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Abstract

Large Language Models (LLMs) have demonstrated remarkable reasoning capabil-
ities, notably in connecting ideas and adhering to logical rules to solve problems.
These models have evolved to accommodate various data modalities, including
sound and images, known as multimodal LLMs (MLLMs), which are capable of
generating descriptions of images or sound recordings. We evaluate how MLLMs
separate representation of auditory and textual information may sever the reason-
ing pathway between the audio encoder and the LLM component. Through a
captioning-based classification experiment with similar and hierarchical textual
relationships, we demonstrate that audio MLLMs cannot fully leverage their LLMs’
text-based reasoning when generating audio captions.

1 Introduction

Humans can learn from descriptions of events and can recognize them afterwards, even if they are
observing such an event for the first time. Can the reasoning abilities in large language models
(LLMs) enable them to achieve a similar goal? It has recently been shown that LLMs trained on
internet-scale data have zero and few-shot capabilities [Brown et al., 2020, [Kojima et al.| [2022]],
demonstrating that they can solve tasks for which they were not specifically trained. For example,
LLMs trained to predict the next chunks of text can also perform other natural language tasks, such
as summarizing a given text. More complex tasks that LLMs cannot solve from scratch can be solved
by in-context learning, where question and answer pairs are provided in the prompt, which acts like
training data. Another way to leverage in-context learning is by providing related information in the
prompt to help the model generate solutions based on the given information. Reasoning abilities allow
LLMs to make connections between related concepts and provide responses by collating different
information present in their training data [Wei et al.|[2022]], although there is a debate around whether
these abilities are emergent in larger-scale models [Schaeffer et al., 2023]]. While reasoning abilities
are present in LLMs, they are limited, both due to catastrophic forgetting, which causes reasoning to
disappear [De Lange et al.|[2021]], and hallucinations, which leads to fallacy generation [Tonmoy
et al.,[2024].

Multimodal large language models (MLLMs), where the output of image or audio encoders are
tokenized and input into an LLM, exhibit some of the reasoning capabilities found in non-multi-
modal LLMs [Wang et al.,|2024]]. We are interested in leveraging their reasoning ability to classify
low-resource classes using only descriptions of the given classes for both zero-shot learning. MLLMs

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



v

Text — Text
Prompt Encoder

AEEE

}
e

Encoder

Projection &
v
v

Embeddings Tokens n<é LLM
-
_ /& d
Audio .
Signal Audio - -

Frozen a Trainable

Figure 1: Generic audio MLLM architecture, specific components may vary with specific models.
The snowflake represents components that are typically frozen and the flame represents those that are
typically trained (or can be in the case of the ‘/*).

could use text-based reasoning to not only learn from a small number of labeled samples but also
generalize better, such that the presence of unrelated data in samples, like background noise, would
not impact classification. Previously MLLMs’ have demonstrated reasoning capabilities about their
image or audio inputs [e.g.,|Gong et al.||2023b]. In order to leverage the reasoning to learn to classify
unseen audio from textual descriptions, the MLLM needs to co-reason with the multimodal content.
Research on vision MLLMs, however, suggests that MLLMs do not possess these co-reasoning
capabilities, that the models depend on the input modalities to control output as if they are simple
flags turning on and off a specific task [|Q1 et al.,|2023]]. In this paper, we analyze audio MLLMs’
capabilities in order to more fully understand their co-reasoning abilities and limitations.

2 Reasoning in multimodal large language models (MLLMs)

2.1 Visual reasoning in MLLMs

Much of the work on reasoning in vision MLLMs builds on the Visual Question Answering (VQA)
dataset [Antol et al.,|2015]], a captioning task that arguably requires a model to demonstrate complex
reasoning capabilities. Modifications to the original VQA approach include using different metrics
that better reflect real-world visual concepts [Kervadec et al.,2021]] and visualization approaches that
allow for finer-grained investigation of vision MLLMs’ reasoning capabilities [Jaunet et al., 2021].
Recent evaluations on visual reasoning have shown that the representation of visual information in
MLLMs is a bag of words, rather than an ordered representation, as evidenced by the inability of
the models to answer any questions related to the order of the objects in the images [[Yuksekgonul
et al., [2022]. Vision MLLMs also lack spatial reasoning capabilities when queried about the left-
right location of objects in an image [Kamath et al., 2023]]. They also can understand relationships
between objects, such as when they incorrectly assign human actions to animals, and vice-versa
[Thrush et al., 2022]. Research into visual reasoning capabilities in vision MLLMs is facilitated
by the development of benchmarks, which have demonstrated some of their ongoing reasoning and
hallucination issues [[Fu et al.|[2023| [Fan et al.,[2024]]. These include performing worse than LLMs
on instruction following [Zeng et al.|[2023]] and an inability to leverage textual relationships present
in the LLM in the visual modality [Lu et al.,|2024]. While training is a sufficient solution for specific
abilities, it requires having matching data samples from each modality. As a result, it becomes even
harder to come up with sufficient training data for data-hungry deep-learning models. A well-aligned
model would be able to use abilities gained in one modality in another without requiring any extra
data. For example, if a model can converse about modes of transportation, it should be able to show
similar reasoning capabilities given an image of a car.



In-context learning through prompts is used to facilitate and analyze reasoning in MLLMs [Zhao
et al., 2023]]. Reasoning abilities typically improve when a model is forced to take specific steps
through a prompt [Kojima et al} [2022] |Yao et al., 2022] and prompt probing (including prompts
related to visual, textual, and outside information) has been key in the understanding of MLLMs
visual reasoning limitations [Qi et al., 2023]]. Such probing has shown that in MLLMs, the use of
non-linguistic prompts can increase the risk of catastrophic forgetting [Wang et al., 2023]], reducing
any reasoning capabilities that they do exhibit. It also underlines the importance of incorporating
outside knowledge in the testing paradigm when assessing reasoning [Marino et al., 2019]] as a way to
assess the contribution of how much text-based reasoning concepts in the language model are being
leveraged in the MLLM. Typically multi-step training is employed to mitigate catastrophic forgetting,
the second modality is aligned to the frozen LLM and then fine-tuned with LLM low-rank adaption
(LoRA) [Alayrac et al., 2022 [Ye et al., [2023]].

2.2 Audio reasoning in MLLMs

Audio MLLMs are a more recent development than vision MLLMs [Deshmukh et al., [2023| |Silva
et al.l [2023] |Gong et al.| [2023b, Tang et al., 2023 2024} e.g.,]. Figure E] provides a generalized
overview of the architecture of these models. LTU uses Audio Spectrogram Transformer (AST)
[Gong et al.l 2021]] for its audio encoder and the LLaMA text encoder [Touvron et al.,[2023]] along
with CAV-MAE [Gong et al., [2022]] for contrastive pre-training. LTU treats all audio as input for
automatic audio captioning (AAC), from which it leverages the reasoning abilities of LLaMA to
reason about the audio captions. They freeze AST and use Low-rank Adaptation (LoRA) [Hu et al.,
2021]] to force the model to condition on the audio captions, rather than rely simply on the language
model, in order to minimize hallucinations. In evaluating LTU’s reasoning capabilities, Gong et al.
[2023b]] were concerned with the model’s ability to “think”, which the authors argue is demonstrated
by tasks where the model explains an audio caption, and “understand”, which they further argue is
demonstrated by tasks where the model has to infer further action.

SALMONN uses two audio encoders one from a speech model and one from a generic audio model,
which gives it automatic speech recognition (ASR) capabilities, like LTU-AS [Gong et al., |2023a].
SALMONN feeds the output of Whisper’s speech encoder [Radford et al., |2023]] and BEAT’s audio
encoder [Chen et al.;, 2023a] for generic audio sound into Q-Former query transformer [Li et al., 2023|]
to generate audio tokens for input into Vicuna [Chiang et al., 2023]. [Tang et al.|[2023] specifically
evaluate the effect of fine-tuning on the reasoning tasks. Since most of their data consists of ASR and
AAC instructions, the model tends to ignore the prompt and respond with transcribed text or captions.
To address this limitation, activation tuning is applied, which is lowering the scaling factor of the
LoRA method. As with LTU, the reasoning tasks in SALMONN are performed on the text generated
from the audio samples, either captions or transcribed speech. Evaluation of SALMONN revealed
a similar phenomenon to those observed in visual MLLMs, where the model forgets some of the
text-based commonsense knowledge available in the LLM.

3 Examining concept representations in an audio MLLM

To understand the reasoning capabilities of MLLMs, we want to determine if these models are
leveraging the rich information embedded within the audio modality during their textual reasoning
processes, or if they are merely mapping the audio information to individual keywords, or captions.
Ideally when an LLM is augmented with additional modalities, such as audio, it should be able to
answer questions leveraging the new modality. For example, audio MLLMs should utilize the general
properties encapsulated in the audio embeddings to facilitate reasoning with audio. To investigate
whether MLLMs are doing this, we have designed an input and expected output that necessitates the
activation of reasoning abilities. By modifying the input, we aim to uncover the triggers for these
reasoning capabilities.

While the interaction between concepts and their textual representations can manifest in myriad
relations, one of the most structured and extensively studied is the semantic relation between words.
This is meticulously cataloged in lexical databases such as WordNet [Miller, [1995]. WordNet
organizes words into sets of synonyms called synsets, and records a variety of relations among these
sets or their members, including synonyms, antonyms, hypernyms and hyponyms. This rich network
of semantically related words and concepts provides a structured framework that can be used to



Table 1: Prompts used in experiment on concept representations in an audio MLLM for the two
categories considered: similarity (synonyms) and hierarchy (hypernym). Slightly different prompts
were crafted within each category for text- and audio-based queries.

Similarity Text P1: Is {concept} similar to {synonym}?
(synonym)  Audio P2: Is the sound of the object in this audio signal similar to {synonym}?

Hierarchy Text P3: Is {concept} a type of {hypernym}?
(hypernym) Audio P4: Is the sound of the object in this audio signal a type of {hypernym}?

understand and analyze the complex interrelationships between different concepts and their textual
representations. Synonyms have previously been used to to evaluate vision MLLMs [e.g.,/Zohar et al.|
2023]], however the use of hypernyms is less common. Hypernyms have been used more widely in
evaluating LLMs without a multimodal component [e.g.,|Shani et al.,|2023]] but are typically only
mentioned in passing in evaluations of visual MLLMs [e.g., Chen et al.,|2023b].

3.1 Methodology

LLMs model semantic relationships and can answer questions requiring reasoning, such as under-
standing synonym and hypernym relations. Synonyms represent a type of semantic relationship
where two different terms share a similar meaning. Hypernyms represent another type of semantic
relationship where one term serves as a broader category encompassing a set of other terms. For
instance, ‘fruit’ is a hypernym for ‘apple’ and ‘orange’. We use this property of the synonym and
hypernym relationships to construct the similarity- and hierarchy-related text prompts from Table
[1] For synonyms we used P1 in Table|[T|for text-based queries and P2 for audio-based queries. For
hierarchy, we used P3 for text-based queries and P4 for audio queries. We expect MLLMs to be able
to answer P1 and P3 correctly in the text domain if they understand the relationship between these
concepts. If this is true, we are interested in evaluating whether the models have learned the semantic
relationship between the concepts from textual data such that they can transfer this understanding to
be able to reason with audio data, i.e., correctly answer P2 and P4. For example, if we have an audio
file of a songbird’s chirping, the question would be “Is the sound of the object in this audio signal a
type of bird?", to which the answer should be yes. We also test a condition where a silent audio file is
provided with the text prompt to assess whether the mere presence of audio changes the MLLM’s
reasoning processes. We carefully selected and iteratively refined our prompts, experimenting with
numerous versions, including those suggested by the original model authors. The four prompts we
ultimately chose (Table[I)) were selected because they consistently produced the best results.

We have constructed a concise benchmark that comprises 12 concept words. Each word is associated
with up to 4 synonyms and 4 hypernyms. We also curated a negative example of the synonyms and
hypernyms. This resulted in 159 word relationships (see Appendix [A]for a full list). If the MLLM:s are
reasoning, we expect them to respond positively to all prompts involving correct concept hypernyms
and synonyms, and negatively to prompts involving unrelated terms. For each word, we employ 4
audio files, each repeated 4 times, resulting in 16 queries. To interpret these outputs, we employ
regular expressions to discern whether it is responding positively or negatively, framing this as a
binary classification problem. Our samples are carefully selected from the evaluation set of AudioSet
Gemmeke et al.|[2017]] and EDANSA [Coban et al., 2022]]. We specifically opted for samples that
contain only the sound of the target label, deliberately excluding any other sound events. EDANSA is
a bioacoustics audio dataset collected in Alaska. Since the LTU and SALMONN models do not use
EDANSA, nor any other ecological soundscapes, in their training set, it is an ideal choice for testing
their out-of-distribution performance. A full list of the audio files we used is available in Appendix [B]
We utilized two NVIDIA A40 GPUs, each with 48GB of memory. We only run models in inference
mode, adding up to less than 30 hours of GPU time.

3.2 Results

In the similarity category, shown in the top of Table 2] LTU performed comparably across both
conditions (P1 and P2) while the performance in SALMONN deteriorated when the task relied on
audio captions (P2). In the hierarchy category, shown in the bottom of Table 2, the performance of
LTU and SALMONN both deteriorated when relying on audio captions (P4).Notably, in the presence



Table 2: The table displays F1 scores, precision, and recall for LTU and SALMONN models in two
tasks: similarity (synonyms, P1) and hierarchy (hypernyms, P3). Four conditions are tested: text-only,
text with silent audio file, text with AudioSet audio (P2 and P4, italicized), and text with EDANSA
audio (italicized).

LTU SALMONN
Experiment Prompt Condition F1 Precision Recall Fl1 Precision Recall

P1 Text 0.85 0.76 096 0.87 091 0.83

Similarit Silent audio 0.88 0.82 095 0.87 0.79 0.96
Y P2 AudioSet 0.79 0.81 0.76  0.56 0.39 1
EDANSA 0.84 0.85 0.84 0.59 0.42 1

P3 Text 0.98 0.95 1 0.92 0.95 0.90

Hierarch Silent audio 0.93 0.95 0.91 0.95 0.93 0.97
y P4 AudioSet 0.47 0.84 0.33  0.66 0.5 1
EDANSA 0.37 0.95 0.23 0.67 0.5 1

of audio (P2 and P4), SALMONN exhibited a tendency to affirm all queries, as indicated by a recall
of 1. A visualization of these results with violin plots is available in Appendix[C]

3.3 Discussion

Our results demonstrate a performance disparity in MLLMs when they are tasked with answering
questions with text prompts versus audio captions. For LTU, recall deteriorates when using audio
captions, while for SALMONN, precision deteriorates. SALMONN also tends to answer ’yes’ to
questions when audio is introduced (including silent audio), which artificially increases its recall
values. Thus, while both LTU and SALMONN effectively leverage reasoning capabilities with text,
their performance wanes when presented with sound, suggesting a lack of connections between
audio and textual concepts. The LTU results show consistent performance on similarity for both
in-distribution (AudioSet) and out-of-distribution (EDANSA) data, suggesting that the root of the
problem lies with the integration of the LLM component.

4 Conclusions

In this paper, we designed and implemented an experiment to examine the audio MLLM’s concept
representations with synonyms and hypernyms. We demonstrated that the audio MLLMs do not fully
integrate text and audio information in a way that it can perform hierarchical-related reasoning on
audio input. One limitation of our experiment is that it is limited to the carefully curated words and
audio files in Appendices [A]and [B] however, the amount of between-group consistency shown in
Table [2)and Appendix [C|suggest that the dataset was sufficiently sized to capture the behavior related
to MLLM context representations that we were interested in exploring.

A common solution to address reasoning in vision MLLMs is generating additional data pairs of text
and images that require the model to pay attention to the missing ability, such as the order of the
items in the images [Yuksekgonul et al., 2022]]. This is a limited solution, which would only solve
reasoning on tasks covered by the data pairs. We believe that a better solution is training datasets with
integrated text and audio tokens (e.g.,“Do you hear the <sound>? It is coming from the garden.”), as
has been demonstrated on standard audio tasks, such as captioning and few-shot audio classification
[Liang et al.| 2023]].

Overall, a better understanding of LLMs’ reasoning capabilities, both in isolation and in the context
of MLLMs, has the potential to improve understanding of generative technologies. This includes
contributing to decoding what LLMs are and are not modeling, which can help delineate some of the
limitations that should be considered in their use.
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A Words used for concepts in Experiment

Category Label Synonym(s) Hypernym(s) Unrelated S
biophony bird fowl vertebrate speech
avian craniate speaking
aves chordate wind
animal breathing
biophony cattle COWS bovine working
oxen bovid grumbly
bos taurus ruminant melodic
animal wind
biophony dog canis familiaris canine comforting
domestic dog canid speech
domestic animal brief
animal music
biophony insect bug arthropod wind
invertebrate authoritative
animal characterized
speech
anthrophony aircraft airplane craft speech
airship vehicle natural
aeroplane conveyance male
transport rich
anthrophony car motorcar motor vehicle speech
automobile vehicle police
auto conveyance generic
machine transport music
anthrophony fireworks pyrotechnics low explosive speech
explosive speaking
warm
generic
anthrophony alarm alert signal speaking
sign car
vehicle
authoritative
geophony rain rainfall precipitation surface
rainwater downfall thunder
weather human
atmospheric condi- authoritative
tion
geophony wind air current weather microphone
current of air weather condition male
atmospheric  condi- rich
tion
instrument
geophony thunder boom thunderstorm rolling
electrical storm speech
storm footsteps
atmospheric phe- whistling
nomenon
geophony waterfall falls water speech
male
music
man




B Concepts and audio files used in Experiment

Category Label AudioSet ID EDANSA_IDs
biophony  bird -XilaFMUwng INP-AR-03_20190617_220000_8m_30s__8m_40s
-qS77ROY1K8 S4A10227_20190611_043000_22m_19s__30m_34s_splt-21
12T-9dLEbY8 S4A10301_20190613_000000_12m_50s__13m_0s
1dH-1Z8TNLU S4A10301_20190613_000000_7m_30s__7m_40s
biophony cattle sbpW3Z87Nbc
z3YihlejSIA
UYBuKiX092s
KksMNKXuiNw
biophony  dog 20gZLse0acs
8CrTpWNBiTo
E6QQRZHrx6s
KRdvyjpQfol
biophony  insect 9j_F1tO0;t8 SINPO3/SINP-03_20190704_210000_1m_30s__1m_40s
zPSH6-UC40g¢g S4A10327_20190725_104602_45m_50s__46m_0s
5j_v9dhjbdU anwr_41_S4A10273_20190707_183000_exact_2019-07-07
QBj5dyzsIkY SINPO3/SINP-03_20190708_173000_15m_20s__15m_30s
anthrophony aircraft -OVb-UG8ylJw S4A10361_20210515_010002_41m_30s__41m_40s
-ocADGlyaHc S4A10272_20190509_073000_39m_20s__39m_30s
7S88FsFESEE 18/2019/S4A10280_20190525_104602_33m_22s_ 33m_32s
DU3cNZdlylQ S4A10298_20210730_060002_55m_50s__56m_0s
anthrophony car xRonpWC3SvY S4A10443_20200428_100412_2m_0s__2m_10s
-aOxR6ILsw8 S4A10291_20191010_144000_2m_0s__2m_10s
4TshFWSsrn8
Kwpn3utYEHM
anthrophony fireworks — L6QtiglLJD_4
17RTgupQWcc
UxEyOSKO9nxo
AJRD-zU2Akw
anthrophony alarm 30-q-VMhyAS
FBut7W5XwnA
T_FZMsRHzLc
fcsGKE89Qi8
geophony  rain 96HJ2f5dj6U S4A10273_20190803_050000_42m_24s__ 57m_34s_splt-29
fvQeqBqqcVw S4A10273_20190803_050000_42m_24s__57m_34s_splt-53
johzOyXuORc ARO01/2018/INP-AR-01_20180817_020000_7m_51s__8m_1s
fwasOHLGbgqM S4A10287_20190803_050000_rain02_splt-2
geophony  wind AT74lbeDl1klo S4A10273_20190803_093000_55m_0s__56m_50s_splt-2
CkutJYIfghs anwr_37_S4A10279_20190603_043000_exact_2019-06-
03_04-38-36_0m_0s__Om_10s
AkUDv7JexjQ S4A10295_20190708_000000_49m_50s__50m_0s
zzbTaK7CXJY dempster/25/2020/S4A10334_20200415_140002_2m_54s__3m_4s
geophony  thunder 0439dMJj-FY
przrSPZgOkY
ZBaYrfz5afo
54wNjdYr8ww
geophony  waterfall FF2bhR7s3VY
JfDeETDDwhM
VMbITgzMhKE
hfIfBPkH8Fo
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C Visualization of Experiment Results
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Figure C1: Visualization of results of experiment on concept representations on LTU. Subplot (a)
shows the results for the similarity (synonyms and unrelated terms) category and subplot (b) for
the hierarchy (hypernym) category. Each subplot shows violin plots of the corectness rate for four
different conditions: text-only prompting, text prompting with a silent audio file, text prompting with
an audio file from AudioSet, and text prompting with an audio file from EDANSA. The prompts
(P1-P4) are defined in in Table[T]
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Figure C2: Visualization of results of experiment on concept representations on SALMONN. Subplot
(a) shows the results for the similarity (synonyms and unrelated terms) category and subplot (b) for
the hierarchy (hypernym) category. Each subplot shows violin plots of the corectness rate for four
different conditions: text-only prompting, text prompting with a silent audio file, text prompting with
an audio file from AudioSet, and text prompting with an audio file from EDANSA. The prompts
(P1-P4) are defined in in Table[T]
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