trivago dataset.
O Among all evaluated methods, TF-HNN generally achieves a superior trade-off between utility
and both time and space efficiency. For example, on the large-scale Trivago dataset, it achieves the
best predictive performance with no more than 1.6 GB of memory and under 30 seconds of runtime,
ranking first in memory efficiency and second in training time among all HNN methods.

Key Insights for RQ2: Most existing HNN algorithms, when applied to large-scale datasets,
either suffer from efficiency and scalability issues or fail to deliver satisfactory utility. Investigating
decoupled architectures that separate high-order information propagation from training modules
presents a promising avenue for achieving efficient, scalable, and high-performing HNNs.

4.3 ROBUSTNESS EVALUATION (RQ3)

In this section, we assess HNN robustness by simulating structural, feature, and supervision perturba-
tions, as detailed in Appendix B.4. While our experiments primarily focus on the node classification
task due to space limits, DHG-Bench supports flexible extension to other tasks. We evaluate 10
representative models on four datasets (Cora, Pubmed, Actor, and Pokec). The results on Pubmed
and Pokec (Figures A2, A3, and A4) are provided in Appendix C.2.

4.3.1 ROBUSTNESS ANALYSIS WITH RESPECT TO STRUCTURE PERTURBATIONS

Results (Figure 2 and Figure A2). @ Most HNN algorithms exhibit strong robustness against random
structural noise, experiencing only marginal performance drops or even remaining nearly unaffected
under high perturbation rates. For example, when 90% of hyperlinks are randomly removed from
Cora, 7 out of 10 methods degrade by less than 7%. Similarly, when 90% of random hyperlinks
are injected into Actor, only 2 models show a noticeable decline in performance. @ Spectral-based
approaches are generally more vulnerable to structural perturbations. On Pubmed, for instance,
increasing the ratio of noisy hyperlinks results in a pronounced performance decline across four
spectral-based methods (HGNN, PhenomNN, DPHGNN, and TF-HNN), whereas most other methods
remain stable. This may be because spectral methods rely on the hypergraph’s global eigenstructure,
which is highly sensitive to topological noise. @ The robustness of HNN algorithms varies with both
the type of structural perturbation (deletion vs. addition) and the choice of dataset. For example,
on the Actor dataset, SheafHyperGNN suffers substantial performance degradation under hyperlink
deletion but demonstrates strong robustness under hyperlink addition. In another case, PhenomNN
exhibits strong robustness on Cora in the addition scenario while showing the opposite trend on Actor.

Under review as a conference paper at ICLR 2026

~#— HGNN —<— PhenomNN —&— SheafHyperGNN DPHGNN ~ —&— TF-HNN —8- AllSetTransformer UniGNN ~ —5— ED-HNN —A— HyperGT =~ —4— T-HyperGNN
Cora Actor

Actor
85| & §

801 @

os | gt ——

=
75 \ﬁ\«,\
A

80

75

70 = - —
| s0

— 65
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Hyperlink Deletion Ratio Hyperlink Deletion Ratio Hyperlink Addition Ratio Hyperlink Addition Ratio

Accuracy (%)

Figure 2: Structure robustness analysis on Cora and Actor.

—+— HGNN —— PhenomNN —=— SheafHyperGNN DPHGNN ~ —o— TF-HNN —e=— AllSetTransformer UNIGNN ~ —=— ED-HNN
Cora Actor

—=— HyperGT ~ —— T-HyperGNN
Actor

801@

80

o
=]

IS
S

N\ | 70

Accuracy (%)

N
5]

s
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Feature Noise Ratio Feature Noise Ratio Feature Mask Ratio Feature Mask Ratio

Figure 3: Feature robustness analysis on Cora and Actor.

~#— HGNN —<— PhenomNN —&-— SheafHyperGNN DPHGNN —&— TF-HNN -8 AllSetTransformer UniGNN —— ED-HNN —A— HyperGT = —$— T-HyperGNN

Cora Actor Cora Actor

801 & 8073

~
=]

75

o
o

70

Accuracy (%)

65

o
=)

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Label Noise Ratio Label Noise Ratio Label Sparsity Ratio Label Sparsity Ratio

Figure 4: Supervision robustness analysis on Cora and Actor.

4.3.2 ROBUSTNESS ANALYSIS WITH RESPECT TO FEATURE PERTURBATIONS

Results (Figure 3 and Figure A3). @ Feature perturbations under equal noise or sparsity levels
result in greater performance degradation than structural ones, indicating a more critical role of node
features in model prediction. @ With increasing noise intensity, model accuracy decreases sharply
at the beginning and then stabilizes, as highly corrupted features approximate randomness and lose
predictive utility. €@ As the feature masking rate increases, model performance degrades progressively
faster, with a slow decline at low ratios and a sharp drop under high sparsity. @ Compared to feature
sparsity, feature noise poses a greater challenge for HNN algorithms, with equivalent levels of noise
typically resulting in lower predictive accuracy across different datasets.

4.3.3 ROBUSTNESS ANALYSIS WITH RESPECT TO SUPERVISION PERTURBATIONS

Results (Figure 4 and Figure A4). @ As noise intensity increases or supervision becomes sparser, all
models show a clear downward trend in performance, with label noise exerting a more pronounced
impact. @ Increasing label noise generally causes a rapid yet steady decline in performance, which
appears approximately linear in most cases. @ The impact of supervision sparsity is modest at lower
levels but intensifies at higher ratios, resulting in an accelerating decline in model performance. This
trend highlights the challenges faced by current HNNs in low-label scenarios. @ Label noise and
sparsity tend to degrade performance more substantially on homophilic datasets than on heterophilic
ones, reflecting the reliance of model predictions on data homophily.

Key Insights for RQ3: Most HNN algorithms demonstrated remarkable robustness to random
structural noise, but are considerably more vulnerable to feature perturbations. In addition, at
the label level, even simple small-scale poisoning attacks can substantially degrade predictive
performance, and HNNs face significant challenges under extreme label sparsity. These findings
underscore the need for designing robust HNN architectures or training techniques capable of
providing strong defenses against diverse forms of noisy data.

Under review as a conference paper at ICLR 2026

[0 Acc . @ App [Aeo
14
. } ;
g
< 10
C
e 8
o
6,
z

1 I 0

83 N\ o ak AN O S\ SN\ RO\ SR\ RN = AW &t N
W Y\G\,\\j?e(e bl \S"G \A‘l"e(‘,‘\e“o‘“ 0‘,\,\6 ,«,\’\ B\ \)“\:’(3“5&0“0 \eo,\'\ @ ‘199(o
N

Figure 5: Average rankings on Acc, App, Ago across the German, Bail, and Credit datasets, where
lower values indicate better ranks (ascending order).

4.4 FAIRNESS EVALUATION (RQ4)

In this section, we analyze algorithmic fairness and report full quantitative results in terms of accuracy
(Acc), App, and Ao in Table A8 of Appendix C.3. To better illustrate the strengths and limitations
of each algorithm, we present Figure 5, which shows their average rankings across the three metrics
on datasets where they can run, considering only HNNs executable on at least two datasets.

Results (Figure 5 and Table A8). @ While HNN algorithms achieve higher predictive performance,
they generally suffer from more severe fairness issues compared to MLP, which is free from message
passing. Figure 5 shows that MLP ranks best on the two fairness metrics but worst on accuracy.
For example, on the Credit dataset, MLP achieves lower App and Ago values than HCHA, the
fairest among the evaluated HNN models, as shown in Table A8. @ The fairness performance of
HNN algorithms varies considerably across datasets, with no method achieving consistently superior
performance on all benchmarks. For instance, Table A8 illustrates that while HCHA achieves the
best fairness performance on the Credit dataset across both metrics, its App and Ao rank as the
second- and third-worst, respectively, on the German dataset. Moreover, Figure 5 shows that most
algorithms exhibit substantial variance in their rankings, further highlighting the instability of fairness
across datasets. @ HNN algorithms show inconsistent behavior across fairness metrics, and strong
performance on one does not guarantee superiority on another. For example, on the Bail dataset,
although HNHN achieves the lowest A pp among all HNN methods, its A g ranks as the third worst
among the 17 HNN models.

Key Insights for RQ4: Existing HNN algorithms tend to produce more biased predictions than
MLPs, indicating that high-order information propagation may exacerbate the amplification of
biases from sensitive information. Moreover, fairness performance varies substantially across
datasets and metrics. These findings highlight the need for developing debiased algorithms that
can achieve stronger fairness across diverse high-stakes real-world applications.

5 A GUIDE FOR PRACTITIONERS

Drawing on the comprehensive benchmarking results and analyses presented in this work, we offer
practical guidance for selecting appropriate HNN models for new tasks. For clarity, we organize our
recommendations by task type.

Node-level prediction tasks. We recommend TF-HNN as the first-choice model. Across a wide range
of datasets, TF-HNN consistently achieves top-ranked node classification performance, demonstrating
its strong ability to learn highly discriminative node representations. Moreover, its training-free
message-passing architecture offers substantial efficiency and scalability benefits, making it well-
suited for large-scale or resource-constrained applications. Importantly, our experiments show that,
compared with other HNNs, TF-HNN does not exhibit pronounced weaknesses in robustness or
fairness, making it a reliable choice for most node-level scenarios.

Under review as a conference paper at ICLR 2026

Edge-level or higher-order relation prediction tasks (e.g., hyperlink prediction, hyperedge
prediction). We suggest starting with EHNN, HGNN, and HyperGCN. Together, these models
account for most of the best and second-best results on hyperedge prediction benchmarks. Their
performance, however, varies across homophilic and heterophilic settings: on homophilic datasets,
EHNN and HyperGCN generally perform better; on heterophilic datasets, HGNN and EHNN tend
to yield stronger results. Our robustness analysis further indicates that HGNN is more sensitive
to structural perturbations, and may therefore be less dependable under distribution shifts or noisy
hypergraph structures. As a result, EHNN and HyperGCN are generally safer and more robust
defaults, while HGNN should be chosen with awareness of dataset stability.

Graph-level prediction tasks. No single architecture consistently outperforms all others across
datasets and evaluation metrics in hypergraph classification. Nonetheless, HIRL, DPHGNN, and
AllSetTransformer frequently appear among the top-performing models, reflecting their strong
ability to capture and discriminate global structural patterns that drive hypergraph-level prediction.
However, our robustness experiments reveal that DPHGNN can be sensitive to structural and feature
perturbations, and practitioners are therefore advised to carefully assess its stability before deployment.
Among these models, AllSetTransformer often provides a more favorable utility—efficiency trade-off,
making it particularly appealing in computationally constrained environments.

6 CONCLUSION AND FUTURE DIRECTIONS

This paper introduces DHG-Bench, the first comprehensive benchmark for deep hypergraph learning,
which integrates and compares 17 representative HNNs across 22 hypergraph datasets encompassing
various domains, sizes, and structural properties, under consistent experimental settings. We compre-
hensively evaluate the effectiveness, efficiency, robustness, and fairness of HNN algorithms, and our
analysis reveals the strengths and weaknesses of different HNNs in a wide range of scenarios, offering
valuable insights into their practical applicability and design trade-offs. Furthermore, we develop
and release a package, DHG-Bench, that includes all experimental protocols, baseline algorithms,
datasets, and reproducibility scripts to facilitate future research. Drawing upon our empirical analyses,
we point out some promising future directions for the deep hypergraph learning community.

* Developing adaptive HNN methods for diverse datasets and tasks. Our experiments in
Section 4.1 reveal that existing HNN architectures show substantial performance disparities
across datasets and tasks, limiting their applicability in diverse scenarios. Future research
should focus on designing adaptive HNN architectures and training techniques that can better
accommodate the unique characteristics of datasets from different domains and varying task
granularities, thereby enhancing the generalization ability of HNNS.

» Improving the efficiency of HNN methods. Observations in Section 4.2 indicate that many
advanced HNN methods fail to balance efficiency and predictive performance, and often run
out of memory on large-scale datasets. As the size of hypergraphs continues to grow exponen-
tially, a key area of future research is the reduction of memory and computational complexity
in HNN algorithms while maintaining satisfactory model utility. Inspired by the favorable ef-
ficiency—effectiveness trade-off achieved by TF-HNN, it would be promising to devise more
powerful decoupled architectures specifically tailored for HNN.

* Developing more robust HNN methods. Our experimental results in Section 4.3 show that HNN
algorithms are affected by different types of data perturbations and are particularly vulnerable
to those at the feature and supervision levels. Future work should emphasize enhancing the
robustness of HNNSs to resist varying degrees of data noise and even adversarial attacks, thereby
ensuring reliable performance in a wide range of industrial applications.

* Developing fairness-aware HNN methods. Empirical evidence in Section 4.4 suggests that
HNNs are more prone to biased predictions than traditional MLPs. Future research should
investigate the theoretical mechanisms through which high-order message passing exacerbates
fairness issues and then develop fairness-aware HNN methods that mitigate such discriminatory
behavior. Progress in this direction is essential to ensure the safe adoption of HNNSs in high-stakes
real-world applications such as crime prediction and credit evaluation.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not raise any specific ethical concerns. All datasets used in our experiments are
publicly available and have been released for academic purposes. None of the datasets contains
personally identifiable information or offensive content.

REPRODUCIBILITY STATEMENT

We describe our data splitting strategy in Section 3.1, the experiment design for multi-dimensional
analysis in Section 3.3, and detailed experimental setups in Appendix B. All datasets, algorithm im-
plementations, and hyperparameter configurations are publicly available at https://anonymous.
4open.science/r/DHG_Bench-F739.

* The datasets are provided in the repository as a compressed file, data.zip, and data
loading and preprocessing are handled by the code in the 1ib_dataset folder.

* The implementation of the training and evaluation pipeline for algorithms is available in the
lib_utils folder in the repository.

* Additional instructions for reproducing experiments are included in the README . md.

REFERENCES

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
closure and higher-order link prediction. PNAS, 115(48):E11221-E11230, 2018.

Derun Cai, Moxian Song, Chenxi Sun, Baofeng Zhang, Shenda Hong, and Hongyan Li. Hypergraph
structure learning for hypergraph neural networks. In IJCAI pp. 1923-1929, 2022.

Tingyi Cai, Yunliang Jiang, Ming Li, Lu Bai, Changqin Huang, and Yi Wang. Hypernear: Unnotice-
able node injection attacks on hypergraph neural networks. In /CML, 2025.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI, volume 34, pp.
3438-3445, 2020.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
framework for hypergraph neural networks. In /CLR, 2022.

Enyan Dai, Charu Aggarwal, and Suhang Wang. Nrgnn: Learning a label noise resistant graph neural
network on sparsely and noisily labeled graphs. In SIGKDD, pp. 227-236, 2021.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
In ICML Workshop: Graph Representation Learning and Beyond., 2020.

Yushun Dong, Jing Ma, Song Wang, Chen Chen, and Jundong Li. Fairness in graph mining: A survey.
TKDE, 35(10):10583-10602, 2023.

Iulia Duta, Giulia Cassara, Fabrizio Silvestri, and Pietro Lio. Sheaf hypergraph networks. NeurIPS,
36:12087-12099, 2023.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In ITCS, pp. 214-226, 2012.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The WebConf, pp. 417-426, 2019.

Y Feng, Z Zhang, X Zhao, R Ji, Y Gao, and Gvcnn. Group-view convolutional neural networks for
3d shape recognition. In CVPR, pp. 264-272, 2018.

11

https://anonymous.4open.science/r/DHG_Bench-F739
https://anonymous.4open.science/r/DHG_Bench-F739

Under review as a conference paper at ICLR 2026

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In AAAI, volume 33, pp. 3558-3565, 2019.

Yifan Feng, Jiashu Han, Shihui Ying, and Yue Gao. Hypergraph isomorphism computation. TPAMI,
46(5):3880-3896, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Joshua Fixelle. Hypergraph vision transformers: Images are more than nodes, more than edges. In
CVPR, pp. 9751-9761, 2025.

Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. Hgnn+: General hypergraph neural networks.
TPAMI, 45(3):3181-3199, 2022.

Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén Ballester,
Claudio Battiloro, Guillermo Bernardez, Tolga Birdal, Aiden Brent, et al. Topox: a suite of python
packages for machine learning on topological domains. JMLR, 25(374):1-8, 2024.

Xiangmin Han, Rundong Xue, Jingxi Feng, Yifan Feng, Shaoyi Du, Jun Shi, and Yue Gao. Hyper-
graph foundation model for brain disease diagnosis. TNNLS, 2025.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. NeurIPS,
29, 2016.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In ZJCAI International Joint Conferences on Artificial Intelligence Organization, 2021.

Hyunjin Hwang, Seungwoo Lee, and Kijung Shin. Hyfer: A framework for making hypergraph
learning easy, scalable and benchmarkable. In WWW Workshop on Graph Learning Benchmarks,
2021.

Hyunjin Hwang, Seungwoo Lee, Chanyoung Park, and Kijung Shin. Ahp: Learning to negative
sample for hyperedge prediction. In SIGIR, pp. 2237-2242, 2022.

Kareem L Jordan and Tina L Freiburger. The effect of race/ethnicity on sentencing: Examining
sentence type, jail length, and prison length. Journal of Ethnicity in Criminal Justice, 13(3):
179-196, 2015.

Krishna Juluru, Hao-Hsin Shih, Krishna Nand Keshava Murthy, and Pierre Elnajjar. Bag-of-words
technique in natural language processing: a primer for radiologists. RadioGraphics, 41(5):1420—
1426, 2021.

Bilal Khan, Jia Wu, Jian Yang, and Xiaoxiao Ma. Heterogeneous hypergraph neural network for
social recommendation using attention network. TORS, 3(3):1-22, 2025.

Jinwoo Kim, Saeyoon Oh, Sungjun Cho, and Seunghoon Hong. Equivariant hypergraph neural
networks. In ECCV, pp. 86—103. Springer, 2022.

Sunwoo Kim, Dongjin Lee, Yul Kim, Jungho Park, Taecho Hwang, and Kijung Shin. Datasets, tasks,
and training methods for large-scale hypergraph learning. Data mining and knowledge discovery,
37(6):2216-2254, 2023.

Sunwoo Kim, Shinhwan Kang, Fanchen Bu, Soo Yong Lee, Jaemin Yoo, and Kijung Shin. Hypeboy:
Generative self-supervised representation learning on hypergraphs. In ICLR, 2024a.

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
on hypergraph neural networks: An in-depth and step-by-step guide. In SIGKDD, pp. 6534—6544,
2024b.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

12

Under review as a conference paper at ICLR 2026

Yunyong Ko, Hanghang Tong, and Sang-Wook Kim. Enhancing hyperedge prediction with context-
aware self-supervised learning. TKDE, 2025.

Dongjin Lee and Kijung Shin. I'm me, we’re us, and i’m us: Tri-directional contrastive learning on
hypergraphs. In AAAI volume 37, pp. 8456-8464, 2023.

Juho Lee, Yoonho Lee, Jungtack Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In ICML, pp.
3744-3753. PMLR, 2019.

Jure Leskovec. SNAP Datasets: Stanford large network dataset collection. http://snap.
stanford.edu/data, 2014. [Online].

Bing Li, Xin Xiao, Chao Zhang, Ming Xiao, and Le Zhang. Dghnn: A deep graph and hypergraph
neural network for pan-cancer related gene prediction. Bioinformatics, pp. btaf379, 2025a.

Fan Li, Xiaoyang Wang, Dawei Cheng, Wenjie Zhang, Ying Zhang, and Xuemin Lin. Hypergraph
self-supervised learning with sampling-efficient signals. In IJCAI pp. 4398-4406, 2024a.

Fan Li, Zhiyu Xu, Dawei Cheng, and Xiaoyang Wang. Adarisk: risk-adaptive deep reinforcement
learning for vulnerable nodes detection. TKDE, 36(11):5576-5590, 2024b.

Ming Li, Yujie Fang, Yi Wang, Han Feng, Yongchun Gu, Lu Bai, and Pietro Lio. Deep hypergraph
neural networks with tight framelets. In AAAI, volume 39, pp. 18385-18392, 2025b.

Ming Li, Yongchun Gu, Yi Wang, Yujie Fang, Lu Bai, Xiaosheng Zhuang, and Pietro Lio. When
hypergraph meets heterophily: New benchmark datasets and baseline. In AAAI, volume 39, pp.
18377-18384, 2025c¢.

Zhixun Li, Liang Wang, Xin Sun, Yifan Luo, Yanqgiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin
Zhou, Qiang Liu, Shu Wu, et al. Gslb: the graph structure learning benchmark. NeurIPS, 36:
30306-30318, 2023.

Hongyi Ling, Zhimeng Jiang, Youzhi Luo, Shuiwang Ji, and Na Zou. Learning fair graph representa-
tions via automated data augmentations. In /CLR, 2023.

Weiwen Liu, Yin Zhang, Jianling Wang, Yun He, James Caverlee, Patrick PK Chan, Daniel S Yeung,
and Pheng-Ann Heng. Item relationship graph neural networks for e-commerce. TNNLS, 33(9):
4785-4799, 2021.

Zexi Liu, Bohan Tang, Ziyuan Ye, Xiaowen Dong, Siheng Chen, and Yanfeng Wang. Hypergraph
transformer for semi-supervised classification. In ICASSP, pp. 7515-7519. IEEE, 2024.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang,
and Doina Precup. Revisiting heterophily for graph neural networks. NeurIPS, 35:1362-1375,
2022.

Angi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis and
applications. In ICML, pp. 23803-23828. PMLR, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, and Luca et al. Antiga. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, volume 32, 2019.

Prasanna Patil, Govind Sharma, and M Narasimha Murty. Negative sampling for hyperlink prediction
in networks. In PAKDD, pp. 607-619. Springer, 2020.

Karelia Pena-Pena, Daniel L Lau, and Gonzalo R Arce. T-hgsp: Hypergraph signal processing using
t-product tensor decompositions. IEEE Transactions on Signal and Information Processing over
Networks, 9:329-345, 2023.

Konstantin Prokopchik, Austin R Benson, and Francesco Tudisco. Nonlinear feature diffusion on
hypergraphs. In ICML, pp. 17945-17958. PMLR, 2022.

13

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Under review as a conference paper at ICLR 2026

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Glinnemann,
and Michael M Bronstein. Edge directionality improves learning on heterophilic graphs. In
Learning on graphs conference, pp. 25-1. PMLR, 2024.

Siddhant Saxena, Shounak Ghatak, Raghu Kolla, Debashis Mukherjee, and Tanmoy Chakraborty.
Dphgnn: A dual perspective hypergraph neural networks. In SIGKDD, pp. 2548-2559, 2024.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In /CCV, pp. 945-953, 2015.

Xiangguo Sun, Hong Cheng, Bo Liu, Jia Li, Hongyang Chen, Guandong Xu, and Hongzhi Yin.
Self-supervised hypergraph representation learning for sociological analysis. TKDE, 35(11):
11860-11871, 2023.

Harini Suresh and John V Guttag. A framework for understanding unintended consequences of
machine learning. arXiv preprint arXiv:1901.10002, 2(8):73, 2019.

Bohan Tang, Zexi Liu, Keyue Jiang, Siheng Chen, and Xiaowen Dong. Training-free message passing
for learning on hypergraphs. In ICLR, 2025.

Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Mustafa Hajij, Martin Carrasco, Pavlo Va-
sylenko, Mathilde Papillon, Ghada Zamzmi, Michael T Schaub, Jonas Verhellen, et al. Topobench:
A framework for benchmarking topological deep learning. arXiv preprint arXiv:2406.06642, 2024.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Fuli Wang, Karelia Pena-Pena, Wei Qian, and Gonzalo R Arce. T-hypergnns: Hypergraph neural
networks via tensor representations. TNNLS, 2024.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
diffusion neural operators. In ICLR, 2023a.

Yifan Wang, Gonzalo R Arce, and Guangmo Tong. Generalization performance of hypergraph neural
networks. In The WebConf, pp. 1273-1291, 2025.

Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, and David Wipf. From hypergraph energy
functions to hypergraph neural networks. In ICML, pp. 35605-35623. PMLR, 2023b.

Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and Zhangyang Wang. Augmen-
tations in hypergraph contrastive learning: Fabricated and generative. NeurIPS, 35:1909-1922,
2022.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. NeurlIPS, 33:
20437-20448, 2020.

Linhuang Xie, Shihao Gao, Jie Liu, Ming Yin, and Taisong Jin. K-hop hypergraph neural network: A
comprehensive aggregation approach. In AAAI, volume 39, pp. 21679-21687, 2025.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergen: A new method for training graph convolutional networks on hypergraphs.
NeurlPS, 32, 2019.

Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha
Talukdar. Nhp: Neural hypergraph link prediction. In CIKM, pp. 1705-1714, 2020.

Yuguang Yan, Yuanlin Chen, Shibo Wang, Hanrui Wu, and Ruichu Cai. Hypergraph joint represen-

tation learning for hypervertices and hyperedges via cross expansion. In AAAI, volume 38, pp.
9232-9240, 2024.

14

Under review as a conference paper at ICLR 2026

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In ICDM, pp.
1287-1292. IEEE, 2022.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Semi-supervised hypergraph node
classification on hypergraph line expansion. In CIKM, pp. 2352-2361, 2022.

Cheng Yang, Jixi Liu, Yunhe Yan, and Chuan Shi. Fairsin: Achieving fairness in graph neural
networks through sensitive information neutralization. In AAAI, volume 38, pp. 9241-9249, 2024.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert systems with applications, 36(2):
2473-2480, 2009.

Song Kyung Yu, Da Eun Lee, Yunyong Ko, and Sang-Wook Kim. Hygen: Regularizing negative
hyperedge generation for accurate hyperedge prediction. In Companion Proceedings of the ACM
on Web Conference 2025, pp. 1500-1504, 2025.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet: A
neural network for directed graphs. NeurIPS, 34:27003-27015, 2021.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical framework.
International journal of machine learning and cybernetics, 1(1):43-52, 2010.

Dengyong Zhou, Jiayuan Huang, and Bernhard Scholkopf. Learning with hypergraphs: Clustering,
classification, and embedding. NeurIPS, 19, 2006.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. NeurIPS, 33:
77937804, 2020.

Yuchang Zhu, Jintang Li, Zibin Zheng, and Liang Chen. Fair graph representation learning via
sensitive attribute disentanglement. In The WebConf, pp. 1182-1192, 2024.

15

Under review as a conference paper at ICLR 2026

APPENDIX

A DATASETS AND ALGORITHMS

A.1 BENCHMARK DATASETS

Table Al: Statistics of the standard node-level datasets: |e| denotes the hyperedge size, while
Hedge indicates the hyperedge homophily ratio introduced in (Li et al., 2025¢). Ijode, Prode. and
H 4. indicate the isolated nodes, the nodes involved only in pairwise interactions, and the nodes
participating in higher-order interactions, respectively.

Dataset #Nodes #Edges #Features Avg.|e| Heqee #Inode # Prnode # Hpode # Classes
Cora 2,708 1,579 1,433 3.03 0.75 1,274 205 1,229 7
Pubmed 19,717 7,963 500 4.35 0.78 15,877 201 3,639 3
Cora-CA 2,708 1,072 1,433 4.28 0.78 320 278 2,110 7
DBLP-CA 41,302 22,363 1,425 4.45 0.87 0 3,876 37,426 6
NTU2012 2,012 2,012 100 5.00 0.79 0 0 2,012 67
ModelNet40 12,311 12,311 100 5.00 0.87 0 0 12,311 40
Walmart 88,860 69,906 100 6.59 0.60 0 3,295 85,565 11
Trivago 172,738 233,202 300 3.12 0.98 0 25,532 147,206 160
Actor 16,255 10,164 50 5.25 0.46 563 600 15,092 3
Ratings 22,299 2,090 111 3.10 0.37 19,175 176 2,948 5
Gamers 16,812 2,627 7 6.23 0.49 456 624 15732 2
Pokec 14,998 2,406 65 2.29 0.45 11,798 1,948 1,252 2
Yelp 50,758 679,302 1,862 6.66 0.29 0 19 50,739 9

Table A2: Statistics of fairness-sensitive datasets. Sens denotes the sensitive attribute.

Dataset # Nodes # Edges # Features Sens Label
German 1,000 1,000 27 Gender Credit status
Bail 18,876 18,876 18 Race Bail decision
Credit 30,000 30,000 13 Age Future default

Table A3: Statistics of graph-level datasets. Avg. |V|, ||, and |e| represent the average number of
nodes, hyperedges, and hyperedge sizes, respectively.

Dataset # Hypergraphs Avg. |V| Avg. || Avg. |e| # Classes
RHG-10 2,000 31.3 29.8 5.2 10
RHG-3 1,500 35.5 17.9 6.9 3
IMDB-Dir-Form 1,869 15.7 39.2 3.7 3
IMDB-Dir-Genre 3,393 17.3 36.4 3.8 3
Steam-Player 2,048 13.8 46.4 4.5 2
Twitter-Friend 1,310 21.6 84.3 4.3 2

We adopt 22 publicly available benchmark datasets to comprehensively evaluate HNN algorithms.
The statistics of node-level datasets, fairness-sensitive datasets, and graph-level datasets are reported
in Tables A.1, A2, and A3, respectively. Detailed descriptions of these datasets are provided below.

¢ Cora/Pubmed/Cora-CA/DBLP-CA (Yadati et al., 2019): Cora and Pubmed are co-citation
networks where nodes represent papers and hyperedges connect papers cited together. Cora-CA
and DBLP-CA are co-authorship hypergraphs, with nodes as papers and hyperedges linking all
papers co-authored by the same author. Node features are Bag-of-Words (BoW) (Zhang et al.,
2010) representations of the documents, and labels indicate paper categories.

* NTU2012/ModelNet40 (Feng et al., 2019): The ModelNet40 and the NTU2012 are two computer
vision and graphics datasets. ModelNet40 contains 12,311 3D objects from 40 popular categories,

16

Under review as a conference paper at ICLR 2026

while NTU2012 consists of 2,012 3D shapes from 67 categories. For each object, features are
extracted using both the Group-View Convolutional Neural Network (GVCNN)(Feng et al., 2018)
and the Multi-View Convolutional Neural Network (MVCNN)(Su et al., 2015). Following (Feng
et al., 2019), we construct hyperedges by aggregating the nearest neighbors of each node based
on Euclidean distance.

Walmart (Chien et al., 2022): The Walmart dataset models a hypergraph where nodes represent
products and hyperedges capture sets of products purchased together. Node labels indicate product
categories. Following (Chien et al., 2022), each node feature is a 100-dimensional vector obtained
by adding Gaussian noise N (0, 1) with o = 0.6 to one-hot encodings of the labels.

Trivago (Kim et al., 2023): Trivago is a hotel-web search hypergraph where each node indicates
a hotel, and each hyperedge corresponds to a user. If a user (hyperedge) has visited the website
of a particular hotel (node), the corresponding node is added to the respective user hyperedge.
Furthermore, each hotel’s class is labeled based on the country in which it is located.

Actor (Li et al., 2025¢): The actor co-occurrence network is derived from a heterogeneous
movie-actor-director-writer network >, capturing intricate collaborations within films. Nodes
represent individuals involved in film production (actors, directors, and writers), and hyperedges
denote their joint participation in a single film. Node attributes are extracted from Wikipedia
keywords, and labels indicate each individual’s specific role.

Amazon-ratings (Ratings) (Li et al., 2025c¢): This dataset, sourced from the Amazon co-
purchasing network in the SNAP repository (Leskovec, 2014), includes products like books,
music CDs, DVDs, and VHS tapes. Nodes represent individual products, and hyperedges link
those frequently purchased together. The task is to predict each product’s average user rating,
classified into ten levels. Node features are extracted using the BoW technique applied to product
descriptions (Juluru et al., 2021).

Twitch-gamers (Gamers) (Li et al., 2025c¢): The Twitch-gamers dataset is a connected undirected
hypergraph representing user interactions on the Twitch streaming platform. Nodes denote user
accounts, and hyperedges are formed based on mutual follows within specific timeframes. Each
node is associated with features such as view counts, timestamps, language preferences, activity
duration, and inactivity status. The goal is to predict whether a channel hosts explicit content
(binary classification).

Pokec (Li et al., 2025¢): The Pokec dataset is derived from Slovakia’s largest online social
networking platform and is used to model social relationships and attributes. Nodes represent
individual users, and hyperedges correspond to each user’s full set of friends. Node labels indicate
user-reported gender, while node features are extracted from profile information, including age,
hobbies, interests, education level, region, etc.

Yelp (Chien et al., 2022): The Yelp dataset is a hypergraph where nodes represent restaurants and
hyperedges link those visited by the same user. Node labels denote average star ratings (1.0-5.0
in 0.5 steps). Features include geographic coordinates, one-hot encodings of city/state, and BoW
vectors from the top-1000 restaurant name tokens.

German (Wei et al., 2022): The nodes in the dataset represent clients in the German Bank, and
hyperedges are constructed by linking individuals with the most similar credit accounts to each
person in the dataset. The task is to classify credit risk levels as high or low based on the sensitive
attribute ’gender” (Male/Female).

Bail (Wei et al., 2022): The nodes in the datasets are defendants who got released on bail at the
U.S state courts during 1990- 2009 (Jordan & Freiburger, 2015). Hyperedges are constructed
based on the similarity of past criminal records among individuals. The task is to classify whether
defendants are on bail or not with the sensitive attribute ’race” (White/Black).

Credit (Wei et al., 2022): The nodes in the dataset represent credit card users, and hyperedges are
formed based on the similarity of users’ spending and payment patterns. The task is to classify
the default status with the sensitive attribute "age” (<25 / >25).

RHG-10/RHG-3 (Feng et al., 2024): RHG-10 dataset encompasses ten distinct synthetic factor
hypergraph structures (i.e., Hyper Flower, Hyper Pyramid, Hyper Checked Table, Hyper Wheel,
Hyper Lattice, Hyper Windmill, Hyper Firm Pyramid, Hyper RChecked Table, Hyper Cycle, and

https://www.aminer.orqg/lab-datasets/soinf/

17

https://www.aminer.org/lab-datasets/soinf/

Under review as a conference paper at ICLR 2026

| Spectral-based Hyper6CN PhenomNN DPHENN

‘

Yadati et al. LEGCN Wang et al. _]

; HGNN 9 HCHA Yangetal. pyperND SheafHyper6NN pgpL <t TE-HNN

i anng al. Bai et al. Prokopchik et al. Duta et al. Yan et al. |
{209 I — — LI e e T - i @?j:&:, S) e e

i Spatial-based HNHN UniGNN AllSetTransformer ED-HNN Hyper6T |

Dong et al. Huang & Yang Chien et al. Wang et al. Liu et al.)

EHNN T-Hyper6NN 1

Kim et al. Wang et al.

Figure A1: A timeline of the representative hypergraph neural networks.

Hyper Fern). To evaluate the algorithm’s ability to recognize significant high-order structures, the
RHG-3 dataset is constructed by randomly generating hypergraphs for three distinctively various
hypergraph structures: Hyper Pyramid, Hyper Checked Table, and Hyper Wheel.

* IMDB-Dir-Form/IMDB-Dir-Genre (Feng et al., 2024): These two datasets contain hypergraphs
constructed by the co-director relationship from the original IMDB dataset. The director of each
movie is a hypergraph. ”Form” included in the dataset’s name indicates that the movie category
is identified by its form, like animation, documentary, and drama. ”Genre” denotes that the movie
is classified by its genres, like adventure, crime, and family.

» Steam-Player (Feng et al., 2024): The Steam-Player dataset is a player dataset where each player
is a hypergraph. The vertex is the games played by the player, and the hyperedge is constructed by
linking the games with shared tags. The target of the dataset is to identify each user’s preference:
single-player game or multiplayer game.

» Twitter-Friend (Feng et al., 2024): The Twitter-Friend dataset is a social media dataset. Each
hypergraph is the friends of a specified user. The hyperedge is constructed by linking the users
who are friends. The label associated with the hypergraph is to identify whether the user posted
the blog about "National Dog Day” or “Respect Tyler Joseph”.

A.2 BENCHMARK ALGORITHMS

Figure Al illustrates 17 HNN algorithms integrated into our DHG-Bench, including 10 spectral-based,
5 spatial-based, and 2 tensor-based methods. We introduce these methods in detail below.

A.2.1 SPECTRAL-BASED ALGORITHMS

* HGNN (Feng et al., 2019): HGNN is a framework for representation learning that extends spectral
convolution to hypergraphs. By leveraging the hypergraph Laplacian and approximating spectral
filters with truncated Chebyshev polynomials, it effectively captures high-order correlations
inherent in complex data.

» HyperGCN (Yadati et al., 2019): HyperGCN approximates each hyperedge of the hypergraph by
a set of pairwise edges connecting the vertices of the hyperedge, and treats the learning problem
as a graph learning task on the approximated graph.

* HCHA (Bai et al., 2021): HCHA is a hypergraph neural network that introduces two end-to-end
trainable operators: hypergraph convolution and hypergraph attention. Hypergraph convolution
efficiently propagates information by leveraging high-order relationships and local clustering
structures, with standard graph convolution shown as a special case. Hypergraph attention
further enhances representation learning by dynamically adjusting hyperedge connections through
an attention mechanism, enabling task-relevant information aggregation and yielding more
discriminative node embeddings.

* LEGCN (Yang et al., 2022): LEGCN is a hypergraph learning model based on the Line Expansion
(LE). By modeling vertex-hyperedge pairs, LEGCN bijectively transforms a hypergraph into a
simple graph, preserving the symmetric co-occurrence structure and avoiding information loss.
This enables existing graph learning algorithms to operate directly on hypergraphs.

* HyperND (Prokopchik et al., 2022): HyperND develops a nonlinear diffusion process on hy-
pergraphs that propagates both features and labels along the hypergraph structure. The novel
diffusion incorporates a broad class of nonlinearities to increase the modeling capability, and the
limiting point serves as a node embedding from which we make predictions with a linear model.

18

Under review as a conference paper at ICLR 2026

PhenomNN (Wang et al., 2023b): PhenomNN is a hypergraph learning framework grounded in
a family of expressive, parameterized hypergraph-regularized energy functions. It formulates
node embeddings as the minimizers of these energy functions, which are optimized jointly with
a parameterized classifier through a supervised bilevel optimization process. This approach
provides a principled way to model high-order relationships in hypergraphs while enabling
end-to-end training.

SheafHyperGNN (Duta et al., 2023): SheafHyperGNN introduces a cellular sheaf framework
for hypergraphs, enabling the modeling of complex dynamics while preserving their higher-order
connectivity. Then, it generalizes the two commonly used hypergraph Laplacians to incorporate
the richer structure sheaves offer and constructs two powerful neural networks capable of inferring
and processing hypergraph sheaf structure.

HJRL (Yan et al., 2024): HJIRL introduces a novel cross expansion method, which transforms
both hypervertices and edges of a hypergraph to vertices in a standard graph. Then, a joint learning
model is proposed to embed both hypervertices and hyperedges into a shared representation space.
In addition, the algorithm employs a hypergraph reconstruction objective to preserve structural
information in the model.

DPHGNN (Saxena et al., 2024): DPHGNN is a hybrid framework designed for effective feature
representation in resource-constrained hypergraph settings. It introduces equivariant operator
learning to capture lower-order semantics by inducing topology-aware inductive biases. It
employs a dual-layered feature update mechanism: a static update layer provides spectral biases
and relational features, while a dynamic update layer fuses explicitly aggregated features from
the underlying topology into the hypergraph message-passing process.

TF-HNN (Tang et al., 2025): TF-HNN is the first model to decouple hypergraph structural
processing from model training, substantially improving training efficiency. Specifically, it
introduces a unified, training-free message-passing module (TF-MP-Module) by identifying
feature aggregation as the core operation in HNNs. The TF-MP-Module removes learnable
parameters and nonlinear activations, and compresses multi-layer propagation into a single step,
offering a simplified and efficient alternative to existing architectures.

A.2.2 SPATIAL-BASED ALGORITHMS

HNHN (Dong et al., 2020): HNHN is a hypergraph convolution network with nonlinear activation
functions applied to both hypernodes and hyperedges, combined with a normalization scheme
that can flexibly adjust the importance of high-cardinality hyperedges and high-degree vertices
depending on the dataset.

UniGNN (Huang & Yang, 2021): UniGNN is a unified message-passing framework that gen-
eralizes standard GNNs to hypergraphs. It models the two-stage aggregation process by first
computing hyperedge representations using a permutation-invariant function over the features
of incident vertices, and then updating each vertex by aggregating its associated hyperedge
representations. This formulation enables seamless adaptation of existing GNN architectures to
hypergraph structures.

AllSetTransformer (Chien et al., 2022): AllSetTransformer is a novel HNN paradigm that
implements each layer as a composition of two multiset functions. By incorporating the Set
Transformer (Lee et al., 2019) into its architecture, it achieves greater modeling flexibility and
enhanced expressive power.

ED-HNN (Wang et al., 2023a): ED-HNN is an architecture designed to approximate any continu-
ous, permutation-equivariant hypergraph diffusion operator. The model is efficiently implemented
by combining the star expansion (bipartite representation) of hypergraphs with standard message-
passing neural networks, and supports scalable training via shared weights across layers.

HyperGT (Liu et al., 2024): HyperGT is a Transformer-based HNN architecture designed to
capture global correlations among nodes and hyperedges. To preserve local structural information,
it incorporates incidence-matrix-based positional encoding and a structure regularization term.
These designs enable comprehensive hypergraph representation learning by jointly modeling
global interactions and local connectivity patterns.

19

Under review as a conference paper at ICLR 2026

A.2.3 TENSOR-BASED ALGORITHMS

* EHNN (Kim et al., 2022): EHNN is the first framework to realize equivariant GNNs for gen-
eral hypergraph learning. It establishes a connection between sparse hypergraphs and dense,
fixed-order tensors, enabling the design of a maximally expressive equivariant linear layer. To
ensure scalability and generalization to arbitrary hyperedge orders, EHNN further introduces
hypernetwork-based parameter sharing.

* T-HyperGNN (Wang et al., 2024): T-HyperGNN is a general framework that integrates tensor
hypergraph signal processing (t-HGSP) (Pena-Pena et al., 2023) to encode hypergraph structures
using tensors. It models node interactions through multiplicative interaction tensors, elevating
aggregation from traditional linear operations to higher-order polynomial mappings, thereby
enhancing expressive power. To ensure scalability, T-HyperGNN introduces tensor-message-
passing by exploiting tensor sparsity, enabling efficient processing of large hypergraphs with
computational and memory costs comparable to matrix-based HNNs.

In addition, we include MLP and two GNN-based methods, CEGCN and CEGAT (Chien et al., 2022),
as baselines in our comparative study. Both CEGCN and CEGAT are expansion-based approaches
that transform a hypergraph into a pairwise graph via clique expansion (Zhou et al., 2006), where
each hyperedge is converted into a clique over its incident nodes. Specifically, CEGCN applies
GCN (Kipf & Welling, 2017) to the expanded graph, while CEGAT employs GAT (Velickovic et al.,
2018) to model node importance within the cliques.

B DETAILS OF THE EXPERIMENTAL SETTINGS

B.1 GENERAL EXPERIMENTAL SETTINGS

We strive to follow the original implementations of various HNN methods from their respective
papers or source codes and integrate them into a unified training and evaluation framework. All
parameters are randomly initialized. We use the cross-entropy loss function (Mao et al., 2023)
for all three benchmark classification tasks. Adam optimizer (Kingma, 2014) is adopted with an
appropriate learning rate and weight decay to achieve the best performance on the validation split.
Detailed hyperparameter settings and experimental environments are provided in Appendix B.2 and
Appendix B.3, respectively. For evaluation, we follow prior studies in choosing task-specific metrics:
accuracy for node classification (Feng et al., 2019; Chien et al., 2022; Wang et al., 2023a); AUROC
(area under the ROC curve) and AP (average precision) for hyperedge prediction (Hwang et al.,
2022; Ko et al., 2025; Yu et al., 2025; Tang et al., 2025); and both accuracy and Macro-F1 score for
hypergraph classification (Feng et al., 2024). Higher values of these metrics indicate better predictive
performance. In addition, to assess algorithmic fairness, we adopt two commonly used group fairness
metrics: demographic parity (App) (Dwork et al., 2012) and equalized odds (Ago) (Hardt et al.,
2016), with detailed definitions provided in Appendix B.5. For each method and dataset, we record
the mean results and the standard deviation across 5 runs.

B.2 HYPERPARAMETER SETTING

We carefully tune hyperparameters to ensure a rigorous and unbiased evaluation of the integrated
HNN methods. For algorithms without explicit hyperparameter guidelines in their original papers or
source code, we perform a grid search with a reasonable budget across all datasets to identify optimal
configurations. The search spaces are provided in Table A4. For detailed interpretations, please refer
to the corresponding papers, and the complete hyperparameter configurations are available in our
publicly released GitHub repository.

B.3 EXPERIMENTAL ENVIRONMENT
All the experiments are conducted with the following computational resources and configurations:

* Operating system: Ubuntu 24.04 LTS.
* CPU information: Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz with 128G Memory.
* GPU information: Quadro RTX 6000 with 24GB of Memory.

20

Under review as a conference paper at ICLR 2026

Table A4: Hyperparameter search space of different methods.

Method Hyperparameter Search Space
Epochs 100, 200, 300, 400, 500, 800, 1000
Learning Rate 0.1, 0.01, 0.001, 0.0001
Layers 1,2,3,4
Dropout Rate 0,0.1,0.2,0.3,04, 0.5,0.6,0.7, 0.8
General Settings Weight Decay 0, 0.0005
Hidden Units 64, 128, 256, 512, 1024
Activation LeakyReLU, ReLU, PReLLU, Sigmoid, Softmax
Hyperedge Pooling max, mean, max-min
Hypergraph Pooling max, mean
HCHA heads 1,2,4,8, 16
HyperND _ord 1,2,3,5,10
HvperND HyperND _tol 0.001, 0.0001, 0.00001, 0.000001
yp HyperND _steps 50, 100, 150, 200
alpha 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
HIRL Ao 0.001, 0.01, 0.1, 1, 10
Ao 0,0.1, 1, 10, 20, 50, 80, 100
A1 0,0.1, 1, 10, 20, 50, 80, 100
PhenomNN prop_steps 2.4.8, 16,32, 64, 128
alpha 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
init_hedge rand, avg
sheaf_pred_block MLP_varl, MLP_var2, MLP_var3, cp_decomp
SheafHyperGNN sheaf_transformer_head 1,2,4,8, 16
stalk_dim 1,2,4,8
mlp_hidden_size 64, 128, 256, 512, 1024
TE-HNN # layers of classifier 1,2,3,4
alpha -3.0,-2.5,-2.0,-1.5,-1.0,-0.5, 0.0, 0.5
HNHN beta 2.5,-2.0,-15,-1.0,-0.5, 0.0, 0.5, 1.0
. alpha 0,0.1,0.2,0.3,0.4,0.5,0.8,09
UniGNN beta 0.0.1,0.2,0.3, 0.4, 0.5, 0.8, 0.9
AllSetTransformer attention_heads 1,2,4,8, 16
alpha 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
ED-HNN # layers of ¢ 0,1,2,3
layers of p 0,1,2,3
layers of ¢ 0,1,2,3
attention_heads 1,2,4,8,16
layers of TAA module 1,2,3,4
DPHGNN # layers of SIB module 1,2
layers of DFF module 1,2
HyperGT attention_heads 1,2,4,8,16
ehnn_gk_channels 64, 128, 256
ehnn_n_heads 1,2,4,8,16
EHNN ehnn_pe_dim 64, 128
ehnn_inner_channel 64, 128, 256
ehnn_hidden_channel 64, 128, 256
T-HyperGNN M: maximum cardinality 1,2,3,4,5
combine concat, sum

21

Under review as a conference paper at ICLR 2026

* Software: CUDA 12.1, Python 3.9.21, Pytorch (Paszke et al., 2019) 2.2.2, Pytorch Geometric (Fey
& Lenssen, 2019) 2.6.1.

B.4 ROBUSTNESS EVALUATION SETTINGS

In our robustness study, we simulate data perturbation scenarios from three perspectives: structure,
feature, and supervision signal. Each perturbation setting is repeated 5 times with different random
seeds to account for randomness, and we report the average results. Our experiments primarily focus
on the node classification task. The detailed experimental setups are as follows.

Structure-level Robustness Evaluation Setting. To analyze structure-level robustness, follow-
ing (Cai et al., 2022), we randomly remove or add a proportion of node-hyperedge connections (i.e.,
hyperlinks) in the original hypergraph and then train and evaluate HNN algorithms on the perturbed
structures. The modification ratio ranges from 0 to 0.9 to simulate varying levels of noise intensity.

Feature-level Robustness Evaluation Setting. To study feature-level robustness, we simulate
two realistic types of feature perturbations: feature noise and feature sparsity. For feature noise,
following (Wu et al., 2020), we add independent Gaussian noise to each feature dimension of all
nodes with gradually increasing amplitude. Specifically, we use the mean of the maximum feature
value of each node as the reference amplitude r, and add Gaussian noise A - r - € to each feature
dimension, where € ~ N(0, 1) and A denotes the feature noise ratio. We evaluate model performance
as A varies from 0 to 0.9 with a step size of 0.1. For feature sparsity, following (Li et al., 2023), we
randomly mask a certain proportion of node features by filling them with zeros, with the sparsity
ratio ranging from O to 0.9 at an interval of 0.1.

Supervision-level Robustness Evaluation Setting. We study supervision-level robustness by
simulating realistic noise and sparsity scenarios. For label noise, following (Dai et al., 2021), a certain
proportion of training samples are randomly assigned incorrect labels by uniformly flipping them
to one of the other classes. The noise ratio varies from 0 to 0.2 in increments of 0.05. Sparsity is
introduced by reducing the ratio of training nodes, with the sparsity rate ranging from 0 to 0.8 with a
step size of 0.2.

B.5 FAIRNESS EVALUATION METRICS

For fairness evaluation, we adopt two widely used group fairness metrics: demographic parity
(DP) (Dwork et al., 2012), and equalized odds (EO) (Hardt et al., 2016). We focus on a binary
classification task, with target label y € {0, 1} and binary sensitive attribute s € {0, 1}.

Demographic Parity. If the predicted result ¢ is independent of sensitive attributes s, i.e., § L s,
then we can consider demographic parity is achieved. Formally, this criterion can be expressed as:

PH=1]|s=0)=P@{H=1|s=1). (1

If a model satisfies demographic parity, the acceptance rate of different protected groups is the same.
The deviation measure A pp in the quantitative evaluation is given by:

App=|P(H=1[s=0)-PH=1[s=1)], 2
where a smaller value indicates a fairer prediction distribution across groups.

Equalized Odds. If the predicted outcome ¢ and the sensitive attribute s are conditionally independent
given the ground-truth label y, i.e., § L s | y, then we consider equalized odds is achieved. The
formula for this criterion is as follows:

Plg=1|s=1y=1)=Pg=1]s=0,y =1). 3)

If a model achieves equalized odds, the True Positive Rate (TPR) and False Positive Rate (FPR) are
equal across different protected groups. The deviation measure A g is calculated as:

where a smaller value reflects more equitable predictive behavior across sensitive groups under the

same ground-truth condition.

22

Under review as a conference paper at ICLR 2026

B.6 DISCUSSION ON ROBUSTNESS AND FAIRNESS EVALUATION

In this section, for the newly introduced robustness and fairness metrics, we discuss how an ideal
HNN model is expected to behave during evaluation.

B.6.1 DISCUSSION ON ROBUSTNESS METRICS

Structure Robustness. (1) In homophilous settings, meaningful higher-order relations benefit
classification. Under drop perturbations, a desirable HNN should maintain accuracy that is no lower
than that of structure-agnostic baselines (e.g., MLPs), and ideally remain as stable as possible. This
indicates that when higher-order structure exists, the model is indeed able to effectively leverage it.
Under addition perturbations, which introduce noisy or spurious links, an ideal HNN is expected to
identify and down-weight these noisy edges during message passing. Consequently, the model should
also maintain stable performance and stay close to the clean-hypergraph accuracy, demonstrating
resilience to the adverse effects of structural noise. (2) In heterophilous settings, many higher-order
connections are not helpful and may even be harmful. In this case, as the perturbation ratio increases,
a robust HNN is expected to show a performance trend that remains stable or even improves. Such a
trend indicates that disrupting harmful heterophilous links enables the model to better capture the
remaining homophilous patterns, reflecting stronger robustness to misleading structural signals.

Feature Robustness. For feature robustness evaluation, an ideal HNN is one whose predictive
performance degrades slowly as feature noise increases or feature sparsity becomes more severe.
Under our benchmark setting, we expect a good HNN to maintain an average performance clearly
above the baseline obtained when all features are replaced with random noise, indicating that the
model can effectively exploit meaningful feature signals. Likewise, as the feature sparsity ratio
increases, the model’s performance should decline gradually while remaining above the extreme case
where only a single feature dimension is preserved and, within this feasible range, stay as close as
possible to the clean-hypergraph performance. Such behavior reflects the model’s ability to utilize
informative features even under highly degraded or partially missing feature conditions.

Label Robustness. For label robustness evaluation, we regard an ideal HNN as one whose predictive
performance remains insensitive to different levels of label noise and label sparsity. Under our
benchmark setting, a strong HNN should retain test accuracy close to its clean-data performance,
showing either minimal degradation or no noticeable drop as the proportion of noisy labels increases
or as the fraction of labeled training nodes decreases.

B.6.2 DISCUSSION ON FAIRNESS METRICS

For fairness evaluation, an ideal HNN maintains strong predictive performance while exhibiting no
algorithmic bias across different sensitive demographic groups. Specifically, under our benchmark
setting, a good HNN should achieve high node classification accuracy while simultaneously attaining
low values on the fairness metrics demographic parity (A pp) and equalized odds (Ago).

B.7 DISCUSSION ON MEMORY MITIGATION STRATEGIES

In our DHG-Bench, our primary mitigation strategy for handling memory-intensive settings is the
unified support for sparse-matrix storage and training. Sparse operations are broadly compatible
with all HNN models and effectively reduce memory overhead without affecting training dynamics,
making them a practical and reliable choice. Below, we detail this strategy and explain why certain
other techniques were not adopted.

Support for Sparse Matrix. DHG-Bench implements full sparse support for all HNNs, including
sparse incidence matrices and sparse matrix computations during message passing. Representing
the incidence matrix in a sparse format substantially reduces memory consumption, particularly for
large-scale datasets. Sparse tensor operations also eliminate the need to materialize dense intermediate
matrices during aggregation, which lowers peak memory usage in both the forward and backward
passes. This design allows DHG-Bench to scale to larger hypergraphs than would be feasible with
dense representations and serves as our main approach to preventing the OOM issue.

Why Mini-batching is not Used. Following the standard practice in most related HNN studies,
DHG-Bench employs full-batch training for all models. Hypergraphs differ fundamentally from

23

Under review as a conference paper at ICLR 2026

Table AS5: Additional node classification results on NTU2012, ModelNet40, and Ratings.

Method NTU2012 ModelNet40 Ratings
MLP 88.59+1.27 96.884-0.23 28.4740.76
CEGCN 84.93+1.12 92.344-0.24 26.65+1.61
CEGAT 84.14+1.77 92.024-0.26 28.2340.50
HGNN 90.1340.89 97.4340.20 28.0540.28
HyperGCN 75.78+4.82 91.15+3.88 27.34+0.72
HCHA 90.534+1.00 97.6840.16 28.3340.34
LEGCN 89.82+0.91 96.824-0.24 28.2140.50
HyperND 88.98+1.56 97.1840.58 28.3240.38
PhenomNN 88.78+0.67 98.2840.18 28.4940.41
SheafHyperGNN 90.81+0.58 98.30+0.19 28.3540.57
HJRL 88.15+1.18 96.3340.30 26.9040.55
DPHGNN 84.77+1.06 97.1940.17 28.57+1.07
TF-HNN 91.69+0.75 98.38+0.11 28.5640.68
HNHN 87.27+1.53 97.3040.27 27.2940.70
UniGNN 89.86+0.44 98.4240.08 28.3940.64
AllSetTransformer 90.174+1.03 98.07+0.21 27.3241.11
ED-HNN 91.4540.70 98.51+0.15 28.3840.31
HyperGT 86.00+2.05 96.83+0.17 26.58+0.33
EHNN 87.99+40.39 97.974+0.17 28.95+0.81

T-HyperGNN 89.154+1.09 97.7640.34 24.63+1.22

graphs because hyperedges connect multiple nodes simultaneously. However, there is currently no
widely adopted, hypergraph-specific mini-batch sampling strategy that preserves hyperedge integrity
or provides unbiased training signals. Existing sampling methods designed for graphs do not directly
transfer to hypergraphs, as they often break hyperedge structures or distort higher-order relationships.
DHG-Bench therefore follows the full-batch protocol to ensure comparability with prior works.
Developing principled mini-batch sampling strategies for hypergraphs is an important direction, and
we plan to explore this in future extensions of DHG-Bench.

Why Mixed-Precision is not Used. Mixed-precision training can reduce memory usage in some
deep learning models. However, many HNNs rely on sparse operations and irregular message-passing
kernels, and while PyTorch technically allows FP16 sparse tensors, most sparse operators either lack
full FP16 support or exhibit numerical instability in half-precision settings. To keep the evaluation
fair and consistent across all models, we choose not to include the mixed precision strategy.

C SUPPLEMENTARY EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL RESULTS ON EFFECTIVENESS EVALUATION

Table A5 shows the node classification results of all HNN algorithms on three datasets: NTU2012,
ModelNet, and Ratings.

Table A6, A7 reports the full result of hyperedge prediction and hypergraph classification, respectively.
Tensor-based methods are not considered in the hypergraph classification task, as they lack flexibility
in supporting multi-graph training.

C.2 EXPERIMENTAL RESULTS ON ROBUSTNESS EVALUATION

Figures A2, A3, and A4 show the robustness evaluation results at the structure, feature, and supervi-
sion levels on the Pubmed and Pokec datasets, respectively.

C.3 EXPERIMENTAL RESULTS ON FAIRNESS EVALUATION

Table A8 presents the full experimental results of fairness evaluation in terms of three metrics:
accuracy (Acc), demographic parity (App), and equalized odds (Agp).

24

Under review as a conference paper at ICLR 2026

Table A6: Evaluation results of hyperedge prediction.

Method Cora PubMed Cora-CA DBLP-CA Actor Pokec
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

MLP 68.01+123 66.00+044 69.21x061 7115173 72.80+127 69.19+019 70.66+036 54.75+229 53.63+156 69.69+256 69.07+3.03
CEGCN 66.10+2.43 60.14+397 60.25+360 67274378 T1.23+260 64.06£111 65.07+160 50.02+001 50.05+£002 73.03+276 70.08+295
CEGAT 72.48+052 6220625 61.63+599 69.81+£113 70.38+133 66.50+880 65294821 56.34+533 56.36+£507 81.01+043 79.61+1.60
HGNN 73.70x1.19 66.08+9.84 63.67+9.02 89.16+1.11 89.85+082 75441301 73964491 72424196 68.79+183 86.09+092 84.32+095
HyperGCN 77.34+130 66.46+887 64.84+798 92.731095 93.42:089 89.4610a8 91.39+034 55.01+876 56.29+744 91451070 90.76+0.70
HCHA 73.57+1.08 63.35+161 63.13+147 85.85+327 84.77+566 73.304372 72.09+307 69.86+095 66.72+074 88.81+028 88.25+0.41
LEGCN 67.16+255 56.39+328 54.33+241 74291059 75.95+062 50.70+140 50.47+094 48.25+300 49.76+129 T4.94x144 73.89+1.04
HyperND 69.10+1.28 72.12+078 73.53+063 84.01+061 84.98+107 78.63+071 79.42+094 53.124256 52.64+233 75.77+156 73.51+1.62
PhenomNN 75. 71091 74.29+085 72.93+127 80.27+162 79.59+111 75864086 75.54+088 56.65+304 55.75+287 70.83+252 70.17+236
SheafHyperGNN 70.53+5.28 68.26+1.92 68.07+1.18 79.21+453 75424673 76.30+191 75414176 59.83+677 59.84+573 83.441249 85.11x180
HIRL 58.48+252 61.02+260 59.28+084 58.63+150 82.41+190 85.67+111 OOM OOM 48.26+077 50.00+031 84.88+330 86.18+261
DPHGNN 66.48+s582 67.23+5.11 60.37+777 59.86+7.70 82.89+228 83.78+250 OOM OOM 42441581 46.60+303 73.35+450 73.28+374
TF-HNN 76941086 76.57x071 73.75+073 75.54x072 T4.97x1s5s T1.13x16s 75.70+277 74.694226 54.03+171 54.06+157 68.00+097 67.41+1.20
HNHN 70.13£167 68.84x1.09 55.67+£039 53.52+031 84.33+140 83.49+100 82.85+070 82.13+058 69.89+098 66.45+074 82.25+134 81.72+153
UniGNN 73.51+087 51 74.20x0s2 71.76+116 80.59+09s 82.37+111 81.08+079 79.39+046 50.24+126 50.01+056 85.64+120 84.36+148

AllSetTransformer ~ 72.55+295 74.86+1s85 71.09+299 73.15+249 76.13+770 75.024868 75.12+414 77.12+422 55844509 58.73+439 83.65+43¢ 83.36+472
ED-HNN 67.24x191 69.89+224 70.09+043 72.61+04s T4.58+137 72.94+13 81.86+067 84.75+t0s0 S51.74+279 52.27+25¢ 8527+148 84.95+143
HyperGT 60.68+4.46 63.02+400 6438058 67.79+059 65994248 69.66+220 74.27+024 72.90+017 65.18+160 63.24+053 81374538 82.73+583

EHNN 78.99+099 79.54:093 76.50+062 75.941070 77.83+301 78294372 87.964+098 89.00+064 65.69+046 65.37+035 88.63+158 91.31+0s8
T-HyperGNN 58914123 62.17+158 58.35+443 55.81+371 66.87+088 69.65+053 67.17+579 68.45+385 49.16+022 50.20+041 65.21+121 66.90+1.56

Table A7: Evaluation results of hypergraph classification. Acc and F1_ma denote the accuracy and
Macro-F1, respectively. Tensor-based methods are omitted as they cannot be applied to this task.

Method RHG-10 RHG-3 IMDB-Dir-Form IMDB-Dir-Genre Steam-Player Twitter-Friend
Acc F1_ma Acc Fl_ma Acc Fl_ma Acc Fl_ma Acc Fl_ma Acc Fl_ma

MLP 91.70+102 91.43+100 95.73+186 95.72+184 63.62+1.69 56.98+393 75.12+070 71.10+074 52.34+055 51.60+068 57.25+181 52.88+457
CEGCN 91.50+155 90.48+142 98.63+073 98.65+077 62.66+182 5531+358 75.06+076 68.98+167 48.16+387 47.03+379 54.66+566 42.16+271
CEGAT 88.70+1.71 88.43+172 98.80x061 98.83+059 63.51+k154 56974483 74124260 68.61+473 49514471 46.85+493 57.324259 38224254
HGNN 94.60+166 94.47+184 9893068 98.97x065 63.72+062 57.92+224 76.76+266 72.02+437 51.65+251 50914292 55424203 46.81+427
HyperGCN 85.50+110 95.42+109 99.47x050 99.48+049 62.87x040 57.20+246 77.53+099 72.97+108 S51.17+332 50484312 56.95+4.17 50.12+5.88
HCHA 96.60+1.02 96.48+100 99.33+042 99.37+038 61.60+216 55.37+217 78.12+196 73204300 52434230 51.77+252 58174234 49.57+684
LEGCN 92.40+116 92.06+1.19 96.80+098 96.78+020 61.81+132 56.05+375 76.38+168 72.03+154 53.11+158 52.70+1.87 56.64+372 53.38+492
HyperND 91.00+0.95 92.80+195 92.75+£190 60.74+325 55.02+495 75.65+051 71.37x110 53.88+215 49.71x205 55274379 43.61x651
PhenomNN 91.10+073 93.47+190 93.45+190 61284197 53.71+313 74.59+061 70.15+088 51.65+306 48944455 57.40+384 48.26+4.66
SheafHyperGNN 96.00+1.38 99.73+033 99.74+030 62.34+206 56.47+349 77.00+1.14 72.78+117 53.11+239 52.56+274 56.49+251 51.43+442
HIJRL 96.10+0.50 99.60+053 99.57+052 63.09+283 56.54+362 77.82+147 73731192 S51.84x352 51134329 57.104279 44.19+7.19
DPHGNN 96.80-+0.68 99.49+065 99.61x064 64.04:1270 57.414396 76.18+130 71.59+182 51.36+172 49.03+£363 59.244288 46.124849
TF-HNN 95.90+0.80 98.80+065 98.84x061 62.34+176 55.32+4381 76.41+131 T1.89+145 54.851182 52724254 56.18+353 44.174895

HNHN 94.00+190 94.08x188 99.92:10.02 99951002 62341298 55241388 73.65+147 69.68+1.18 52.82+161 52.68+1.69 5847465 39.40+3.14

UniGNN 95.50+138 95.40+144 98.80+£027 98.83+027 61.06+288 55.75+401 77.12+088 72934143 51464248 48.85+259 55881414 46.48+490
AllSetTransformer ~ 97.30-0.98 04 98.80+027 98.81+026 62.23x101 56264293 76.47+138 72.26+112 53.01+277 48.21+720 60.15+170 51.52+7.00
ED-HNN 96.50+077 96.41+078 99.07+053 99.10+051 62.13+236 57.00+471 77.12+111 72.87+044 52.824265 48.73+236 57.40+266 42.57+509
HyperGT 91.60+142 91.29+153 96.27+193 96.28+188 61.49+432 55.14+602 73.82+127 69.36+145 54474133 51.55+108 54.35+272 47.49+511
—— HGNN —<— PhenomNN —&— SheafHyperGNN DPHGNN ~ —&— TF-HNN —&— AliSetTransformer ~—<— UniGNN —=— ED-HNN —— HyperGT ~ —¢— T-HyperGNN
%0 Pubmed Pokec Pubmed Pokec

Accuracy (%)
o N
S

IS
&

w
S

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Hyperlink Deletion Ratio Hyperlink Deletion Ratio Hyperlink Addition Ratio Hyperlink Addition Ratio
Figure A2: Structure robustness analysis on Pubmed and Pokec.
—— HGNN —=— PhenomNN —=— SheafHyperGNN DPHGNN ~ —e— TF-HNN —=— AliSetTransformer ~ —o— UNiGNN ~ —=— ED-HNN —=— HyperGT —— T-HyperGNN
20 Pubmed Pokec Pubmed Pokec
~ 80
2 57
g7 54
5 60
S
50 51
40 48
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Feature Noise Ratio Feature Noise Ratio Feature Mask Ratio Feature Mask Ratio

Figure A3: Feature robustness analysis on Pubmed and Pokec.

C.4 NODE CLASSIFICATION IN LABEL-SCARCE SCENARIOS
In this section, we analyze the HNNs in more label-scarce scenarios to provide additional insights

into the effectiveness of the HNN algorithms, particularly in understanding their applicability in
real-world settings where labeled data is limited.

25

Under review as a conference paper at ICLR 2026

~#— HGNN —<— PhenomNN —&-— SheafHyperGNN DPHGNN ~ —&— TF-HNN —B— AllSetTransformer ~ —&— UniGNN ~ —e— ED-HNN —A— HyperGT ~ —$— T-HyperGNN

Pubmed Pokec Pubmed Pokec
3 88 A - &

=)
a

861 %

®
o

84

@

N

N~
o

52
50

Accuracy (%)

82 2

& 80 \

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Label Noise Ratio Label Noise Ratio Label Sparsity Ratio Label Sparsity Ratio

o
a

Figure A4: Supervision robustness analysis on Pubmed and Pokec.

Table A8: Fairness Evaluation.

German Bail Credit
Method
Acc T App | Ago | Acc T App | Ago | Acc T App | Ago |
MLP 67.68+3.46 1.78+1.30 2.59+099 89.40+1.76 6.16+093 1.79+084 79.6940.85 3.43+083 2.07+0.43
CEGCN 69.60+2.78 6.19+459 6.46+5.48 OOM OOM OOM OOM OOM OOM
CEGAT 69.12+£2.44 9.00+4.77 8.52+3.82 OOM OOM OOM OOM OOM OOM
HGNN 69.76+£250 9.59+351 6.90+382 91.02+054 7.83+080 2.60+1.05 80.21+041 5.04+207 3.46+1.05
HyperGCN 70.40+£323 6394287 3.57+161 94724079 7.90+095 1.23+052 80.42+034 5.38+261 3.89+1.60
HCHA 70.56+251 9374374 6.724+305 91.524+092 7.624+095 1.40+080 80.08+043 3.58+1.87 2.47+0.78
LEGCN 70.88+3.22 7.53+254 3254200 95.024+040 7.87+0.62 1.28+052 80.48+037 4.31+224 3154112
HyperND 71.04+261 7.37+470 3.67+3.10 89.75+241 7.92+152 3.19+222 80.02+049 4144222 2.50+0.72
PhenomNN 70.96+2.85 3.5443.07 1.60+194 91.71+1.13 10.83+1.64 1.94+040 OOM OOM OOM
SheafHyperGNN 70.64+3.29 8.14+325 5234205 OOM OOM OOM OOM OOM OOM
HIRL 69.92£3.46 3.52+270 3.05+1.82 OOM OOM OOM OOM OOM OOM
DPHGNN 70.24+325 2.254049 1.38+077 93.41+093 8.07+120 2.05+1.22 OOM OOM OOM
TF-HNN 70.48+3.14 5274309 4.19+223 95334025 7.96+065 1.03+0.67 80.4640.36 4.93+244 3.43+143
HNHN 69.52+£3.62 4.01+276 1.59+1.60 90.76+130 6.03+1.43 3.04+134 78.004+023 5.70+3.11 4.67+3.10
UniGNN 71.07+£270 5.08+3.03 2.80+1.32 91.30+147 9424168 3.94+2.18 80.444037 3.90+240 2.85+1.33
AllSetTransformer ~ 70.48+3.11 4.47+339 3.50+338 96.26+1.83 8364085 1.95+1.10 80.40+044 4.46+296 3.44+1.60
ED-HNN 70.16+3.15 4.06+£3.05 4.07+275 94264077 8.05+0.64 1.5140.26 OOM OOM OOM
HyperGT 68.88+£2.01 5.05+288 4.36+259 94.33+0.62 7.68+1.13 1.64+137 79.83+039 4.17£250 2.69+1.97
EHNN 70.40+£3.07 2874573 2344469 93.62+175 9.29+160 2.88+1.23 80.344047 4514277 3134175
T-HyperGNN 71.20+£1.82 8.99+652 6.80+5.02 OOM OOM OOM OOM OOM OOM

Experiment Settings. We first split the node labels into 20%/20%/60% for the train/validation/test
sets. The validation and test sets are then kept fixed, and different levels of label scarcity are simulated
by masking a portion of the training labels. Specifically, we adjust the masking ratio so that the
visible training labels constitute 20%, 15%, 10%, 5%, and 1% of all nodes. This design allows us to
systematically examine how HNNs behave as labeled data becomes increasingly limited. We evaluate
8 representative HNN algorithms spanning three major categories (spectral-based, spatial-based, and
tensor-based) on the Cora and Actor datasets, and report model performance in terms of accuracy.

Table A9: Label-scarce node classification on Cora.

Method 20% 15% 10% 5% 1%

HGNN 74.84 7324 70.09 64.75 42.30
PhenomNN 75.35 74.07 7196 67.55 44.96
SheafHyperGCN 76.06 74.66 7129 6637 43.67
TF-HNN 76.31 75.07 71.77 64.48 39.29
UniGNN 76.08 74.04 70.89 64.85 43.18
AllSetTransformer 73.48 7233 68.46 61.70 40.44
ED-HNN 7420 7241 69.93 63.65 42.79
T-HyperGNN 69.02 66.99 62.50 52.89 36.60

Results and Analysis. From Tables A9 and A10, we derive the following key observations: (1)
As label scarcity increases, all HNN models exhibit a clear degradation in performance, with
the decline becoming more significant under extremely low-label settings; notably, all methods
experience substantial drops when the labeled ratio decreases from 5% to 1%. (2) Across both
datasets, PhenomNN consistently shows the strongest robustness under highly label-scarce conditions
(1% and 5%). In contrast, TF-HNN, although it achieves SOTA performance in label-abundant
scenarios (see Table 1 in the original manuscript), suffers a severe accuracy collapse when supervision
is limited and ranks as the second-worst method on Cora at the 1% label ratio. (3) The performance
degradation on the homophilous Cora dataset is more pronounced than on the heterophilous Actor

26

Under review as a conference paper at ICLR 2026

Table A10: Label-scarce node classification on Actor.
Method 20% 15% 10% 5% 1%

HGNN 7790 77779 7752 76.39 70.12
PhenomNN 8299 82.890 8256 81.77 76.89
SheafHyperGCN 84.16 83.67 82.95 8048 72.27

TF-HNN 8534 84.74 8395 81.74 74.88
UniGNN 82.85 82.65 82.64 81.69 76.34
AllSetTransformer 84.06 83.46 82.25 79.55 7547
ED-HNN 84.74 8430 83.38 81.14 75.53

T-HyperGNN 84.87 8439 8348 81.29 73.63

dataset. This may be because heterophilous links introduce misleading feature mixing, which reduces
the usefulness of label information during training and makes Actor less sensitive to label scarcity.

C.5 ADDITIONAL RESULTS FOR DIRECTION-AWARE GNNS

In this section, we additionally include two widely used direction-aware GNNs, MagNet (Zhang
et al., 2021) and DirGNN (Rossi et al., 2024), as supplementary baselines. Both models are evaluated
on node-level, edge-level, and graph-level tasks, with the corresponding results reported in Table A11,
Table A12, and Table A13, respectively.

Table A11: Node classification performance of direction-aware GNNs.
Method Cora Pubmed DBLP-CA Walmart Actor Pokec

MagNet ~ 77.10+135 86.12+0.16 89.99+031 71.81+027 67.62+056 57.01+0.69
DirGNN 78.17+081 86.50+046 90.75+028 73.78+009 84.92+049 58.47+087

Table A12: Hyperedge prediction performance of direction-aware GNNs.
Cora Pubmed Actor Pokec
AUROC AP AUROC AP AUROC AP AUROC AP

MagNet 56.45+002 55.18+001 53.64+002 54.79+001 50.76+002 50.21+002 79.95+001 80.78+0.01
DirGNN 63.02+002 61.38+003 55.03+002 55.284+002 51.72+002 51.33+002 80.14+001 79.65+0.01

Method

Table A13: Hypergraph classification performance of direction-aware GNNss.
RHG-10 IMDB-Dir-Genre Steam-Player Twitter-Friend
Acc Fl_ma Acc Fl_ma Acc Fl_ma Acc Fl_ma

MagNet 93.20+002 92.95+002 75944001 71.45+000 51.75+002 51.12+003 55.11+002 46.64+0.03
DirGNN 94.80+0.01 94.68+001 76.534+002 72.59+002 52.33+001 52.24+001 54.81+004 46.0240.03

Method

Results and Analysis. From the results shown in the tables above, we derive the following key
findings: (1) In node classification, the two newly added direction-aware GNNs generally fall short
of most HNN methods across the six datasets, reflecting the advantage of HNN architectures in
modeling higher-order structures. We also observe that DirGNN achieves competitive performance
on heterophilous datasets such as Actor and Pokec, likely because its separation mechanism in
neighbor aggregation helps mitigate the adverse feature mixing effects induced by heterophily. (2) In
hyperedge prediction, direction-aware GNNs perform notably worse than HNNs and, in many cases,
even underperform traditional MLPs. A key reason is that their directional aggregation mechanism,
which separates incoming and outgoing neighbors, reinforces a pairwise and asymmetric view of
interactions. This asymmetry limits the model’s ability to form coherent representations of multi-node
groups and makes it difficult to capture the joint, order-invariant dependencies required for accurate
hyperedge prediction. (3) In hypergraph classification, direction-aware GNNs remain less competitive
than state-of-the-art HNNs, which benefit from explicit modeling of higher-order interactions that are
crucial for capturing complex hypergraph structures.

27

Under review as a conference paper at ICLR 2026

C.6 ANALYZING PERFORMANCE DEGRADATION ON HETEROPHILOUS DATASETS

In this section, we investigate the underlying causes of performance degradation on heterophilous
hypergraphs and test two key hypotheses: oversmoothing and feature collapse.

At the first step, we evaluate how the accuracy of four representative HNN architectures changes
as the number of layers increases on two heterophilous datasets, Actor and Pokec, with the goal of
examining whether oversmoothing occurs. According to Tables A14 and A 15, although increasing
depth generally causes a gradual performance decline in HNNs (i.e., oversmoothing), all HNN
variants already underperform the MLP baseline under the 1-layer message passing. This suggests
that depth is not the primary factor behind the performance gap.

Table A14: Node classification on Actor with varying layer depths.

Method 1 2 3 4 5
MLP 8123+ 039 86.06 = 0.36 84.90 £ 0.41 84.55 +0.54 84.28 4+ 0.69
HGNN 77.63 £0.74 7384+ 037 70.824+0.70 68.59 £0.68 67.33 + 0.45
SheafHyperGNN 85.00+0.32 8471 =043 83.61 £048 82.88 + 0.41 82.15 + 0.63
AllSetTransformer 85.79 + 0.77 85.63 =035 85.68 £0.55 85.38 + 0.35 85.49 + 0.21
ED-HNN 85.69 4+ 0.45 85.82+0.28 8553 +£0.37 8493£047 82.60 £ 9.96

Table A15: Node classification on Pokec with varying layer depths.

Method 1 2 3 4 5
MLP 5791 + 0.61 59.64 £048 5881 £0.58 58.524+0.85 58.94 £ 0.87
HGNN 5743 +0.67 5748 £0.82 5726+ 0.78 56.88 £ 1.24 56.79 £ 0.68
SheatHyperGNN 59.02 £ 042 5894 +0.67 58.26 & 0.61 58.03 £0.83 57.93 +£0.73
AllSetTransformer 58.75 £ 0.48 58.58 £ 0.55 58.50 + 0.85 58.54 £ 0.58 58.35 £ 0.34
ED-HNN 58.52+032 5871+030 5874 +£0.50 5824 +£0.50 5811+ 0.58

To further examine the underlying factors, we first compute the Mean Average Distance (MAD) (Chen
et al., 2020), a widely adopted metric for measuring the smoothness (i.e., similarity) of graph
representations. Specifically, we report the MAD values for both the raw input features and the
representations obtained after the first layer. Next, to assess the extent of feature mixing under
heterophily, we measure the similarity between each node and its heterophilous neighbors using the
cosine distance. Formally, the heterophilous similarity is defined as:

W = avg(;). jenvan(s) COS (hglL hél)) (5)

where NUft(7) = {j € N(i) | y; # y;} denotes the set of heterophilous neighbors whose labels
differ from that of node 7. The results are reported in Tables A16 and A17.

Sim

Table A16: MAD and Sim“" values on Actor.

Layer HGNN SheafHyperGNN AllSetTransformer ED-HNN MLP
MAD Sim% MAD Sim® MAD Sim® MAD Sim® MAD = Sim®f
0 0.8114 0.0584 0.8114 0.0584 0.8114 0.0584 0.8114 0.0584 0.8114 0.0584
1 0.4700 0.4013 0.3976 0.4274 0.2379 0.4892 0.5540 0.0515 0.7456 -0.0829

Table A17: MAD and Sim®" values on Pokec.

Layer HGNN SheafHyperGNN AllSetTransformer ED-HNN MLP
MAD Sim% MAD Sim® MAD Sim% MAD Sim% MAD = Simdf
0 02697 00775 02697 0.0775 02697 0.0775 02697 00775 02697 0.0775
1 0.1054 0.6364 0.1490 07573 0.0058 09796 0.0592 0.7818 0.2034 0.2990

Our empirical analysis reveals two key observations: (1) After only 1-layer hypergraph message
passing, MAD decreases sharply compared to the raw input features, indicating that node rep-
resentations rapidly become more homogeneous. This demonstrates that HNN message passing

28

Under review as a conference paper at ICLR 2026

introduces representation smoothness at a very early stage. (2) The similarity between nodes and
their heterophilous neighbors increases substantially, suggesting that heterophilous links cause strong
cross-class feature mixing and pull representations of different classes closer together. Such mix-
ing reduces class separability and ultimately impairs the effectiveness of HNN-based classifiers in
heterophilous settings.

These observations align closely with prior theoretical and empirical findings on heterophilic GNNS.
Existing studies (e.g., (Zhu et al., 2020; Luan et al., 2022; Yan et al., 2022)) suggest that heterophily
may negatively affect message-passing architectures, because features of nodes from different classes
are falsely mixed, leading to feature collapse and making nodes increasingly indistinguishable. Our
results directly validate this hypothesis in the hypergraph setting: the sharp MAD reduction and
pronounced cross-class similarity we observe mirror the failure patterns reported in these works.

C.7 HYPEREDGE PREDICTION UNDER DIFFERENT DATA SPLITS

In this section, we conduct hyperedge prediction experiments under temporal and inductive split set-
tings to account for potential temporal and inductive drift, thereby enabling more realistic evaluation
scenarios.

C.7.1 TEMPORAL SPLITS EVALUATION

Experiment Settings. Since the datasets in our current benchmark are static hypergraphs and
therefore do not support temporal splits, we introduce two widely used temporal hypergraph datasets:
the email network Email-Enron and the drug network NDC-Classes (Benson et al., 2018). Their
detailed statistics are reported in Table A18. Based on timestamp information, we sort all hyperedges
in ascending temporal order and let 7" denote the maximum timestamp. Hyperedges with timestamps
< 0.6T are used for training, those within (0.67',0.87] form the validation set, and those with
timestamps > 0.87 constitute the test set, resulting in a 60%/20%/20% temporal split.

Table A18: Statistics of the two temporal hypergraphs.

Dataset #Nodes #Edges # Timestamps
Email-Enron 1,161 49,724 5,891
NDC-Classes 143 10,883 10,788

Table A19: Hyperedge prediction performance under temporal splits.

Email-Enron NDC-Classes
Method
AUROC AP AUROC AP

HGNN 87.30+t0.10 86.42+t021 94.22+025 93.75+0.49
SheafHyperGNN 80.17+052 80.85+0.85 91.97+0.17 92.03+0.06
TF-HNN 78.87+099 79.07+053 87.28+032 88.77+0.92
UniGNN 82.52+059 82.02+092 92.17+0.05 90.36+0.46
ED-HNN 76.97+1.13 76.29+023 75.93+211 76.04+0.74
EHNN 80.58+063 79.19+0.10 86.06+6.05 88.47+3.84

Results and Analysis. As shown in Table A19, HGNN outperforms all other HNN architectures
on both temporal hypergraphs, suggesting a stronger capability to capture group-level temporal
interaction patterns, making it more suitable for real-world higher-order relational prediction. In
contrast, ED-HNN consistently achieves substantially lower predictive performance across both
datasets. Moreover, all HNN models exhibit noticeably lower accuracy on Email-Enron compared to
NDC-Classes, which may be attributed to the increased temporal complexity introduced by its larger
number of nodes and hyperedges, thereby making inductive prediction more challenging.

29

Under review as a conference paper at ICLR 2026

C.7.2 INDUCTIVE SPLITS EVALUATION

Experiment Settings. In the inductive setting, we divide the nodes of each dataset into three disjoint
subsets for training, validation, and testing. Hyperedges in each split are constrained to include only
nodes within the corresponding subset, ensuring a strictly disjoint node—hyperedge partition. In
our experiments, we adopt a 40%/20%/40% split for the training, validation, and testing node sets,
respectively.

Table A20: Hyperedge prediction performance under inductive splits.

Cora Pubmed Actor
Method
AUROC AP AUROC AP AUROC AP

HGNN 74.07+850 76.81+9.75 65.18+9.41 63.09+967 71.224537 70.37+471
SheafHyperGNN 60.13+490 65.06+3.79 65.59+125 66.84+0.11 67.04+263 71.44+354
TF-HNN 80.81+4.68 84.19+595 71.74+067 73.37+1.09 70.98+1.91 71.41+217
UniGNN 67.63+591 72.69+301 59.28+3.11 61.62+046 57.26+250 60.60+2.49
ED-HNN 54334393 59.44+123 75.22+189 76.74+202 67.89+364 68.33+3.65
EHNN 68.85+1.17 71.024296 64.66+10.14 63.92+983 64.73+465 63.60+5.11

Results and Analysis. As shown in Table A20, TF-HNN typically ranks first or second across
inductive hyperedge prediction datasets, indicating strong generalization to inductive distribution
shift. In contrast, UniGNN performs noticeably worse in the inductive setting, particularly on
Pubmed and Actor, suggesting that it is more sensitive to inductive drift. Moreover, our results
suggest that inductive robustness may vary across datasets, as the same architecture does not always
perform consistently on different hypergraphs. For example, ED-HNN achieves the best performance
on Pubmed but the lowest on Cora. These observations collectively demonstrate that inductive
hyperedge prediction remains a non-trivial challenge for current HNNs, and model behavior can vary
substantially across datasets.

C.8 BENCHMARKING HNNS IN SELF-SUPERVISED SETTINGS

In this section, we evaluate HNN models under self-supervised learning settings, incorporating
pretraining—fine-tuning tracks into the benchmark to better reflect modern training practices.

Experiment Settings. We adopt two recently proposed hypergraph self-supervised learning methods,
TriCL (Lee & Shin, 2023) and SE-HSSL (Li et al., 2024a), to pretrain different HNN architectures.
The pretrained models are then fine-tuned on both node classification and hyperedge prediction tasks.
For node classification, following (Lee & Shin, 2023; Li et al., 2024a), we use a 10%/10%/80% split
of labeled nodes for training, validation, and testing, and report accuracy. For hyperedge prediction,
we follow (Kim et al., 2024a) and adopt a 60%/20%/20% split of hyperedges, evaluating performance
with AUROC and Average Precision (AP).

Results and Analysis. Based on the results reported in Tables A21 and A22, we observe that:
(1) Different self-supervised training frameworks lead to noticeable variations in HNN backbone
performance. Overall, models pretrained with SE-HSSL and subsequently fine-tuned achieve stronger
and more consistent downstream performance than those trained under TriCL in most cases. (3)
Even under the same SSL framework, HNNs may exhibit divergent performance across downstream
tasks. For example, within TriCL, EHNN performs relatively worse on node classification but
achieves top-ranked performance on hyperedge prediction. (3) Across both SSL frameworks, HNN
architectures obtain substantially lower hyperedge prediction accuracy on the heterophilous Actor
dataset. This suggests that existing self-supervised objectives may struggle to effectively capture
higher-order relationships in strongly heterophilous hypergraphs.

C.9 PERFORMANCE SENSITIVITY TO HYPEREDGE SIZE DISTRIBUTIONS

In this section, we empirically analyze the sensitivity of different HNN models to datasets containing
a few very large hyperedges versus many small ones.

Experiment Settings. We construct modified datasets to systematically evaluate model sensitivity.
Specifically, we define super-large hyperedges as those containing at least 10% of all nodes in the

30

Under review as a conference paper at ICLR 2026

Table A21: Node classification performance under self-supervised learning.

Strategy | Method | Cora Pubmed Actor
HGNN 68.74+242 80.74+1.02 73.28+2.13
SheafHyperGNN | 62.13+434 77.144+1.57 81.174+026
TriCL TFTHNN 64.79+233 80.48+1.23 78.60+ 1.46
UniGNN 67.55+338 81.48+1.83 78.92+0.55
ED-HNN 64.54+320 80.17+078 81.76+0.92
EHNN 62.37+428 80.37+073 78.03+3.73
HGNN 7279+ 043 82.67+024 81.12+0.67
SheafHyperGNN | 67.65+1.57 83.114+1.11 80.45+ 1.04
SE-HSSL TF-HNN 68.00+1.19 81.81+068 79.88+0.50
UniGNN 70.51+ 075 85.27+0.10 82.30+0.79
ED-HNN 70.95+ 176 83.71+0.16 83.01+0.93
EHNN 69.85+272 82.03+1.73 81.39+1.24

Table A22: Hyperedge prediction performance under self-supervised learning.

Strategy | Method | Cora | Pubmed | Actor
\ \ AUROC AP \ AUROC AP \ AUROC AP

HGNN 81.25+6.13 81.64+6.17 | 66.80+544 65.45+4.02 | 52.734537 53.43+531
SheafHyperGNN | 69.87+9.72 70.96+937 | 51.21+447 52.45+387 | 50.45+152 50.55+1.01
TrCL TFTHNN 79.53+674 79.75+6.77 | T1.42+130 72.14+1.10 | 48.67+233 49.64+134
UniGNN 77.50+6.75 77.41+705 | 68.97+059 68.28+026 | 45.43+3.15 48.74+1.68
ED-HNN 78.82+678 80.24+6.63 | 67.74+1.06 68.89+145 | 51.39+360 52.82+273
EHNN 81.25+453 81.28+490 | 71.01+195 67.87+3.16 | 53.27+463 51.99+281
HGNN 85.31+4.68 85.22+492 | 73.18+076 70.07+072 | 62.20+431 60.29+2.61
SheafHyperGNN | 55.18+524 57.51+375 | 56.42+369 55.30+271 | 42.16+367 47.11+159
SE-HSSL TF-HNN 84.74+499 84.294536 | 72.244+070 73.83+1.02 | 50.97+399 54.05+2.89
UniGNN 82.20+562 81.614596 | 69.3843.58 69.52+297 | 47.41+067 50.11+039
ED-HNN 78334722 76.64+453 | 68.52+039 69.74+049 | 52.97+067 52.19+1.10
EHNN 67.94+635 67.72+627 | 69.21+405 66.16+533 | 50.03+0.04 50.02-+0.03

Table A23: Hyperedge size sensitivity analysis on Cora.

Method 0 2 4 6 8 10

HGNN 7790 7722 75.66 7474 7235 67.86
TF-HNN 79.47 79.20 78.49 7793 76.63 76.04
AllSetTransformer 78.02 77.87 7734 76.45 76.10 75.24
ED-HNN 78.58 7793 7725 76.69 75778 75.10
EHNN 76.51 76.01 7598 7598 76.13 76.04

Table A24: Hyperedge size sensitivity analysis on DBLP-CA.

Method 0 2 4 6 8 10

HGNN 91.00 9042 89.81 8893 88.32 87.30
TF-HNN 91.38 90.28 89.96 89.44 89.03 88.57
AllSetTransformer 91.51 90.95 90.34 89.48 88.31 87.29
ED-HNN 91.55 91.09 90.72 8998 89.43 88.84
EHNN 90.47 9047 90.44 90.48 90.50 90.51

hypergraph. We sort all hyperedges in descending order by size and iteratively merge them; once
the merged hyperedge exceeds the super-large threshold, we restart the merging process for the next
one. By controlling the number of constructed super-large hyperedges (0, 2, 4, 6, 8, and 10), where

31

Under review as a conference paper at ICLR 2026

Table A25: Hyperedge size sensitivity analysis on Actor.

Method 0 2 4 6 8 10

HGNN 7783 7791 7794 7793 7790 77.72
TF-HNN 8596 8596 8568 8522 8557 8561
AllSetTransformer 85.66 85.69 85.68 85.63 85.84 85.70
ED-HNN 8577 8579 8580 8576 8574 85.77
EHNN 86.21 86.05 86.19 86.18 86.07 8593

Table A26: Hyperedge size sensitivity analysis on Pokec.

Method 0 2 4 6 8 10

HGNN 57.87 58.98 58.57 57.87 57.11 57.78
TF-HNN 59.17 59.13 59.18 59.06 59.07 59.22
AllSetTransformer 58.55 58.90 58.76 59.02 58.67 58.74
ED-HNN 58.68 58.71 59.05 58.82 5891 58.98
EHNN 58.23 58.23 5820 58.06 58.11 58.02

0 corresponds to the original dataset, we obtain variants that introduce only a few extremely large
hyperedges while keeping all remaining ones small.

Results and Analysis. From Tables A23 to A26, we observe that: (1) On homophilic datasets,
introducing only a few extremely large hyperedges while keeping the rest small consistently degrades
model performance. As the proportion of these super-large hyperedges increases, performance
generally continues to decline. This is likely because a small number of oversized hyperedges disrupt
fine-grained local structure, causing the models to lose the class-consistent neighborhood signals that
homophilic settings rely on. (2) On heterophilic datasets, increasing the proportion of super-large
hyperedges generally maintains stable performance and may even yield slight improvements. A
plausible explanation is that, in heterophilic settings, the presence of a small number of oversized
hyperedges further weakens the influence of the original heterophilic connections during message
passing, thereby reducing the impact of noisy or label-inconsistent neighbors. (3) Among all evaluated
architectures, the tensor-based EHNN demonstrates the strongest robustness to extreme hyperedge-
size skew: its performance remains stable across all constructed settings on both homophilic and
heterophilic datasets.

C.10 ANALYZING HNN BEHAVIOR ON EXTREME-DEGREE NODES

Table A27: Performance on very high-degree vs. very low-degree nodes (p = 1%).

Method Cora DBLP-CA Actor Pokec
Very High Very Low Very High Very Low Very High Very Low Very High Very Low

HGNN 85.58 72.05 93.61 88.04 73.37 64.93 59.96 58.23
PhenomNN 85.59 73.47 93.97 89.70 93.18 66.51 64.60 57.42
SheafHyperGNN 85.48 74.38 94.16 88.22 82.42 74.10 64.29 58.41
TF-HNN 85.55 75.11 94.42 87.44 93.71 73.97 67.03 57.80
UniGNN 86.22 74.12 94.22 89.49 93.73 65.35 67.34 57.61
AllSetTransformer 85.36 73.25 95.37 89.12 94.18 72.55 68.24 57.11
ED-HNN 85.36 73.21 94.73 88.88 95.42 70.80 67.63 57.22
EHNN 83.58 69.93 95.24 86.73 95.84 75.66 63.99 57.62

In this section, we conduct experiments to compare the behavior of different HNNs on nodes with
very high versus very low degrees.

Experiment Settings. To investigate this question, we design an experiment that explicitly contrasts
model behavior on nodes with substantially different degrees. Specifically, we define very high—degree
nodes as those whose degrees fall within the top-p% of the dataset, and very low—degree nodes as
those in the bottom-p%. To ensure robustness, we consider two thresholds, p = 1 and p = 5. Our
study evaluates 8 representative HNN architectures spanning three major categories across four

32

Under review as a conference paper at ICLR 2026

Table A28: Performance on very high-degree vs. very low-degree nodes (p = 5%).

Method Cora DBLP-CA Actor Pokec
Very High Very Low Very High Very Low Very High Very Low Very High Very Low

HGNN 81.82 72.05 93.38 88.13 76.93 76.39 58.39 57.80
PhenomNN 80.74 73.47 93.69 89.64 90.24 80.22 64.74 57.98
SheafHyperGNN 82.86 74.38 93.48 88.22 87.87 83.08 63.58 58.43
TF-HNN 81.91 75.11 93.78 87.45 90.88 83.97 65.87 57.80
UniGNN 81.15 74.17 93.58 89.48 90.45 79.05 66.01 57.63
AllSetTransformer 81.37 73.19 93.85 89.17 91.52 83.23 66.78 57.29
ED-HNN 81.02 73.21 93.88 88.89 91.71 82.99 65.77 57.18
EHNN 81.34 70.12 93.95 86.63 91.81 83.49 63.06 57.62

benchmark datasets. For each setting, we report the classification accuracy separately on the very
high—degree and very low—degree subsets of the test nodes.

Results and Analysis. From the results summarized in Tables A27 and A28, we draw two key
observations: (1) Across all datasets and all HNN architectures, we consistently observe a structural
unfairness phenomenon: models achieve substantially higher accuracy on very high-degree nodes
compared to very low-degree nodes. A plausible explanation is that high-degree nodes benefit more
from message passing because they can aggregate richer and more reliable higher-order structural
information, whereas low-degree nodes struggle to leverage structural signals and are more vulnerable
to noise introduced by sparse or unreliable neighbors. (2) The performance disparity becomes more
pronounced under stricter degree thresholds. When the threshold is reduced from 5% to 1%, the gap
between very high-degree and very low-degree nodes typically increases substantially. This suggests
that the most extreme-degree nodes exhibit the strongest disparity, further underscoring the critical
role of degree heterogeneity in shaping HNN behavior.

These analyses provide a clearer understanding of how HNNs behave across extreme degree levels
and reveal that improving the performance of low-degree nodes remains a key bottleneck in advancing
HNN models. This highlights an important direction for future work: designing mechanisms that
better enable low-degree nodes to exploit structural information.

D ADDITIONAL DISCUSSION AND ANALYSIS

D.1 WHY DO HNNS PERFORM DIFFERENTLY ACROSS DATASETS

In this section, we systematically examine why HNN performance varies across datasets, as noted
in the key insights for RQ1. Our analysis suggests that such variation may arise from both dataset
characteristics and architectural design choices.

Dataset-driven factors. (1) Many advanced HNNs perform well on highly homophilous datasets
but exhibit sharp degradation on heterophilous graphs, with performance frequently dropping below
that of MLPs. This may be because heterophilous links mix features from different classes, leading
to feature collapse and reduced class separability. (2) Performance for most HNN architectures
consistently drops on large and structurally complex hypergraphs. For example, Trivago contains a
large number of label categories, increasing classification difficulty, while Yelp exhibits extremely
dense hyperedges that may over-mix signals during propagation. Interestingly, TF-HNN performs
comparatively well on both datasets, suggesting that training-free hypergraph message passing may
be more suitable for large, noisy, or highly complex real-world hypergraphs.

Architecture-driven factors. (1) Methods that involve explicit hypergraph expansion (e.g., Hy-
perGCN, LEGCN, HJRL, DPHGNN) may unintentionally distort higher-order relationships by
converting hyperedges into pairwise structures. This design often preserves performance on datasets
dominated by isolated or pairwise interactions (e.g., Pubmed), but leads to noticeable degradation on
datasets where many nodes participate in rich higher-order interactions (e.g., Cora, DBLP-CA, and
NTU2012). (2) Spatial-based models (e.g., UniGNN, AllSetTransformer, ED-HNN) and TF-HNN
generally provide more stable performance across homophilous and heterophilous datasets. Their
skip-connection style message passing retains raw node information, helping mitigate feature dilution
during higher-order propagation.

33

Under review as a conference paper at ICLR 2026

D.2 TRADE-OFFS AMONG PERFORMANCE, SCALABILITY, AND DATA CHARACTERISTICS

For spectral-based models, most advanced approaches (e.g., PhenomNN, SheafHyperGNN, HJRL)
consistently outperform earlier variants such as HGNN, HyperGCN, and HCHA on homophilous
datasets. However, this accuracy gain relies on more complex expansion mechanisms and Laplacian
operators, which substantially reduce scalability. As shown in Table 1, they frequently encounter
OOM issues on large or dense hypergraphs such as Trivago and Yelp. TF-HNN provides a lightweight
alternative, achieving top-ranked performance on most datasets while maintaining strong scalability
due to its training-free message-passing design. Spatial-based architectures generally offer a more
favorable scalability—performance balance. Models such as UniGNN, AllSetTransformer, and
ED-HNN deliver accuracy comparable to advanced spectral methods on homophilous data with
substantially lower memory consumption. Tensor-based methods (e.g., EHNN and T-HyperGNN)
perform worse on homophilous datasets, but relative to spectral- and spatial-based HNNs, they
often achieve better performance on heterophilous benchmarks, particularly EHNN, which also
demonstrates stronger scalability than T-HyperGNN. Although MLPs perform substantially worse
than HNNs on homophilous datasets, they often excel on heterophilous benchmarks and outperform
many HNN architectures. Furthermore, by removing high-order message passing, MLPs achieve
markedly better scalability.

E RELATED WORKS

Hypergraph neural networks (HNNs) (Yadati et al., 2019; Prokopchik et al., 2022; Wang et al.,
2023a; Xie et al., 2025) have been promising tools for handling learning tasks involving higher-order
data, with notable applications in various fields, such as social network analysis (Sun et al., 2023),
bioinformatics (Li et al., 2025a), and recommender systems (Li et al., 2025b). Howeyver, there exists
no established benchmark specifically dedicated to comprehensively evaluating hypergraph neural
networks. In this section, we introduce a broader range of related studies concerning the comparative
evaluations of HNNs, providing sufficient context for our benchmark work.

Kim et al. (Kim et al., 2024b) recently presented the first survey dedicated to HNNs, with an in-depth
and step-by-step guide. The survey comprehensively reviews existing HNN architectures, training
strategies, and applications, establishing a foundational understanding crucial for advancing the field
of HNNs. To further understand the expressive power of HNNs, Wang et al. (Wang et al., 2025)
conduct the first theoretical analysis on the generalization performance of distinct HNN architectures,
offering practical guidance for improving HNNs’ effectiveness. Nevertheless, systematic empirical
evaluations of different HNN algorithms remain scarce, leaving a limited understanding of their
comparative performance in practice. To facilitate the reproducibility and empirical evaluation of
HNN algorithms, several open-sourced libraries have been developed in recent years. HyFER (Hwang
et al., 2021) is a well-modularized framework for implementing and evaluating HNNSs, dividing the
entire learning process into data, model, and task components. Moreover, to address the scalability
problem that most existing implementations suffer from, HyFER is built on top of Deep Graph
Library (DGL) (Wang et al., 2019), which is a highly efficient open-sourced library for GNNss.
DHG (Gao et al., 2022) is an open-sourced PyTorch-based toolbox designed for general HNNs. It
supports various hypergraph preprocessing methods (e.g., sampling, expansion) and convolution
operators, facilitating the evaluation of HNNs. TopoX (Hajij et al., 2024) is a suite of Python
packages for machine learning on topological domains. These packages enhance and generalize
functionalities found in mainstream hypergraph computations and learning tools, enabling them
on topological domains. TopoBench (Telyatnikov et al., 2024) is a modular Python library that
standardizes benchmarking and accelerates research in Topological Deep Learning (TDL). It supports
training and comparing Topological Neural Networks (TNNs) across diverse domains, including
graphs, simplicial complexes, cellular complexes, and hypergraphs. However, these libraries do not
fully cover the latest HNN algorithms, datasets, and evaluation tasks, and they provide only limited
empirical results without offering an in-depth and comprehensive analysis of existing HNN methods.

To fill the gap, we develop DHG-Bench, the first comprehensive benchmark tailored explicitly for
HNNs. Distinguished by its broad coverage, DHG-Bench spans a wide range of algorithms, datasets,
and evaluation tasks, thereby establishing a standardized and versatile framework for deep hypergraph
learning research. Moreover, it provides comprehensive and systematic empirical evaluations that
uncover the strengths and limitations of different algorithms. By offering such in-depth quantitative

34

Under review as a conference paper at ICLR 2026

Algorithm

4 N\

V\[IV\\ spectral-based \ [JDH J
|\ / g

D

4)
é\g Spatial-based E
(N

-
(.
-
J/
o
4
(.

=
53

|\ /

Config {: s N
& Tensor-based

Figure AS: The package structure of DHG-Bench, which mainly consists of four modules.

analyses, our benchmark fosters deeper insights into the challenges and opportunities of HNNs,
thereby advancing the state-of-the-art in this emerging field.

F PACKAGE

We have developed DHG-Bench °, an open-sourced package that provides a comprehensive and
unbiased platform for evaluating HNN algorithms and supporting future research in this domain.

As shown in Figure A5, the code structure is well-designed to ensure fair experimental setups across
different algorithms, easy reproduction of the experimental results, and support for flexible assembly
of models for experiments. The DHG-Bench consists of the following four key modules. @ The
Config module includes the files that define the necessary hyperparameters and settings. @ The
Data module is used to load and preprocess datasets. € The Algorithm module has 17 built-in
state-of-the-art algorithms, covering three representative categories: spectral-based, spatial-based,
and tensor-based methods. @ The evaluation module supports multi-faceted testing of algorithmic
performance, encompassing effectiveness, efficiency, robustness, and fairness.

G THE USE OF LLMS

We used large language models (LLMs) solely as a writing assistant to polish the paper, specifically
for grammar checking and typo correction. In addition, LLMs were occasionally consulted to rephrase
sentences for improved readability and to ensure a consistent academic tone. No part of the technical
content, experimental design, or analysis was generated by LLMs. Their role was strictly limited to
minor linguistic refinement.

*https://anonymous.4dopen.science/r/DHG_Bench-F739

35

https://anonymous.4open.science/r/DHG_Bench-F739

	Introduction
	Preliminary
	Benchmark Design
	Benchmark Datasets
	Benchmark Algorithms
	Research Questions

	Experiment Results and Analysis
	Effectiveness Evaluation (RQ1)
	Effectiveness on Node Classification Task
	Effectiveness on Hyperedge Prediction Task
	Effectiveness on Hypergraph Classification Task

	Efficiency and Scalability Evaluation (RQ2)
	Robustness Evaluation (RQ3)
	Robustness Analysis with respect to Structure Perturbations
	Robustness Analysis with respect to Feature Perturbations
	Robustness Analysis with respect to Supervision Perturbations

	Fairness Evaluation (RQ4)

	A Guide for Practitioners
	Conclusion and Future Directions
	Datasets and Algorithms
	Benchmark Datasets
	Benchmark Algorithms
	Spectral-Based Algorithms
	Spatial-Based Algorithms
	Tensor-Based Algorithms

	Details of the Experimental Settings
	General Experimental Settings
	Hyperparameter Setting
	Experimental Environment
	Robustness Evaluation Settings
	Fairness Evaluation Metrics
	Discussion on Robustness and Fairness Evaluation
	Discussion on Robustness Metrics
	Discussion on Fairness Metrics

	Discussion on Memory Mitigation Strategies

	Supplementary Experimental Results
	Experimental Results on Effectiveness Evaluation
	Experimental Results on Robustness Evaluation
	Experimental Results on Fairness Evaluation
	Node Classification in Label-scarce Scenarios
	Additional Results for Direction-aware GNNs
	Analyzing Performance Degradation on Heterophilous Datasets
	Hyperedge Prediction under Different Data Splits
	Temporal Splits Evaluation
	Inductive Splits Evaluation

	Benchmarking HNNs in Self-Supervised Settings
	Performance Sensitivity to Hyperedge Size Distributions
	Analyzing HNN Behavior on Extreme-Degree Nodes

	Additional Discussion and Analysis
	Why do HNNs Perform Differently across Datasets
	Trade-offs among Performance, Scalability, and Data Characteristics

	Related Works
	Package
	The Use of LLMs

