
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DHG-BENCH: A COMPREHENSIVE BENCHMARK FOR
DEEP HYPERGRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep graph models have achieved great success in network representation learn-
ing. However, their focus on pairwise relationships restricts their ability to learn
pervasive higher-order interactions in real-world systems, which can be natu-
rally modeled as hypergraphs. To tackle this issue, Hypergraph Neural Networks
(HNNs) have garnered substantial attention in recent years. Despite the pro-
posal of numerous HNNs, the absence of consistent experimental protocols and
multi-dimensional empirical analysis impedes deeper understanding and further
development of HNN research. While several toolkits for deep hypergraph learning
(DHGL) have been introduced to facilitate algorithm evaluation, they provide
only limited quantitative evaluation results and insufficient coverage of advanced
algorithms, datasets, and benchmark tasks. To fill the gap, we introduce DHG-
Bench, the first comprehensive benchmark for HNNs. Specifically, DHG-Bench
systematically investigates the characteristics of HNNs in terms of four dimen-
sions: effectiveness, efficiency, robustness, and fairness. We comprehensively
evaluate 17 state-of-the-art HNN algorithms on 22 diverse datasets spanning node-
, edge-, and graph-level tasks, under unified experimental settings. Extensive
experiments reveal both the strengths and limitations of existing algorithms, of-
fering valuable insights and directions for future research. Furthermore, to facili-
tate reproducible research, we have developed an easy-to-use library for training
and evaluating different HNN methods. The DHG-Bench library is available at:
https://anonymous.4open.science/r/DHG_Bench-F739.

1 INTRODUCTION

Graph-structured data has become a ubiquitous tool for modeling the complex relational dependencies
among entities in various domains, such as social analysis (Fan et al., 2019), e-commerce (Liu et al.,
2021), and finance (Li et al., 2024b). Graph Neural Networks (GNNs) have emerged as the dominant
approach for learning on such data, owing to their exceptional ability to leverage both the graph
topology and node attributes. However, many real-world systems involve multi-way or group-wise
interactions beyond the pairwise connections of graphs. For instance, multiple authors co-write a
paper in co-authorship networks (Yang et al., 2022), and groups of proteins interact collectively in
biological systems (Kim et al., 2024b). These higher-order interactions can be naturally modeled by
hypergraphs, where each hyperedge connects an arbitrary number of nodes. As hypergraphs become
increasingly prevalent, there is a growing demand for predictive tasks on them, such as estimating
node properties or identifying missing hyperedges (Kim et al., 2024b). However, directly applying
GNNs to such tasks inevitably collapses higher-order interactions into pairwise relations, resulting in
significant information loss and thus sub-optimal performance (Chien et al., 2022).

To mitigate the aforementioned problem, Hypergraph Neural Networks (HNNs) (Yadati et al., 2019;
Chien et al., 2022; Wang et al., 2023b; Tang et al., 2025) have become the prevailing paradigm for
deep hypergraph learning (DHGL), attracting considerable research interest in recent years. These
methods employ neural architectures to transform nodes, hyperedges, and their associated features
into vector representations (i.e., embeddings) that effectively preserve higher-order semantics. HNNs
have demonstrated state-of-the-art performance across diverse industrial and scientific applications,
including product recommendation (Khan et al., 2025), 3D object detection (Fixelle, 2025), and
disease diagnosis (Han et al., 2025).

1

https://anonymous.4open.science/r/DHG_Bench-F739

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite the emerging studies of HNN algorithms, the comprehensive benchmark for evaluating these
methods remains absent, bringing out the following problems: (i) Existing works utilize different
datasets, compared baselines, and experimental setups (e.g., data splitting strategies and parameter
settings), which makes it challenging to achieve a fair comparison. (ii) Existing works primarily
focus on the effectiveness evaluation of HNN algorithms, while lacking empirical understanding of
their efficiency and trustworthiness (e.g., robustness and fairness), both of which are essential for
real-world deployment. This prevents practitioners from understanding the advantages and limitations
of HNN algorithms from multiple perspectives and makes it difficult to select appropriate methods for
different application scenarios. Hence, there is an urgent necessity within the community to develop
a standardized and comprehensive benchmark for HNNs.

In recent years, several open-sourced toolkits, including HyFER (Hwang et al., 2021), DHG (Gao
et al., 2022), and TopoX (Hajij et al., 2024), have been proposed to facilitate benchmarkable deep
hypergraph learning. However, these works provide only limited or even no quantitative performance
comparisons, which thus compromises their practical value for practitioners. Furthermore, they fail
to incorporate many state-of-the-art HNN algorithms and provide insufficient coverage of benchmark
datasets and evaluation tasks. Specifically, HyFER supports only the implementation of three HNN
models, while the other two libraries include only HNNs proposed before 2023. Moreover, none of
these toolkits integrate heterophilic hypergraph datasets, which represent a particularly challenging
setting (Li et al., 2025c), nor do they support graph-level tasks (e.g., hypergraph classification). These
limitations significantly restrict the reproducibility and comprehensive evaluation of advanced HNNs.

To bridge the gap, we propose DHG-Bench, which serves as the first open-sourced and comprehensive
benchmark for HNNs. Our benchmark encompasses 17 representative HNN methods and 22 diverse
hypergraph datasets covering node-level, edge-level, and graph-level tasks. We employ standardized
computational operators and APIs, along with consistent data splitting and processing strategies,
to ensure fair comparison. Beyond effectiveness, our benchmark supports multi-faceted analysis,
allowing researchers to investigate the efficiency, robustness, and fairness of current HNN algorithms.
Through extensive experiments, we derive the following key insights: (i) Existing HNN algorithms
exhibit substantial performance variability across datasets and tasks, reflecting their limited general-
ization ability. (ii) Most HNN methods struggle to strike a satisfactory balance between predictive
performance and computational efficiency. (iii) The performance of HNN algorithms is affected by
different types of data perturbations, with feature-level and supervision-level perturbations causing
particularly adverse impacts. (iv) HNN algorithms tend to result in more severe fairness issues than
deep models without higher-order message passing, such as MLPs. Our main contributions are
summarized as follows:

• Comprehensive Benchmark. DHG-Bench enables a fair and unified comparison among 17
state-of-the-art HNN methods by standardizing the experimental settings across 22 widely used
hypergraph datasets of diverse characteristics. To the best of our knowledge, this is the first
comprehensive benchmark for deep hypergraph learning.

• Multi-dimensional Evaluation and Analysis. We conduct a systematic analysis of existing
HNN methods from various dimensions, encompassing effectiveness, efficiency, robustness, and
fairness. Extensive experiments uncover the potential strengths and limitations of existing HNN
algorithms, offering valuable insights to inform and inspire future research in this field.

• Open-sourced Benchmark Library. We release DHG-Bench, an easy-to-use open-sourced
benchmark library to support future HNN research. With our toolkit, users can evaluate their
algorithms or datasets with less effort.

2 PRELIMINARY

Let G(V, E ,X) represent a hypergraph with vertex set V = {vi}|V|
i=1 and hyperedge set E = {ej}|E|j=1.

X ∈ R|V|×F is the node feature matrix with F -dimension. In this benchmark, we focus on three
supervised learning tasks, covering node-, edge-, and graph-level prediction.

Node Classification. Given the labeled node set VL ⊂ V with labels YL ∈ RC , where each node vi
is associated with a label yi from one of the C classes, the goal of node classification is to train a
classifier fθ : v 7→ RC to predict labels YU of the remaining unlabeled nodes VU = V \ VL.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Hyperedge Prediction. Given a hypergraph G(V, E ,X), we denote E ′ ⊂ 2V \ E as the target set
which typically consists of (a) unobserved hyperedges or (b) new hyperedges that will arrive in the
near future. Each element in 2V \ E is referred to as a hyperedge candidate, denoted by c, as it may
belong to E ′. The hyperedge prediction task aims to train a hyperedge classifier f ′

θ : e 7→ {0, 1} to
predict whether a candidate c belongs to the target set E ′ or not.

Hypergraph Classification. Let H as the hypergraph set. Given the labeled hypergraph set HL and
their labels YL ∈ RC , where each hypergraph Gi is assigned a label yi. The hypergraph classification
task aims to train a hypergraph classifier f ′′

θ : G 7→ RC to predict labels YU of the unlabeled
hypergraphs HU = H \HL.

3 BENCHMARK DESIGN

In this section, we introduce the DHG-Bench in terms of datasets (Section 3.1), algorithms (Sec-
tion 3.2), and research questions (Section 3.3) that guide the benchmark study.

3.1 BENCHMARK DATASETS

To comprehensively evaluate HNNs, we integrate 22 benchmark datasets from various domains
spanning node-, edge-, and graph-level tasks. In this section, we introduce each dataset category and
the corresponding data splitting strategy. Detailed descriptions are provided in Appendix A.1.

Node-level Classification Datasets. For the node classification task, we select 13 hypergraph datasets
that cover diverse domains and characteristics. Specifically, we include 8 homophilic datasets: two
co-citation networks (Cora and Pubmed (Yadati et al., 2019)); two co-authorship networks (Cora-CA
and DBLP (Yadati et al., 2019)); two graphics datasets (NTU2012 and ModelNet40 (Feng et al.,
2019)); and two hypergraphs that capture user interactions, namely Walmart for co-purchasing (Chien
et al., 2022) and Trivago for co-clicking (Kim et al., 2023). In addition, we consider 5 heterophilic
datasets, including two information networks (Actor (Li et al., 2025c) and Yelp (Chien et al., 2022)),
an e-commerce network (Amazon-ratings (Li et al., 2025c)), and two social networks (Twitch-gamers
and Pokec (Li et al., 2025c)). Moreover, to investigate algorithmic fairness, we include three fairness-
sensitive datasets (German, Bail, and Credit (Wei et al., 2022)), which contain sensitive node attributes
such as gender, race, and age. Following (Feng et al., 2019; Chien et al., 2022; Tang et al., 2025), we
adopt a split of 50%/25%/25% for training, validation, and testing in the node classification task.

Hyperedge-level Prediction Datasets. For the hyperedge prediction task, we use 6 datasets: four
widely adopted homophilic academic networks (Cora, Pubmed, Cora-CA, and DBLP-CA) (Hwang
et al., 2022; Ko et al., 2025) and two newly introduced heterophilic datasets, Actor and Pokec (Li
et al., 2025c), which enable a more comprehensive evaluation due to their low hyperedge homophily.
Following (Hwang et al., 2022; Ko et al., 2025; Yu et al., 2025), we randomly split the hyperedges (i.e.,
positive samples) into training (60%), validation (20%), and test (20%) sets. In addition, we adopt
negative sampling (NS) (Yadati et al., 2020; Hwang et al., 2022), which is devised to enhance the
distinguishing ability of the model by introducing non-existing hyperedges as contrastive information
for model training. Specifically, for each training, validation, and test set, we sample an equal number
of negative examples as the positive ones. Following (Ko et al., 2025), we employ a mixed NS
strategy that integrates three common heuristic methods, namely sized NS (SNS), motif NS (MNS),
and clique NS (CNS) (Patil et al., 2020), to increase the diversity of negative samples.

Hypergraph-level Classification Datasets. For the hypergraph classification task, we consider 6
benchmark datasets introduced in (Feng et al., 2024). RHG-10 and RHG-3 are two synthetic datasets
consisting of distinct high-order structural patterns (e.g., Hyper Pyramid, Hyper Flower, and Hyper
Wheel). IMDB-Dir-Form and IMDB-Dir-Genre are two datasets constructed by the co-director
relationship from the original IMDB dataset 1. Steam-Player is a player-based dataset, where each
hypergraph captures tag co-occurrence relationships among games played by a user. Twitter-Friend
is a social media dataset where each hypergraph represents the friendship network of a specific
Twitter user. For hypergraph classification, following (Feng et al., 2024), we adopt an 80%/10%/10%
train/validation/test data split.

1https://www.imdb.com/

3

https://www.imdb.com/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 BENCHMARK ALGORITHMS

We integrate 17 state-of-the-art HNN algorithms across three mainstream categories: spectral-based,
spatial-based, and tensor-based methods. In addition, we include MLP and two GNN-based methods,
CEGCN and CEGAT (Chien et al., 2022), as baselines. Detailed descriptions are provided in
Appendix A.2. We rigorously reproduce all methods according to their papers and source codes.

Spectral-based HNNs. Spectral-based HNNs perform message propagation and feature transforma-
tion by applying spectral convolution defined through Laplacian operators of hypergraphs (Wang
et al., 2024). We implement 10 representative algorithms including HGNN (Feng et al., 2019),
HyperGCN (Yadati et al., 2019), HCHA (Bai et al., 2021), LEGCN (Yang et al., 2022), Hy-
perND (Prokopchik et al., 2022), PhenomNN (Wang et al., 2023b), SheafHyperGNN (Duta et al.,
2023), HJRL (Yan et al., 2024), DPHGNN (Saxena et al., 2024), and TF-HNN (Tang et al., 2025).

Spatial-based HNNs. Unlike spectral methods, spatial-based HNNs focus on local connectivity with-
out entering the spectral domain, typically learning representations through two-stage neighborhood
aggregation: updating hyperedges from incident nodes and updating nodes from incident hyperedges.
We incorporate 5 typical algorithms including HNHN (Dong et al., 2020), UniGNN (Huang & Yang,
2021), AllSetTransformer (Chien et al., 2022), ED-HNN (Wang et al., 2023a), and HyperGT (Liu
et al., 2024). For UniGNN with multiple variants (e.g., UniGAT, UniGIN, and UniGCNII), we report
only UniGCNII, the most competitive variant identified in the original paper, while our open-sourced
library also supports the implementations of other variants.

Tensor-based HNNs. Tensor-based methods leverage tensor operations that provide a structured and
effective means of capturing the complexity of hypergraph interactions (Wang et al., 2025). We select
two representative algorithms: EHNN (Kim et al., 2022) and T-HyperGNN (Wang et al., 2024).

3.3 RESEARCH QUESTIONS

We systematically design the DHG-Bench to comprehensively evaluate the existing HNN algorithms
and inspire future research. In particular, we aim to investigate the following research questions.

RQ1: How much progress has been made by existing HNN methods?

Motivation and Experiment Design. Previous research on HNNs has been limited by inconsistent
experimental settings and insufficient coverage of datasets, algorithms, and tasks, thereby hindering
fair and comprehensive evaluation of different methods. Given the standardized experimental
environment provided by DHG-Bench, the first question is to revisit the progress of existing HNN
methods and identify potential directions for enhancement. A high-quality HNN method is expected
to perform consistently well across different datasets and application scenarios. To answer this
question, we evaluate the performance of HNN methods on diverse, widely used hypergraph datasets
across three benchmark tasks: node classification, hyperedge prediction, and hypergraph classification.
Detailed experimental settings can be found in Appendix B.1.

RQ2: How efficient are these HNN methods in terms of time and space?

Motivation and Experiment Design. Training the message-passing module of HNNs makes loss
computation interdependent for connected nodes, resulting in intensive computational demands
and substantial memory constraints. However, the efficiency and scalability of HNN algorithms
have been largely overlooked. A thorough understanding of the trade-off between computational
cost and predictive performance is essential for assessing their suitability for real-time and large-
scale applications. To answer this question, we perform node classification, the most widely used
benchmark task, on datasets of varying scales (Cora, DBLP-CA, Yelp, and Trivago), reporting the
training time to reach the best validation performance and the peak GPU memory consumption.

RQ3: Are existing HNN methods robust to different types of data perturbations?

Motivation and Experiment Design. Real-world hypergraph data inevitably contains noise, task-
irrelevant information, or even mistakes (Cai et al., 2022). A reliable HNN should maintain stable
performance when exposed to such noisy data, particularly in high-stakes domains such as healthcare
and finance (Cai et al., 2025), where inaccurate decisions can adversely affect individual lives or

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results of node classification: mean accuracy (%) ± standard deviation. The best
results are shown in bold and the runner-ups are underlined. OOM denotes the out-of-memory issue.

Method Cora Pubmed Cora-CA DBLP-CA Walmart Trivago Actor Gamers Pokec Yelp

MLP 75.33±0.88 86.62±0.26 75.57±1.08 85.54±0.15 63.21±0.12 36.76±0.66 86.06±0.36 52.57±0.49 59.64±0.48 31.84±0.45
CEGCN 76.90±0.75 86.03±0.39 78.40±1.25 89.75±0.33 70.40±0.18 47.24±1.09 67.41±0.29 51.02±0.53 57.37±0.38 OOM
CEGAT 77.22±1.03 86.09±0.51 78.02±1.24 89.61±0.22 65.83±0.92 OOM 73.87±0.83 51.05±0.61 57.34±0.52 OOM

HGNN 77.90±1.17 86.17±0.52 82.84±0.46 91.00±0.27 77.12±0.12 57.67±1.61 77.83±0.37 52.38±0.56 57.87±0.76 33.71±0.24
HyperGCN 78.38±1.63 87.42±0.42 81.65±1.58 89.51±0.18 68.75±0.56 42.39±1.25 81.82±0.39 51.32±0.72 57.51±0.54 29.29±0.55

HCHA 77.84±1.23 86.33±0.54 83.01±0.58 91.18±0.30 77.66±0.18 52.50±3.43 78.30±0.47 52.35±0.71 58.19±0.45 33.13±0.23
LEGCN 74.36±1.03 87.52±0.50 74.59±1.04 85.16±0.14 62.98±0.09 33.45±1.45 85.34±0.45 51.31±0.65 59.66±0.63 OOM

HyperND 79.23±0.63 86.73±0.56 83.19±0.71 91.34±0.19 75.10±0.54 87.19±1.89 83.19±0.92 52.39±0.60 57.65±1.08 OOM
PhenomNN 78.97±1.41 87.81±0.12 84.05±1.05 91.83±0.25 OOM OOM 83.14±0.49 51.80±0.73 58.43±0.92 OOM

SheafHyperGNN 79.03±0.90 87.10±0.47 84.08±0.50 91.09±0.31 OOM OOM 85.00±0.32 52.07±0.53 59.06±0.37 OOM
HJRL 78.67±1.47 87.98±0.49 83.72±0.74 OOM OOM OOM 71.54±0.64 51.62±0.61 57.57±0.47 OOM

DPHGNN 76.40±1.36 86.72±0.33 82.13±1.13 OOM OOM OOM 83.65±0.59 52.36±0.59 58.20±0.58 OOM
TF-HNN 79.47±1.31 87.90±0.37 84.19±0.89 91.38±0.24 77.04±0.12 90.79±0.79 85.96±0.41 52.34±0.53 59.17±0.52 35.16±0.54

HNHN 75.24±1.38 85.66±1.28 76.51±1.34 85.84±0.07 65.21±0.28 53.75±1.43 81.20±0.36 51.12±0.65 58.55±0.93 25.86±0.63
UniGNN 79.41±1.24 87.57±0.54 83.49±1.58 91.71±0.20 76.26±0.58 36.15±0.56 84.61±0.46 52.50±0.57 58.56±0.73 31.09±0.61

AllSetTransformer 78.02±1.43 87.79±0.30 82.95±0.62 91.51±0.22 78.61±0.13 59.92±4.02 85.66±0.41 51.74±0.75 58.55±0.56 33.18±0.88
ED-HNN 78.58±0.52 87.65±0.23 82.98±0.93 91.55±0.19 77.90±0.21 75.99±2.60 85.77±0.46 50.54±0.23 58.68±0.40 34.84±0.93
HyperGT 75.57±1.11 86.06±0.54 75.42±0.62 84.53±0.30 OOM OOM 84.43±0.47 51.19±0.57 57.73±0.76 OOM

EHNN 76.51±1.52 87.12±0.31 81.68±0.81 90.47±0.43 77.95±0.14 OOM 86.21±0.49 52.14±0.76 58.23±1.07 34.09±3.19
T-HyperGNN 74.20±1.37 86.28±0.62 75.01±1.44 85.44±0.14 73.48±0.33 OOM 85.32±0.48 51.82±0.38 58.82±0.49 OOM

broader societal systems. Evaluating the robustness of HNNs not only reveals potential vulnerabilities
in existing methods but also guides the development of more resilient models. To answer this question,
we simulate realistic data perturbations from three perspectives: structure, feature, and supervision
signals. For each perturbation type, we vary the noise intensity and subsequently train and test HNNs
on the corresponding modified hypergraph. Detailed experimental settings are in Appendix B.4.

RQ4: Do existing HNN methods yield unbiased predictions across demographic groups?

Motivation and Experiment Design. Fairness has recently emerged as a critical concern in graph
machine learning (GML) (Dong et al., 2023). Prior studies have shown that representations learned by
GNNs can result in biased predictions, often favoring certain demographic groups defined by sensitive
attributes (e.g., gender and race) (Ling et al., 2023; Zhu et al., 2024; Yang et al., 2024). Such bias
hinders the deployment of GML models in high-stakes applications such as crime prediction (Suresh
& Guttag, 2019) and credit evaluation (Yeh & Lien, 2009). Despite its importance, fairness in deep
hypergraph learning has received little attention. To the best of our knowledge, this work presents
the first benchmark evaluation of fairness in this context, which is crucial for developing ethically
sound and trustworthy HNN models. To answer this question, we conduct node classification on
three fairness-sensitive datasets (German, Bail, and Credit (Wei et al., 2022)), each of which contains
demographic-sensitive attributes. We assess algorithmic fairness using two widely adopted group
fairness metrics: demographic parity (∆DP) (Dwork et al., 2012), and equalized odds (∆EO) (Hardt
et al., 2016). The detailed descriptions of the two metrics can be found in Appendix B.5.

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 EFFECTIVENESS EVALUATION (RQ1)

To investigate the effectiveness of existing HNNs, we compare their performance across benchmark
tasks at the node, edge, and graph levels. Due to space constraints, additional node classification re-
sults on NTU2012, ModelNet40, and Ratings (Table A5), as well as the complete results of hyperedge
prediction (Table A6) and hypergraph classification (Table A7), are available in Appendix C.1.

4.1.1 EFFECTIVENESS ON NODE CLASSIFICATION TASK

Results (Table 1 and Table A5). 1 Across diverse datasets, HNNs generally outperform both
CEGCN and CEGAT, suggesting that naively extending GNNs to hypergraphs via clique expansion
disrupts high-order structures and degrades predictive performance. This highlights the necessity
of designing neural architectures with dedicated high-order message passing. 2 HNNs achieve
notable improvements over MLP on homophilic datasets, but on heterophilic datasets, most HNNs
even underperform MLP, which only leverages node features. This reveals the adverse impact of
heterophilic connections on hypergraph representation learning and underscores the need to rethink

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

HNN design in such settings. 3 TF-HNN consistently ranks among the top-performing methods
across diverse datasets, achieving optimal or near-optimal results. Moreover, unlike other advanced
HNNs (e.g., PheomNN, DPHGNN, and HyperGT) that fail on large-scale datasets due to out-of-
memory issues, TF-HNN remains scalable. These findings underscore the promise of its decoupled
architecture for enhanced generalization and scalability.

4.1.2 EFFECTIVENESS ON HYPEREDGE PREDICTION TASK

Results (Table A6). 1 Advanced HNN methods that generally achieve superior performance on node
classification fail to maintain the same level of competitiveness in hyperedge prediction. Specifically,
the two earliest methods, HGNN and HyperGCN, along with the tensor-based EHNN introduced in
2022, collectively achieve all the best results and the majority of second-best results across the six
hyperedge prediction datasets. In contrast, recent HNNs (e.g., ED-HNN, HJRL, DPHGNN, TF-HNN)
often show a notable performance gap compared to the above three. For example, on DBLP-CA,
TF-HNN achieves an AUROC of 75.70% and an AP of 74.97%, which are 13.76% and 16.70% lower
than those of the best-performing model, HyperGCN. 2 Across hyperedge prediction benchmarks,
HNN algorithms display considerable performance divergence depending on the dataset, and none
consistently deliver the best results. For instance, while EHNN achieves state-of-the-art performance
on Cora and Pubmed, it obtains only 77.83% AUROC on Cora-CA, ranking 11th among 17 HNNs
and 14.90% lower than the top-performing HyperGCN.

4.1.3 EFFECTIVENESS ON HYPERGRAPH CLASSIFICATION TASK

Results (Table A7). 1 HNN algorithms perform markedly better on synthetic datasets than on
real-world ones. On RHG-10, most models achieve over 90% accuracy and Macro-F1, and on RHG-3,
many even exceed 98%. In contrast, on real-world datasets, accuracies rarely surpass 70%, reflecting
the structural complexity of real hypergraphs. This gap underscores the need for more realistic and
challenging benchmarks to rigorously evaluate hypergraph classification. 2 HNN methods generally
outperform GNN-based approaches built on clique expansion, as the latter often distorts global
hypergraph structures, whereas higher-order message passing in HNNs preserves these dependencies
and enhances discriminative power. 3 HNNs’ performance varies considerably across datasets,
with no method demonstrating consistent superiority. For instance, while DPHGNN achieves the
best accuracy on IMDB-Dir-Form, it falls to 11th on IMDB-Dir-Genre and 14th on Steam-Player
across all evaluated HNNs, underscoring the substantial impact of dataset characteristics on model
performance. 4 Many HNN methods fail to achieve a desirable trade-off between accuracy and
Macro-F1. For example, on the Twitter dataset, HNHN achieves 58.47% accuracy (third highest
among all HNN models) but only 39.40% Macro-F1, the lowest overall.

Key Insights for RQ1: HNN algorithms display varying levels of effectiveness across predictive
tasks. While advanced HNNs achieve strong results on node-level tasks, they often fail to deliver
superior performance on edge- and graph-level tasks. Moreover, the predictive capability of HNNs
is highly sensitive to dataset characteristics, with data heterophily substantially impairing learning
on hypergraphs. These findings highlight the need for future research to enhance the generalization
and adaptability of hypergraph models across diverse tasks and datasets.

4.2 EFFICIENCY AND SCALABILITY EVALUATION (RQ2)

Results (Figure 1). 1 CEGCN and CEGAT face scalability challenges on large datasets (e.g., Yelp
and Trivago), where clique expansion produces dense edges and leads to significant training memory
overhead. 2 Most advanced HNN methods struggle to achieve a satisfactory balance between
model utility and efficiency. For example, on the Yelp dataset, ED-HNN and EHNN provide only
marginal accuracy gains over the simple HGNN, yet their training times are over 9× and 23× longer,
respectively, reflecting a substantial rise in computational cost. In addition, many HNNs suffer from
memory bottlenecks on large-scale datasets. Specifically, on Yelp, 8 out of 17 methods encounter
out-of-memory (OOM) issues. On Trivago, although 10 HNNs remain computationally scalable,
most fail to deliver satisfactory predictive performance. Only TF-HNN (90.79%) and HyperND
(87.19%) achieve accuracy above 60%. This may result from the intricate patterns of large-scale
graphs. 3 Tensor-based approaches exhibit more pronounced efficiency and scalability limitations
than the other two kinds of methods. T-HyperGNN can only scale to the medium-sized DBLP-CA

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

100 101

Training Time (s)

74
75
76
77
78
79

Ac
cu

ra
cy

(%
)

Cora

100 101 102

Training Time (s)

86

88

90

92
DBLP-CA

101 102

Training Time (s)

26
28
30
32
34

Yelp

101 102

Training Time (s)

45
60
75
90

Trivago

103
3 × 102

4 × 102
6 × 102

Training Space (MB)

74
75
76
77
78
79

Ac
cu

ra
cy

(%
)

Cora

103 104

Training Space (MB)

86

88

90

92
DBLP-CA

103 104

Training Space (MB)

26
28
30
32
34

Yelp

103
2 × 103

3 × 103
4 × 103

6 × 103

Training Space (MB)

45
60
75
90

Trivago

MLP
CEGCN

CEGAT
HGNN

HCHA
HyperGCN

LEGCN
HyperND

PhenomNN
SheafHyperGNN

HJRL
DPHGNN

TF-HNN
HNHN

UniGNN
AllSetTransformer

ED-HNN
HyperGT

EHNN
T-HyperGNN

Figure 1: Training time and space analysis on Cora, DBLP-CA, Yelp, and Trivago.

dataset, where it runs approximately 406 times slower than the fastest method, HGNN. Moreover,
on Yelp, EHNN incurs the longest training time and fails to scale to the large-scale Trivago dataset.
4 Among all evaluated methods, TF-HNN generally achieves a superior trade-off between utility
and both time and space efficiency. For example, on the large-scale Trivago dataset, it achieves the
best predictive performance with no more than 1.6 GB of memory and under 30 seconds of runtime,
ranking first in memory efficiency and second in training time among all HNN methods.

Key Insights for RQ2: Most existing HNN algorithms, when applied to large-scale datasets,
either suffer from efficiency and scalability issues or fail to deliver satisfactory utility. Investigating
decoupled architectures that separate high-order information propagation from training modules
presents a promising avenue for achieving efficient, scalable, and high-performing HNNs.

4.3 ROBUSTNESS EVALUATION (RQ3)

In this section, we assess HNN robustness by simulating structural, feature, and supervision perturba-
tions, as detailed in Appendix B.4. While our experiments primarily focus on the node classification
task due to space limits, DHG-Bench supports flexible extension to other tasks. We evaluate 10
representative models on four datasets (Cora, Pubmed, Actor, and Pokec). The results on Pubmed
and Pokec (Figures A2, A3, and A4) are provided in Appendix C.2.

4.3.1 ROBUSTNESS ANALYSIS WITH RESPECT TO STRUCTURE PERTURBATIONS

Results (Figure 2 and Figure A2). 1 Most HNN algorithms exhibit strong robustness against random
structural noise, experiencing only marginal performance drops or even remaining nearly unaffected
under high perturbation rates. For example, when 90% of hyperlinks are randomly removed from
Cora, 7 out of 10 methods degrade by less than 7%. Similarly, when 90% of random hyperlinks
are injected into Actor, only 2 models show a noticeable decline in performance. 2 Spectral-based
approaches are generally more vulnerable to structural perturbations. On Pubmed, for instance,
increasing the ratio of noisy hyperlinks results in a pronounced performance decline across four
spectral-based methods (HGNN, PhenomNN, DPHGNN, and TF-HNN), whereas most other methods
remain stable. This may be because spectral methods rely on the hypergraph’s global eigenstructure,
which is highly sensitive to topological noise. 3 The robustness of HNN algorithms varies with both
the type of structural perturbation (deletion vs. addition) and the choice of dataset. For example,
on the Actor dataset, SheafHyperGNN suffers substantial performance degradation under hyperlink
deletion but demonstrates strong robustness under hyperlink addition. In another case, PhenomNN
exhibits strong robustness on Cora in the addition scenario while showing the opposite trend on Actor.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8
Hyperlink Deletion Ratio

40

60

80

Ac
cu

ra
cy

 (%
)

Cora

0.0 0.2 0.4 0.6 0.8
Hyperlink Deletion Ratio

70

75

80

85
Actor

0.0 0.2 0.4 0.6 0.8
Hyperlink Addition Ratio

50

60

70

80
Cora

0.0 0.2 0.4 0.6 0.8
Hyperlink Addition Ratio

65

70

75

80

85
Actor

HGNN PhenomNN SheafHyperGNN DPHGNN TF-HNN AllSetTransformer UniGNN ED-HNN HyperGT T-HyperGNN

Figure 2: Structure robustness analysis on Cora and Actor.

0.0 0.2 0.4 0.6 0.8
Feature Noise Ratio

20

40

60

80

Ac
cu

ra
cy

 (%
)

Cora

0.0 0.2 0.4 0.6 0.8
Feature Noise Ratio

60

70

80

Actor

0.0 0.2 0.4 0.6 0.8
Feature Mask Ratio

40

50

60

70

80
Cora

0.0 0.2 0.4 0.6 0.8
Feature Mask Ratio

70

80

Actor
HGNN PhenomNN SheafHyperGNN DPHGNN TF-HNN AllSetTransformer UniGNN ED-HNN HyperGT T-HyperGNN

Figure 3: Feature robustness analysis on Cora and Actor.

0.00 0.05 0.10 0.15 0.20
Label Noise Ratio

50

60

70

80

Ac
cu

ra
cy

 (%
)

Cora

0.00 0.05 0.10 0.15 0.20
Label Noise Ratio

65

70

75

80

85
Actor

0.0 0.2 0.4 0.6 0.8
Label Sparsity Ratio

65

70

75

80
Cora

0.0 0.2 0.4 0.6 0.8
Label Sparsity Ratio

78

80

82

84

86
Actor

HGNN PhenomNN SheafHyperGNN DPHGNN TF-HNN AllSetTransformer UniGNN ED-HNN HyperGT T-HyperGNN

Figure 4: Supervision robustness analysis on Cora and Actor.

4.3.2 ROBUSTNESS ANALYSIS WITH RESPECT TO FEATURE PERTURBATIONS

Results (Figure 3 and Figure A3). 1 Feature perturbations under equal noise or sparsity levels
result in greater performance degradation than structural ones, indicating a more critical role of node
features in model prediction. 2 With increasing noise intensity, model accuracy decreases sharply
at the beginning and then stabilizes, as highly corrupted features approximate randomness and lose
predictive utility. 3 As the feature masking rate increases, model performance degrades progressively
faster, with a slow decline at low ratios and a sharp drop under high sparsity. 4 Compared to feature
sparsity, feature noise poses a greater challenge for HNN algorithms, with equivalent levels of noise
typically resulting in lower predictive accuracy across different datasets.

4.3.3 ROBUSTNESS ANALYSIS WITH RESPECT TO SUPERVISION PERTURBATIONS

Results (Figure 4 and Figure A4). 1 As noise intensity increases or supervision becomes sparser, all
models show a clear downward trend in performance, with label noise exerting a more pronounced
impact. 2 Increasing label noise generally causes a rapid yet steady decline in performance, which
appears approximately linear in most cases. 3 The impact of supervision sparsity is modest at lower
levels but intensifies at higher ratios, resulting in an accelerating decline in model performance. This
trend highlights the challenges faced by current HNNs in low-label scenarios. 4 Label noise and
sparsity tend to degrade performance more substantially on homophilic datasets than on heterophilic
ones, reflecting the reliance of model predictions on data homophily.

Key Insights for RQ3: Most HNN algorithms demonstrated remarkable robustness to random
structural noise, but are considerably more vulnerable to feature perturbations. In addition, at
the label level, even simple small-scale poisoning attacks can substantially degrade predictive
performance, and HNNs face significant challenges under extreme label sparsity. These findings
underscore the need for designing robust HNN architectures or training techniques capable of
providing strong defenses against diverse forms of noisy data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MLP
HGNN

HyperGCN
HCHA

LEGCN
HyperND

PhenomNN
DPHGNN

TF-HNN
HNHN

UniGNN

AllSetTransformer
ED-HNN

HyperGT
EHNN

0

2

4

6

8

10

12

14

16

Av
g.

 R
an

ki
ng

Acc DP EO

Figure 5: Average rankings on Acc, ∆DP , ∆EO across the German, Bail, and Credit datasets, where
lower values indicate better ranks (ascending order).

4.4 FAIRNESS EVALUATION (RQ4)

In this section, we analyze algorithmic fairness and report full quantitative results in terms of accuracy
(Acc), ∆DP , and ∆EO in Table A8 of Appendix C.3. To better illustrate the strengths and limitations
of each algorithm, we present Figure 5, which shows their average rankings across the three metrics
on datasets where they can run, considering only HNNs executable on at least two datasets.

Results (Figure 5 and Table A8). 1 While HNN algorithms achieve higher predictive performance,
they generally suffer from more severe fairness issues compared to MLP, which is free from message
passing. Figure 5 shows that MLP ranks best on the two fairness metrics but worst on accuracy.
For example, on the Credit dataset, MLP achieves lower ∆DP and ∆EO values than HCHA, the
fairest among the evaluated HNN models, as shown in Table A8. 2 The fairness performance of
HNN algorithms varies considerably across datasets, with no method achieving consistently superior
performance on all benchmarks. For instance, Table A8 illustrates that while HCHA achieves the
best fairness performance on the Credit dataset across both metrics, its ∆DP and ∆EO rank as the
second- and third-worst, respectively, on the German dataset. Moreover, Figure 5 shows that most
algorithms exhibit substantial variance in their rankings, further highlighting the instability of fairness
across datasets. 3 HNN algorithms show inconsistent behavior across fairness metrics, and strong
performance on one does not guarantee superiority on another. For example, on the Bail dataset,
although HNHN achieves the lowest ∆DP among all HNN methods, its ∆EO ranks as the third worst
among the 17 HNN models.

Key Insights for RQ4: Existing HNN algorithms tend to produce more biased predictions than
MLPs, indicating that high-order information propagation may exacerbate the amplification of
biases from sensitive information. Moreover, fairness performance varies substantially across
datasets and metrics. These findings highlight the need for developing debiased algorithms that
can achieve stronger fairness across diverse high-stakes real-world applications.

5 A GUIDE FOR PRACTITIONERS

Drawing on the comprehensive benchmarking results and analyses presented in this work, we offer
practical guidance for selecting appropriate HNN models for new tasks. For clarity, we organize our
recommendations by task type.

Node-level prediction tasks. We recommend TF-HNN as the first-choice model. Across a wide range
of datasets, TF-HNN consistently achieves top-ranked node classification performance, demonstrating
its strong ability to learn highly discriminative node representations. Moreover, its training-free
message-passing architecture offers substantial efficiency and scalability benefits, making it well-
suited for large-scale or resource-constrained applications. Importantly, our experiments show that,
compared with other HNNs, TF-HNN does not exhibit pronounced weaknesses in robustness or
fairness, making it a reliable choice for most node-level scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Edge-level or higher-order relation prediction tasks (e.g., hyperlink prediction, hyperedge
prediction). We suggest starting with EHNN, HGNN, and HyperGCN. Together, these models
account for most of the best and second-best results on hyperedge prediction benchmarks. Their
performance, however, varies across homophilic and heterophilic settings: on homophilic datasets,
EHNN and HyperGCN generally perform better; on heterophilic datasets, HGNN and EHNN tend
to yield stronger results. Our robustness analysis further indicates that HGNN is more sensitive
to structural perturbations, and may therefore be less dependable under distribution shifts or noisy
hypergraph structures. As a result, EHNN and HyperGCN are generally safer and more robust
defaults, while HGNN should be chosen with awareness of dataset stability.

Graph-level prediction tasks. No single architecture consistently outperforms all others across
datasets and evaluation metrics in hypergraph classification. Nonetheless, HJRL, DPHGNN, and
AllSetTransformer frequently appear among the top-performing models, reflecting their strong
ability to capture and discriminate global structural patterns that drive hypergraph-level prediction.
However, our robustness experiments reveal that DPHGNN can be sensitive to structural and feature
perturbations, and practitioners are therefore advised to carefully assess its stability before deployment.
Among these models, AllSetTransformer often provides a more favorable utility–efficiency trade-off,
making it particularly appealing in computationally constrained environments.

6 CONCLUSION AND FUTURE DIRECTIONS

This paper introduces DHG-Bench, the first comprehensive benchmark for deep hypergraph learning,
which integrates and compares 17 representative HNNs across 22 hypergraph datasets encompassing
various domains, sizes, and structural properties, under consistent experimental settings. We compre-
hensively evaluate the effectiveness, efficiency, robustness, and fairness of HNN algorithms, and our
analysis reveals the strengths and weaknesses of different HNNs in a wide range of scenarios, offering
valuable insights into their practical applicability and design trade-offs. Furthermore, we develop
and release a package, DHG-Bench, that includes all experimental protocols, baseline algorithms,
datasets, and reproducibility scripts to facilitate future research. Drawing upon our empirical analyses,
we point out some promising future directions for the deep hypergraph learning community.

• Developing adaptive HNN methods for diverse datasets and tasks. Our experiments in
Section 4.1 reveal that existing HNN architectures show substantial performance disparities
across datasets and tasks, limiting their applicability in diverse scenarios. Future research
should focus on designing adaptive HNN architectures and training techniques that can better
accommodate the unique characteristics of datasets from different domains and varying task
granularities, thereby enhancing the generalization ability of HNNs.

• Improving the efficiency of HNN methods. Observations in Section 4.2 indicate that many
advanced HNN methods fail to balance efficiency and predictive performance, and often run
out of memory on large-scale datasets. As the size of hypergraphs continues to grow exponen-
tially, a key area of future research is the reduction of memory and computational complexity
in HNN algorithms while maintaining satisfactory model utility. Inspired by the favorable ef-
ficiency–effectiveness trade-off achieved by TF-HNN, it would be promising to devise more
powerful decoupled architectures specifically tailored for HNN.

• Developing more robust HNN methods. Our experimental results in Section 4.3 show that HNN
algorithms are affected by different types of data perturbations and are particularly vulnerable
to those at the feature and supervision levels. Future work should emphasize enhancing the
robustness of HNNs to resist varying degrees of data noise and even adversarial attacks, thereby
ensuring reliable performance in a wide range of industrial applications.

• Developing fairness-aware HNN methods. Empirical evidence in Section 4.4 suggests that
HNNs are more prone to biased predictions than traditional MLPs. Future research should
investigate the theoretical mechanisms through which high-order message passing exacerbates
fairness issues and then develop fairness-aware HNN methods that mitigate such discriminatory
behavior. Progress in this direction is essential to ensure the safe adoption of HNNs in high-stakes
real-world applications such as crime prediction and credit evaluation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not raise any specific ethical concerns. All datasets used in our experiments are
publicly available and have been released for academic purposes. None of the datasets contains
personally identifiable information or offensive content.

REPRODUCIBILITY STATEMENT

We describe our data splitting strategy in Section 3.1, the experiment design for multi-dimensional
analysis in Section 3.3, and detailed experimental setups in Appendix B. All datasets, algorithm im-
plementations, and hyperparameter configurations are publicly available at https://anonymous.
4open.science/r/DHG_Bench-F739.

• The datasets are provided in the repository as a compressed file, data.zip, and data
loading and preprocessing are handled by the code in the lib dataset folder.

• The implementation of the training and evaluation pipeline for algorithms is available in the
lib utils folder in the repository.

• Additional instructions for reproducing experiments are included in the README.md.

REFERENCES

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
closure and higher-order link prediction. PNAS, 115(48):E11221–E11230, 2018.

Derun Cai, Moxian Song, Chenxi Sun, Baofeng Zhang, Shenda Hong, and Hongyan Li. Hypergraph
structure learning for hypergraph neural networks. In IJCAI, pp. 1923–1929, 2022.

Tingyi Cai, Yunliang Jiang, Ming Li, Lu Bai, Changqin Huang, and Yi Wang. Hypernear: Unnotice-
able node injection attacks on hypergraph neural networks. In ICML, 2025.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI, volume 34, pp.
3438–3445, 2020.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
framework for hypergraph neural networks. In ICLR, 2022.

Enyan Dai, Charu Aggarwal, and Suhang Wang. Nrgnn: Learning a label noise resistant graph neural
network on sparsely and noisily labeled graphs. In SIGKDD, pp. 227–236, 2021.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
In ICML Workshop: Graph Representation Learning and Beyond., 2020.

Yushun Dong, Jing Ma, Song Wang, Chen Chen, and Jundong Li. Fairness in graph mining: A survey.
TKDE, 35(10):10583–10602, 2023.

Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Liò. Sheaf hypergraph networks. NeurIPS,
36:12087–12099, 2023.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In ITCS, pp. 214–226, 2012.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The WebConf, pp. 417–426, 2019.

Y Feng, Z Zhang, X Zhao, R Ji, Y Gao, and Gvcnn. Group-view convolutional neural networks for
3d shape recognition. In CVPR, pp. 264–272, 2018.

11

https://anonymous.4open.science/r/DHG_Bench-F739
https://anonymous.4open.science/r/DHG_Bench-F739

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In AAAI, volume 33, pp. 3558–3565, 2019.

Yifan Feng, Jiashu Han, Shihui Ying, and Yue Gao. Hypergraph isomorphism computation. TPAMI,
46(5):3880–3896, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Joshua Fixelle. Hypergraph vision transformers: Images are more than nodes, more than edges. In
CVPR, pp. 9751–9761, 2025.

Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. Hgnn+: General hypergraph neural networks.
TPAMI, 45(3):3181–3199, 2022.

Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén Ballester,
Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, et al. Topox: a suite of python
packages for machine learning on topological domains. JMLR, 25(374):1–8, 2024.

Xiangmin Han, Rundong Xue, Jingxi Feng, Yifan Feng, Shaoyi Du, Jun Shi, and Yue Gao. Hyper-
graph foundation model for brain disease diagnosis. TNNLS, 2025.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. NeurIPS,
29, 2016.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In IJCAI. International Joint Conferences on Artificial Intelligence Organization, 2021.

Hyunjin Hwang, Seungwoo Lee, and Kijung Shin. Hyfer: A framework for making hypergraph
learning easy, scalable and benchmarkable. In WWW Workshop on Graph Learning Benchmarks,
2021.

Hyunjin Hwang, Seungwoo Lee, Chanyoung Park, and Kijung Shin. Ahp: Learning to negative
sample for hyperedge prediction. In SIGIR, pp. 2237–2242, 2022.

Kareem L Jordan and Tina L Freiburger. The effect of race/ethnicity on sentencing: Examining
sentence type, jail length, and prison length. Journal of Ethnicity in Criminal Justice, 13(3):
179–196, 2015.

Krishna Juluru, Hao-Hsin Shih, Krishna Nand Keshava Murthy, and Pierre Elnajjar. Bag-of-words
technique in natural language processing: a primer for radiologists. RadioGraphics, 41(5):1420–
1426, 2021.

Bilal Khan, Jia Wu, Jian Yang, and Xiaoxiao Ma. Heterogeneous hypergraph neural network for
social recommendation using attention network. TORS, 3(3):1–22, 2025.

Jinwoo Kim, Saeyoon Oh, Sungjun Cho, and Seunghoon Hong. Equivariant hypergraph neural
networks. In ECCV, pp. 86–103. Springer, 2022.

Sunwoo Kim, Dongjin Lee, Yul Kim, Jungho Park, Taeho Hwang, and Kijung Shin. Datasets, tasks,
and training methods for large-scale hypergraph learning. Data mining and knowledge discovery,
37(6):2216–2254, 2023.

Sunwoo Kim, Shinhwan Kang, Fanchen Bu, Soo Yong Lee, Jaemin Yoo, and Kijung Shin. Hypeboy:
Generative self-supervised representation learning on hypergraphs. In ICLR, 2024a.

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
on hypergraph neural networks: An in-depth and step-by-step guide. In SIGKDD, pp. 6534–6544,
2024b.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yunyong Ko, Hanghang Tong, and Sang-Wook Kim. Enhancing hyperedge prediction with context-
aware self-supervised learning. TKDE, 2025.

Dongjin Lee and Kijung Shin. I’m me, we’re us, and i’m us: Tri-directional contrastive learning on
hypergraphs. In AAAI, volume 37, pp. 8456–8464, 2023.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In ICML, pp.
3744–3753. PMLR, 2019.

Jure Leskovec. SNAP Datasets: Stanford large network dataset collection. http://snap.
stanford.edu/data, 2014. [Online].

Bing Li, Xin Xiao, Chao Zhang, Ming Xiao, and Le Zhang. Dghnn: A deep graph and hypergraph
neural network for pan-cancer related gene prediction. Bioinformatics, pp. btaf379, 2025a.

Fan Li, Xiaoyang Wang, Dawei Cheng, Wenjie Zhang, Ying Zhang, and Xuemin Lin. Hypergraph
self-supervised learning with sampling-efficient signals. In IJCAI, pp. 4398–4406, 2024a.

Fan Li, Zhiyu Xu, Dawei Cheng, and Xiaoyang Wang. Adarisk: risk-adaptive deep reinforcement
learning for vulnerable nodes detection. TKDE, 36(11):5576–5590, 2024b.

Ming Li, Yujie Fang, Yi Wang, Han Feng, Yongchun Gu, Lu Bai, and Pietro Lio. Deep hypergraph
neural networks with tight framelets. In AAAI, volume 39, pp. 18385–18392, 2025b.

Ming Li, Yongchun Gu, Yi Wang, Yujie Fang, Lu Bai, Xiaosheng Zhuang, and Pietro Lio. When
hypergraph meets heterophily: New benchmark datasets and baseline. In AAAI, volume 39, pp.
18377–18384, 2025c.

Zhixun Li, Liang Wang, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin
Zhou, Qiang Liu, Shu Wu, et al. Gslb: the graph structure learning benchmark. NeurIPS, 36:
30306–30318, 2023.

Hongyi Ling, Zhimeng Jiang, Youzhi Luo, Shuiwang Ji, and Na Zou. Learning fair graph representa-
tions via automated data augmentations. In ICLR, 2023.

Weiwen Liu, Yin Zhang, Jianling Wang, Yun He, James Caverlee, Patrick PK Chan, Daniel S Yeung,
and Pheng-Ann Heng. Item relationship graph neural networks for e-commerce. TNNLS, 33(9):
4785–4799, 2021.

Zexi Liu, Bohan Tang, Ziyuan Ye, Xiaowen Dong, Siheng Chen, and Yanfeng Wang. Hypergraph
transformer for semi-supervised classification. In ICASSP, pp. 7515–7519. IEEE, 2024.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang,
and Doina Precup. Revisiting heterophily for graph neural networks. NeurIPS, 35:1362–1375,
2022.

Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis and
applications. In ICML, pp. 23803–23828. PMLR, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, and Luca et al. Antiga. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, volume 32, 2019.

Prasanna Patil, Govind Sharma, and M Narasimha Murty. Negative sampling for hyperlink prediction
in networks. In PAKDD, pp. 607–619. Springer, 2020.

Karelia Pena-Pena, Daniel L Lau, and Gonzalo R Arce. T-hgsp: Hypergraph signal processing using
t-product tensor decompositions. IEEE Transactions on Signal and Information Processing over
Networks, 9:329–345, 2023.

Konstantin Prokopchik, Austin R Benson, and Francesco Tudisco. Nonlinear feature diffusion on
hypergraphs. In ICML, pp. 17945–17958. PMLR, 2022.

13

http://snap.stanford.edu/data
http://snap.stanford.edu/data

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann,
and Michael M Bronstein. Edge directionality improves learning on heterophilic graphs. In
Learning on graphs conference, pp. 25–1. PMLR, 2024.

Siddhant Saxena, Shounak Ghatak, Raghu Kolla, Debashis Mukherjee, and Tanmoy Chakraborty.
Dphgnn: A dual perspective hypergraph neural networks. In SIGKDD, pp. 2548–2559, 2024.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In ICCV, pp. 945–953, 2015.

Xiangguo Sun, Hong Cheng, Bo Liu, Jia Li, Hongyang Chen, Guandong Xu, and Hongzhi Yin.
Self-supervised hypergraph representation learning for sociological analysis. TKDE, 35(11):
11860–11871, 2023.

Harini Suresh and John V Guttag. A framework for understanding unintended consequences of
machine learning. arXiv preprint arXiv:1901.10002, 2(8):73, 2019.

Bohan Tang, Zexi Liu, Keyue Jiang, Siheng Chen, and Xiaowen Dong. Training-free message passing
for learning on hypergraphs. In ICLR, 2025.

Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Mustafa Hajij, Martin Carrasco, Pavlo Va-
sylenko, Mathilde Papillon, Ghada Zamzmi, Michael T Schaub, Jonas Verhellen, et al. Topobench:
A framework for benchmarking topological deep learning. arXiv preprint arXiv:2406.06642, 2024.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Fuli Wang, Karelia Pena-Pena, Wei Qian, and Gonzalo R Arce. T-hypergnns: Hypergraph neural
networks via tensor representations. TNNLS, 2024.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
diffusion neural operators. In ICLR, 2023a.

Yifan Wang, Gonzalo R Arce, and Guangmo Tong. Generalization performance of hypergraph neural
networks. In The WebConf, pp. 1273–1291, 2025.

Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, and David Wipf. From hypergraph energy
functions to hypergraph neural networks. In ICML, pp. 35605–35623. PMLR, 2023b.

Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and Zhangyang Wang. Augmen-
tations in hypergraph contrastive learning: Fabricated and generative. NeurIPS, 35:1909–1922,
2022.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. NeurIPS, 33:
20437–20448, 2020.

Linhuang Xie, Shihao Gao, Jie Liu, Ming Yin, and Taisong Jin. K-hop hypergraph neural network: A
comprehensive aggregation approach. In AAAI, volume 39, pp. 21679–21687, 2025.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
NeurIPS, 32, 2019.

Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha
Talukdar. Nhp: Neural hypergraph link prediction. In CIKM, pp. 1705–1714, 2020.

Yuguang Yan, Yuanlin Chen, Shibo Wang, Hanrui Wu, and Ruichu Cai. Hypergraph joint represen-
tation learning for hypervertices and hyperedges via cross expansion. In AAAI, volume 38, pp.
9232–9240, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In ICDM, pp.
1287–1292. IEEE, 2022.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Semi-supervised hypergraph node
classification on hypergraph line expansion. In CIKM, pp. 2352–2361, 2022.

Cheng Yang, Jixi Liu, Yunhe Yan, and Chuan Shi. Fairsin: Achieving fairness in graph neural
networks through sensitive information neutralization. In AAAI, volume 38, pp. 9241–9249, 2024.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert systems with applications, 36(2):
2473–2480, 2009.

Song Kyung Yu, Da Eun Lee, Yunyong Ko, and Sang-Wook Kim. Hygen: Regularizing negative
hyperedge generation for accurate hyperedge prediction. In Companion Proceedings of the ACM
on Web Conference 2025, pp. 1500–1504, 2025.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet: A
neural network for directed graphs. NeurIPS, 34:27003–27015, 2021.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical framework.
International journal of machine learning and cybernetics, 1(1):43–52, 2010.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. NeurIPS, 19, 2006.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. NeurIPS, 33:
7793–7804, 2020.

Yuchang Zhu, Jintang Li, Zibin Zheng, and Liang Chen. Fair graph representation learning via
sensitive attribute disentanglement. In The WebConf, pp. 1182–1192, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A DATASETS AND ALGORITHMS

A.1 BENCHMARK DATASETS

Table A1: Statistics of the standard node-level datasets: |e| denotes the hyperedge size, while
Hedge indicates the hyperedge homophily ratio introduced in (Li et al., 2025c). Inode, Pnode, and
Hnode indicate the isolated nodes, the nodes involved only in pairwise interactions, and the nodes
participating in higher-order interactions, respectively.

Dataset # Nodes # Edges # Features Avg. |e| Hedge # Inode # Pnode # Hnode # Classes
Cora 2,708 1,579 1,433 3.03 0.75 1,274 205 1,229 7
Pubmed 19,717 7,963 500 4.35 0.78 15,877 201 3,639 3
Cora-CA 2,708 1,072 1,433 4.28 0.78 320 278 2,110 7
DBLP-CA 41,302 22,363 1,425 4.45 0.87 0 3,876 37,426 6
NTU2012 2,012 2,012 100 5.00 0.79 0 0 2,012 67
ModelNet40 12,311 12,311 100 5.00 0.87 0 0 12,311 40
Walmart 88,860 69,906 100 6.59 0.60 0 3,295 85,565 11
Trivago 172,738 233,202 300 3.12 0.98 0 25,532 147,206 160

Actor 16,255 10,164 50 5.25 0.46 563 600 15,092 3
Ratings 22,299 2,090 111 3.10 0.37 19,175 176 2,948 5
Gamers 16,812 2,627 7 6.23 0.49 456 624 15732 2
Pokec 14,998 2,406 65 2.29 0.45 11,798 1,948 1,252 2
Yelp 50,758 679,302 1,862 6.66 0.29 0 19 50,739 9

Table A2: Statistics of fairness-sensitive datasets. Sens denotes the sensitive attribute.
Dataset # Nodes # Edges # Features Sens Label
German 1,000 1,000 27 Gender Credit status
Bail 18,876 18,876 18 Race Bail decision
Credit 30,000 30,000 13 Age Future default

Table A3: Statistics of graph-level datasets. Avg. |V|, |E|, and |e| represent the average number of
nodes, hyperedges, and hyperedge sizes, respectively.

Dataset # Hypergraphs Avg. |V| Avg. |E| Avg. |e| # Classes
RHG-10 2,000 31.3 29.8 5.2 10
RHG-3 1,500 35.5 17.9 6.9 3
IMDB-Dir-Form 1,869 15.7 39.2 3.7 3
IMDB-Dir-Genre 3,393 17.3 36.4 3.8 3
Steam-Player 2,048 13.8 46.4 4.5 2
Twitter-Friend 1,310 21.6 84.3 4.3 2

We adopt 22 publicly available benchmark datasets to comprehensively evaluate HNN algorithms.
The statistics of node-level datasets, fairness-sensitive datasets, and graph-level datasets are reported
in Tables A.1, A2, and A3, respectively. Detailed descriptions of these datasets are provided below.

• Cora/Pubmed/Cora-CA/DBLP-CA (Yadati et al., 2019): Cora and Pubmed are co-citation
networks where nodes represent papers and hyperedges connect papers cited together. Cora-CA
and DBLP-CA are co-authorship hypergraphs, with nodes as papers and hyperedges linking all
papers co-authored by the same author. Node features are Bag-of-Words (BoW) (Zhang et al.,
2010) representations of the documents, and labels indicate paper categories.

• NTU2012/ModelNet40 (Feng et al., 2019): The ModelNet40 and the NTU2012 are two computer
vision and graphics datasets. ModelNet40 contains 12,311 3D objects from 40 popular categories,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

while NTU2012 consists of 2,012 3D shapes from 67 categories. For each object, features are
extracted using both the Group-View Convolutional Neural Network (GVCNN)(Feng et al., 2018)
and the Multi-View Convolutional Neural Network (MVCNN)(Su et al., 2015). Following (Feng
et al., 2019), we construct hyperedges by aggregating the nearest neighbors of each node based
on Euclidean distance.

• Walmart (Chien et al., 2022): The Walmart dataset models a hypergraph where nodes represent
products and hyperedges capture sets of products purchased together. Node labels indicate product
categories. Following (Chien et al., 2022), each node feature is a 100-dimensional vector obtained
by adding Gaussian noise N (0, σ2I) with σ = 0.6 to one-hot encodings of the labels.

• Trivago (Kim et al., 2023): Trivago is a hotel-web search hypergraph where each node indicates
a hotel, and each hyperedge corresponds to a user. If a user (hyperedge) has visited the website
of a particular hotel (node), the corresponding node is added to the respective user hyperedge.
Furthermore, each hotel’s class is labeled based on the country in which it is located.

• Actor (Li et al., 2025c): The actor co-occurrence network is derived from a heterogeneous
movie-actor-director-writer network 2, capturing intricate collaborations within films. Nodes
represent individuals involved in film production (actors, directors, and writers), and hyperedges
denote their joint participation in a single film. Node attributes are extracted from Wikipedia
keywords, and labels indicate each individual’s specific role.

• Amazon-ratings (Ratings) (Li et al., 2025c): This dataset, sourced from the Amazon co-
purchasing network in the SNAP repository (Leskovec, 2014), includes products like books,
music CDs, DVDs, and VHS tapes. Nodes represent individual products, and hyperedges link
those frequently purchased together. The task is to predict each product’s average user rating,
classified into ten levels. Node features are extracted using the BoW technique applied to product
descriptions (Juluru et al., 2021).

• Twitch-gamers (Gamers) (Li et al., 2025c): The Twitch-gamers dataset is a connected undirected
hypergraph representing user interactions on the Twitch streaming platform. Nodes denote user
accounts, and hyperedges are formed based on mutual follows within specific timeframes. Each
node is associated with features such as view counts, timestamps, language preferences, activity
duration, and inactivity status. The goal is to predict whether a channel hosts explicit content
(binary classification).

• Pokec (Li et al., 2025c): The Pokec dataset is derived from Slovakia’s largest online social
networking platform and is used to model social relationships and attributes. Nodes represent
individual users, and hyperedges correspond to each user’s full set of friends. Node labels indicate
user-reported gender, while node features are extracted from profile information, including age,
hobbies, interests, education level, region, etc.

• Yelp (Chien et al., 2022): The Yelp dataset is a hypergraph where nodes represent restaurants and
hyperedges link those visited by the same user. Node labels denote average star ratings (1.0–5.0
in 0.5 steps). Features include geographic coordinates, one-hot encodings of city/state, and BoW
vectors from the top-1000 restaurant name tokens.

• German (Wei et al., 2022): The nodes in the dataset represent clients in the German Bank, and
hyperedges are constructed by linking individuals with the most similar credit accounts to each
person in the dataset. The task is to classify credit risk levels as high or low based on the sensitive
attribute ”gender” (Male/Female).

• Bail (Wei et al., 2022): The nodes in the datasets are defendants who got released on bail at the
U.S state courts during 1990- 2009 (Jordan & Freiburger, 2015). Hyperedges are constructed
based on the similarity of past criminal records among individuals. The task is to classify whether
defendants are on bail or not with the sensitive attribute ”race” (White/Black).

• Credit (Wei et al., 2022): The nodes in the dataset represent credit card users, and hyperedges are
formed based on the similarity of users’ spending and payment patterns. The task is to classify
the default status with the sensitive attribute ”age” (<25 / >25).

• RHG-10/RHG-3 (Feng et al., 2024): RHG-10 dataset encompasses ten distinct synthetic factor
hypergraph structures (i.e., Hyper Flower, Hyper Pyramid, Hyper Checked Table, Hyper Wheel,
Hyper Lattice, Hyper Windmill, Hyper Firm Pyramid, Hyper RChecked Table, Hyper Cycle, and

2https://www.aminer.org/lab-datasets/soinf/

17

https://www.aminer.org/lab-datasets/soinf/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2020 2021 202420232022 2025HNN

HGNN
Feng et al.

HyperGCN
Yadati et al.

HCHA
Bai et al.

LEGCN
Yang et al. HyperND

Prokopchik et al.

PhenomNN
Wang et al.

SheafHyperGNN
Duta et al.

HJRL
Yan et al.

TF-HNN
Tang et al.

HNHN
Dong et al.

UniGNN
Huang & Yang

AllSetTransformer
Chien et al.

ED-HNN
Wang et al.

HyperGT
Liu et al.

EHNN
Kim et al.

T-HyperGNN
Wang et al.

2019

Spectral-based

Spatial-based

Tensor-based

DPHGNN
Saxena et al.

Figure A1: A timeline of the representative hypergraph neural networks.

Hyper Fern). To evaluate the algorithm’s ability to recognize significant high-order structures, the
RHG-3 dataset is constructed by randomly generating hypergraphs for three distinctively various
hypergraph structures: Hyper Pyramid, Hyper Checked Table, and Hyper Wheel.

• IMDB-Dir-Form/IMDB-Dir-Genre (Feng et al., 2024): These two datasets contain hypergraphs
constructed by the co-director relationship from the original IMDB dataset. The director of each
movie is a hypergraph. ”Form” included in the dataset’s name indicates that the movie category
is identified by its form, like animation, documentary, and drama. ”Genre” denotes that the movie
is classified by its genres, like adventure, crime, and family.

• Steam-Player (Feng et al., 2024): The Steam-Player dataset is a player dataset where each player
is a hypergraph. The vertex is the games played by the player, and the hyperedge is constructed by
linking the games with shared tags. The target of the dataset is to identify each user’s preference:
single-player game or multiplayer game.

• Twitter-Friend (Feng et al., 2024): The Twitter-Friend dataset is a social media dataset. Each
hypergraph is the friends of a specified user. The hyperedge is constructed by linking the users
who are friends. The label associated with the hypergraph is to identify whether the user posted
the blog about ”National Dog Day” or ”Respect Tyler Joseph”.

A.2 BENCHMARK ALGORITHMS

Figure A1 illustrates 17 HNN algorithms integrated into our DHG-Bench, including 10 spectral-based,
5 spatial-based, and 2 tensor-based methods. We introduce these methods in detail below.

A.2.1 SPECTRAL-BASED ALGORITHMS

• HGNN (Feng et al., 2019): HGNN is a framework for representation learning that extends spectral
convolution to hypergraphs. By leveraging the hypergraph Laplacian and approximating spectral
filters with truncated Chebyshev polynomials, it effectively captures high-order correlations
inherent in complex data.

• HyperGCN (Yadati et al., 2019): HyperGCN approximates each hyperedge of the hypergraph by
a set of pairwise edges connecting the vertices of the hyperedge, and treats the learning problem
as a graph learning task on the approximated graph.

• HCHA (Bai et al., 2021): HCHA is a hypergraph neural network that introduces two end-to-end
trainable operators: hypergraph convolution and hypergraph attention. Hypergraph convolution
efficiently propagates information by leveraging high-order relationships and local clustering
structures, with standard graph convolution shown as a special case. Hypergraph attention
further enhances representation learning by dynamically adjusting hyperedge connections through
an attention mechanism, enabling task-relevant information aggregation and yielding more
discriminative node embeddings.

• LEGCN (Yang et al., 2022): LEGCN is a hypergraph learning model based on the Line Expansion
(LE). By modeling vertex-hyperedge pairs, LEGCN bijectively transforms a hypergraph into a
simple graph, preserving the symmetric co-occurrence structure and avoiding information loss.
This enables existing graph learning algorithms to operate directly on hypergraphs.

• HyperND (Prokopchik et al., 2022): HyperND develops a nonlinear diffusion process on hy-
pergraphs that propagates both features and labels along the hypergraph structure. The novel
diffusion incorporates a broad class of nonlinearities to increase the modeling capability, and the
limiting point serves as a node embedding from which we make predictions with a linear model.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• PhenomNN (Wang et al., 2023b): PhenomNN is a hypergraph learning framework grounded in
a family of expressive, parameterized hypergraph-regularized energy functions. It formulates
node embeddings as the minimizers of these energy functions, which are optimized jointly with
a parameterized classifier through a supervised bilevel optimization process. This approach
provides a principled way to model high-order relationships in hypergraphs while enabling
end-to-end training.

• SheafHyperGNN (Duta et al., 2023): SheafHyperGNN introduces a cellular sheaf framework
for hypergraphs, enabling the modeling of complex dynamics while preserving their higher-order
connectivity. Then, it generalizes the two commonly used hypergraph Laplacians to incorporate
the richer structure sheaves offer and constructs two powerful neural networks capable of inferring
and processing hypergraph sheaf structure.

• HJRL (Yan et al., 2024): HJRL introduces a novel cross expansion method, which transforms
both hypervertices and edges of a hypergraph to vertices in a standard graph. Then, a joint learning
model is proposed to embed both hypervertices and hyperedges into a shared representation space.
In addition, the algorithm employs a hypergraph reconstruction objective to preserve structural
information in the model.

• DPHGNN (Saxena et al., 2024): DPHGNN is a hybrid framework designed for effective feature
representation in resource-constrained hypergraph settings. It introduces equivariant operator
learning to capture lower-order semantics by inducing topology-aware inductive biases. It
employs a dual-layered feature update mechanism: a static update layer provides spectral biases
and relational features, while a dynamic update layer fuses explicitly aggregated features from
the underlying topology into the hypergraph message-passing process.

• TF-HNN (Tang et al., 2025): TF-HNN is the first model to decouple hypergraph structural
processing from model training, substantially improving training efficiency. Specifically, it
introduces a unified, training-free message-passing module (TF-MP-Module) by identifying
feature aggregation as the core operation in HNNs. The TF-MP-Module removes learnable
parameters and nonlinear activations, and compresses multi-layer propagation into a single step,
offering a simplified and efficient alternative to existing architectures.

A.2.2 SPATIAL-BASED ALGORITHMS

• HNHN (Dong et al., 2020): HNHN is a hypergraph convolution network with nonlinear activation
functions applied to both hypernodes and hyperedges, combined with a normalization scheme
that can flexibly adjust the importance of high-cardinality hyperedges and high-degree vertices
depending on the dataset.

• UniGNN (Huang & Yang, 2021): UniGNN is a unified message-passing framework that gen-
eralizes standard GNNs to hypergraphs. It models the two-stage aggregation process by first
computing hyperedge representations using a permutation-invariant function over the features
of incident vertices, and then updating each vertex by aggregating its associated hyperedge
representations. This formulation enables seamless adaptation of existing GNN architectures to
hypergraph structures.

• AllSetTransformer (Chien et al., 2022): AllSetTransformer is a novel HNN paradigm that
implements each layer as a composition of two multiset functions. By incorporating the Set
Transformer (Lee et al., 2019) into its architecture, it achieves greater modeling flexibility and
enhanced expressive power.

• ED-HNN (Wang et al., 2023a): ED-HNN is an architecture designed to approximate any continu-
ous, permutation-equivariant hypergraph diffusion operator. The model is efficiently implemented
by combining the star expansion (bipartite representation) of hypergraphs with standard message-
passing neural networks, and supports scalable training via shared weights across layers.

• HyperGT (Liu et al., 2024): HyperGT is a Transformer-based HNN architecture designed to
capture global correlations among nodes and hyperedges. To preserve local structural information,
it incorporates incidence-matrix-based positional encoding and a structure regularization term.
These designs enable comprehensive hypergraph representation learning by jointly modeling
global interactions and local connectivity patterns.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.2.3 TENSOR-BASED ALGORITHMS

• EHNN (Kim et al., 2022): EHNN is the first framework to realize equivariant GNNs for gen-
eral hypergraph learning. It establishes a connection between sparse hypergraphs and dense,
fixed-order tensors, enabling the design of a maximally expressive equivariant linear layer. To
ensure scalability and generalization to arbitrary hyperedge orders, EHNN further introduces
hypernetwork-based parameter sharing.

• T-HyperGNN (Wang et al., 2024): T-HyperGNN is a general framework that integrates tensor
hypergraph signal processing (t-HGSP) (Pena-Pena et al., 2023) to encode hypergraph structures
using tensors. It models node interactions through multiplicative interaction tensors, elevating
aggregation from traditional linear operations to higher-order polynomial mappings, thereby
enhancing expressive power. To ensure scalability, T-HyperGNN introduces tensor-message-
passing by exploiting tensor sparsity, enabling efficient processing of large hypergraphs with
computational and memory costs comparable to matrix-based HNNs.

In addition, we include MLP and two GNN-based methods, CEGCN and CEGAT (Chien et al., 2022),
as baselines in our comparative study. Both CEGCN and CEGAT are expansion-based approaches
that transform a hypergraph into a pairwise graph via clique expansion (Zhou et al., 2006), where
each hyperedge is converted into a clique over its incident nodes. Specifically, CEGCN applies
GCN (Kipf & Welling, 2017) to the expanded graph, while CEGAT employs GAT (Veličković et al.,
2018) to model node importance within the cliques.

B DETAILS OF THE EXPERIMENTAL SETTINGS

B.1 GENERAL EXPERIMENTAL SETTINGS

We strive to follow the original implementations of various HNN methods from their respective
papers or source codes and integrate them into a unified training and evaluation framework. All
parameters are randomly initialized. We use the cross-entropy loss function (Mao et al., 2023)
for all three benchmark classification tasks. Adam optimizer (Kingma, 2014) is adopted with an
appropriate learning rate and weight decay to achieve the best performance on the validation split.
Detailed hyperparameter settings and experimental environments are provided in Appendix B.2 and
Appendix B.3, respectively. For evaluation, we follow prior studies in choosing task-specific metrics:
accuracy for node classification (Feng et al., 2019; Chien et al., 2022; Wang et al., 2023a); AUROC
(area under the ROC curve) and AP (average precision) for hyperedge prediction (Hwang et al.,
2022; Ko et al., 2025; Yu et al., 2025; Tang et al., 2025); and both accuracy and Macro-F1 score for
hypergraph classification (Feng et al., 2024). Higher values of these metrics indicate better predictive
performance. In addition, to assess algorithmic fairness, we adopt two commonly used group fairness
metrics: demographic parity (∆DP) (Dwork et al., 2012) and equalized odds (∆EO) (Hardt et al.,
2016), with detailed definitions provided in Appendix B.5. For each method and dataset, we record
the mean results and the standard deviation across 5 runs.

B.2 HYPERPARAMETER SETTING

We carefully tune hyperparameters to ensure a rigorous and unbiased evaluation of the integrated
HNN methods. For algorithms without explicit hyperparameter guidelines in their original papers or
source code, we perform a grid search with a reasonable budget across all datasets to identify optimal
configurations. The search spaces are provided in Table A4. For detailed interpretations, please refer
to the corresponding papers, and the complete hyperparameter configurations are available in our
publicly released GitHub repository.

B.3 EXPERIMENTAL ENVIRONMENT

All the experiments are conducted with the following computational resources and configurations:

• Operating system: Ubuntu 24.04 LTS.
• CPU information: Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz with 128G Memory.
• GPU information: Quadro RTX 6000 with 24GB of Memory.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table A4: Hyperparameter search space of different methods.
Method Hyperparameter Search Space

General Settings

Epochs 100, 200, 300, 400, 500, 800, 1000
Learning Rate 0.1, 0.01, 0.001, 0.0001
Layers 1, 2, 3, 4
Dropout Rate 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
Weight Decay 0, 0.0005
Hidden Units 64, 128, 256, 512, 1024
Activation LeakyReLU, ReLU, PReLU, Sigmoid, Softmax
Hyperedge Pooling max, mean, max-min
Hypergraph Pooling max, mean

HCHA heads 1, 2, 4, 8, 16

HyperND

HyperND ord 1, 2, 3, 5, 10
HyperND tol 0.001, 0.0001, 0.00001, 0.000001
HyperND steps 50, 100, 150, 200
alpha 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

HJRL λ0 0.001, 0.01, 0.1, 1, 10

PhenomNN

λ0 0, 0.1, 1, 10, 20, 50, 80, 100
λ1 0, 0.1, 1, 10, 20, 50, 80, 100
prop steps 2, 4, 8, 16, 32, 64, 128
alpha 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

SheafHyperGNN

init hedge rand, avg
sheaf pred block MLP var1, MLP var2, MLP var3, cp decomp
sheaf transformer head 1, 2, 4, 8, 16
stalk dim 1, 2, 4, 8

TF-HNN mlp hidden size 64, 128, 256, 512, 1024
layers of classifier 1, 2, 3, 4

HNHN alpha -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5
beta -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0

UniGNN alpha 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9
beta 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9

AllSetTransformer attention heads 1, 2, 4, 8, 16

ED-HNN

alpha 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
layers of ϕ̂ 0, 1, 2, 3
layers of ρ̂ 0, 1, 2, 3
layers of φ̂ 0, 1, 2, 3

DPHGNN

attention heads 1, 2, 4, 8, 16
layers of TAA module 1, 2, 3, 4
layers of SIB module 1, 2
layers of DFF module 1, 2

HyperGT attention heads 1, 2, 4, 8, 16

EHNN

ehnn qk channels 64, 128, 256
ehnn n heads 1, 2, 4, 8, 16
ehnn pe dim 64, 128
ehnn inner channel 64, 128, 256
ehnn hidden channel 64, 128, 256

T-HyperGNN M: maximum cardinality 1, 2, 3, 4, 5
combine concat, sum

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Software: CUDA 12.1, Python 3.9.21, Pytorch (Paszke et al., 2019) 2.2.2, Pytorch Geometric (Fey
& Lenssen, 2019) 2.6.1.

B.4 ROBUSTNESS EVALUATION SETTINGS

In our robustness study, we simulate data perturbation scenarios from three perspectives: structure,
feature, and supervision signal. Each perturbation setting is repeated 5 times with different random
seeds to account for randomness, and we report the average results. Our experiments primarily focus
on the node classification task. The detailed experimental setups are as follows.

Structure-level Robustness Evaluation Setting. To analyze structure-level robustness, follow-
ing (Cai et al., 2022), we randomly remove or add a proportion of node–hyperedge connections (i.e.,
hyperlinks) in the original hypergraph and then train and evaluate HNN algorithms on the perturbed
structures. The modification ratio ranges from 0 to 0.9 to simulate varying levels of noise intensity.

Feature-level Robustness Evaluation Setting. To study feature-level robustness, we simulate
two realistic types of feature perturbations: feature noise and feature sparsity. For feature noise,
following (Wu et al., 2020), we add independent Gaussian noise to each feature dimension of all
nodes with gradually increasing amplitude. Specifically, we use the mean of the maximum feature
value of each node as the reference amplitude r, and add Gaussian noise λ · r · ϵ to each feature
dimension, where ϵ ∼ N (0, 1) and λ denotes the feature noise ratio. We evaluate model performance
as λ varies from 0 to 0.9 with a step size of 0.1. For feature sparsity, following (Li et al., 2023), we
randomly mask a certain proportion of node features by filling them with zeros, with the sparsity
ratio ranging from 0 to 0.9 at an interval of 0.1.

Supervision-level Robustness Evaluation Setting. We study supervision-level robustness by
simulating realistic noise and sparsity scenarios. For label noise, following (Dai et al., 2021), a certain
proportion of training samples are randomly assigned incorrect labels by uniformly flipping them
to one of the other classes. The noise ratio varies from 0 to 0.2 in increments of 0.05. Sparsity is
introduced by reducing the ratio of training nodes, with the sparsity rate ranging from 0 to 0.8 with a
step size of 0.2.

B.5 FAIRNESS EVALUATION METRICS

For fairness evaluation, we adopt two widely used group fairness metrics: demographic parity
(DP) (Dwork et al., 2012), and equalized odds (EO) (Hardt et al., 2016). We focus on a binary
classification task, with target label y ∈ {0, 1} and binary sensitive attribute s ∈ {0, 1}.

Demographic Parity. If the predicted result ŷ is independent of sensitive attributes s, i.e., ŷ ⊥ s,
then we can consider demographic parity is achieved. Formally, this criterion can be expressed as:

P (ŷ = 1 | s = 0) = P (ŷ = 1 | s = 1). (1)

If a model satisfies demographic parity, the acceptance rate of different protected groups is the same.
The deviation measure ∆DP in the quantitative evaluation is given by:

∆DP = |P (ŷ = 1 | s = 0)− P (ŷ = 1 | s = 1)|, (2)

where a smaller value indicates a fairer prediction distribution across groups.

Equalized Odds. If the predicted outcome ŷ and the sensitive attribute s are conditionally independent
given the ground-truth label y, i.e., ŷ ⊥ s | y, then we consider equalized odds is achieved. The
formula for this criterion is as follows:

P (ŷ = 1 | s = 1, y = 1) = P (ŷ = 1 | s = 0, y = 1). (3)

If a model achieves equalized odds, the True Positive Rate (TPR) and False Positive Rate (FPR) are
equal across different protected groups. The deviation measure ∆EO is calculated as:

∆EO = |P (ŷ = 1 | s = 1, y = 1)− P (ŷ = 1 | s = 0, y = 1)|, (4)

where a smaller value reflects more equitable predictive behavior across sensitive groups under the
same ground-truth condition.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.6 DISCUSSION ON ROBUSTNESS AND FAIRNESS EVALUATION

In this section, for the newly introduced robustness and fairness metrics, we discuss how an ideal
HNN model is expected to behave during evaluation.

B.6.1 DISCUSSION ON ROBUSTNESS METRICS

Structure Robustness. (1) In homophilous settings, meaningful higher-order relations benefit
classification. Under drop perturbations, a desirable HNN should maintain accuracy that is no lower
than that of structure-agnostic baselines (e.g., MLPs), and ideally remain as stable as possible. This
indicates that when higher-order structure exists, the model is indeed able to effectively leverage it.
Under addition perturbations, which introduce noisy or spurious links, an ideal HNN is expected to
identify and down-weight these noisy edges during message passing. Consequently, the model should
also maintain stable performance and stay close to the clean-hypergraph accuracy, demonstrating
resilience to the adverse effects of structural noise. (2) In heterophilous settings, many higher-order
connections are not helpful and may even be harmful. In this case, as the perturbation ratio increases,
a robust HNN is expected to show a performance trend that remains stable or even improves. Such a
trend indicates that disrupting harmful heterophilous links enables the model to better capture the
remaining homophilous patterns, reflecting stronger robustness to misleading structural signals.

Feature Robustness. For feature robustness evaluation, an ideal HNN is one whose predictive
performance degrades slowly as feature noise increases or feature sparsity becomes more severe.
Under our benchmark setting, we expect a good HNN to maintain an average performance clearly
above the baseline obtained when all features are replaced with random noise, indicating that the
model can effectively exploit meaningful feature signals. Likewise, as the feature sparsity ratio
increases, the model’s performance should decline gradually while remaining above the extreme case
where only a single feature dimension is preserved and, within this feasible range, stay as close as
possible to the clean-hypergraph performance. Such behavior reflects the model’s ability to utilize
informative features even under highly degraded or partially missing feature conditions.

Label Robustness. For label robustness evaluation, we regard an ideal HNN as one whose predictive
performance remains insensitive to different levels of label noise and label sparsity. Under our
benchmark setting, a strong HNN should retain test accuracy close to its clean-data performance,
showing either minimal degradation or no noticeable drop as the proportion of noisy labels increases
or as the fraction of labeled training nodes decreases.

B.6.2 DISCUSSION ON FAIRNESS METRICS

For fairness evaluation, an ideal HNN maintains strong predictive performance while exhibiting no
algorithmic bias across different sensitive demographic groups. Specifically, under our benchmark
setting, a good HNN should achieve high node classification accuracy while simultaneously attaining
low values on the fairness metrics demographic parity (∆DP) and equalized odds (∆EO).

B.7 DISCUSSION ON MEMORY MITIGATION STRATEGIES

In our DHG-Bench, our primary mitigation strategy for handling memory-intensive settings is the
unified support for sparse-matrix storage and training. Sparse operations are broadly compatible
with all HNN models and effectively reduce memory overhead without affecting training dynamics,
making them a practical and reliable choice. Below, we detail this strategy and explain why certain
other techniques were not adopted.

Support for Sparse Matrix. DHG-Bench implements full sparse support for all HNNs, including
sparse incidence matrices and sparse matrix computations during message passing. Representing
the incidence matrix in a sparse format substantially reduces memory consumption, particularly for
large-scale datasets. Sparse tensor operations also eliminate the need to materialize dense intermediate
matrices during aggregation, which lowers peak memory usage in both the forward and backward
passes. This design allows DHG-Bench to scale to larger hypergraphs than would be feasible with
dense representations and serves as our main approach to preventing the OOM issue.

Why Mini-batching is not Used. Following the standard practice in most related HNN studies,
DHG-Bench employs full-batch training for all models. Hypergraphs differ fundamentally from

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table A5: Additional node classification results on NTU2012, ModelNet40, and Ratings.
Method NTU2012 ModelNet40 Ratings

MLP 88.59±1.27 96.88±0.23 28.47±0.76
CEGCN 84.93±1.12 92.34±0.24 26.65±1.61
CEGAT 84.14±1.77 92.02±0.26 28.23±0.50

HGNN 90.13±0.89 97.43±0.20 28.05±0.28
HyperGCN 75.78±4.82 91.15±3.88 27.34±0.72

HCHA 90.53±1.00 97.68±0.16 28.33±0.34
LEGCN 89.82±0.91 96.82±0.24 28.21±0.50

HyperND 88.98±1.56 97.18±0.58 28.32±0.38
PhenomNN 88.78±0.67 98.28±0.18 28.49±0.41

SheafHyperGNN 90.81±0.58 98.30±0.19 28.35±0.57
HJRL 88.15±1.18 96.33±0.30 26.90±0.55

DPHGNN 84.77±1.06 97.19±0.17 28.57±1.07
TF-HNN 91.69±0.75 98.38±0.11 28.56±0.68

HNHN 87.27±1.53 97.30±0.27 27.29±0.70
UniGNN 89.86±0.44 98.42±0.08 28.39±0.64

AllSetTransformer 90.17±1.03 98.07±0.21 27.32±1.11
ED-HNN 91.45±0.70 98.51±0.15 28.38±0.31
HyperGT 86.00±2.05 96.83±0.17 26.58±0.33

EHNN 87.99±0.39 97.97±0.17 28.95±0.81
T-HyperGNN 89.15±1.09 97.76±0.34 24.63±1.22

graphs because hyperedges connect multiple nodes simultaneously. However, there is currently no
widely adopted, hypergraph-specific mini-batch sampling strategy that preserves hyperedge integrity
or provides unbiased training signals. Existing sampling methods designed for graphs do not directly
transfer to hypergraphs, as they often break hyperedge structures or distort higher-order relationships.
DHG-Bench therefore follows the full-batch protocol to ensure comparability with prior works.
Developing principled mini-batch sampling strategies for hypergraphs is an important direction, and
we plan to explore this in future extensions of DHG-Bench.

Why Mixed-Precision is not Used. Mixed-precision training can reduce memory usage in some
deep learning models. However, many HNNs rely on sparse operations and irregular message-passing
kernels, and while PyTorch technically allows FP16 sparse tensors, most sparse operators either lack
full FP16 support or exhibit numerical instability in half-precision settings. To keep the evaluation
fair and consistent across all models, we choose not to include the mixed precision strategy.

C SUPPLEMENTARY EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL RESULTS ON EFFECTIVENESS EVALUATION

Table A5 shows the node classification results of all HNN algorithms on three datasets: NTU2012,
ModelNet, and Ratings.

Table A6, A7 reports the full result of hyperedge prediction and hypergraph classification, respectively.
Tensor-based methods are not considered in the hypergraph classification task, as they lack flexibility
in supporting multi-graph training.

C.2 EXPERIMENTAL RESULTS ON ROBUSTNESS EVALUATION

Figures A2, A3, and A4 show the robustness evaluation results at the structure, feature, and supervi-
sion levels on the Pubmed and Pokec datasets, respectively.

C.3 EXPERIMENTAL RESULTS ON FAIRNESS EVALUATION

Table A8 presents the full experimental results of fairness evaluation in terms of three metrics:
accuracy (Acc), demographic parity (∆DP), and equalized odds (∆EO).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table A6: Evaluation results of hyperedge prediction.
Method Cora PubMed Cora-CA DBLP-CA Actor Pokec

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

MLP 68.01±1.23 71.32±1.13 66.00±0.44 69.21±0.61 71.15±1.73 72.80±1.27 69.19±0.19 70.66±0.36 54.75±2.29 53.63±1.56 69.69±2.56 69.07±3.03

CEGCN 66.10±2.43 65.50±2.85 60.14±3.97 60.25±3.60 67.27±3.78 71.23±2.69 64.06±1.11 65.07±1.69 50.02±0.01 50.05±0.02 73.03±2.76 70.08±2.95

CEGAT 72.48±0.52 71.02±0.64 62.20±6.25 61.63±5.99 69.81±1.13 70.38±1.33 66.50±8.80 65.29±8.21 56.34±5.33 56.36±5.07 81.01±0.43 79.61±1.60

HGNN 73.70±1.19 71.73±1.57 66.08±9.84 63.67±9.02 89.16±1.11 89.85±0.82 75.44±3.01 73.96±4.91 72.42±1.96 68.79±1.83 86.09±0.92 84.32±0.95

HyperGCN 77.34±1.30 77.15±0.33 66.46±8.87 64.84±7.98 92.73±0.95 93.42±0.89 89.46±0.18 91.39±0.34 55.01±8.76 56.29±7.44 91.45±0.70 90.76±0.70

HCHA 73.57±1.08 72.24±1.80 63.35±1.61 63.13±1.47 85.85±3.27 84.77±5.66 73.30±3.72 72.09±3.07 69.86±0.95 66.72±0.74 88.81±0.28 88.25±0.41

LEGCN 67.16±2.85 68.76±4.89 56.39±3.28 54.33±2.41 74.29±0.59 75.95±0.62 50.70±1.40 50.47±0.94 48.25±3.00 49.76±1.29 74.94±1.44 73.89±1.04

HyperND 69.10±1.28 72.71±1.48 72.12±0.78 73.53±0.63 84.01±0.61 84.98±1.07 78.63±0.71 79.42±0.94 53.12±2.56 52.64±2.33 75.77±1.56 73.51±1.62

PhenomNN 75.71±0.91 75.22±1.42 74.29±0.85 72.93±1.27 80.27±1.62 79.59±1.11 75.86±0.86 75.54±0.88 56.65±3.04 55.75±2.87 70.83±2.52 70.17±2.36

SheafHyperGNN 70.53±5.28 70.93±4.04 68.26±1.92 68.07±1.18 79.21±4.53 75.42±6.73 76.30±1.91 75.41±1.76 59.83±6.77 59.84±5.73 83.44±2.49 85.11±1.80

HJRL 58.48±2.52 61.02±2.60 59.28±0.84 58.63±1.50 82.41±1.90 85.67±1.11 OOM OOM 48.26±0.77 50.00±0.31 84.88±3.30 86.18±2.61

DPHGNN 66.48±5.82 67.23±5.11 60.37±7.77 59.86±7.70 82.89±2.28 83.78±2.50 OOM OOM 42.44±5.81 46.60±3.03 73.35±4.59 73.28±3.74

TF-HNN 76.94±0.86 76.57±0.71 73.75±0.73 75.54±0.72 74.97±1.85 71.13±1.65 75.70±2.77 74.69±2.26 54.03±1.71 54.06±1.57 68.00±0.97 67.41±1.20

HNHN 70.13±1.67 68.84±1.09 55.67±0.39 53.52±0.31 84.33±1.40 83.49±1.00 82.85±0.70 82.13±0.58 69.89±0.98 66.45±0.74 82.25±1.34 81.72±1.53

UniGNN 73.51±0.87 75.23±1.51 74.20±0.82 71.76±1.16 80.59±0.98 82.37±1.11 81.08±0.79 79.39±0.46 50.24±1.26 50.01±0.56 85.64±1.20 84.36±1.48

AllSetTransformer 72.55±2.95 74.86±1.85 71.09±2.99 73.15±2.49 76.13±7.70 75.02±8.68 75.12±4.14 77.12±4.22 55.84±5.99 58.73±4.39 83.65±4.34 83.36±4.72

ED-HNN 67.24±1.91 69.89±2.24 70.09±0.43 72.61±0.48 74.58±1.37 72.94±1.32 81.86±0.67 84.75±0.50 51.74±2.79 52.27±2.54 85.27±1.48 84.95±1.43

HyperGT 60.68±4.46 63.02±4.00 64.38±0.58 67.79±0.59 65.99±2.48 69.66±2.20 74.27±0.24 72.90±0.17 65.18±1.60 63.24±0.53 81.37±5.38 82.73±5.83

EHNN 78.99±0.99 79.54±0.93 76.50±0.62 75.94±0.70 77.83±3.01 78.29±3.72 87.96±0.98 89.00±0.64 65.69±0.46 65.37±0.35 88.63±1.58 91.31±0.88
T-HyperGNN 58.91±1.23 62.17±1.58 58.35±4.43 55.81±3.71 66.87±0.88 69.65±0.53 67.17±5.79 68.45±3.85 49.16±0.22 50.20±0.41 65.21±1.21 66.90±1.56

Table A7: Evaluation results of hypergraph classification. Acc and F1 ma denote the accuracy and
Macro-F1, respectively. Tensor-based methods are omitted as they cannot be applied to this task.

Method RHG-10 RHG-3 IMDB-Dir-Form IMDB-Dir-Genre Steam-Player Twitter-Friend
Acc F1 ma Acc F1 ma Acc F1 ma Acc F1 ma Acc F1 ma Acc F1 ma

MLP 91.70±1.02 91.43±1.09 95.73±1.86 95.72±1.84 63.62±1.69 56.98±3.93 75.12±0.70 71.10±0.74 52.34±0.55 51.60±0.68 57.25±1.81 52.88±4.57

CEGCN 91.50±1.55 90.48±1.42 98.63±0.73 98.65±0.77 62.66±1.82 55.31±3.58 75.06±0.76 68.98±1.67 48.16±3.87 47.03±3.79 54.66±5.66 42.16±2.71

CEGAT 88.70±1.71 88.43±1.72 98.80±0.61 98.83±0.59 63.51±1.54 56.97±4.83 74.12±2.69 68.61±4.73 49.51±4.71 46.85±4.93 57.32±2.59 38.22±2.54

HGNN 94.60±1.66 94.47±1.84 98.93±0.68 98.97±0.65 63.72±0.62 57.92±2.24 76.76±2.66 72.02±4.37 51.65±2.51 50.91±2.92 55.42±2.03 46.81±4.27

HyperGCN 85.50±1.10 95.42±1.09 99.47±0.50 99.48±0.49 62.87±0.40 57.20±2.46 77.53±0.99 72.97±1.08 51.17±3.32 50.48±3.12 56.95±4.17 50.12±5.88

HCHA 96.60±1.02 96.48±1.09 99.33±0.42 99.37±0.38 61.60±2.16 55.37±2.17 78.12±1.96 73.20±3.00 52.43±2.30 51.77±2.52 58.17±2.34 49.57±6.84

LEGCN 92.40±1.16 92.06±1.19 96.80±0.98 96.78±0.29 61.81±1.32 56.05±3.75 76.38±1.68 72.03±1.54 53.11±1.58 52.70±1.87 56.64±3.72 53.38±4.92
HyperND 91.00±0.95 90.74±1.04 92.80±1.95 92.75±1.90 60.74±3.25 55.02±4.95 75.65±0.51 71.37±1.10 53.88±2.15 49.71±2.05 55.27±3.79 43.61±6.51

PhenomNN 91.10±0.73 90.77±0.77 93.47±1.90 93.45±1.90 61.28±1.97 53.71±3.13 74.59±0.61 70.15±0.88 51.65±3.06 48.94±4.55 57.40±3.84 48.26±4.66

SheafHyperGNN 96.00±1.38 95.96±1.32 99.73±0.33 99.74±0.30 62.34±2.06 56.47±3.49 77.00±1.14 72.78±1.17 53.11±2.39 52.56±2.74 56.49±2.51 51.43±4.42

HJRL 96.10±0.80 95.98±0.85 99.60±0.53 99.57±0.52 63.09±2.83 56.54±3.62 77.82±1.47 73.73±1.92 51.84±3.52 51.13±3.29 57.10±2.79 44.19±7.19

DPHGNN 96.80±0.68 96.71±0.71 99.49±0.65 99.61±0.64 64.04±2.70 57.41±3.96 76.18±1.30 71.59±1.82 51.36±1.72 49.03±3.63 59.24±2.88 46.12±8.49

TF-HNN 95.90±0.80 95.88±0.78 98.80±0.65 98.84±0.61 62.34±1.76 55.32±3.81 76.41±1.31 71.89±1.45 54.85±1.82 52.72±2.54 56.18±3.53 44.17±8.95

HNHN 94.00±1.90 94.08±1.88 99.92±0.02 99.95±0.02 62.34±2.98 55.24±3.88 73.65±1.47 69.68±1.18 52.82±1.61 52.68±1.69 58.47±4.65 39.40±3.14

UniGNN 95.50±1.38 95.40±1.44 98.80±0.27 98.83±0.27 61.06±2.88 55.75±4.01 77.12±0.88 72.93±1.43 51.46±2.48 48.85±2.59 55.88±4.14 46.48±4.90

AllSetTransformer 97.30±0.98 97.26±1.04 98.80±0.27 98.81±0.26 62.23±1.01 56.26±2.93 76.47±1.38 72.26±1.12 53.01±2.77 48.21±7.20 60.15±1.70 51.52±7.00

ED-HNN 96.50±0.77 96.41±0.78 99.07±0.53 99.10±0.51 62.13±2.36 57.00±4.71 77.12±1.11 72.87±0.44 52.82±2.65 48.73±2.36 57.40±2.66 42.57±5.09

HyperGT 91.60±1.42 91.29±1.53 96.27±1.93 96.28±1.88 61.49±4.32 55.14±6.02 73.82±1.27 69.36±1.45 54.47±1.33 51.55±1.08 54.35±2.72 47.49±5.11

0.0 0.2 0.4 0.6 0.8
Hyperlink Deletion Ratio

30

45

60

75

90

Ac
cu

ra
cy

 (%
)

Pubmed

0.0 0.2 0.4 0.6 0.8
Hyperlink Deletion Ratio

50
52
54
56
58

Pokec

0.0 0.2 0.4 0.6 0.8
Hyperlink Addition Ratio

65
70
75
80
85

Pubmed

0.0 0.2 0.4 0.6 0.8
Hyperlink Addition Ratio

50
52
54
56
58

Pokec
HGNN PhenomNN SheafHyperGNN DPHGNN TF-HNN AllSetTransformer UniGNN ED-HNN HyperGT T-HyperGNN

Figure A2: Structure robustness analysis on Pubmed and Pokec.

0.0 0.2 0.4 0.6 0.8
Feature Noise Ratio

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Pubmed

0.0 0.2 0.4 0.6 0.8
Feature Noise Ratio

48

51

54

57

Pokec

0.0 0.2 0.4 0.6 0.8
Feature Mask Ratio

65
70
75
80
85

Pubmed

0.0 0.2 0.4 0.6 0.8
Feature Mask Ratio

50

52

54

56

58

Pokec
HGNN PhenomNN SheafHyperGNN DPHGNN TF-HNN AllSetTransformer UniGNN ED-HNN HyperGT T-HyperGNN

Figure A3: Feature robustness analysis on Pubmed and Pokec.

C.4 NODE CLASSIFICATION IN LABEL-SCARCE SCENARIOS

In this section, we analyze the HNNs in more label-scarce scenarios to provide additional insights
into the effectiveness of the HNN algorithms, particularly in understanding their applicability in
real-world settings where labeled data is limited.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0.00 0.05 0.10 0.15 0.20
Label Noise Ratio

65
70
75
80
85

Ac
cu

ra
cy

 (%
)

Pubmed

0.00 0.05 0.10 0.15 0.20
Label Noise Ratio

50

52

54

56

58

Pokec

0.0 0.2 0.4 0.6 0.8
Label Sparsity Ratio

80

82

84

86

88
Pubmed

0.0 0.2 0.4 0.6 0.8
Label Sparsity Ratio

50
52
54
56
58

Pokec
HGNN PhenomNN SheafHyperGNN DPHGNN TF-HNN AllSetTransformer UniGNN ED-HNN HyperGT T-HyperGNN

Figure A4: Supervision robustness analysis on Pubmed and Pokec.

Table A8: Fairness Evaluation.
Method German Bail Credit

Acc ↑ ∆DP ↓ ∆EO ↓ Acc ↑ ∆DP ↓ ∆EO ↓ Acc ↑ ∆DP ↓ ∆EO ↓
MLP 67.68±3.46 1.78±1.30 2.59±0.99 89.40±1.76 6.16±0.93 1.79±0.84 79.69±0.85 3.43±0.83 2.07±0.43

CEGCN 69.60±2.78 6.19±4.59 6.46±5.48 OOM OOM OOM OOM OOM OOM
CEGAT 69.12±2.44 9.00±4.77 8.52±3.82 OOM OOM OOM OOM OOM OOM

HGNN 69.76±2.50 9.59±3.51 6.90±3.82 91.02±0.54 7.83±0.80 2.60±1.05 80.21±0.41 5.04±2.07 3.46±1.05
HyperGCN 70.40±3.23 6.39±2.87 3.57±1.61 94.72±0.79 7.90±0.95 1.23±0.52 80.42±0.34 5.38±2.61 3.89±1.60

HCHA 70.56±2.51 9.37±3.74 6.72±3.05 91.52±0.92 7.62±0.95 1.40±0.80 80.08±0.43 3.58±1.87 2.47±0.78
LEGCN 70.88±3.22 7.53±2.54 3.25±2.00 95.02±0.40 7.87±0.62 1.28±0.52 80.48±0.37 4.31±2.24 3.15±1.12

HyperND 71.04±2.61 7.37±4.70 3.67±3.10 89.75±2.41 7.92±1.52 3.19±2.22 80.02±0.49 4.14±2.22 2.50±0.72
PhenomNN 70.96±2.85 3.54±3.07 1.60±1.94 91.71±1.13 10.83±1.64 1.94±0.40 OOM OOM OOM

SheafHyperGNN 70.64±3.29 8.14±3.25 5.23±2.05 OOM OOM OOM OOM OOM OOM
HJRL 69.92±3.46 3.52±2.70 3.05±1.82 OOM OOM OOM OOM OOM OOM

DPHGNN 70.24±3.25 2.25±0.49 1.38±0.77 93.41±0.93 8.07±1.20 2.05±1.22 OOM OOM OOM
TF-HNN 70.48±3.14 5.27±3.09 4.19±2.23 95.33±0.25 7.96±0.65 1.03±0.67 80.46±0.36 4.93±2.44 3.43±1.43

HNHN 69.52±3.62 4.01±2.76 1.59±1.60 90.76±1.30 6.03±1.43 3.04±1.34 78.00±0.23 5.70±3.11 4.67±3.10
UniGNN 71.07±2.70 5.08±3.03 2.80±1.32 91.30±1.47 9.42±1.68 3.94±2.18 80.44±0.37 3.90±2.40 2.85±1.33

AllSetTransformer 70.48±3.11 4.47±3.39 3.50±3.38 96.26±1.83 8.36±0.85 1.95±1.10 80.40±0.44 4.46±2.96 3.44±1.60
ED-HNN 70.16±3.15 4.06±3.05 4.07±2.75 94.26±0.77 8.05±0.64 1.51±0.26 OOM OOM OOM
HyperGT 68.88±2.01 5.05±2.88 4.36±2.59 94.33±0.62 7.68±1.13 1.64±1.37 79.83±0.39 4.17±2.50 2.69±1.97

EHNN 70.40±3.07 2.87±5.73 2.34±4.69 93.62±1.75 9.29±1.60 2.88±1.23 80.34±0.47 4.51±2.77 3.13±1.75
T-HyperGNN 71.20±1.82 8.99±6.52 6.80±5.02 OOM OOM OOM OOM OOM OOM

Experiment Settings. We first split the node labels into 20%/20%/60% for the train/validation/test
sets. The validation and test sets are then kept fixed, and different levels of label scarcity are simulated
by masking a portion of the training labels. Specifically, we adjust the masking ratio so that the
visible training labels constitute 20%, 15%, 10%, 5%, and 1% of all nodes. This design allows us to
systematically examine how HNNs behave as labeled data becomes increasingly limited. We evaluate
8 representative HNN algorithms spanning three major categories (spectral-based, spatial-based, and
tensor-based) on the Cora and Actor datasets, and report model performance in terms of accuracy.

Table A9: Label-scarce node classification on Cora.
Method 20% 15% 10% 5% 1%
HGNN 74.84 73.24 70.09 64.75 42.30
PhenomNN 75.35 74.07 71.96 67.55 44.96
SheafHyperGCN 76.06 74.66 71.29 66.37 43.67
TF-HNN 76.31 75.07 71.77 64.48 39.29
UniGNN 76.08 74.04 70.89 64.85 43.18
AllSetTransformer 73.48 72.33 68.46 61.70 40.44
ED-HNN 74.20 72.41 69.93 63.65 42.79
T-HyperGNN 69.02 66.99 62.50 52.89 36.60

Results and Analysis. From Tables A9 and A10, we derive the following key observations: (1)
As label scarcity increases, all HNN models exhibit a clear degradation in performance, with
the decline becoming more significant under extremely low-label settings; notably, all methods
experience substantial drops when the labeled ratio decreases from 5% to 1%. (2) Across both
datasets, PhenomNN consistently shows the strongest robustness under highly label-scarce conditions
(1% and 5%). In contrast, TF-HNN, although it achieves SOTA performance in label-abundant
scenarios (see Table 1 in the original manuscript), suffers a severe accuracy collapse when supervision
is limited and ranks as the second-worst method on Cora at the 1% label ratio. (3) The performance
degradation on the homophilous Cora dataset is more pronounced than on the heterophilous Actor

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table A10: Label-scarce node classification on Actor.
Method 20% 15% 10% 5% 1%
HGNN 77.90 77.79 77.52 76.39 70.12

PhenomNN 82.99 82.89 82.56 81.77 76.89
SheafHyperGCN 84.16 83.67 82.95 80.48 72.27

TF-HNN 85.34 84.74 83.95 81.74 74.88
UniGNN 82.85 82.65 82.64 81.69 76.34

AllSetTransformer 84.06 83.46 82.25 79.55 75.47
ED-HNN 84.74 84.30 83.38 81.14 75.53

T-HyperGNN 84.87 84.39 83.48 81.29 73.63

dataset. This may be because heterophilous links introduce misleading feature mixing, which reduces
the usefulness of label information during training and makes Actor less sensitive to label scarcity.

C.5 ADDITIONAL RESULTS FOR DIRECTION-AWARE GNNS

In this section, we additionally include two widely used direction-aware GNNs, MagNet (Zhang
et al., 2021) and DirGNN (Rossi et al., 2024), as supplementary baselines. Both models are evaluated
on node-level, edge-level, and graph-level tasks, with the corresponding results reported in Table A11,
Table A12, and Table A13, respectively.

Table A11: Node classification performance of direction-aware GNNs.
Method Cora Pubmed DBLP-CA Walmart Actor Pokec

MagNet 77.10±1.35 86.12±0.16 89.99±0.31 71.81±0.27 67.62±0.56 57.01±0.69

DirGNN 78.17±0.81 86.50±0.46 90.75±0.28 73.78±0.09 84.92±0.49 58.47±0.87

Table A12: Hyperedge prediction performance of direction-aware GNNs.

Method Cora Pubmed Actor Pokec

AUROC AP AUROC AP AUROC AP AUROC AP

MagNet 56.45±0.02 55.18±0.01 53.64±0.02 54.79±0.01 50.76±0.02 50.21±0.02 79.95±0.01 80.78±0.01

DirGNN 63.02±0.02 61.38±0.03 55.03±0.02 55.28±0.02 51.72±0.02 51.33±0.02 80.14±0.01 79.65±0.01

Table A13: Hypergraph classification performance of direction-aware GNNs.

Method RHG-10 IMDB-Dir-Genre Steam-Player Twitter-Friend

Acc F1 ma Acc F1 ma Acc F1 ma Acc F1 ma

MagNet 93.20±0.02 92.95±0.02 75.94±0.01 71.45±0.00 51.75±0.02 51.12±0.03 55.11±0.02 46.64±0.03

DirGNN 94.80±0.01 94.68±0.01 76.53±0.02 72.59±0.02 52.33±0.01 52.24±0.01 54.81±0.04 46.02±0.03

Results and Analysis. From the results shown in the tables above, we derive the following key
findings: (1) In node classification, the two newly added direction-aware GNNs generally fall short
of most HNN methods across the six datasets, reflecting the advantage of HNN architectures in
modeling higher-order structures. We also observe that DirGNN achieves competitive performance
on heterophilous datasets such as Actor and Pokec, likely because its separation mechanism in
neighbor aggregation helps mitigate the adverse feature mixing effects induced by heterophily. (2) In
hyperedge prediction, direction-aware GNNs perform notably worse than HNNs and, in many cases,
even underperform traditional MLPs. A key reason is that their directional aggregation mechanism,
which separates incoming and outgoing neighbors, reinforces a pairwise and asymmetric view of
interactions. This asymmetry limits the model’s ability to form coherent representations of multi-node
groups and makes it difficult to capture the joint, order-invariant dependencies required for accurate
hyperedge prediction. (3) In hypergraph classification, direction-aware GNNs remain less competitive
than state-of-the-art HNNs, which benefit from explicit modeling of higher-order interactions that are
crucial for capturing complex hypergraph structures.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.6 ANALYZING PERFORMANCE DEGRADATION ON HETEROPHILOUS DATASETS

In this section, we investigate the underlying causes of performance degradation on heterophilous
hypergraphs and test two key hypotheses: oversmoothing and feature collapse.

At the first step, we evaluate how the accuracy of four representative HNN architectures changes
as the number of layers increases on two heterophilous datasets, Actor and Pokec, with the goal of
examining whether oversmoothing occurs. According to Tables A14 and A15, although increasing
depth generally causes a gradual performance decline in HNNs (i.e., oversmoothing), all HNN
variants already underperform the MLP baseline under the 1-layer message passing. This suggests
that depth is not the primary factor behind the performance gap.

Table A14: Node classification on Actor with varying layer depths.
Method 1 2 3 4 5

MLP 81.23 ± 0.39 86.06 ± 0.36 84.90 ± 0.41 84.55 ± 0.54 84.28 ± 0.69
HGNN 77.63 ± 0.74 73.84 ± 0.37 70.82 ± 0.70 68.59 ± 0.68 67.33 ± 0.45

SheafHyperGNN 85.00 ± 0.32 84.71 ± 0.43 83.61 ± 0.48 82.88 ± 0.41 82.15 ± 0.63
AllSetTransformer 85.79 ± 0.77 85.63 ± 0.35 85.68 ± 0.55 85.38 ± 0.35 85.49 ± 0.21

ED-HNN 85.69 ± 0.45 85.82 ± 0.28 85.53 ± 0.37 84.93 ± 0.47 82.60 ± 9.96

Table A15: Node classification on Pokec with varying layer depths.
Method 1 2 3 4 5

MLP 57.91 ± 0.61 59.64 ± 0.48 58.81 ± 0.58 58.52 ± 0.85 58.94 ± 0.87
HGNN 57.43 ± 0.67 57.48 ± 0.82 57.26 ± 0.78 56.88 ± 1.24 56.79 ± 0.68

SheafHyperGNN 59.02 ± 0.42 58.94 ± 0.67 58.26 ± 0.61 58.03 ± 0.83 57.93 ± 0.73
AllSetTransformer 58.75 ± 0.48 58.58 ± 0.55 58.50 ± 0.85 58.54 ± 0.58 58.35 ± 0.34

ED-HNN 58.52 ± 0.32 58.71 ± 0.30 58.74 ± 0.50 58.24 ± 0.50 58.11 ± 0.58

To further examine the underlying factors, we first compute the Mean Average Distance (MAD) (Chen
et al., 2020), a widely adopted metric for measuring the smoothness (i.e., similarity) of graph
representations. Specifically, we report the MAD values for both the raw input features and the
representations obtained after the first layer. Next, to assess the extent of feature mixing under
heterophily, we measure the similarity between each node and its heterophilous neighbors using the
cosine distance. Formally, the heterophilous similarity is defined as:

Simdiff = avg(i,j): j∈N diff(i) cos
(
h
(l)
i , h

(l)
j

)
(5)

where N diff(i) = {j ∈ N (i) | yj ̸= yi} denotes the set of heterophilous neighbors whose labels
differ from that of node i. The results are reported in Tables A16 and A17.

Table A16: MAD and Simdiff values on Actor.
Layer HGNN SheafHyperGNN AllSetTransformer ED-HNN MLP

MAD Simdiff MAD Simdiff MAD Simdiff MAD Simdiff MAD Simdiff

0 0.8114 0.0584 0.8114 0.0584 0.8114 0.0584 0.8114 0.0584 0.8114 0.0584
1 0.4700 0.4013 0.3976 0.4274 0.2379 0.4892 0.5540 0.0515 0.7456 -0.0829

Table A17: MAD and Simdiff values on Pokec.
Layer HGNN SheafHyperGNN AllSetTransformer ED-HNN MLP

MAD Simdiff MAD Simdiff MAD Simdiff MAD Simdiff MAD Simdiff

0 0.2697 0.0775 0.2697 0.0775 0.2697 0.0775 0.2697 0.0775 0.2697 0.0775
1 0.1054 0.6364 0.1490 0.7573 0.0058 0.9796 0.0592 0.7818 0.2034 0.2990

Our empirical analysis reveals two key observations: (1) After only 1-layer hypergraph message
passing, MAD decreases sharply compared to the raw input features, indicating that node rep-
resentations rapidly become more homogeneous. This demonstrates that HNN message passing

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

introduces representation smoothness at a very early stage. (2) The similarity between nodes and
their heterophilous neighbors increases substantially, suggesting that heterophilous links cause strong
cross-class feature mixing and pull representations of different classes closer together. Such mix-
ing reduces class separability and ultimately impairs the effectiveness of HNN-based classifiers in
heterophilous settings.

These observations align closely with prior theoretical and empirical findings on heterophilic GNNs.
Existing studies (e.g., (Zhu et al., 2020; Luan et al., 2022; Yan et al., 2022)) suggest that heterophily
may negatively affect message-passing architectures, because features of nodes from different classes
are falsely mixed, leading to feature collapse and making nodes increasingly indistinguishable. Our
results directly validate this hypothesis in the hypergraph setting: the sharp MAD reduction and
pronounced cross-class similarity we observe mirror the failure patterns reported in these works.

C.7 HYPEREDGE PREDICTION UNDER DIFFERENT DATA SPLITS

In this section, we conduct hyperedge prediction experiments under temporal and inductive split set-
tings to account for potential temporal and inductive drift, thereby enabling more realistic evaluation
scenarios.

C.7.1 TEMPORAL SPLITS EVALUATION

Experiment Settings. Since the datasets in our current benchmark are static hypergraphs and
therefore do not support temporal splits, we introduce two widely used temporal hypergraph datasets:
the email network Email-Enron and the drug network NDC-Classes (Benson et al., 2018). Their
detailed statistics are reported in Table A18. Based on timestamp information, we sort all hyperedges
in ascending temporal order and let T denote the maximum timestamp. Hyperedges with timestamps
≤ 0.6T are used for training, those within (0.6T, 0.8T] form the validation set, and those with
timestamps > 0.8T constitute the test set, resulting in a 60%/20%/20% temporal split.

Table A18: Statistics of the two temporal hypergraphs.
Dataset # Nodes # Edges # Timestamps

Email-Enron 1,161 49,724 5,891
NDC-Classes 143 10,883 10,788

Table A19: Hyperedge prediction performance under temporal splits.

Method Email-Enron NDC-Classes

AUROC AP AUROC AP

HGNN 87.30±0.10 86.42±0.21 94.22±0.25 93.75±0.49
SheafHyperGNN 80.17±0.52 80.85±0.85 91.97±0.17 92.03±0.06

TF-HNN 78.87±0.99 79.07±0.53 87.28±0.32 88.77±0.92

UniGNN 82.52±0.59 82.02±0.92 92.17±0.05 90.36±0.46

ED-HNN 76.97±1.13 76.29±0.23 75.93±2.11 76.04±0.74

EHNN 80.58±0.63 79.19±0.10 86.06±6.05 88.47±3.84

Results and Analysis. As shown in Table A19, HGNN outperforms all other HNN architectures
on both temporal hypergraphs, suggesting a stronger capability to capture group-level temporal
interaction patterns, making it more suitable for real-world higher-order relational prediction. In
contrast, ED-HNN consistently achieves substantially lower predictive performance across both
datasets. Moreover, all HNN models exhibit noticeably lower accuracy on Email-Enron compared to
NDC-Classes, which may be attributed to the increased temporal complexity introduced by its larger
number of nodes and hyperedges, thereby making inductive prediction more challenging.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.7.2 INDUCTIVE SPLITS EVALUATION

Experiment Settings. In the inductive setting, we divide the nodes of each dataset into three disjoint
subsets for training, validation, and testing. Hyperedges in each split are constrained to include only
nodes within the corresponding subset, ensuring a strictly disjoint node–hyperedge partition. In
our experiments, we adopt a 40%/20%/40% split for the training, validation, and testing node sets,
respectively.

Table A20: Hyperedge prediction performance under inductive splits.

Method Cora Pubmed Actor

AUROC AP AUROC AP AUROC AP

HGNN 74.07±8.50 76.81±9.75 65.18±9.41 63.09±9.67 71.22±5.37 70.37±4.71

SheafHyperGNN 60.13±4.90 65.06±3.79 65.59±1.25 66.84±0.11 67.04±2.63 71.44±3.54
TF-HNN 80.81±4.68 84.19±5.95 71.74±0.67 73.37±1.09 70.98±1.91 71.41±2.17

UniGNN 67.63±5.91 72.69±3.01 59.28±3.11 61.62±0.46 57.26±2.50 60.60±2.49

ED-HNN 54.33±3.93 59.44±1.23 75.22±1.89 76.74±2.02 67.89±3.64 68.33±3.65

EHNN 68.85±1.17 71.02±2.96 64.66±10.14 63.92±9.83 64.73±4.65 63.60±5.11

Results and Analysis. As shown in Table A20, TF-HNN typically ranks first or second across
inductive hyperedge prediction datasets, indicating strong generalization to inductive distribution
shift. In contrast, UniGNN performs noticeably worse in the inductive setting, particularly on
Pubmed and Actor, suggesting that it is more sensitive to inductive drift. Moreover, our results
suggest that inductive robustness may vary across datasets, as the same architecture does not always
perform consistently on different hypergraphs. For example, ED-HNN achieves the best performance
on Pubmed but the lowest on Cora. These observations collectively demonstrate that inductive
hyperedge prediction remains a non-trivial challenge for current HNNs, and model behavior can vary
substantially across datasets.

C.8 BENCHMARKING HNNS IN SELF-SUPERVISED SETTINGS

In this section, we evaluate HNN models under self-supervised learning settings, incorporating
pretraining–fine-tuning tracks into the benchmark to better reflect modern training practices.

Experiment Settings. We adopt two recently proposed hypergraph self-supervised learning methods,
TriCL (Lee & Shin, 2023) and SE-HSSL (Li et al., 2024a), to pretrain different HNN architectures.
The pretrained models are then fine-tuned on both node classification and hyperedge prediction tasks.
For node classification, following (Lee & Shin, 2023; Li et al., 2024a), we use a 10%/10%/80% split
of labeled nodes for training, validation, and testing, and report accuracy. For hyperedge prediction,
we follow (Kim et al., 2024a) and adopt a 60%/20%/20% split of hyperedges, evaluating performance
with AUROC and Average Precision (AP).

Results and Analysis. Based on the results reported in Tables A21 and A22, we observe that:
(1) Different self-supervised training frameworks lead to noticeable variations in HNN backbone
performance. Overall, models pretrained with SE-HSSL and subsequently fine-tuned achieve stronger
and more consistent downstream performance than those trained under TriCL in most cases. (3)
Even under the same SSL framework, HNNs may exhibit divergent performance across downstream
tasks. For example, within TriCL, EHNN performs relatively worse on node classification but
achieves top-ranked performance on hyperedge prediction. (3) Across both SSL frameworks, HNN
architectures obtain substantially lower hyperedge prediction accuracy on the heterophilous Actor
dataset. This suggests that existing self-supervised objectives may struggle to effectively capture
higher-order relationships in strongly heterophilous hypergraphs.

C.9 PERFORMANCE SENSITIVITY TO HYPEREDGE SIZE DISTRIBUTIONS

In this section, we empirically analyze the sensitivity of different HNN models to datasets containing
a few very large hyperedges versus many small ones.

Experiment Settings. We construct modified datasets to systematically evaluate model sensitivity.
Specifically, we define super-large hyperedges as those containing at least 10% of all nodes in the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table A21: Node classification performance under self-supervised learning.

Strategy Method Cora Pubmed Actor

TriCL

HGNN 68.74± 2.42 80.74± 1.02 73.28± 2.13
SheafHyperGNN 62.13± 4.34 77.14± 1.57 81.17± 0.26

TF-HNN 64.79± 2.33 80.48± 1.23 78.60± 1.46
UniGNN 67.55± 3.38 81.48± 1.83 78.92± 0.55
ED-HNN 64.54± 3.20 80.17± 0.78 81.76± 0.92

EHNN 62.37± 4.28 80.37± 0.73 78.03± 3.73

SE-HSSL

HGNN 72.79± 0.43 82.67± 0.24 81.12± 0.67
SheafHyperGNN 67.65± 1.57 83.11± 1.11 80.45± 1.04

TF-HNN 68.00± 1.19 81.81± 0.68 79.88± 0.50
UniGNN 70.51± 0.75 85.27± 0.10 82.30± 0.79
ED-HNN 70.95± 1.76 83.71± 0.16 83.01± 0.93

EHNN 69.85± 2.72 82.03± 1.73 81.39± 1.24

Table A22: Hyperedge prediction performance under self-supervised learning.

Strategy Method Cora Pubmed Actor

AUROC AP AUROC AP AUROC AP

TriCL

HGNN 81.25±6.13 81.64±6.17 66.80±5.44 65.45±4.02 52.73±5.37 53.43±5.31

SheafHyperGNN 69.87±9.72 70.96±9.37 51.21±4.47 52.45±3.87 50.45±1.52 50.55±1.01

TF-HNN 79.53±6.74 79.75±6.77 71.42±1.30 72.14±1.10 48.67±2.33 49.64±1.34

UniGNN 77.50±6.75 77.41±7.05 68.97±0.59 68.28±0.26 45.43±3.15 48.74±1.68

ED-HNN 78.82±6.78 80.24±6.63 67.74±1.06 68.89±1.45 51.39±3.60 52.82±2.73

EHNN 81.25±4.53 81.28±4.90 71.01±1.95 67.87±3.16 53.27±4.63 51.99±2.81

SE-HSSL

HGNN 85.31±4.68 85.22±4.92 73.18±0.76 70.07±0.72 62.20±4.31 60.29±2.61
SheafHyperGNN 55.18±5.24 57.51±3.75 56.42±3.69 55.30±2.71 42.16±3.67 47.11±1.59

TF-HNN 84.74±4.99 84.29±5.36 72.24±0.70 73.83±1.02 50.97±3.99 54.05±2.89

UniGNN 82.20±5.62 81.61±5.96 69.38±3.58 69.52±2.97 47.41±0.67 50.11±0.39

ED-HNN 78.33±7.22 76.64±4.53 68.52±0.39 69.74±0.49 52.97±0.67 52.19±1.10

EHNN 67.94±6.35 67.72±6.27 69.21±4.05 66.16±5.33 50.03±0.04 50.02±0.03

Table A23: Hyperedge size sensitivity analysis on Cora.
Method 0 2 4 6 8 10

HGNN 77.90 77.22 75.66 74.74 72.35 67.86
TF-HNN 79.47 79.20 78.49 77.93 76.63 76.04
AllSetTransformer 78.02 77.87 77.34 76.45 76.10 75.24
ED-HNN 78.58 77.93 77.25 76.69 75.78 75.10
EHNN 76.51 76.01 75.98 75.98 76.13 76.04

Table A24: Hyperedge size sensitivity analysis on DBLP-CA.
Method 0 2 4 6 8 10

HGNN 91.00 90.42 89.81 88.93 88.32 87.30
TF-HNN 91.38 90.28 89.96 89.44 89.03 88.57
AllSetTransformer 91.51 90.95 90.34 89.48 88.31 87.29
ED-HNN 91.55 91.09 90.72 89.98 89.43 88.84
EHNN 90.47 90.47 90.44 90.48 90.50 90.51

hypergraph. We sort all hyperedges in descending order by size and iteratively merge them; once
the merged hyperedge exceeds the super-large threshold, we restart the merging process for the next
one. By controlling the number of constructed super-large hyperedges (0, 2, 4, 6, 8, and 10), where

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table A25: Hyperedge size sensitivity analysis on Actor.
Method 0 2 4 6 8 10

HGNN 77.83 77.91 77.94 77.93 77.90 77.72
TF-HNN 85.96 85.96 85.68 85.22 85.57 85.61
AllSetTransformer 85.66 85.69 85.68 85.63 85.84 85.70
ED-HNN 85.77 85.79 85.80 85.76 85.74 85.77
EHNN 86.21 86.05 86.19 86.18 86.07 85.93

Table A26: Hyperedge size sensitivity analysis on Pokec.
Method 0 2 4 6 8 10

HGNN 57.87 58.98 58.57 57.87 57.11 57.78
TF-HNN 59.17 59.13 59.18 59.06 59.07 59.22
AllSetTransformer 58.55 58.90 58.76 59.02 58.67 58.74
ED-HNN 58.68 58.71 59.05 58.82 58.91 58.98
EHNN 58.23 58.23 58.20 58.06 58.11 58.02

0 corresponds to the original dataset, we obtain variants that introduce only a few extremely large
hyperedges while keeping all remaining ones small.

Results and Analysis. From Tables A23 to A26, we observe that: (1) On homophilic datasets,
introducing only a few extremely large hyperedges while keeping the rest small consistently degrades
model performance. As the proportion of these super-large hyperedges increases, performance
generally continues to decline. This is likely because a small number of oversized hyperedges disrupt
fine-grained local structure, causing the models to lose the class-consistent neighborhood signals that
homophilic settings rely on. (2) On heterophilic datasets, increasing the proportion of super-large
hyperedges generally maintains stable performance and may even yield slight improvements. A
plausible explanation is that, in heterophilic settings, the presence of a small number of oversized
hyperedges further weakens the influence of the original heterophilic connections during message
passing, thereby reducing the impact of noisy or label-inconsistent neighbors. (3) Among all evaluated
architectures, the tensor-based EHNN demonstrates the strongest robustness to extreme hyperedge-
size skew: its performance remains stable across all constructed settings on both homophilic and
heterophilic datasets.

C.10 ANALYZING HNN BEHAVIOR ON EXTREME-DEGREE NODES

Table A27: Performance on very high-degree vs. very low-degree nodes (p = 1%).

Method Cora DBLP-CA Actor Pokec

Very High Very Low Very High Very Low Very High Very Low Very High Very Low

HGNN 85.58 72.05 93.61 88.04 73.37 64.93 59.96 58.23
PhenomNN 85.59 73.47 93.97 89.70 93.18 66.51 64.60 57.42

SheafHyperGNN 85.48 74.38 94.16 88.22 82.42 74.10 64.29 58.41
TF-HNN 85.55 75.11 94.42 87.44 93.71 73.97 67.03 57.80
UniGNN 86.22 74.12 94.22 89.49 93.73 65.35 67.34 57.61

AllSetTransformer 85.36 73.25 95.37 89.12 94.18 72.55 68.24 57.11
ED-HNN 85.36 73.21 94.73 88.88 95.42 70.80 67.63 57.22

EHNN 83.58 69.93 95.24 86.73 95.84 75.66 63.99 57.62

In this section, we conduct experiments to compare the behavior of different HNNs on nodes with
very high versus very low degrees.

Experiment Settings. To investigate this question, we design an experiment that explicitly contrasts
model behavior on nodes with substantially different degrees. Specifically, we define very high–degree
nodes as those whose degrees fall within the top-p% of the dataset, and very low–degree nodes as
those in the bottom-p%. To ensure robustness, we consider two thresholds, p = 1 and p = 5. Our
study evaluates 8 representative HNN architectures spanning three major categories across four

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table A28: Performance on very high-degree vs. very low-degree nodes (p = 5%).

Method Cora DBLP-CA Actor Pokec

Very High Very Low Very High Very Low Very High Very Low Very High Very Low

HGNN 81.82 72.05 93.38 88.13 76.93 76.39 58.39 57.80
PhenomNN 80.74 73.47 93.69 89.64 90.24 80.22 64.74 57.98

SheafHyperGNN 82.86 74.38 93.48 88.22 87.87 83.08 63.58 58.43
TF-HNN 81.91 75.11 93.78 87.45 90.88 83.97 65.87 57.80
UniGNN 81.15 74.17 93.58 89.48 90.45 79.05 66.01 57.63

AllSetTransformer 81.37 73.19 93.85 89.17 91.52 83.23 66.78 57.29
ED-HNN 81.02 73.21 93.88 88.89 91.71 82.99 65.77 57.18

EHNN 81.34 70.12 93.95 86.63 91.81 83.49 63.06 57.62

benchmark datasets. For each setting, we report the classification accuracy separately on the very
high–degree and very low–degree subsets of the test nodes.

Results and Analysis. From the results summarized in Tables A27 and A28, we draw two key
observations: (1) Across all datasets and all HNN architectures, we consistently observe a structural
unfairness phenomenon: models achieve substantially higher accuracy on very high-degree nodes
compared to very low-degree nodes. A plausible explanation is that high-degree nodes benefit more
from message passing because they can aggregate richer and more reliable higher-order structural
information, whereas low-degree nodes struggle to leverage structural signals and are more vulnerable
to noise introduced by sparse or unreliable neighbors. (2) The performance disparity becomes more
pronounced under stricter degree thresholds. When the threshold is reduced from 5% to 1%, the gap
between very high-degree and very low-degree nodes typically increases substantially. This suggests
that the most extreme-degree nodes exhibit the strongest disparity, further underscoring the critical
role of degree heterogeneity in shaping HNN behavior.

These analyses provide a clearer understanding of how HNNs behave across extreme degree levels
and reveal that improving the performance of low-degree nodes remains a key bottleneck in advancing
HNN models. This highlights an important direction for future work: designing mechanisms that
better enable low-degree nodes to exploit structural information.

D ADDITIONAL DISCUSSION AND ANALYSIS

D.1 WHY DO HNNS PERFORM DIFFERENTLY ACROSS DATASETS

In this section, we systematically examine why HNN performance varies across datasets, as noted
in the key insights for RQ1. Our analysis suggests that such variation may arise from both dataset
characteristics and architectural design choices.

Dataset-driven factors. (1) Many advanced HNNs perform well on highly homophilous datasets
but exhibit sharp degradation on heterophilous graphs, with performance frequently dropping below
that of MLPs. This may be because heterophilous links mix features from different classes, leading
to feature collapse and reduced class separability. (2) Performance for most HNN architectures
consistently drops on large and structurally complex hypergraphs. For example, Trivago contains a
large number of label categories, increasing classification difficulty, while Yelp exhibits extremely
dense hyperedges that may over-mix signals during propagation. Interestingly, TF-HNN performs
comparatively well on both datasets, suggesting that training-free hypergraph message passing may
be more suitable for large, noisy, or highly complex real-world hypergraphs.

Architecture-driven factors. (1) Methods that involve explicit hypergraph expansion (e.g., Hy-
perGCN, LEGCN, HJRL, DPHGNN) may unintentionally distort higher-order relationships by
converting hyperedges into pairwise structures. This design often preserves performance on datasets
dominated by isolated or pairwise interactions (e.g., Pubmed), but leads to noticeable degradation on
datasets where many nodes participate in rich higher-order interactions (e.g., Cora, DBLP-CA, and
NTU2012). (2) Spatial-based models (e.g., UniGNN, AllSetTransformer, ED-HNN) and TF-HNN
generally provide more stable performance across homophilous and heterophilous datasets. Their
skip-connection style message passing retains raw node information, helping mitigate feature dilution
during higher-order propagation.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

D.2 TRADE-OFFS AMONG PERFORMANCE, SCALABILITY, AND DATA CHARACTERISTICS

For spectral-based models, most advanced approaches (e.g., PhenomNN, SheafHyperGNN, HJRL)
consistently outperform earlier variants such as HGNN, HyperGCN, and HCHA on homophilous
datasets. However, this accuracy gain relies on more complex expansion mechanisms and Laplacian
operators, which substantially reduce scalability. As shown in Table 1, they frequently encounter
OOM issues on large or dense hypergraphs such as Trivago and Yelp. TF-HNN provides a lightweight
alternative, achieving top-ranked performance on most datasets while maintaining strong scalability
due to its training-free message-passing design. Spatial-based architectures generally offer a more
favorable scalability–performance balance. Models such as UniGNN, AllSetTransformer, and
ED-HNN deliver accuracy comparable to advanced spectral methods on homophilous data with
substantially lower memory consumption. Tensor-based methods (e.g., EHNN and T-HyperGNN)
perform worse on homophilous datasets, but relative to spectral- and spatial-based HNNs, they
often achieve better performance on heterophilous benchmarks, particularly EHNN, which also
demonstrates stronger scalability than T-HyperGNN. Although MLPs perform substantially worse
than HNNs on homophilous datasets, they often excel on heterophilous benchmarks and outperform
many HNN architectures. Furthermore, by removing high-order message passing, MLPs achieve
markedly better scalability.

E RELATED WORKS

Hypergraph neural networks (HNNs) (Yadati et al., 2019; Prokopchik et al., 2022; Wang et al.,
2023a; Xie et al., 2025) have been promising tools for handling learning tasks involving higher-order
data, with notable applications in various fields, such as social network analysis (Sun et al., 2023),
bioinformatics (Li et al., 2025a), and recommender systems (Li et al., 2025b). However, there exists
no established benchmark specifically dedicated to comprehensively evaluating hypergraph neural
networks. In this section, we introduce a broader range of related studies concerning the comparative
evaluations of HNNs, providing sufficient context for our benchmark work.

Kim et al. (Kim et al., 2024b) recently presented the first survey dedicated to HNNs, with an in-depth
and step-by-step guide. The survey comprehensively reviews existing HNN architectures, training
strategies, and applications, establishing a foundational understanding crucial for advancing the field
of HNNs. To further understand the expressive power of HNNs, Wang et al. (Wang et al., 2025)
conduct the first theoretical analysis on the generalization performance of distinct HNN architectures,
offering practical guidance for improving HNNs’ effectiveness. Nevertheless, systematic empirical
evaluations of different HNN algorithms remain scarce, leaving a limited understanding of their
comparative performance in practice. To facilitate the reproducibility and empirical evaluation of
HNN algorithms, several open-sourced libraries have been developed in recent years. HyFER (Hwang
et al., 2021) is a well-modularized framework for implementing and evaluating HNNs, dividing the
entire learning process into data, model, and task components. Moreover, to address the scalability
problem that most existing implementations suffer from, HyFER is built on top of Deep Graph
Library (DGL) (Wang et al., 2019), which is a highly efficient open-sourced library for GNNs.
DHG (Gao et al., 2022) is an open-sourced PyTorch-based toolbox designed for general HNNs. It
supports various hypergraph preprocessing methods (e.g., sampling, expansion) and convolution
operators, facilitating the evaluation of HNNs. TopoX (Hajij et al., 2024) is a suite of Python
packages for machine learning on topological domains. These packages enhance and generalize
functionalities found in mainstream hypergraph computations and learning tools, enabling them
on topological domains. TopoBench (Telyatnikov et al., 2024) is a modular Python library that
standardizes benchmarking and accelerates research in Topological Deep Learning (TDL). It supports
training and comparing Topological Neural Networks (TNNs) across diverse domains, including
graphs, simplicial complexes, cellular complexes, and hypergraphs. However, these libraries do not
fully cover the latest HNN algorithms, datasets, and evaluation tasks, and they provide only limited
empirical results without offering an in-depth and comprehensive analysis of existing HNN methods.

To fill the gap, we develop DHG-Bench, the first comprehensive benchmark tailored explicitly for
HNNs. Distinguished by its broad coverage, DHG-Bench spans a wide range of algorithms, datasets,
and evaluation tasks, thereby establishing a standardized and versatile framework for deep hypergraph
learning research. Moreover, it provides comprehensive and systematic empirical evaluations that
uncover the strengths and limitations of different algorithms. By offering such in-depth quantitative

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Fairness

Robustness

Efficiency

Effectiveness

Evaluation

Spectral-based

Tensor-based

Algorithm

Spatial-based

Config

Data

Figure A5: The package structure of DHG-Bench, which mainly consists of four modules.

analyses, our benchmark fosters deeper insights into the challenges and opportunities of HNNs,
thereby advancing the state-of-the-art in this emerging field.

F PACKAGE

We have developed DHG-Bench 3, an open-sourced package that provides a comprehensive and
unbiased platform for evaluating HNN algorithms and supporting future research in this domain.

As shown in Figure A5, the code structure is well-designed to ensure fair experimental setups across
different algorithms, easy reproduction of the experimental results, and support for flexible assembly
of models for experiments. The DHG-Bench consists of the following four key modules. 1 The
Config module includes the files that define the necessary hyperparameters and settings. 2 The
Data module is used to load and preprocess datasets. 3 The Algorithm module has 17 built-in
state-of-the-art algorithms, covering three representative categories: spectral-based, spatial-based,
and tensor-based methods. 4 The evaluation module supports multi-faceted testing of algorithmic
performance, encompassing effectiveness, efficiency, robustness, and fairness.

G THE USE OF LLMS

We used large language models (LLMs) solely as a writing assistant to polish the paper, specifically
for grammar checking and typo correction. In addition, LLMs were occasionally consulted to rephrase
sentences for improved readability and to ensure a consistent academic tone. No part of the technical
content, experimental design, or analysis was generated by LLMs. Their role was strictly limited to
minor linguistic refinement.

3https://anonymous.4open.science/r/DHG_Bench-F739

35

https://anonymous.4open.science/r/DHG_Bench-F739

	Introduction
	Preliminary
	Benchmark Design
	Benchmark Datasets
	Benchmark Algorithms
	Research Questions

	Experiment Results and Analysis
	Effectiveness Evaluation (RQ1)
	Effectiveness on Node Classification Task
	Effectiveness on Hyperedge Prediction Task
	Effectiveness on Hypergraph Classification Task

	Efficiency and Scalability Evaluation (RQ2)
	Robustness Evaluation (RQ3)
	Robustness Analysis with respect to Structure Perturbations
	Robustness Analysis with respect to Feature Perturbations
	Robustness Analysis with respect to Supervision Perturbations

	Fairness Evaluation (RQ4)

	A Guide for Practitioners
	Conclusion and Future Directions
	Datasets and Algorithms
	Benchmark Datasets
	Benchmark Algorithms
	Spectral-Based Algorithms
	Spatial-Based Algorithms
	Tensor-Based Algorithms

	Details of the Experimental Settings
	General Experimental Settings
	Hyperparameter Setting
	Experimental Environment
	Robustness Evaluation Settings
	Fairness Evaluation Metrics
	Discussion on Robustness and Fairness Evaluation
	Discussion on Robustness Metrics
	Discussion on Fairness Metrics

	Discussion on Memory Mitigation Strategies

	Supplementary Experimental Results
	Experimental Results on Effectiveness Evaluation
	Experimental Results on Robustness Evaluation
	Experimental Results on Fairness Evaluation
	Node Classification in Label-scarce Scenarios
	Additional Results for Direction-aware GNNs
	Analyzing Performance Degradation on Heterophilous Datasets
	Hyperedge Prediction under Different Data Splits
	Temporal Splits Evaluation
	Inductive Splits Evaluation

	Benchmarking HNNs in Self-Supervised Settings
	Performance Sensitivity to Hyperedge Size Distributions
	Analyzing HNN Behavior on Extreme-Degree Nodes

	Additional Discussion and Analysis
	Why do HNNs Perform Differently across Datasets
	Trade-offs among Performance, Scalability, and Data Characteristics

	Related Works
	Package
	The Use of LLMs

