
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IN-CONTEXT STOCHASTIC GRADIENT DESCENT WITH
HYBRID MAMBA-2 AND LINEAR SELF-ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

State space models (SSMs) have recently emerged as a powerful alternative
to Transformers by alleviating the quadratic computational overhead of self-
attention. Among them, the Mamba-2 architecture (Dao & Gu, 2024) has been
widely adopted in large language models. Despite this rapid progress, the theoret-
ical foundations explaining how such models perform in-context learning (ICL)
remain largely unclear. In this work, we provide a theoretical analysis of the
Mamba-2 model and show that a single-layer Mamba-2 can simulate one step of
gradient descent. Furthermore, we demonstrate that a hybrid architecture combin-
ing Mamba-2 with a Transformer—specifically, an SSD layer followed by a linear
self-attention layer (SSD ◦ LSA)—can implement in-context stochastic gradient
descent. Finally, we present experimental evidence that supports our theoretical
results.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are highly capable models that have rapidly proliferated across
real-world applications. A key contributor to their success is believed to be in-context learning (ICL)
(Wei et al., 2023; Lu et al., 2023), a phenomenon first observed in natural language processing (NLP)
tasks where large language models (LLMs) such as GPT-3 can make accurate predictions from only
a few prompts without updating their parameters (Brown et al., 2020; Dong et al., 2022). However,
the quadratic computational cost of Transformer self-attention has motivated the development of
more efficient alternatives based on recurrent architectures. These include linear recurrent networks
(Orvieto et al., 2023; Peng et al., 2024) and state space models (SSMs) (Gu & Dao, 2023; Dao &
Gu, 2024), which reduce inference complexity to linear in sequence length. Recent advances in
SSMs, such as Mamba, achieve performance competitive with Transformers at scale but still lag
behind in ICL tasks (Park et al., 2024; Grazzi et al., 2024; Waleffe et al., 2024). Interestingly,
hybrid models that combine Mamba with Transformers have been shown to exhibit ICL capabilities
that can even surpass those of pure Transformers (Waleffe et al., 2024; Park et al., 2024). Yet, the
mechanistic basis of how such hybrids perform ICL remains poorly understood. In this work, we
take a constructive approach and demonstrate that the duality between the state space duality (SSD)
layer in Mamba-2 (Dao & Gu, 2024) and linear self-attention (LSA) is central to enabling these
hybrid models to achieve in-context learning.

A leading explanation for in-context learning (ICL) is that linear-attention Transformers implement
gradient descent (GD) in-context (Von Oswald et al., 2023; Ahn et al., 2023). However, it remains
unclear whether this perspective extends to hybrid architectures—particularly Mamba-2 models with
SSD layers combined with Transformers, as employed in large-scale mixture-of-experts (MoE) sys-
tems (Team et al., 2025). To date, no explicit construction has been established for performing
gradient descent on linear regression tasks with SSD ◦ LSA hybrid models; prior work has provided
only empirical evidence (Grazzi et al., 2024; Waleffe et al., 2024; Park et al., 2024). This moti-
vates our pursuit of a theoretical construction that can illuminate the mechanisms underlying the
ICL capabilities of such hybrid models and offer practical explanatory insights.

In section 4, we explicitly construct SSD parameters by utilizing its duality with LSA to showcase
that it can simulate one step of GD on linear regression tasks. We also conducted experiments to
show that one layer SSD do mimic one step GD by plotting the test loss which shows great similarity

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

in pattern. We also show that the performance of multi-layer Mamba-2 doesn’t improve as the layers
get deeper, suggesting that multi-layer Mamba-2 may not perform multi-step GD.

In section 5, we first theoretically prove that a hybrid model SSD ◦ LSA, with a layer containing
one SSD layer and one LSA layer, can implement multi-step SGD. The key insight is that the
learnable ”mask” of SSD controls which context example to attend to, and the value matrix of the
LSA eliminates the change of x while updates y according to SGD. We then extend the result to show
that one single hybrid layer can perform multi-step mini-batch SGD. We also conducted experiments
on hybrid model with different layers to compare its performance with SGD and the original SSD
models.

In summary, our contributions are to show that:

• We establish that a single layer of Mamba-2 is capable of simulating one step of gradient
descent by utilizing the duality between SSD and LSA.

• By integrating SSD with LSA in a hybrid architecture, the model extends its capability from
executing single-step updates to carrying out full multi-step stochastic gradient descent,
effectively scaling from isolated updates to complete optimization procedures. We show
that even a single hybrid layer suffices to implement multi-step SGD on a mini-batch.

• We empirically validate these theoretical findings: one-layer Mamba-2 closely mirrors the
behavior of one-step gradient descent, while the composite architecture successfully emu-
lates the iterative process of stochastic gradient descent.

2 RELATED WORK

Transformer and ICL. To better understand this capability, Garg et al. (2022) show that Trans-
formers can perform in-context learning of various functions, including linear regression, two-layer
neural networks, and decision trees. Theoretical studies of ICL have primarily focused on its connec-
tion to gradient descent. For example, Dai et al. (2022) identify a duality between Transformer at-
tention and gradient descent, demonstrating that GPT-based ICL parallels explicit fine-tuning across
multiple dimensions. Other works establish similar connections in simplified regression settings
(Von Oswald et al., 2023; Ahn et al., 2023; Mavromatis et al., 2023; Li et al., 2024). In particular,
Von Oswald et al. (2023) show that linear attention-only Transformers with carefully constructed pa-
rameters resemble models obtained by gradient descent, while Li et al. (2024) find analogous results
for softmax attention-only Transformers. Beyond regression, recent studies explore richer function
classes by analyzing self-attention with ReLU activations (Bai et al., 2023; Wang et al., 2024; Wu
et al., 2024).

SSM and ICL. Since the introduction of the Mamba model by Gu & Dao (2023), its in-context
learning (ICL) capabilities have attracted significant attention. Empirical studies (Park et al., 2024;
Grazzi et al., 2024) have demonstrated Mamba’s potential in ICL, with Grazzi et al. (2024) further
proposing MambaFormer, a hybrid of Mamba and Transformer that achieves state-of-the-art ICL
performance. Similarly, Waleffe et al. (2024) conduct systematic experiments on training Mamba
models from scratch, showing that while Mamba underperforms Transformers in ICL, this limita-
tion is alleviated when combined with Transformer layers. Indeed, large-scale commercial systems
such as Team et al. (2025) have already adopted such hybrid architectures. From a theoretical
standpoint, several works have explored the foundations of Mamba and related state space models
(SSMs): Muca Cirone et al. (2024) link their expressiveness to linear controlled differential equa-
tions (CDEs); Halloran et al. (2024) show that Mamba’s recurrent dynamics are robust to small
perturbations in inputs; and Bondaschi et al. (2025) prove that even a single-layer Mamba can effi-
ciently learn the in-context Laplacian smoothing estimator in Markov chain settings. More relevant
to our work, Sushma et al. (2024) demonstrate that a structured SSM layer augmented with multi-
plicative input and output gating can replicate the behavior of an implicit linear model trained via
one step of gradient descent with least squares loss. However, their analysis relies on a local sliding-
window assumption that is not practical and does not address the less expressive state space duality
(SSD) layer widely used in practice.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

We define the input matrix to the sequence model as Z = [z1 · · · zn+1] ∈ RD×(n+1), where
each zi ∈ RD denotes a column of Z corresponding to the D-dimensional embedding of a token.

3.1 IN-CONTEXT LEARNING

In the standard in-context learning (ICL) setting, a model is given a dataset D = {(xi, yi)}i∈[n]

along with a new test input xn+1, where {xi}ni=1 ⊂ Rd are input vectors and {yi}ni=1 are the
corresponding labels. The inputs can be arranged into the matrix

Z = [z1 z2 · · · zn zn+1] =

[
x1 x2 · · · xn xn+1

y1 y2 · · · yn 0

]
∈ R(d+1)×(n+1). (1)

Here the embedding dimension is D = d + 1, and the label corresponding to the test input is
initialized to 0. The model is then tasked with predicting ŷn+1, which should approximate the
true label yn+1 under a suitable evaluation metric, and filling it in the placeholder 0 position. This
theoretical formatting aligns with a line of previous works (Von Oswald et al., 2023; Ahn et al.,
2023; Bai et al., 2023; Wang et al., 2024).

3.2 LINEAR SELF ATTENTION

A standard Transformer layer consists of both a self-attention mechanism and a feedforward MLP.
In our setting, we focus on a simplified linear self-attention layer, which removes the original soft-
max activation. We further omit the MLP component, as it is not required in either our theoretical
construction or our empirical validation.

Definition 3.1. (Linear self-attention) A linear self-attention (LSA) layer is denoted as
LSAθ(·), where θ = {Wv,Wq,Wk} ⊂ RD×D. The output of this layer on input
Z ∈ RD×(n+1) is

LSAθ(Z) = Z +
1

n
WvZ(M ◦ (Z⊤W⊤

k WqZ)),

where M ∈ R(n+1)×(n+1) is the causal mask.

The causal mask is a lower-triangular all-ones matrix. Throughout this work, we denote P := Wv

and Q := W⊤
k Wq , and define

LSAθ(Z) = Z +
1

n
PZ(M ◦ (Z⊤QZ)). (2)

Prior studies (Von Oswald et al., 2023; Ahn et al., 2023; Gatmiry et al., 2024) have shown the
effectiveness of linear self attention for enabling in-context learning. Furthermore, in our setting,
Dao & Gu (2024) establish a state-space duality between Mamba-2 and linear self-attention, making
the comparison between the two a natural choice.

3.3 MAMBA-2

A Mamba-2 model is a state space model (SSM) that maps the t-th token of the input matrix zt ∈
RD 7→ yt ∈ RD through an implicit latent state Ht ∈ RD×N . Here N is the kernel size of the latent
state.

A general form of Mamba-2 take the form of

Ht = at ·Ht−1 + zt ⊗ bt ∈ RD×N ,

yt = Htct ∈ RD,

where at ∈ R, bt ∈ RN , ct ∈ RN are learnable parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

By definition H1 = z1 ⊗ b1. Denote at:i := atat−1 · · · ai+1 and at:t := 1. We have

Ht = at ·Ht−1 + Zt

= atat−1Ht−2 + atZt−1 + Zt

= · · ·

=

t∑
s=1

at:szs ⊗ bs.

(3)

Now let’s fix some notations. Let B = [b1, · · · , bn+1] ∈ RN×(n+1), C = [c1, · · · , cn+1] ∈
RN×(n+1). Suppose the parameters at, bt, ct follows [at, bt, ct] = Linear(zt) (Zhao et al., 2025),
then we can denote B = SBZ, C = SCZ, where SB ∈ RN×N , SC ∈ RN×N are parameter
matrices. By rewriting eq. (3) in matrix form, we get the following form of Mamba-2.

Definition 3.2. (Mamba-2) A Mamba-2 layer, also called the state space duality (SSD) layer,
is denoted as SSDθ(·), where θ = {(L, SB , SC)} ⊂ R(n+1)×(n+1) ×RD×D ×RD×D. The
output of this layer on input Z is

SSDθ(Z) = Z +
1

n
Z(L ◦ (Z⊤S⊤

BSCZ)), (4)

where L⊤ =


1
a2 1
a3:1 a3 1

...
...

. . .
. . .

aT :1 aT :2 . . . aT 1

 is a learnable parameter matrix.

Throughout this work we denote S := S⊤
BSC to consider

SSDθ(Z) = Z +
1

n
Z(L ◦ (Z⊤SZ)). (5)

Comparing the SSD layer (eq. (5)) with the LSA layer (eq. (2)), we observe a strong similarity.
Although the SSD layer does not include the parameter matrix P , this role is effectively compensated
by the structured parameter matrix L. Later, we will show that the matrices P and L play distinct
roles in the in-context learning mechanisms of Mamba-2 and self-attention, respectively.

4 ONE LAYER MAMBA-2

We begin with the basic setting of a single-layer Mamba-2. Prior work on the in-context learning
ability of linear self-attention (Von Oswald et al., 2023; Ahn et al., 2023) has shown that the selec-
tive accumulation of pairwise statistics allows the model to simulate gradient descent updates. The
Mamba-2 architecture, as an SSM, also admits recurrence dynamics that can encode sufficient statis-
tics of the training data. In section 4.1 we establish a parallel result: a single Mamba-2 layer can
implement exactly one step of gradient descent (GD) when applied to an in-context linear regression
task. This theoretical result is verified through experiments in section 4.2.

4.1 ONE LAYER MAMBA-2 PERFORMS ONE STEP GD

The ability to simulate gradient descent in-context is a fundamental property of architectures exhibit-
ing algorithmic generalization. Linear self-attention (LSA) achieves this by exploiting inner-product
structure to compute empirical gradients. Mamba-2, although not explicitly attention-based, is struc-
turally similar: its selective state-space dynamics can recursively accumulate linear transformations
of past tokens. This suggests that with a proper choice of parameters, the state updates of Mamba-2
can be engineered to compute gradient statistics and thereby simulate the GD update rule.

To theoretically validate the ability of Mamba-2, we aim to construct SSD parameters such that the
input matrix forwarded once is equivalent to one-step of gradient descent.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 4.1 (One layer Mamba-2 performs one step GD). One layer Mamba-2 architec-
ture can implement one-step gradient descent. Consider an in-context learning task with the
input format in eq. (1). The data satisfy yi = w⊤xi for i ∈ [n]. Let y1n+1 be the (d+1, n+1)-
th output of the Mamba-2 layer, then there exists SSD parameters θ = {(L, SB , SC)} such
that it holds that y1n+1 = ⟨w1, xn+1⟩, and the parameter w1 follows the GD update:

w1 = w0 − η∇L(w0),

where w0 = 0 and L(w) = 1
n

∑n
i=1(w

⊤xi − yi)
2.

Proof sketch. We outline the main construction steps, deferring full details to section A.

By eq. (4), the output of a Mamba-2 layer at position t can be expressed in the form

yt =

t∑
i=1

at:i (uiu
⊤
i)S

⊤
BSCut,

where ut = [xt; yt] is the concatenation of feature and label at step t, at:i are recurrence coefficients
determined by the state-space recursion, and SB , SC are learnable parameter matrices. To ensure
that the update dynamics are driven only by the features and not by the labels of the current token,
we choose SC so that SCut = [xt; 0]. In this way, only the feature vector passes forward to interact
with the past states. uiu

⊤
i expands as [

xix
⊤
i xiyi

yix
⊤
i y2i

]
,

By appropriately designing the projection S⊤
B , the lower block of (uiu

⊤
i)S

⊤
B produces the vector

−η(w⊤xi−yi)x
⊤
i , which corresponds to the gradient of the squared loss on example (xi, yi) scaled

by a learning rate η. With initialization w0 = 0, this term simplifies to −ηyix
⊤
i , making the updates

purely linear in the data. As the layer processes the sequence of n training examples, the hidden
state accumulates these contributions to get

w1 = η

n∑
i=1

yixi,

which is exactly the result of applying one step of gradient descent from the origin on the linear
regression objective. Finally, when the query token xn+1 is presented, we apply a readout h =
[0P−1; 1] that extracts the learned weight vector and outputs w⊤

1 xn+1, which corresponds precisely
to the model’s prediction after the single GD update. Thus, the construction shows how the Mamba-
2 recurrence can be aligned with the algebraic structure of gradient descent.

Remark 4.1. The result of theorem 4.1 can’t generalize to multi-step gradient descent since after
the first layer, the input x would change, causing the next layer unable to utilize the original data.
In an LSA multi-step GD is possible since the value matrix P can ensure only the y labels change
during the forward. Thus we need more refined analysis to enable multi-step GD or similar iteration
algorithms (see section 5.1).

4.2 EXPERIMENTAL RESULTS FOR ONE LAYER MAMBA-2

For the linear regression dataset, we set the input dimension to d = 10 and the number of context
examples during training to n = 40. Each feature vector is sampled as x ∼ N (0, Id), and the
ground-truth weight vector is sampled as w ∼ N (0, Id). The labels are then generated according to
the linear relation y = ⟨w, x⟩.
We trained several Mamba-2 models with varying depths (l = 1, 4, 8, 12 layers) using the ADAM
optimizer with a fixed learning rate of 10−4. A total of 300,000 training samples were generated,
organized into mini-batches of size 64. To reduce the risk of overfitting and to ensure that the models
primarily capture in-context learning dynamics, we trained each model for only a single epoch.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For evaluation, we generated test datasets following the same distribution as in training but varied
the number of in-context examples to assess generalization. Each reported performance is averaged
over k ∈ 10, 1000 independent runs to reduce variance. As a baseline, we compared the models to
standard gradient descent (GD) updates applied directly to the regression problem. Specifically, we
first compared the performance of a one-layer Mamba-2 model with that of one-step GD, measured
by squared loss across different context sizes ranging from 1 to 40.

Figure 1: Comparison of one-layer Mamba-2 and one-step GD. Left: Each data point is averaged
over 10 runs. Right: Each data point is averaged over 1000 runs.

The results are shown in fig. 1. On the left, we observe that the squared error for the one-layer
Mamba-2 closely mirrors the behavior of one-step GD, following a nearly identical curve as the
number of in-context examples increases. This suggests that a single Mamba-2 layer effectively
implements a gradient-based update rule, akin to performing one step of GD, though with potentially
different initializations or implicit parameterizations. On the right, we note that the Mamba-2 model
consistently achieves lower squared error than one-step GD, despite following a similar trend.

Figure 2: Comparison of Mamba-2 with different layers. Left: Each data point is averaged over 10
runs. Right: Each data point is averaged over 1000 runs.

Next, we examined the effect of increasing the number of layers in Mamba-2. As shown in fig. 2,
increasing depth does not lead to monotonic improvements in performance. Interestingly, when the
number of averaging runs k is small, all models exhibit qualitatively similar performance patterns.
This phenomenon may be attributed to the shared training schema, which constrains the models to
learn similar update dynamics regardless of depth. These results suggest that simply stacking ad-
ditional Mamba-2 layers does not straightforwardly enhance ICL performance in linear regression,
and the benefit of depth may be limited without modifications to the model architecture itself.

5 HYBRID MAMBA PERFORMS SGD

Now we turn to the hybrid setting. Although one might hope that a sufficiently deep multi-layer
Mamba-2 network could already realize multi-step gradient descent updates in-context, this is not

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the case as discussed earlier. The fundamental reason is that the Mamba-2 block lacks a flexible
value parameter matrix: it cannot directly perform the corrective update on the label y that is es-
sential for gradient-based adaptation while keeping the features x unchanged. To overcome this, we
consider a hybrid construction (which also follows practice) that alternates a Mamba-2 block with a
linear self-attention block.

5.1 THE HYBRID ARCHITECTURE

We formalize our main theorem for the hybrid model below. The result shows that by carefully
designing the interaction between the Mamba-2 and Transformer sublayers, an l-layer hybrid model
can simulate l-step of stochastic gradient descent on linear regression tasks in the in-context setting.

Theorem 5.1 (Hybrid model performs in-context SGD). The SSD ◦ LSA hybrid architecture
can implement in-context stochastic gradient descent. Consider an in-context learning task
with the input format in eq. (1). The data satisfy yi = w⊤xi for i ∈ [n]. Let yln+1 be the
(d + 1, n + 1)-th output of the l-th layer, then there exists proper parameters of the hybrid
architecture such that yln+1 = ⟨wl, xn+1⟩, and wl follows the approximate SGD update:

wl+1 = wl − η∇Lt(wl) + ϵl,

where ∥ϵl∥2 ≤ ϵ, t = lmod n, and Lt(w) =
1
2 (w

⊤xt − yt)
2.

Proof sketch. We give a high-level account of the main ideas and the full proof is deferred to sec-
tion A.

Denote l as the index of layer and i as the index of token. Under the standing choices Al = −Bl,
P l
X = Id and the uniform bounds ∥x∥ ≤ C, ∥y∥ ≤ D, the first SSD sublayer produces the update

x
l+ 1

2
i = xl

i −
1

n

n+1∑
j=1

Ll
ji ⟨Blx

l
i, x

l
j⟩xl

j ,

from which one immediately obtains the residual bound ∥xl+ 1
2

i −xl
i∥ ≤ 1

n |
∑

j L
l
ji|∥Bl∥C3 showing

that the per-sublayer change in x is small: ∥xl+ 1
2

i − xl
i∥ = O

(
∥Ll∥∞∥Bl∥/n

)
. Combining the SSD

sublayer and the linear self-attention (LSA) sublayer into the net change ∆xi = xl+1
i − xl

i we
split ∆xi into two parts I1 and I2, where I1 captures the difference coming from using the slightly
perturbed arguments xl+ 1

2 versus xl, and I2 captures the deviation of the matrix weights from the
identity. Using the pointwise expansion

⟨Bu, v⟩w − ⟨Bu0, v0⟩w0 = ⟨B(u− u0), v⟩w + ⟨Bu0, (v − v0)⟩w + ⟨Bu0, v0⟩(w − w0),

together with the smallness bound on xl+ 1
2 − xl yields ∥I1∥ = O

(
∥B∥2∥Ll∥∞/n

)
. By choosing

Ll so that only one column entry deviates from 1 (e.g. one entry equal to 1 − nϵ) and by taking
∥B∥ ≤ ϵ, the contribution I2 can be made O(ϵ2); hence overall ∥∆xi∥ = O(ϵ2) and the token
features xl

i remain effectively constant across layers, justifying the replacement xl
i ≈ xi. Turning to

the scalar coordinates yi, we write the two sublayer updates

y
l+ 1

2
i = yli −

1

n

n+1∑
j=1

Ll
ji⟨Blx

l
i, x

l
j⟩ylj and yl+1

i = y
l+ 1

2
i − 1

n

i∑
j=1

P l
Y ⟨Alx

l+ 1
2

i , x
l+ 1

2
j ⟩yl+

1
2

j ,

and combine them to compute y
l+ 1

2
i − yli yields a leading term −(Ll

ti − 1)n−1⟨xi, xt⟩yt (with
t = lmod n) plus error terms E1, E2. The term E1, coming from the other (near-one) entries of
Ll, is bounded by O(ϵ/n), while E2, which reflects the small differences between xl+ 1

2 and xl and
the corresponding y-increments, is likewise O(ϵ/n) by the previous O(∥Ll∥∞∥Bl∥/n2) estimate.
Choosing Ll

ti = 1 + ηn makes the dominant contribution equal to −η⟨xi, xt⟩yt, so that up to the
negligible O(ϵ/n) errors we have

yl+1
i − yli = −η⟨xi, xt⟩yt +O(ϵ/n).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

One then checks that this update structure preserves the affine form yli = y0i + ⟨θl, xi⟩ (with θl
independent of i), and rewriting the main term reveals that the evolution of the layer parameter θl
is equivalent to a gradient step on the squared-loss objective: letting wl = −θl yields the claimed
gradient-descent style update ∆yi = ⟨η∇Lt(−θl), xi⟩+O(ϵ/n), which completes the sketch.

In theorem 5.1 we proved that one layer of hybrid model can perform one step of standard SGD,
now we generalize the result to show that it can actually perform multi-step of mini-batch SGD.

Theorem 5.2 (Hybrid model performs multi-step in-context SGD). A single SSD ◦ LSA
layer can implement multi-step in-context stochastic gradient descent. Consider an in-
context learning task with the input format in eq. (1). The data satisfy yi = w⊤xi for
i ∈ [n]. Let yln+1 be the (d + 1, n + 1)-th output of the l-th layer, and S ⊂ [n] an in-
dex set of size m. Then there exists proper parameters of the hybrid architecture such that
yln+1 = ⟨w(K)

l , xn+1⟩, and w
(K)
l follows the approximate SGD update: for r = 0, · · · ,K:

w(r+1) = w(r) − η∇LS(w
(r)
l) + ϵ

(r)
l ,

where ∥ϵ(r)l ∥2 ≤ ϵ and LS(w) =
1
m

∑
t∈S(w

⊤xt − yt)
2.

The proof idea is similar to theorem 5.1 thus we leave the details to section A.

Discussion. Theorem 5.1 establishes that the SSD ◦ LSA hybrid block can replicate the effect of
a single SGD step per layer on linear regression data. Each layer consumes one training example
(xt, yt) and performs an approximate weight update wl+1 = wl − η∇Lt(wl). The role of the
Mamba sublayer is to accumulate the necessary inner products ⟨xi, xj⟩ and transmit them forward
in the sequence, while the Transformer self-attention sublayer injects the value-update channel that
modifies yi in accordance with the gradient. The error terms E1, E2 appearing in the proof are
higher-order residuals that vanish as the sequence length n grows. In theorem 5.2 we further gen-
eralize the result to show the ability of one layer hybrid model to perform multi-step mini-batch
SGD. As far as we are concerned this is the first result to show that a single model layer can perform
multi-step in-context iterative updates.

5.2 EXPERIMENTAL RESULTS FOR HYBRID MAMBA-2

The experimental setting is consistent with that described in section 4.2. In particular, the hybrid
model adopts the SSD ◦ LSA stacking structure motivated by our theoretical construction. We
trained hybrid models with varying numbers of layers (l = 1, 4, 8, 12) and evaluated their perfor-
mance in comparison to stochastic gradient descent (SGD). The results are summarized in fig. 3 and
fig. 4.

Figure 3: Comparison of SSD ◦ LSA hybrid model and SGD. Left: Each data point is averaged over
10 runs. Right: Each data point is averaged over 1000 runs.

On the left panel of fig. 3, where each data point is averaged over 10 independent runs, we observe
that the one-layer hybrid model closely mimics the behavior of multi-step standard SGD across n

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

in-context points. This resemblance highlights the ability of a shallow hybrid model to approximate
the dynamics of SGD in practice, collaborating our theorem 5.2. When the number of runs is
significantly increased (k = 1000), as shown in the right panel, SGD slightly outperforms the one-
layer hybrid model.

Figure 4: Comparison of SSD ◦ LSA hybrid model with different layers. Left: Each data point is
averaged over 10 runs. Right: Each data point is averaged over 1000 runs.

We further investigated the effect of model depth on the performance of the hybrid architecture,
with the results displayed in fig. 4. Again, the left panel shows outcomes averaged over 10 runs,
while the right panel reports the results averaged over 1000 runs. A pattern consistent with the
observations in section 4.2 emerges: when the averaging factor is small (k = 10), hybrid models
with different depths exhibit nearly indistinguishable predictive behavior, and the variance across
runs dominates the differences due to depth. When averaging over a larger number of runs (k =
1000), the performance differences become clearer, but deeper models do not always yield better
results. In particular, while the 12-layer Mamba-2 model achieved the strongest performance in the
pure SSD experiments, the best-performing hybrid model in this setting is the 4-layer variant. This
finding suggests that in the SSD ◦ LSA hybrid architecture, there exists a trade-off between depth
and effective approximation of the underlying SGD dynamics, and simply stacking more layers does
not guarantee improved in-context learning performance.

6 CONCLUSION

In this work, we investigated the in-context learning (ICL) capabilities of Mamba-2 and its hybrid
variants with Transformers through both theoretical construction and empirical validation. By lever-
aging the duality between the state space duality (SSD) layer in Mamba-2 and linear self-attention
(LSA), we demonstrated that a single-layer Mamba-2 can simulate one step of gradient descent
(GD) on linear regression tasks. This finding provides a principled explanation for previously ob-
served empirical behaviors, where shallow Mamba-2 models mimic the dynamics of single-step
optimization.

Building upon this foundation, we showed that hybrid architectures composed of SSD ◦ LSA lay-
ers can go beyond single-step updates to implement multi-step stochastic gradient descent (SGD).
The key insight is that SSD selects which context examples contribute to the update, while LSA
ensures the updates align with SGD dynamics by properly handling the interaction between inputs
and outputs. Moreover, we proved that a single hybrid layer itself can implement multi-step SGD.
Our experiments confirmed that hybrid models achieve multi-step optimization, thereby bridging
the gap between empirical observations and theoretical understanding.

Overall, our results suggest that the combination of SSD and LSA provides a mechanistic foundation
for the emergence of ICL in hybrid architectures. This perspective clarifies why Mamba-2 alone
falls short of in-context learning, while SSD ◦ LSA hybrids can scale up to emulate full gradient-
based learning procedures. We believe this work contributes a constructive theoretical framework
for interpreting ICL in state space models and hybrid architectures used in practice, offering insights
that may guide the design of more efficient large-scale models with enhanced in-context learning
abilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36:45614–45650, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36:57125–57211, 2023.

Marco Bondaschi, Nived Rajaraman, Xiuying Wei, Kannan Ramchandran, Razvan Pascanu, Caglar
Gulcehre, Michael Gastpar, and Ashok Vardhan Makkuva. From markov to laplace: How mamba
in-context learns markov chains. arXiv preprint arXiv:2502.10178, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in neural information processing
systems, 35:30583–30598, 2022.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
looped transformers learn to implement multi-step gradient descent for in-context learning? arXiv
preprint arXiv:2410.08292, 2024.

Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is mamba capable
of in-context learning? arXiv preprint arXiv:2402.03170, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

John T Halloran, Manbir Gulati, and Paul F Roysdon. Mamba state-space models are lyapunov-
stable learners. arXiv preprint arXiv:2406.00209, 2024.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
weight shifting for softmax regression. Advances in Neural Information Processing Systems, 37:
62584–62616, 2024.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are emergent abilities in large language models just in-context learning? arXiv preprint
arXiv:2309.01809, 2023.

Costas Mavromatis, Balasubramaniam Srinivasan, Zhengyuan Shen, Jiani Zhang, Huzefa Rangwala,
Christos Faloutsos, and George Karypis. Which examples to annotate for in-context learning?
towards effective and efficient selection. arXiv preprint arXiv:2310.20046, 2023.

Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. The-
oretical foundations of deep selective state-space models. Advances in Neural Information Pro-
cessing Systems, 37:127226–127272, 2024.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. arXiv preprint arXiv:2402.04248, 2024.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Xingjian Du, Teddy Ferdinan, Haowen Hou, et al. Eagle and finch: Rwkv with matrix-
valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Neeraj Mohan Sushma, Yudou Tian, Harshvardhan Mestha, Nicolo Colombo, David Kappel, and
Anand Subramoney. State-space models can learn in-context by gradient descent. arXiv preprint
arXiv:2410.11687, 2024.

Tencent Hunyuan Team, Ao Liu, Botong Zhou, Can Xu, Chayse Zhou, ChenChen Zhang,
Chengcheng Xu, Chenhao Wang, Decheng Wu, Dengpeng Wu, et al. Hunyuan-turbos: Advanc-
ing large language models through mamba-transformer synergy and adaptive chain-of-thought.
arXiv preprint arXiv:2505.15431, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Zhijie Wang, Bo Jiang, and Shuai Li. In-context learning on function classes unveiled for transform-
ers. In Forty-first International Conference on Machine Learning, 2024.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Weimin Wu, Maojiang Su, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. In-context deep learning
via transformer models. arXiv preprint arXiv:2411.16549, 2024.

Xueliang Zhao, Wei Wu, and Lingpeng Kong. Scaling reasoning without attention. arXiv preprint
arXiv:2505.22425, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

Here we provide the proof for our main theorems.
Theorem 4.1 (One layer Mamba-2 performs one step GD). One layer Mamba-2 architecture can
implement one-step gradient descent. Consider an in-context learning task with the input format
in eq. (1). The data satisfy yi = w⊤xi for i ∈ [n]. Let y1n+1 be the (d + 1, n + 1)-th output of
the Mamba-2 layer, then there exists SSD parameters θ = {(L, SB , SC)} such that it holds that
y1n+1 = ⟨w1, xn+1⟩, and the parameter w1 follows the GD update:

w1 = w0 − η∇L(w0),

where w0 = 0 and L(w) = 1
n

∑n
i=1(w

⊤xi − yi)
2.

Proof. Following the notations in . X = [u1, · · · , uT] ∈ RP×T , B = [b1, · · · , bT] ∈ RN×T ,
C = [c1, · · · , cT] ∈ RN×T , at:i := atat−1 · · · ai+1 and at:t := 1.

Consider the Mamba-2 formula
Y = X(L ◦ (B⊤C)),

where

L⊤ =


1
a2 1
a3a2 a3 1

...
...

.
aT . . . a2 aT . . . a2 . . . aT 1

 .

Then we have

yt =

t∑
i=1

at:iuib
⊤
i ct

=

t∑
i=1

at:iZict.

Now we define C = SCX , B = SBX . Then ct = SCut, Zi = uib
⊤
i = uiu

⊤
i S

⊤
B . Thus

yt =

t∑
i=1

at:iuiu
⊤
i S

⊤
BSCut.

For linear regression the loss function is

L(w) =

t∑
i=1

∥w⊤xi − yi∥2,

and the gradient is

∇wL(w) =

t∑
i=1

(w⊤xi − yi)xi.

We hope that ut = [xt; yt] is updated to u′
t = [xt; yt − η(∇wL(w))

⊤xt]. Now compare

∆ut =

t∑
i=1

at:iuiu
⊤
i S

⊤
BSCut

and

∆yt = −η

t∑
i=1

(w⊤xi − yi)x
⊤
i xt.

We hope for i = 1, · · · t,

at:iuiu
⊤
i S

⊤
BSCut = [0P−1;−η(w⊤xi − yi)x

⊤
i xt].

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Let

SC =

[
IP−1 0P−1

0(N−P+1)×(P−1) 0N−P+1

]
,

then SCut = [xt; 0N−P+1]. Note that

uiu
⊤
i =

[
xix

⊤
i xiyi

yix
⊤
i y2i

]
,

let’s construct S⊤
B such that

uiu
⊤
i S

⊤
B =

[
∗ ∗

−η(w⊤xi − yi)x
⊤
i ∗

]
.

Initialize w = 0, then letting

S⊤
B =

[
ηIP−1 ∗

∗ ∗

]
yields the desired result.

The output of the Mamba (a linear projection h = [0P−1; 1] applied to the last token) is

η

T∑
i=1

yix
⊤
i xT = w⊤

1 xT ,

where w1 is the output of one step of GD with learning rate η and parameter initialization w0 =
0.

Theorem 5.1 (Hybrid model performs in-context SGD). The SSD ◦ LSA hybrid architecture can
implement in-context stochastic gradient descent. Consider an in-context learning task with the
input format in eq. (1). The data satisfy yi = w⊤xi for i ∈ [n]. Let yln+1 be the (d + 1, n + 1)-
th output of the l-th layer, then there exists proper parameters of the hybrid architecture such that
yln+1 = ⟨wl, xn+1⟩, and wl follows the approximate SGD update:

wl+1 = wl − η∇Lt(wl) + ϵl,

where ∥ϵl∥2 ≤ ϵ, t = lmod n, and Lt(w) =
1
2 (w

⊤xt − yt)
2.

Proof. We set Al = −Bl and P l
X = Id and abbreviate ∥ · ∥2 as ∥ · ∥. Suppose ∥x∥ ≤ C and

∥y∥ ≤ D.

For the first SSD sublayer the update formula is:

x
l+ 1

2
i = xl

i −
1

n

n+1∑
j=1

Ll
ji ⟨Blx

l
i, x

l
j⟩xl

j .

The residual can be bounded by

∥xl+ 1
2

i − xl
i∥ ≤ 1

n
|
∑
j

Ll
ji|∥Bl∥C3 = O

(
∥Ll∥∞∥Bl∥

n

)
, (6)

where ∥Ll∥∞ = maxi |
∑

j L
l
ji|.

For the second linear self attention sublayer the update formula is:

xl+1
i = x

l+ 1
2

i − 1

n

n+1∑
j=1

⟨−Blx
l+ 1

2
i , x

l+ 1
2

j ⟩xl+ 1
2

j .

Combine the two updates into net change from xl
i to xl+1

i :

xl+1
i − xl

i = − 1

n

∑
j

Ll
ji⟨Blx

l
i, x

l
j⟩xl

j −
1

n

∑
j

⟨−Blx
l+ 1

2
i , x

l+ 1
2

j ⟩xl+ 1
2

j .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Then

∆xi = xl+1
i − xl

i

=
1

n

∑
j

(⟨Blx
l+ 1

2
i , x

l+ 1
2

j ⟩xl+ 1
2

j − ⟨Blx
l
i, x

l
j⟩xl

j)︸ ︷︷ ︸
I1

+
1

n

∑
j

(1− Ll
ji)⟨Blx

l
i, x

l
j⟩xl

j︸ ︷︷ ︸
I2

.

To bound I1, note that

⟨Bu, v⟩w − ⟨Bu0, v0⟩w0 = ⟨B(u− v0), v⟩w + ⟨Bu0, (v − v0)⟩w + ⟨Bu0, v0⟩(w − w0),

and plug in u = x
l+ 1

2
i , u0 = xl

i, v0 = xl
j , w = x

l+ 1
2

j , w0 = xl
j . Using ∥x∥ ≤ C and ∥Bl∥ = ∥B∥

for short and ∥xl+ 1
2

i − xl
i∥ ≤ δ (eq. (6)), each of the three terms is bounded by ∥B∥C2δ. Thus

∥I1∥ ≤ 1

n

∑
j

3∥B∥C2δ ≤ 3∥B∥C2δ = O
(
∥B∥2∥Ll∥∞

n

)
.

To bound I2 we directly see

∥I2∥ ≤ 1

n

∑
j

|1− Ll
ji||⟨Blx

l
i, x

l
j⟩|∥xl

j∥ ≤ ∥B∥C3

n

∑
j

|1− Ll
ji|.

By choosing proper Ll
ji (i.e. only one non-one element 1 − nϵ for fixed i) we can ensure

∑
j |1 −

Ll
ji| ≤ nϵ. Note that by this choice ∥Ll∥∞ = O(n). Also we can always ensure ∥B∥ ≤ ϵ. Thus

∥∆xi∥ = O(ϵ2).

Since the change of x is small, we can denote xl
i as xi because they’re almost the same for each l.

Now let’s consider the update of y. We know that for the first sublayer update:

y
l+ 1

2
i = yli −

1

n

n+1∑
j=1

Ll
ji⟨Blx

l
i, x

l
j⟩ylj , (7)

and for the second sublayer update:

yl+1
i = y

l+ 1
2

i − 1

n

i∑
j=1

P l
Y ⟨Alx

l+ 1
2

i , x
l+ 1

2
j ⟩yl+

1
2

j . (8)

Thus if we set P l
Y = −1 and denote t := l%n, then

∆yi = yl+1
i − yli

= − 1

n

i∑
j=1

(Ll
ji⟨Blx

l
i, x

l
j⟩ylj + P l

Y ⟨Alx
l+ 1

2
i , x

l+ 1
2

j ⟩yl+
1
2

j)

= − 1

n

i∑
j=1

(Ll
ji⟨Blx

l
i, x

l
j⟩ylj + ⟨Blx

l+ 1
2

i , x
l+ 1

2
j ⟩yl+

1
2

j)

= −Lti − 1

n
⟨xl

i, x
l
t⟩ylt −

1

n

∑
j ̸=t

(Lji − 1)⟨xl
i, x

l
j⟩ylj︸ ︷︷ ︸

E1

− 1

n

i∑
j=1

(⟨xl+ 1
2

i , x
l+ 1

2
j ⟩yl+

1
2

j − ⟨xl
i, x

l
j⟩ylj)︸ ︷︷ ︸

E2

.

Now let’s bound E1 and E2 separately.

|E1| ≤
1

n
|
∑
j ̸=t

(Ll
ji − 1)|⟨xl

i, x
l
j⟩| · |ylj || ≤

C2D

n
|
∑
j ̸=t

(Ll
ji − 1)| = O

(ϵ

n

)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Since

⟨x
l+

1
2

i , x
l+

1
2

j ⟩y
l+

1
2

j − ⟨xl
i, x

l
j⟩ylj = ⟨x

l+
1
2

i − xl
i, x

l
j⟩ylj + ⟨xl

i, x
l+

1
2

j − xl
j⟩ylj

+ ⟨x
l+

1
2

i , x
l+

1
2

j ⟩(y
l+

1
2

j − ylj),

by triangle inequality there exists a constant K (depending only on C and finite-dim constants) such
that

|E2| ≤
K

n

i∑
j=1

(
∥x

l+
1
2

i − xl
i∥+ ∥x

l+
1
2

j − xl
j∥+ |y

l+
1
2

j − ylj |
)
= O

(
∥Ll∥∞∥Bl∥

n2

)
= O

(ϵ

n

)
.

Choose Ll
ti = 1 + ηn and by the update formula of y (eq. (7) and eq. (8)) we can verify that

yli = y0i + ⟨θl, xi⟩(i.e. θl doesn’t depend on index i), so the update for y follows

yl+1
i − yli = −η⟨xi, xt⟩ylt +O(ϵ)

= −η⟨yltx⊤
t , xi⟩+O(ϵ)

= −⟨η(y0t + θ⊤l xt)x
⊤
t , xi⟩+O(ϵ)

= ⟨η∇Lt(−θl), xi⟩+O(ϵ),

then letting wl = −θl and we get the desired result.

Theorem 5.2 (Hybrid model performs multi-step in-context SGD). A single SSD ◦ LSA layer can
implement multi-step in-context stochastic gradient descent. Consider an in-context learning task
with the input format in eq. (1). The data satisfy yi = w⊤xi for i ∈ [n]. Let yln+1 be the (d+1, n+1)-
th output of the l-th layer, and S ⊂ [n] an index set of size m. Then there exists proper parameters
of the hybrid architecture such that yln+1 = ⟨w(K)

l , xn+1⟩, and w
(K)
l follows the approximate SGD

update: for r = 0, · · · ,K:

w(r+1) = w(r) − η∇LS(w
(r)
l) + ϵ

(r)
l ,

where ∥ϵ(r)l ∥2 ≤ ϵ and LS(w) =
1
m

∑
t∈S(w

⊤xt − yt)
2.

Proof. We first define

R :=
∑
t∈S

xtx
⊤
t ∈ Rd×d.

Define a linear operator T : Rn → Rn which acts on vector y ∈ Rn by

(Ty)i =
1

m

∑
t∈S

⟨xi, xt⟩yt, i = 1, · · · , n.

By the proof of theorem 5.1 we know that a single-step SGD operator acts on the y vector by the
linear operator

M = I − ηT.

Hence K steps of SGD correspond to applying M to y for K times:

y(K) = MKy(0) = (1− ηT)Ky(0).

Define the increment operator

∆M := MK − I = (1− ηT)K − I. (9)

By the binomial expansion

∆M =

K∑
s=1

(
K

s

)
(−η)sT s.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We observe that T s has an entrywise representation built from matrix R:

(T s)ij =
1

m
x⊤
i R

s−1xj for all i, j, (10)

and moreover T s
ij = 0 when j /∈ S. (We can prove eq. (10) by induction.)

By eq. (9) and eq. (10) we can collect the polynomial in powers of S and write:

∆Mij = 1j∈S · x⊤
i Qxj , where Q =

K∑
s=1

(
K

s

)
(−η)s

1

ms
Ss−1. (11)

So ∆M has a column-sparse structure: only columns indexed by j ∈ S are nonzero. The K-step
SGD we want the hybrid layer to implement on y is:

y(K) = y(0) +∆My(0).

By eq. (7) and eq. (8) we know that the increment of yi is

∆yi = − 1

n

N∑
j=1

(Lji⟨Bxi, xj⟩yj + ⟨−Bx
1
2
i , x

1
2
j ⟩y

1
2
j),

where we omit the layer index l. And by the same argument in the proof for theorem 5.1 we obtain
the leading-term approximation:

∆yi = − 1

n

N∑
j=1

(Lji − 1)⟨Bxi, xj⟩yj + E. (12)

We set B = Q and Lji = 1− n · 1j∈S , then the leading term in eq. (12) becomes

− 1

n

∑
j

(Lji − 1)⟨Bxi, xj⟩yj = − 1

n

∑
j∈S

(−n)x⊤
i Qxjyj = (∆My)i,

so the SGD is recovered if no residual exists.

Now let’s turn to the residuals in E. With the same argument in the previous proof (the I1, I2

decomposition) for ∆xi = x
1
2
i − xi we obtain ∥∆xi∥ = O(mϵ).

For residuals in the y update we also adopt the E1, E2 decomposition. E1 denotes contributions
from indices not in S. By our choice of L we know

|E1| = 0.

For E2 we have

|E2| ≤
K0

n

i∑
j=1

(∥x
1
2
i − xi∥+ ∥x

1
2
j − xj∥+ |y

1
2
j − yj |) =

K0i

n
(2δx + Cm∥B∥) = O(m∥B∥).

Since we set Q = B, we need to ensure Q is bounded by stepsize η. We know that

∥Q∥ =
1

m

K∑
s=1

(
K

s

)
|η|sC2(s−1) =

|η|
m

K∑
s=1

(
K

s

)
(|η|C2)s−1.

Since
K∑
s=1

(
K

s

)
as−1 ≤ (1 + a)K − 1

a
,

we set a = |η|C2 and

∥Q∥ ≤ 1

mC2
((1 + |η|C2)K − 1).

For small |η|C2 we can further utilize (1 + |η|C2)K − 1 ≈ K|η|C2, giving ∥Q∥ = O(K/m)|η|,
so ∥Q∥ is indeed restricted by a small stepsize η. Thus setting ϵ and η at the same order would
guarantee that the residual is of order |E| = O(ϵ). This gives the desired result.

16

	Introduction
	Related Work
	Preliminaries
	In-context learning
	Linear Self Attention
	Mamba-2

	One layer Mamba-2
	One layer Mamba-2 performs one step GD
	Experimental results for one layer Mamba-2

	Hybrid Mamba Performs SGD
	The Hybrid Architecture
	Experimental results for hybrid Mamba-2

	Conclusion
	Appendix

