

CGTFRA: GENERAL GRAPH TRANSFORMER FRAMEWORK FOR CONSISTENT INTER-SERIES DEPENDENCY MODELING IN MULTIVARIATE TIME SERIES

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have emerged as dominant predictors in multivariate time series forecasting (MTSF), prompting an in-depth investigation into their limitations within this application. Firstly, the conventional **temporal information for timestamps** in MTSF suffers from the unavailability of future timestamps and the diversity of timestamp formats across real-world datasets, which poses a significant practical challenge and necessitates cumbersome adjustments for a unified forecasting model. Secondly, existing Variate Transformers, such as iTransformer, typically model inter-variate dependencies (IVD) predominantly within shallow self-attention layers, neglecting the critical requirement for deep-layer IVD modeling, thereby causing dependency information loss and difficulties in model optimization. We refer to this phenomenon as **inconsistent IVD modeling**. To address these limitations, CGTFra, is designed as a general Graph Transformer framework to promote consistent IVD modeling. Specifically, we introduce a frequency-domain masking and resampling method for feature enhancement that preserves periodic characteristics in the frequency domain. Additionally, by comprehensive analysis of the distinctions and connections between self-attention mechanisms of Variate Transformers and Graph Neural Networks (GNNs) in capturing IVD, a dynamic graph learning framework is integrated into the Transformer to explicitly model IVD in deep network layer. Crucially, we then propose a consistency-constrained alignment to strengthen the network to learn more robust IVD and temporal feature representations. The core design philosophy of CGTFra can be integrated into any existing Variate Transformer-based framework and CGTFra demonstrates superior predictive performance across 13 long- and short-term datasets with high computational efficiency. Code is available at <https://anonymous.4open.science/r/CGTFra>.

1 INTRODUCTION

Multivariate time series, such as traffic flow, are critical for forecasting the future dynamics of real-world systems. Multivariate time series forecasting (MTSF) is challenged mainly by two factors: the intricate temporal patterns of individual variables (intra-series dependency) and the dynamic dependencies among these variables (i.e., inter-series or inter-variate dependency), where one variable's fluctuation can affect the others. To illustrate, Figure 1 presents the raw traces of seven variables from the ETTh1 dataset, supplemented by their Pearson Correlation Coefficient Matrix (PCM) and Dynamic Time Warping (DTW) distance matrix, which reveal strong correlations and similarities between two pairs of variables: variable 0 with variable 2, and variable 1 with variable 3.

To achieve more accurate MTSF, numerous advanced methods have been developed, including CNNs, RNNs, MLPs, and GNN-based forecasters. More recently, Transformer-based networks have gained prominence due to their inherent strength in capturing long-range dependencies (Vaswani et al., 2017). However, after a comprehensive analysis of existing Transformer-based approaches, we argue that they still face two following significant limitations.

(1) **Over-reliance on **Timestamps** for Input Representation.** Existing methods typically employ learnable encodings derived from timestamps to capture **temporal positional information**.

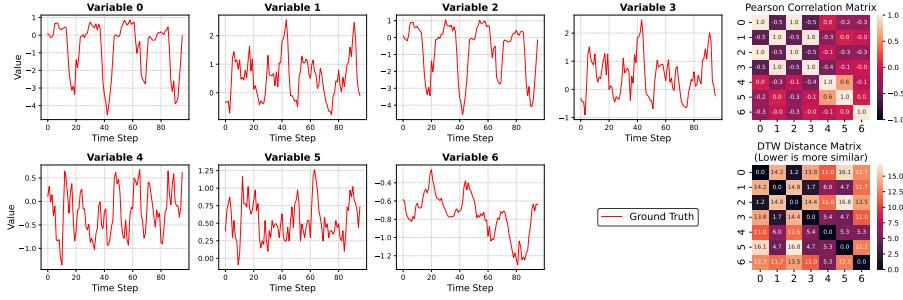


Figure 1: Intra- and inter-series dynamics on ETTh1 dataset. PCM and DTW are used to reveal inter-variable similarities and dependencies (See Appendix A.6 for more details). We observe two highly similar pairs of variables: variables 0 with 2, and variables 1 with 3, and these pairs exhibit high PCM coefficients and low DTW distances, as indicated at coordinates (2,0) and (3,1), where (x-axis, y-axis) correspond to variable indices. Furthermore, their dependency patterns with other variables are also analogous (see row 0 vs. row 2, row 1 vs. row 3) in both the PCM and DTW matrices. Additionally, the strong correlation between variables 4 and 5 (see coordinate (5,4) in PCM and DTW), is noteworthy and will be further discussed in the context of Figure 9.

as seen in models including Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), iTransformer (Liu et al., 2024), VCformer (Yang et al., 2024) and others. However, *future timestamps are often unavailable in real-world scenarios, timestamp formats can vary across datasets, and issues such as missing or erroneous timestamps all cannot be effectively handled*. Its actual effectiveness, moreover, is yet to be fully established. To investigate the actual efficacy of such temporal information, we conducted an ablation study on iTransformer where we removed the timestamp embedding and instead up-sampled the input signal using a single linear layer. As shown in Figure 2, this substitution leads to performance improvements on eight datasets (Full results and more analysis are provided in Appendix A.4).

To address the limitations of Transformer-based forecasters relying on timestamp information, we propose a novel and universal Frequency-domain Masking and Resampling (FMR) method, which performs learnable feature enhancement and periodicity capture directly on the frequency components of the signal. Specifically, a per-variable resampling is performed in the spectral space by applying a learnable mask and a subsequent linear interpolation. Through this process, the signal’s periodicity is robustly preserved and enhanced (see Appendix A.5), thereby significantly diminishing the importance of timestamp information that traditionally serve to retain periodic or seasonal information.

(2) **Inconsistency in Modeling Inter-variate Dependencies.** Transformer consists of two key stages: the multi-head self-attention (MHSA) layer and the subsequent feed-forward network (FFN). iTransformer introduced the “Variate Transformer” paradigm, which explicitly models IVD by encoding each variable as an individual token. This foundational work has inspired further improvements, such as Soatten (Wu, 2025). Nevertheless, we argue that a potential limitation exists here: an inconsistency in how temporal and inter-variate dependencies are modeled, that is, IVD are modeled exclusively within the shallow self-attention layers. The deeper FFNs, in contrast, completely disregard these dependencies, focusing solely on capturing the temporal dynamics within each individual variable (see Figure 3(a)). We acknowledge that numerous Transformer variants have been proposed to better model IVD, including approaches based on metric learning, such as DUET (Qiu et al., 2025), and methods employing graph transformers, like STGAGRTN (Wu et al., 2023a) and GL-STGTN (Li et al., 2024). However, a typical trait in these methods is that they integrate the learned variable dependencies into the self-attention mechanism, typically as an attention mask or a bias term. We categorize this parallel fusion strategy as the method depicted in Figure 3(b). We argue that these approaches do not address the inconsistency in modeling temporal and inter-variate

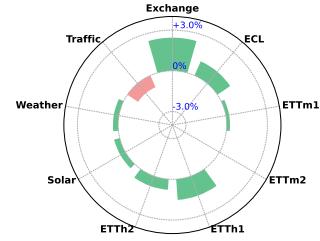


Figure 2: Impact of timestamps on iTransformer. The radar chart presents an improved (green) or decreased (red) percentage.

108 **dependencies, and such inconsistency poses challenges for model optimization** (see Figure 8),
 109 stemming from the degradation or even loss of deep-layer inter-variate dependencies.
 110

111 The challenge then lies in how to implement IVD modeling within the Transformer
 112 deep layers. In this study, we resort to Graph Neural Network (GNN). Notably,
 113 the self-attention mechanism in a Transformer can be interpreted as a GNN operating
 114 on a fully-connected graph (Joshi, 2025). The primary distinction lies in the
 115 scope of the aggregation: GNNs aggregate information from the local neighborhood
 116 nodes, while in Transformer’s self-attention, the aggregation is performed over
 117 the entire set of tokens in the sequence. For a more detailed theoretical analysis sup-
 118 porting these arguments and **elucidating our rationale for employing GNNs in deep layers to**
 119 **model IVD**, see Appendix A.7 and A.8. Therefore, we propose a Dynamic Graph Learning (DGL)
 120 framework that dynamically optimizes the graph structure based on global input and explicitly mod-
 121 els IVD via a message-passing mechanism. Concurrently, it employs two linear layers to aggregate
 122 and extract deep temporal features. This dual-component design for feature extraction allows us
 123 to replace the FFNs in the Transformer with our DGL, as depicted in Figure 3(c), we consistently
 124 model both temporal and inter-variate dependencies, underscoring the importance of modeling IVD
 125 throughout the network, not only in shallow MHSA.
 126

127 However, since both the self-attention and the graph learning mechanisms model dependencies from
 128 the global inputs, they should, in theory, depict the same “latent true dependency correlations”. This
 129 raises a critical question: **do the dependency structures modeled at these two different stages**
 130 **exhibit similarity or correlation?** To the best of our knowledge, this question remains unexplored
 131 in existing research. **By analyzing the dependency matrices actually captured by self-attention and**
 132 **DGL, they indeed exhibited a high degree of similarity (their Kullback-Leibler (KL) divergence is**
 133 **0.0260, as detailed in the Appendix A.2).**

134 Despite these similarities, discrepancies exist because GNNs and self-attention layers aggregate
 135 information from distinct perspectives. **Acknowledging that both perspectives (i.e., local and**
 136 **global) offer unique advantages, we aim to find a balance between these two types of de-**
 137 **pendency modeling.** Therefore, we introduce Kullback-Leibler (KL) divergence to quantify the
 138 distance between these two dependency distributions. This divergence is then incorporated as a
 139 regularization term into the overall loss function (**the theoretical guarantees based on Information**
 140 **Bottleneck (IB) principle are provided in Appendix A.9**). After the introduction of the alignment
 141 constraint, **the correlation matrices captured by self-attention and DGL are converged to be more**
 142 **similar (the KL divergence decreased from 0.0260 to 0.0249).** And importantly, the graph structure
 143 retains specific correlations that are difficult for the standard self-attention mechanism to capture,
 144 such as the strong dependency at coordinate (5,4) (See Figure 9(b) in the Appendix A.2).
 145

146 Synthesizing the foregoing analysis, we propose CGTFra, a compact framework that considers con-
 147 sistency in modeling IVD. Our primary contributions are as follows:
 148

- 149 • We propose a novel, position-agnostic approach based on learnable frequency-domain
 150 masking and linear interpolation, which serves not only as an effective supplement but
 151 also as a potential replacement for existing timestamps encoding or up-sampling methods.
 152
- 153 • Motivated by the need for consistent modeling of both intra- and inter-series dependencies
 154 across shallow and deep network layers, we propose a novel graph transformer framework
 155 named CGTFra. Furthermore, the proposed Dynamic Graph Learning in CGTFra can be
 156 integrated into existing variate transformers as a universal method for modeling IVD.
 157
- 158 • We are the first to investigate the relationship between IVD modeled at shallow and deep
 159 network layers. To enforce consistency, we introduce an explicit constraint that aligns these
 160 two dependency structures, which is integrated as a regularizer into the main loss function.
 161
- 162 • Our proposed CGTFra sets a new state-of-the-art in both long- and short-term time series
 163 forecasting on 13 datasets with superior computational efficiency (see Appendix A.18).
 164

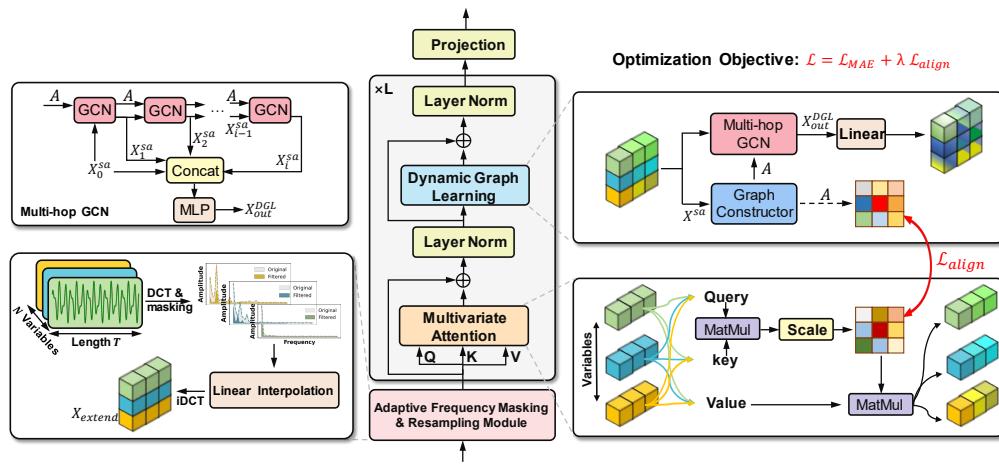
162 2 RELATED WORK

164 **Application of Timestamp Encoding in Time Series Forecasting.** Inspired by the effectiveness
 165 of positional encoding in NLP, numerous Transformer-based studies in MTSF have adopted this
 166 technique. The fusion of timestamp positional and data encodings is primarily achieved through two
 167 strategies: **direct summation**, as seen in models like Informer, TimesNet (Wu et al., 2023b), Auto-
 168 former (Wu et al., 2021), and Fedformer (Zhou et al., 2022), or **concatenation**, employed by iTrans-
 169 former and VCformer. Notably, a distinct approach is presented in GLAFF (Wang et al., 2024). This
 170 work proposes the independent learning of timestamp information—encompassing both historical
 171 and future timestamps—and the data features. These two streams of information are then fused us-
 172 ing an adaptive weighting mechanism, leading to superior forecasting performance. However, such
 173 approaches face significant practical challenges. *In many real-world application scenarios, future*
 174 *timestamps are unavailable. Furthermore, timestamp formats can be inconsistent across different*
 175 *datasets.* Methods like GLAFF are ill-equipped to handle these situations effectively.

176 **Modeling Inter-Variate Dependencies with Transformers.** Conventional temporal Transformers
 177 for MTSF typically encode information from different variables at the same timestamp into a single
 178 token. This approach, however, leads to a loss of IVD information, as seen in temporal Transformer-
 179 based studies (Chen et al., 2024; Luo & Wang, 2024; Nie et al., 2023). Crossformer (Zhang & Yan,
 180 2023) employs a tailored two-stage attention layer to explicitly model both intra- and inter-series
 181 dependencies. iTransformer encodes each individual time series as a single token, offering greater
 182 universality in modeling IVD compared to Crossformer. TokenGT (Kim et al., 2022) treats nodes
 183 and edges as independent, learnable tokens, which are then fed into the Transformer alongside the
 184 input tokens. DUET captures IVD in the frequency domain using metric learning. The resulting
 185 dependency is then integrated into the self-attention mechanism as a mask for the attention scores.

186 **Modeling Inter-Variate Dependencies with Graph Transformers.** SageFormer (Zhang et al.,
 187 2024) first employs a GNN to capture IVD from the input MTS. The resulting global, graph-
 188 enhanced embeddings are then fused with the original series to serve as the input for a vanilla
 189 Transformer, which subsequently models temporal dependencies. STGAGRTN (Wu et al., 2023a)
 190 utilizes a gating mechanism to fuse the IVD learned separately by a GAT and a spatial Transformer.
 191 GL-STGTN (Li et al., 2024) learns the graph structure from both global and local perspectives, and
 192 then the learned IVD are then encoded into a spatial attention mechanism. For a more detailed
 193 discussion of the implementation specifics of these methods, please see Appendix A.10.

194 In summary, existing researches can be broadly categorized into two main strategies: (1) methods
 195 like DUET, STGAGRTN, and GL-STGTN, which integrate learned inter-variate dependencies into
 196 the self-attention mechanism as a mask or bias for attention scores; and (2) approaches such as Sage-
 197 Former and TokenGT, which embed graph-structural information directly into the input embeddings.
 198 *However, a common limitation of all these methods is their failure to consider the consistency and*
 199 *correlation of IVD modeling between the shallow and deep layers of the network.*



215 Figure 4: Illustration of proposed CGTFra. The output of the i -hop GCN is denoted by X_i^{sa} .

216 **3 METHODOLOGY**

218 For MTSF tasks, given historical input $X = [X_1^{1:T}, X_2^{1:T}, \dots, X_N^{1:T}] \in \mathbb{R}^{T \times N}$, where T is the input
 219 length and N is the number of variates, and each $X_N^{1:T} \in \mathbb{R}^T$ is the N -th variate. We use CGTFra
 220 to forecast $Y = [X_1^{T+1:T+F}, X_2^{T+1:T+F}, \dots, X_N^{T+1:T+F}] \in \mathbb{R}^{F \times N}$ during future F time steps.

221 As illustrated in Figure 4, we propose CGTFra, a graph transformer framework designed for consistent
 222 IVD modeling. CGTFra inherits the Transformer’s proficiency in capturing long-range dependencies
 223 while simultaneously demonstrating exceptional capabilities in modeling IVD. Technically,
 224 CGTFra is built upon three core design principles: (1) A universal, adaptive Frequency-domain
 225 Masking and Resampling (FMR) (Upsampling or downsampling). (2) A Dynamic Graph Learning
 226 (DGL) framework that can be integrated into existing transformers. (3) An alignment constraint that
 227 promotes consistency between the IVD modeled at the shallow and deep network layers.

228 **3.1 ADAPTIVE FREQUENCY MASKING AND RESAMPLING**

229 Compared to resampling directly in time domain with a linear layer, resampling in the frequency
 230 domain introduces a powerful inductive bias of a global receptive field. This paper utilizes DCT
 231 for frequency domain analysis (the motivation is provided in Appendix A.3). Furthermore, given
 232 that each variable possesses its own intrinsic dynamics, we learn an independent frequency mask
 233 for each variable. This allows the model to adaptively highlight critical frequencies and attenuating
 234 irrelevant or detrimental ones. Given an MTS $\mathbf{X} = \{X_1, X_2, \dots, X_N\} \in \mathbb{R}^{T \times N}$ where $X_n =$
 235 $[X_n(0), X_n(1), \dots, X_n(T-1)]^\top$ denotes the sequence values for the n -th variable (For simplicity,
 236 we explicitly denote the variable dimension only when computing the DCT and iDCT), this process
 237 is formulated as:

$$239 \quad F_n(\mu) = c(\mu) \sqrt{\frac{2}{T} \sum_{t=0}^{T-1} X_n(t) \cos\left[\frac{\pi\mu(2t+1)}{2T}\right]}, \quad c(\mu) = \begin{cases} \sqrt{\frac{1}{2}}, & \mu = 0 \\ 1, & \mu = 1, 2, \dots, T-1 \end{cases} \quad (1)$$

$$242 \quad F^{mask} = F(\mu) \odot softplus(\mathcal{M}) \quad (2)$$

243 where $F(\mu), F^{mask} \in \mathbb{R}^{T \times N}$ represents the DCT coefficients and the masked frequency co-
 244 efficients. $\mathcal{M} \in \mathbb{R}^{T \times N}$ denotes the variable-specific learnable mask. In Equation 1, $\mu \in$
 245 $\{0, 1, \dots, T-1\}$ is the DCT index. Subsequently, a learnable linear layer is employed to per-
 246 form linear interpolation on the masked frequency components, yielding the expanded frequency
 247 representation $F^{extend} \in \mathbb{R}^{D \times N}$, D is the hyperparameter of extended size. Subsequently, the in-
 248 verse Discrete Cosine Transform (iDCT) is applied to convert the frequency components F^{extend}
 249 back into a temporal signal $X^{extend} \in \mathbb{R}^{D \times N}$. This process is formulated as:

$$250 \quad F^{extend} = \text{Resampling}(F^{mask}) \quad (3)$$

$$252 \quad X_n^{extend} = \sqrt{\frac{2}{D} \sum_{t=0}^{D-1} c(\mu) F_n^{extend} \cos\left[\frac{\pi\mu(2t+1)}{2D}\right]} \quad (4)$$

254 where Resampling(\cdot) is implemented by the learnable linear interpolation. By performing masking
 255 and resampling within the frequency domain, the signal’s periodicity is robustly preserved and even
 256 enhanced (see Appendix A.5). Therefore, the importance of timestamps is greatly diminished.

257 **3.2 DYNAMIC GRAPH LEARNING**

259 Unlike SageFormer and MSGNet (Cai et al., 2024), which rely solely on self-learned node embed-
 260 dings to construct graph structure—a process prone to learning spurious correlations (Fan et al.,
 261 2023), we inject the input features (i.e., the output $X^{sa} \in \mathbb{R}^{N \times D}$ of the self-attention layer) into
 262 the node embedding generation process. This allows us to define the graph topology from a global
 263 perspective based on the input tokens, aligning the global modeling by self-attention. Specifically,
 264 we first use a linear transformation to derive an adaptive gating weight for each node from the
 265 static node embedding and global dynamic input. This weight is then multiplied with a linearly
 266 transformed representation of the node’s own features, obtaining a dynamic node embedding that is
 267 continuously updated throughout the network.

$$268 \quad \Theta^l = \text{ReLU}(\text{Tanh}(\text{Linear}(\text{Concat}(X^{sa,l}, \Theta^l)))) \odot \text{Linear}(X^{sa,l}) + \Theta^l \quad (5)$$

269 where Θ^l includes $\Theta_1^l, \Theta_2^l \in \mathbb{R}^{N \times nd}$, which are trainable parameters (with random initialization)
 of l -th layer, nd is a hyperparameter, denoting the dimension of node. Θ_1^l and Θ_2^l employ the same

270 update strategy as in Equation 5, but without parameter sharing. \odot is the Hadamard Product. Then,
 271 the adjacent matrix $A^l \in \mathbb{R}^{N \times N}$ of l -th layer can be represented as: $A^l = \text{Softmax}(\text{ReLU}(\Theta_1^l \cdot$
 272 $(\Theta_2^l)^T))$. Therefore, the graph structure at the l -th layer can be denoted as $\mathcal{G}^l = (A^l, X^{sa,l})$.
 273 To reconcile the discrepancy between the local neighborhood aggregation of GNNs and the global
 274 modeling of Transformers' self-attention, we employ a multi-hop GCN (Hamilton et al., 2017) to
 275 capture IVD at the deep feature level. The information from different hop neighborhoods is then
 276 combined using a linear layer by $X_{out}^{DGL} = \text{MLP}(\text{GCN}(X^{sa}, A))$. By aggregating information from
 277 its i -hop neighborhood, an i -hop GCN effectively enlarges each node's receptive field, enabling
 278 the capture of higher-order graph structures. To preserve the deep network's capacity for temporal
 279 feature extraction, our DGL strategically mirrors the two-layer MLP design of a conventional FFN.
 280 Specifically, the first MLP layer is adapted to aggregate multi-hop neighborhood information, while
 281 the second MLP layer extracts temporal features from the deep representations that have already
 282 been enriched with IVD.

283 3.3 CONSISTENCY ALIGNMENT LOSS FUNCTION

285 The self-attention mechanism in a Transformer is essentially a GNN operating on a fully-connected
 286 graph, which implies that they can describe the same underlying correlation structure. Based on this
 287 insight, our work is the first to propose an explicit constraint alignment between the dependencies
 288 captured by the deep-layer GNN and the shallow-layer self-attention. This alignment prevents over-
 289 reliance on a single mode of dependency modeling (Figure 9 analyzes the respective disadvantages).
 290 Following iTransformer, each variable $X^{extend}[n, :] \in \mathbb{R}^{1 \times D}$, $n = 1, 2, \dots, N$, is regarded as an
 291 independent token and the self-attention layer then is applied to model multivariate correlations:

$$292 \text{head}_i = \text{Softmax}\left(\frac{(X^{extend}W_i^Q) \cdot (X^{extend}W_i^K)^T}{\sqrt{d_K}}\right), \text{MCM} = \text{Concat}(\text{head}_1, \dots, \text{head}_h) \quad (6)$$

294 where $W_i^Q, W_i^K \in \mathbb{R}^{D \times \frac{D}{h}}$ are the projection metrices of i -th head, and h is the number of attention
 295 heads with a default value 8. We use $\text{MCM} \in \mathbb{R}^{h \times N \times N}$ to represent the multivariate correlation
 296 map (a.k.a., attention score). Therefore, the total alignment loss of l layer CGTFra for consistent
 297 IVD modeling can be formalized as follows by Kullback-Leibler (KL) Divergence:

$$299 \mathcal{L}_{align} = \sum_{l=1}^L \text{KL}(P_l \parallel Q_l) = \sum_{l=1}^L \sum_{k=1}^{N^2} e^{p_{l,k}} (p_{l,k} - q_{l,k}) \quad (7)$$

302 where $p_l = \log P_l = \log_{\text{softmax}}(\text{Vec}(\text{Avg}(\text{MCM}^l)))$, and $q_l = \log Q_l = \log_{\text{softmax}}(\text{Vec}(A^l))$.
 303 In our implementation, we directly compute the log-probabilities to avoid $\log(0)$ errors. $\text{Avg}(\cdot)$
 304 denotes averaging the attention score along h attention head, and $\text{Vec}(\cdot)$ denotes vectorizing the
 305 correlation matrix into a one-dimensional vector. Therefore, the total loss function for optimizing
 306 CGTFra is formulated as:

$$307 \mathcal{L} = \mathcal{L}_{MAE} + \lambda \mathcal{L}_{align}, \quad (8)$$

308 where $\mathcal{L}_{MAE} = \frac{1}{F} \sum_{i=1}^F |y_i - \hat{y}_i|$ represents the Mean Absolute Error (MAE) for evaluating pre-
 309 diction accuracy with the forecasting length F . y_i and \hat{y}_i are the ground truth and predicted value at
 310 time i , and λ is a hyperparameter, controlling the contribution of alignment loss. Here, for simplicity,
 311 we omit the batch dimension and illustrate the loss calculation for a single variable.

312 4 EXPERIMENTS

314 4.1 DATASETS

316 We select 13 real-world datasets to comprehensively verify our CGTFra following iTransformer,
 317 including ETT (4 subsets), Weather, Exchange, Electricity (ECL), Solar-Energy, Traffic, PEMS03,
 318 PEMS04, PEMS07 and PEMS08. All datasets are preprocessed following iTransformer. And more
 319 details of these datasets are provided in Appendix A.11.

321 4.2 BASELINES AND EXPERIMENTAL SETTINGS

323 We choose 13 sota forecasting methods as our benchmarks, including (1) Transformer-based mod-
 324 els: DUET (Qiu et al., 2025), Soatten (Wu, 2025), Vcformer (Yang et al., 2024), iTransformer (Liu

et al., 2024), Crossformer (Zhang & Yan, 2023), and PatchTST (Nie et al., 2023); (2) GNN-based approach, MSGNet (Cai et al., 2024); (3) MLP/Linear-based models: FilterNet (Yi et al., 2024), RLinear (Li et al., 2023), TiDE (Das et al., 2023), and DLinear (Zeng et al., 2023); (4) CNN-based one: TimesNet (Wu et al., 2023b); (5) Mamba-based method, TimePro (Ma et al., 2025). Following established practice, we evaluate our CGTFra using Mean Absolute Error (MAE) and Mean Squared Error (MSE). The input length for all datasets is set as 96 in main comparison scenario. All experiments are implemented in PyTorch 2.0.1 with Python 3.8 on two NVIDIA GeForce RTX 3090 GPUs. Additional implementation details can be found in the Appendix A.12.

4.3 MAIN RESULTS

The long-term and short-term forecasting comparison results are presented in Table 1 and Table 8. Overall, CGTFra demonstrates superior performance in both forecasting tasks. This superiority is particularly pronounced on datasets with a large number of variables, such as ECL, and Traffic, where modeling IVD poses a significant challenge for existing methods, such as DUET and VCformer. Specifically, compared to DUET, CGTFra reduces MSE (MAE) by 5.1% (4.5%) on the Traffic dataset. Additionally, **in most scenarios, CGTFra exhibits enhanced performance when applied to datasets with inherent low predictability** (see Table 6), including ETT and Solar, demonstrating the effectiveness of CGTFra to modeling long-term intra- and inter-variate dependencies.

Table 1: Long-term forecasting results with **fixed input Length $T=96$** and forecasting horizons $F \in \{96, 192, 336, 720\}$. The results are averaged from four forecasting horizons. Full results, short-term forecasting results, and the additional comparison scenario when $T=336$ are all provided in Appendix A.13. **Bold**: best results, underline: second best one.

Models	CGTFra (ours)	DUET (KDD'25)	TimePro (ICML'25)	Soatten (AAAI'25)	VCformer (IJCAI'24)	FilterNet (NeurIPS'24)	iTransformer (ICLR'24)	MSGNet (AAAI'24)	PatchTST (ICLR'23)
Metrics	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTm1	0.388 0.386	0.390 <u>0.393</u>	0.391 0.400	0.394 0.402	0.387 0.397	0.384 0.398	0.407 0.410	0.398 0.411	0.387 0.400
ETTm2	<u>0.277</u> 0.316	0.280 0.324	0.281 0.326	0.287 0.331	0.285 0.330	0.276 <u>0.322</u>	0.288 0.332	0.288 0.330	0.281 0.326
ETTh1	0.436 0.428	0.443 0.436	0.438 0.438	0.438 0.447	0.440 0.440	0.439 0.437	0.440 0.432	0.454 0.447	0.452 0.452
ETTh2	0.369 0.394	0.372 0.397	0.377 0.403	0.379 0.405	0.377 0.403	0.378 0.404	0.383 0.407	0.396 0.417	0.387 0.407
Exchange	0.312 0.382	<u>0.318</u> <u>0.384</u>	0.352 0.399	0.359 0.404	0.355 0.402	0.356 0.395	0.360 0.403	0.399 0.430	0.367 0.404
Weather	0.238 0.260	0.251 0.273	0.251 0.276	0.245 0.273	0.258 0.282	<u>0.245</u> 0.272	0.258 0.278	0.249 0.278	0.259 0.281
ECL	0.165 0.253	0.172 0.258	0.169 0.262	<u>0.166</u> 0.259	0.180 0.267	0.173 0.268	0.178 0.270	0.194 0.300	0.205 0.290
Solar	0.224 0.228	0.237 0.233	0.232 0.266	<u>0.229</u> 0.261	- -	- -	0.233 0.262	- -	0.270 0.307
Traffic	0.427 0.257	0.451 0.269	- -	0.437 0.286	0.483 0.325	0.463 0.310	<u>0.428</u> 0.282	- -	0.555 0.362

4.4 FRAMEWORK GENERALITY

To evaluate the effectiveness and scalability of the three core designs in CGTFra: Frequency Masking and Resampling (FMR), Dynamic Graph Learning (DGL) framework, and Consistency Alignment Loss (CAL), we conducted a series of integration and replacement experiments within existing SOTA models, including DUET, iTransformer, VCformer, FilterNet and CASA (Lee et al., 2025). For fair comparison, we use their originally published hyperparameter settings. “+ FMR”, “+ DGL”: substituting their input up-sampling methods with our FMR and their FFNs with our DGL. “+ CAL”: on top of the DGL substitution, we introduce the CAL. The averaged comparison results are presented in Table 2. FMR and DGL demonstrated consistent performance improvements in almost all datasets, and the substantial performance gains brought by DGL underscore the importance of deep IVD modeling, which has been entirely overlooked in their studies. In addition, we observe that by introducing CAL, compared to their original performance, iTransformer (VCformer) reduces the MSE by 4.9% (7.4%) and 7.4% (10.2%) on Weather and ECL datasets, respectively, approaching or even surpassing the latest sota methods DUET and TimePro. Furthermore, to specifically verify the efficacy of the DGL within the broader family of variate transformers, we integrated it into four architectures mentioned in the iTransformer: iFlashformer (Dao et al., 2022), iFlowformer (Wu et al., 2022), iInformer (Zhou et al., 2021), and iReformer (Kitaev et al., 2020). In Table 12, some variate Transformers integrated into DGL show a slight performance

378 Table 2: Verification of Framework Generality. Results are averaged from four forecasting horizons.
379 Full results, **additional valuation metrics** and further analysis are in Appendix A.14. For a fair
380 comparison, the results in Table 1 are taken from their officially released reports, whereas the results
381 below are reproduced under our experimental environment, and consequently, some discrepancies
382 exist. “–” denotes that the original method was not evaluated on certain datasets, or that we encoun-
383 tered out-of-memory issues. “iTrans” and “Filter” denote iTransformer and FilterNet, respectively.

Models	ETTm1		ETTm2		ETTh1		ETTh2		Exchange		Weather		ECL		Solar		Traffic		
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
DUET	original	0.391	0.394	0.279	0.322	0.449	0.440	0.372	0.398	0.309	0.380	0.247	0.270	0.172	0.258	0.241	0.246	0.451	0.269
	+ DGL	0.389	0.391	0.277	0.320	0.444	0.436	0.368	0.395	0.296	0.373	0.247	0.272	0.166	0.255	0.243	0.258	0.448	0.268
	+ CAL	0.391	0.393	0.282	0.324	0.438	0.432	0.373	0.397	0.305	0.376	0.237	0.263	0.164	0.253	0.242	0.253	0.452	0.269
iTrans	original	0.408	0.412	0.293	0.337	0.457	0.449	0.384	0.407	0.369	0.409	0.262	0.283	0.176	0.268	0.235	0.261	0.422	0.282
	+ FMR	0.403	0.406	0.291	0.333	0.448	0.440	0.381	0.406	0.358	0.404	0.259	0.282	0.175	0.266	0.229	0.260	0.423	0.281
	+ DGL	0.400	0.406	0.293	0.335	0.449	0.442	0.390	0.412	0.368	0.409	0.252	0.278	0.169	0.263	0.234	0.263	0.434	0.288
VCformer	+ CAL	0.402	0.405	0.292	0.335	0.444	0.440	0.380	0.408	0.365	0.408	0.249	0.276	0.163	0.257	0.233	0.262	0.440	0.286
	original	0.404	0.406	0.292	0.334	0.488	0.460	0.384	0.405	0.358	0.403	0.269	0.286	0.186	0.278	-	-	-	-
	+ FMR	0.398	0.402	0.291	0.333	0.457	0.441	0.385	0.406	0.367	0.409	0.265	0.285	0.182	0.275	-	-	-	-
CASA	+ DGL	0.398	0.401	0.289	0.333	0.456	0.447	0.389	0.410	0.363	0.404	0.249	0.275	0.174	0.266	-	-	-	-
	+ CAL	0.401	0.405	0.287	0.331	0.451	0.444	0.388	0.410	0.361	0.406	0.249	0.275	0.167	0.261	-	-	-	-
	original	0.391	0.400	0.279	0.323	0.442	0.440	0.383	0.406	-	-	0.249	0.276	0.172	0.265	0.226	0.261	0.427	0.278
Filter	+ FMR	0.392	0.401	0.277	0.322	0.442	0.440	0.378	0.404	-	-	0.245	0.273	0.169	0.263	0.223	0.259	0.444	0.279
	original	0.384	0.398	0.277	0.322	0.451	0.437	0.379	0.405	-	-	0.253	0.280	0.179	0.272	-	-	0.460	0.304
	+ FMR	0.383	0.398	0.276	0.322	0.450	0.437	0.379	0.405	-	-	0.248	0.276	0.177	0.271	-	-	0.455	0.300

398
399 decline on the Solar, despite a minimal difference in their MAE. Therefore, we provide additional
400 evaluation metrics in Section A.14 to validate the effectiveness of DGL and CAL.
401

4.5 ABLATION STUDY

404 The comparison between aba1, and CGTFra vs aba3, demonstrates that the FMR, by effectively
405 purifying and enhancing input features, substantially enhances the robustness of deep-layer IVD
406 modeling, particularly on the ECL and Traffic. Furthermore, by introducing DGL and CAL (see
407 aba1 vs aba2 and CGTFra vs aba2), consistent performance improvement indicates that constraining
408 the consistency between shallow- and deep-layer IVD modeling enables the model to achieve a
409 more robust balance of dependencies. To further validate the necessity of modeling inter-variable
410 dependencies at deeper layers, we present experiments on variants of CGTFra in Appendix A.15.
411

412 Table 3: Ablation studies on five diverse datasets. The results are averaged from four forecasting
413 horizons. Full results are provided in Table 15 of Appendix.

Part	FMR	DGL	CAL	ETTm1		ETTh1		Weather		ECL		Traffic	
	MSE	MAE		MSE	MAE								
CGTFra	✓	✓	✓	0.388	0.386	0.436	0.428	0.238	0.260	0.165	0.253	0.427	0.257
aba1	✓	✗	✗	0.397	0.393	0.442	0.431	0.245	0.266	0.170	0.256	0.431	0.261
aba2	✓	✓	✗	0.389	0.390	0.437	0.428	0.242	0.266	0.168	0.256	0.430	0.259
aba3	✗	✓	✓	0.392	0.390	0.437	0.429	0.243	0.266	0.173	0.260	0.444	0.262

4.6 ANALYSIS OF INTER-SERIES DEPENDENCY MODELING

424 To further analyze CGTFra’s effectiveness in modeling inter-variate dependencies and extracting
425 complex temporal dynamics, we select a sample from the Weather dataset’s test set (all variable
426 dynamics are provided in Figure 10 (b)). Within this sample (with 21 variables), four highly corre-
427 lated variables (variables 3, 7, 8, and 13) are chosen for visualization and analysis. As depicted in
428 Figure 5, we visualize the prediction curves of these four variables predicted by CGTFra, alongside
429 the PCC and DTW among the ground truth, and CGTFra predicted variables. We observed that al-
430 though the predicted sequences do not greatly match with the true sequences, the overall trends are
431 correctly captured. Furthermore, the close proximity of the predicted PCC and DTW values to their
true counterparts indicates the model’s commendable ability to capture inter-variate dependencies.

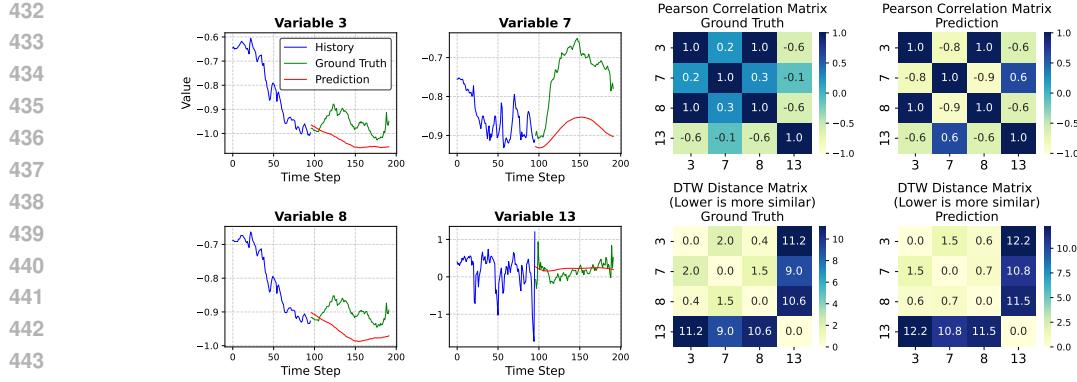


Figure 5: Prediction curves for CGTFra (input 96-predict 96) and the DTW and PCC comparison between ground truth and predicted sequences among variables [3, 7, 8, 13]. According to DTW and PCC, variable 3 exhibits a strong association with variable 8, while variable 7 also shows substantial correlations with both variables 3 and 8, as indicated by small DTW distances and high PCC.

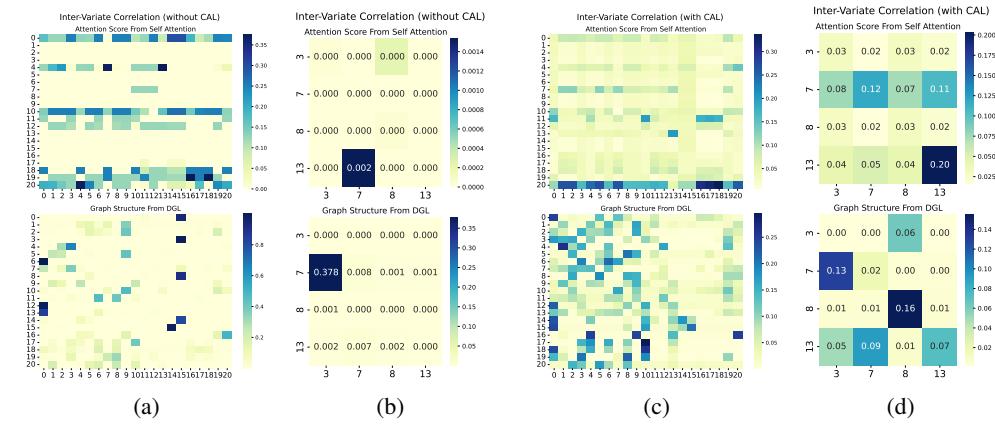


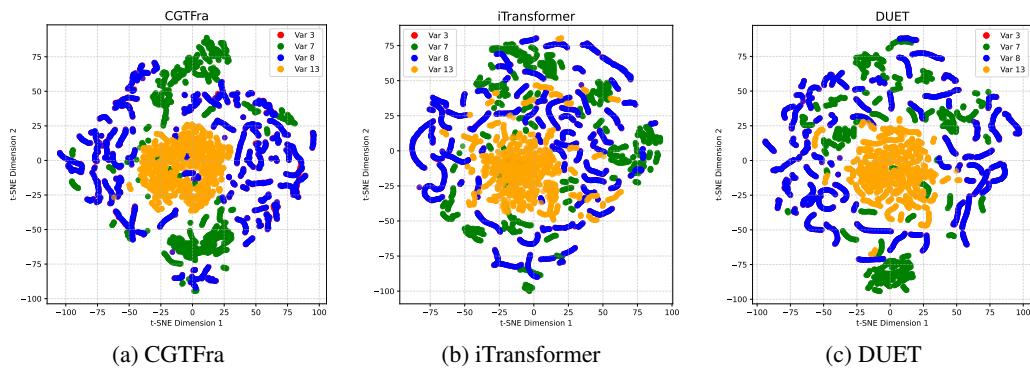
Figure 6: Inter-variate correlation learned by CGTFra on the test sample. (a) and (b): Dependencies from **CGTFra without CAL**; (c) and (d): Dependencies from the **complete CGTFra with CAL**. (a) and (c): Correlation matrices from the shallow self-attention layer and deep DGL; (b) and (d): Zoomed-in visualization of dependencies for variables 3, 7, 8, and 13.

Moving to Figure 6, we present two inter-variate correlation matrices learned by CGTFra from the selected test sample: one from the self-attention layer and the other from the DGL. Observing Figure 6(b), we are surprised to find that, **without the CAL constraint, neither the self-attention layer nor the DGL success to capture critical dependencies. This phenomenon is not attributed to a performance degradation caused by introducing DGL, but rather likely represents an inherent modeling challenge for the network** (CGTFra’s performance without CAL in the Weather test set is MSE: 0.159 and MAE: 0.195, both outperforming existing methods, as shown in Table 15 and 7). Nevertheless, DGL still successfully captured the correlation between variables 3 and 7 (see coordinates (3, 7)), **which is consistent with our analysis in Figure 9 on ETTh1, where DGL is shown to capture indirect dependencies (between variable 4 and 5). This finding indicates that, compared with the global self-attention mechanism, GNNs possess an advantage in capturing indirect (or potential) dependencies by aggregating information from adjacent nodes**—for example, in Weather dataset, the relationship between variable 3 and variable 8 is apparent (direct), that between variable 3 (or 8) and variable 7 constitutes an indirect dependency (they also have smaller DTW distances and higher PCC).

Upon the introduction of CAL, both the self-attention layer and DGL effectively model prominent dependency correlations, as illustrated in Figures 6(c) and 6(d). Let us first examine two strongly correlated variables: variable 3 and 8 (see (8, 3)). The self-attention layer capture a weight of 0.03,

486 whereas DGL captures a weight of 0.06. Subsequently, we observe variable 3 and 7 (see (3, 7)),
 487 where the self-attention layer learns a weight of 0.08, while DGL captures a weight of 0.13. Fur-
 488 thermore, for variable 8 and 7 (see (8, 7)), they show 0.07 and 0.0, respectively. **These observations**
 489 **suggest that the self-attention mechanism (which captures global inter-variate correlations)**
 490 **and DGL (which leverages multi-hop GCNs for local dependency capture), possess distinct**
 491 **advantages. Crucially, the introduction of CAL promotes both mechanisms to achieve a more**
 492 **balanced and robust representation of dependency correlations.**

493 Figure 7 visualizes the t-SNE (Maaten & Hinton, 2008) embeddings learned from 1,500 test samples
 494 of the Weather dataset. Consistent with prior analysis, the embeddings for variables 3 and 8 learned
 495 by all three models (CGTFra, iTransformer, and DUET) are observed to be nearly overlapping (ow-
 496 ing to their strong dependency). Building upon this, CGTFra demonstrates a shorter intra-variable
 497 distance, indicating that its representations for the same variable across different samples are more
 498 compact. Furthermore, in the embedding space of CGTFra, variable 13 is positioned more dis-
 499 tantly from the others, and its sample representations are more tightly clustered. These observations
 500 suggest that CGTFra possesses a superior representation capability for learning individual variable
 501 features while more accurately capturing their inter-dependencies.

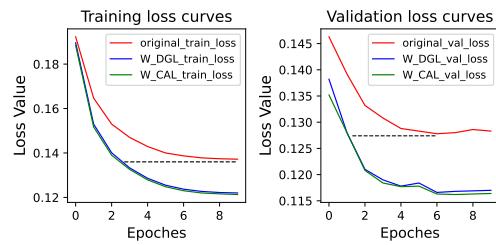


513 **Figure 7: T-SNE visualization for variable 3, 7, 8, and 13 on the Weather test set.**

516 We plot the training and validation loss curves of
 517 iTransformer after incorporating DGL and CAL.
The trajectories indicate that deep modeling of
 518 **IVD accelerates parameter adjustment towards**
 519 **lower loss.** Moreover, we observe that introducing
 520 CAL yields a similarly stable loss trajectory as in-
 521 tegrating DGL (this diminishing gain is expected,
 522 as most of the performance boost has already been
 523 achieved by DGL), **suggesting that achieve con-**
 524 **sistency alignment between deep- and shallow-**
 525 **level IVD provides additional effectiveness and**
 526 **robustness.**

529 5 CONCLUSION

531 By conducting a theoretical investigation into the distinctions and connections between how variate
 532 Transformers and GNNs model IVD, this paper proposes CGTFra. This framework addresses the
 533 limitation of existing variate Transformers that neglect deep-layer IVD modeling. Furthermore, we
 534 introduce, for the first time, a consistency constraint applied to IVD learned by both self-attention
 535 and deep graph learning frameworks. This constraint serves as a regularization term in the total
 536 loss function, enabling the model to capture more consistent and robust IVD. This novel learning
 537 paradigm has been validated across multiple existing variate Transformers. We believe that exploring
 538 further mutual guidance principles between graph structures and Transformer-based inter-variate
 539 dependency modeling represents a promising future research direction. Additional limitations about
 CGTFra are provided in Appendix A.19.



540 **Figure 8: Visualization of training and valida-**
 541 **tion loss curves for iTransformer (ECL: Input**
 542 **96-Predict 96).**

540 **6 REPRODUCIBILITY STATEMENT**
541542 Although an anonymous GitHub link is provided in the main text, we additionally upload the source
543 code in the supplementary material. The code includes the proposed CGTFra as well as various
544 baselines used to validate FMR, DGL, and CAL, including DUET, iTransformer, VCformer, CASA,
545 and other variant Transformers, ensuring that all comparative results in this paper are reproducible.
546547 **REFERENCES**
548549 Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. In
550 *Noise reduction in speech processing*, pp. 1–4. Springer, 2009.551 Wanlin Cai, Yuxuan Liang, Xianggen Liu, Jianshuai Feng, and Yuankai Wu. Msgnet: Learning
552 multi-scale inter-series correlations for multivariate time series forecasting. In *Proceedings of the*
553 *AAAI conference on artificial intelligence*, volume 38, pp. 11141–11149, 2024.554 Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
555 and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
556 forecasting. In *The Twelfth International Conference on Learning Representations*, 2024. URL
557 <https://openreview.net/forum?id=1JkOCMP2aW>.558 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
559 efficient exact attention with io-awareness. *Advances in neural information processing systems*,
560 35:16344–16359, 2022.561 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu.
562 Long-term forecasting with tiDE: Time-series dense encoder. *Transactions on Machine Learning
Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=pCbC3aQB5W>.563 Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: rethinking
564 transformers for time series representation learning. In *Proceedings of the 41st International
Conference on Machine Learning*, pp. 12409–12428, 2024.565 Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural networks
566 on out-of-distribution graphs. *IEEE transactions on pattern analysis and machine intelligence*,
567 46(1):322–337, 2023.568 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
569 *Advances in Neural Information Processing Systems*, 30, 2017.570 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
571 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
572 770–778, 2016.573 Chaitanya K Joshi. Transformers are graph neural networks. *arXiv preprint arXiv:2506.22084*,
574 2025.575 Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
576 Hong. Pure transformers are powerful graph learners. *Advances in Neural Information Processing
Systems*, 35:14582–14595, 2022.577 Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
578 *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=rkgNKkHtvB>.579 Minhyuk Lee, HyeKyung Yoon, and MyungJoo Kang. Casa: Cnn autoencoder-based score atten-
580 tion for efficient multivariate long-term time-series forecasting, 2025. URL <https://arxiv.org/abs/2505.02011>.581 Zequan Li, Jinglin Zhou, Zhizhe Lin, and Teng Zhou. Dynamic spatial aware graph transformer for
582 spatiotemporal traffic flow forecasting. *Knowledge-based systems*, 297:111946, 2024.

594 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
 595 investigation on linear mapping. *arXiv preprint arXiv:2305.10721*, 2023.
 596

597 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 598 itransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth In-*
 599 *ternational Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=JePfAI8fah>.
 600

601 Donghao Luo and Xue Wang. Deformablest: Transformer for time series forecasting without over-
 602 reliance on patching. *Advances in Neural Information Processing Systems*, 37:88003–88044,
 603 2024.

604

605 Xiaowen Ma, Zhen-Liang Ni, Shuai Xiao, and Xinghao Chen. Timepro: Efficient multivariate
 606 long-term time series forecasting with variable- and time-aware hyper-state. In *Forty-second*
 607 *International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=s69Ei2VrIW>.
 608

609 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 610 *learning research*, 9(Nov):2579–2605, 2008.

611 Meinard Müller. *Information retrieval for music and motion*. Springer, 2007.

612

613 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 614 64 words: Long-term forecasting with transformers. In *The Eleventh International Confer-*
 615 *ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Jbdc0vTOcol>.
 616

617

618 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clus-
 619 tering enhanced multivariate time series forecasting. In *Proceedings of the 31st ACM SIGKDD*
 620 *Conference on Knowledge Discovery and Data Mining V. 1*, pp. 1185–1196, 2025.

621

622 Zongjiang Shang, Ling Chen, Binqing Wu, and Dongliang Cui. Ada-mshyper: adaptive multi-
 623 scale hypergraph transformer for time series forecasting. In *Proceedings of the 38th International*
 624 *Conference on Neural Information Processing Systems*, pp. 33310–33337, 2024.

625

626 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv*
 627 *preprint physics/0004057*, 2000.

628

629 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 630 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 631 *tion processing systems*, 30, 2017.

632

633 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 634 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 635 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.
 636

637 Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, and Jianxin Liao.
 638 Rethinking the power of timestamps for robust time series forecasting: A global-local fusion
 639 perspective. *Advances in Neural Information Processing Systems*, 37:22206–22232, 2024.

640

641 Di Wu, Kai Peng, Shangguang Wang, and Victor CM Leung. Spatial–temporal graph attention gated
 642 recurrent transformer network for traffic flow forecasting. *IEEE Internet of Things Journal*, 11
 643 (8):14267–14281, 2023a.

644

645 Haixiang Wu. Revisiting attention for multivariate time series forecasting. In *Proceedings of the*
 646 *AAAI Conference on Artificial Intelligence*, volume 39, pp. 21528–21535, 2025.

647

648 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 649 formers with auto-correlation for long-term series forecasting. *Advances in neural information*
 650 *processing systems*, 34:22419–22430, 2021.

651

652 Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
 653 transformers with conservation flows. *arXiv preprint arXiv:2202.06258*, 2022.

648 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
 649 poral 2d-variation modeling for general time series analysis. In *The Eleventh International Con-*
 650 *ference on Learning Representations*, 2023b. URL [https://openreview.net/forum?](https://openreview.net/forum?id=ju_Uqw384Oq)
 651 [id=ju_Uqw384Oq](https://openreview.net/forum?id=ju_Uqw384Oq).

652 653 Yingnan Yang, Qingling Zhu, and Jianyong Chen. Vcformer: variable correlation transformer with
 654 inherent lagged correlation for multivariate time series forecasting. In *Proceedings of the Thirty-*
 655 *Third International Joint Conference on Artificial Intelligence, IJCAI '24*, 2024. ISBN 978-1-
 656 956792-04-1. doi: 10.24963/ijcai.2024/590. URL [https://doi.org/10.24963/ijcai.](https://doi.org/10.24963/ijcai.2024/590)
 657 2024/590.

658 659 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: harnessing
 660 frequency filters for time series forecasting. In *Proceedings of the 38th International Conference*
 661 *on Neural Information Processing Systems*, pp. 55115–55140, 2024.

662 663 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 664 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 11121–11128, 2023.

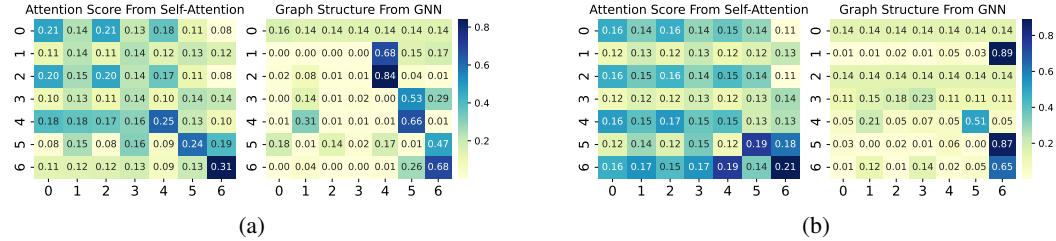
665 666 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 667 for multivariate time series forecasting. In *The eleventh international conference on learning*
 668 *representations*, 2023.

669 670 Zhenwei Zhang, Linghang Meng, and Yuantao Gu. Sageformer: Series-aware framework for long-
 671 term multivariate time-series forecasting. *IEEE Internet of Things Journal*, 11(10):18435–18448,
 672 2024.

673 674 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 675 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 676 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

677 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
 678 enhanced decomposed transformer for long-term series forecasting. In *International conference*
 679 *on machine learning*, pp. 27268–27286. PMLR, 2022.

680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A APPENDIX**
703704 **A.1 LARGE LANGUAGE MODELS (LLMs) USAGE DISCLOSURE**
705706 The research methods, datasets, and open-source code in our study were developed without Large
707 Language Models’ assistance (e.g., ChatGPT). During manuscript preparation, GPT-based tools
708 were solely employed to polish of selected words or sentences.
709710 **A.2 DETAILED ANALYSIS OF IVD SIMILARITY BY SELF-ATTENTION AND DGL**
711720 Figure 9: Comparative analysis of dependency matrices from self-attention and GNN (derived from
721 the 7 variables in Figure 1). (a) before alignment; (b) after applying the alignment constraint. Consistent
722 with the PCM and DTW matrices in Figure 1, the self-attention mechanism successfully
723 captures dependencies between highly similar variables, such as the pairs (2, 0) and (3, 1), and show
724 similar dependency correlations with other variables (see rows (0 vs. 2) and (1 vs. 3) in Attention
725 Score Map). **However, self-attention fails to capture less direct correlations, such as the one**
726 **between variables 4 and 5 (See Figure 1, their PCC and DTW are 0.6, 5.3, respectively), which**
727 **is successfully identified by the GNN (see coordinate (5,4)).** This result effectively demonstrates
728 the efficacy of using DGL to model IVD in the deeper layers of our network. However, we also
729 observed that the dependencies modeled by DGL can be exaggerated in some cases (e.g., at coordi-
730 nate (4, 2)). To address this, we further introduced CAL based on information bottleneck principle
731 (see Appendix A.9) to impose constraints on the IVD modeling. As shown by the graph structure in
732 Figure (b), this inconsistency is significantly mitigated: compared to Figure (a), the KL divergence
733 between the attention score and graph structure reduces from 0.0260 to 0.0249.734 **A.3 MOTIVATION OF FREQUENCY MASKING AND RESAMPLING**
735736 Benefiting from the global receptive field of the frequency domain space, analyzing time series in
737 the frequency space has become a prevailing trend, as seen in methods such as Fedformer (Zhou
738 et al., 2022), TSLANet (Eldele et al., 2024), FilterNet (Yi et al., 2024), and DUET (Qiu et al.,
739 2025). However, these approaches rely on the Discrete Fourier Transform (DFT) for frequency-
740 domain analysis. Since DFT involves both real and imaginary components, it is computationally
741 more complex than the Discrete Cosine Transform (DCT). Moreover, methods such as TSLANet
742 and FilterNet primarily perform filtering on frequency components—similar to the masking mech-
743 anism proposed in this work—before transforming the filtered components back into the time do-
744 main for subsequent abstract feature learning. **This procedure introduces a potential risk: if**
745 **critical frequency information is inadvertently filtered out, the subsequent feature extractor**
746 **may struggle to capture informative representations. Consequently, such methods require**
747 **both carefully designed frequency-domain filters and well-structured downstream feature ex-**
748 **tractors to achieve competitive performance.** Therefore, this paper proposes leveraging DCT
749 to directly conduct frequency-domain analysis in the real-valued space and applying linear inter-
750 polation to the masked frequency components, thereby mitigating the risk of discarding essential
751 information. Furthermore, we provide a theoretical discussion on the relationship between DFT and
752 DCT as well as their computational complexity.753 Like Section 3, let $\{f(l)\}$, $l = 0, 1, \dots, L - 1$ be a input sequence. And let an extended sequence
754 $\{e_l\}$ be symmetric about the $(2L - 1)/2$ point, that is, e_l can be constructed by:

755
$$e_l = \begin{cases} f(l), & l = 0, 1, \dots, L - 1 \\ f(2L - l - 1), & l = L, L + 1, \dots, 2L - 1 \end{cases} \quad (9)$$

756 Here, suppose $L=4$, then the $\{f(l)\}$ and $\{e_l\}$ are:
 757

$$758 \{f(l)\} = \{f(0), f(1), f(2), f(3)\}$$

$$759 \{e_l\} = \{f(0), f(1), f(2), f(3), f(3), f(2), f(1), f(0)\}$$

760 Let W_{2L} denote $\exp(-j2\pi/2L)$, therefore the Discrete Fourier Transform (DFT) of e_l can be given
 761 by:
 762

$$763 E_\mu = \sum_{l=0}^{2L-1} e_l W_{2L}^{l\mu} \quad (10)$$

764 it can be easily reduced to
 765

$$766 E_\mu = \sum_{l=0}^{L-1} f(l) W_{2L}^{l\mu} + \sum_{l=L}^{2L-1} f(2L-l-1) W_{2L}^{l\mu} \\ 767 = \sum_{l=0}^{L-1} f(l) W_{2L}^{l\mu} + \sum_{l=0}^{L-1} f(l) W_{2L}^{(2L-l-1)\mu} \\ 768 = \sum_{l=0}^{L-1} f(l) [W_{2L}^{l\mu} + W_{2L}^{-(l+1)\mu}], \mu = 0, 1, \dots, 2L-1. \quad (11)$$

769 If we use a factor of $\frac{1}{2}W_{2L}^{\mu/2}$ to multiply both sides of Equation 11, resulting in
 770

$$771 \frac{1}{2}W_{2L}^{\mu/2} E_\mu = \sum_{l=0}^{L-1} f(l) \cos\left[\frac{\pi\mu(2l+1)}{2L}\right] \quad (12)$$

772 We can see that Equation 12 can be approximately Equation 1 of the L -point sequence $f(t)$, differing
 773 only by the scaling factors. In Equation 10, E_μ is the $2L$ -point DFT of $\{e_l\}$ and Equation 12
 774 indicates that for $\mu = 0, 1, \dots, L-1$, after properly scaled, the transformed sequence $\{E_\mu\}$ can
 775 become the Type II DCT of $\{f(l)\}$.
 776

777 When $\{f(l)\}$ is real and e_l is symmetric, $\{E_\mu\}$ can be computed via two N -point FFTs instead of
 778 via a single $2N$ -point FFT. Given that the computational complexity of an N -point FFT algorithm
 779 scales as $O(N \log_2 N)$ complex operations, this optimization reduces the $N \log_2 N$ FFT operation
 780 count by $2N$ complex operations.
 781

782 A.4 ACTUAL EFFICACY OF TIMESTAMPS INFORMATION

783 In the introduction, to investigate the actual contribution of timestamp information to iTransformer,
 784 we replace its original timestamp-embedded input upsampling module with a single linear layer
 785 without timestamp embedding. The performance comparison in Table 4 shows that timestamp
 786 information improves prediction performance only on the Traffic dataset, while leading to degradation
 787 on all other datasets, suggesting that its effectiveness deserves reconsideration. To explore this, we
 788 visualize partial time segments of the top five variables from the 862 variables in the Traffic dataset
 789 (see Figure 10 (a)). The results reveal fixed fluctuation patterns in traffic flow at nearly the same pe-
 790 riods each day, and importantly, other variables exhibit highly similar variations. This observation
 791 may explain why timestamp information benefits iTransformer on Traffic. However, such char-
 792 acteristics are rare in real-world systems like weather or stock volatility, where variables tend to have
 793 more complex dependencies (see Figure 10 (b)).
 794

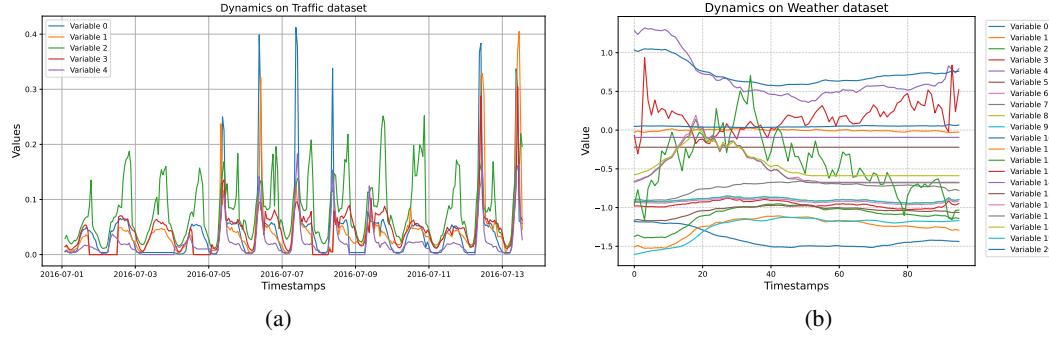
795 The frequency-domain representations of the signals inherently provides a global perspective, and
 796 the periodic and seasonal characteristics of the signals are effectively represented in its frequency
 797 domain components (Zhou et al., 2022). Based on this insight, we propose a frequency-domain
 798 masking and resampling method (FMR) that preserves and enhances signal periodicity, thereby
 799 mitigating the over-reliance of existing methods on timestamp information for providing additional
 800 periodic insights. As shown in Table 4 (also in Table 2 or Table 11), FMR consistently improves per-
 801 formance across almost all datasets, further diminishing the importance of timestamp information.
 802

810
811
812
813
814
815
816 Table 4: Verification of timestamps with four prediction length $F \in \{96, 192, 336, 720\}$ and fixed
817 input $T=96$. **All results were reproduced using their released code and identical hyperparameters.**
818 “iTrans” is iTransformer, and “R Linear” represents that we replace the input upsampling method
819 within iTransformer with a single linear layer without timestamp embedding. For the “+FMR” sce-
820 nario, bold results indicate the best performance within all results.

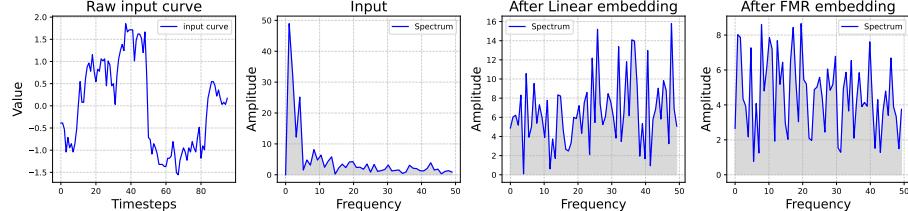
Models	ETTm1		ETTm2		ETTh1		ETTh2		Exchange		Weather		ECL		Solar		Traffic		
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
iTrans original	96	0.342	0.377	0.186	0.272	0.387	0.405	0.301	0.350	0.086	0.206	0.181	0.221	0.148	0.239	0.201	0.234	0.392	0.268
	192	0.383	0.396	0.254	0.314	0.441	0.436	0.381	0.399	0.181	0.303	0.226	0.259	0.167	0.258	0.239	0.263	0.413	0.277
	336	0.418	0.418	0.317	0.353	0.491	0.462	0.423	0.432	0.338	0.422	0.283	0.300	0.181	0.275	0.248	0.272	0.425	0.283
	720	0.487	0.456	0.416	0.408	0.509	0.494	0.430	0.446	0.869	0.704	0.359	0.351	0.209	0.299	0.250	0.275	0.459	0.300
iTrans R Linear	96	0.347	0.377	0.184	0.267	0.383	0.401	0.303	0.352	0.085	0.205	0.183	0.223	0.147	0.239	0.201	0.233	0.396	0.270
	192	0.384	0.393	0.253	0.312	0.434	0.430	0.378	0.397	0.178	0.301	0.226	0.259	0.162	0.253	0.239	0.263	0.416	0.277
	336	0.416	0.414	0.319	0.354	0.487	0.457	0.417	0.429	0.336	0.420	0.281	0.299	0.175	0.267	0.248	0.273	0.431	0.285
	720	0.483	0.451	0.414	0.406	0.496	0.483	0.424	0.444	0.842	0.692	0.356	0.347	0.211	0.301	0.249	0.275	0.465	0.302
iTrans + FMR	96	0.340	0.373	0.183	0.265	0.382	0.398	0.299	0.350	0.084	0.204	0.180	0.222	0.141	0.235	0.199	0.237	0.393	0.268
	192	0.377	0.389	0.249	0.309	0.434	0.429	0.379	0.399	0.176	0.299	0.222	0.258	0.157	0.250	0.233	0.259	0.413	0.276
	336	0.412	0.411	0.314	0.350	0.483	0.454	0.419	0.430	0.339	0.423	0.279	0.300	0.171	0.264	0.242	0.269	0.428	0.282
	720	0.481	0.450	0.418	0.409	0.492	0.480	0.426	0.445	0.834	0.690	0.356	0.350	0.233	0.316	0.244	0.273	0.458	0.299

A.5 VISUALIZATION OF SPECTRUM

To demonstrate that the proposed FMR preserves signal periodicity and enhances the input signal, we performed a Fourier Transform on a real signal from ETTh1. We then plotted the spectrum of the original signal, the spectrum of the embedding obtained by direct single-linear-layer upsampling of the signal, and the spectrum after processing with the proposed FMR, as shown in Figure 11. Compared to direct linear embedding in the time domain (the commonly adopted approaches in existing methods include embedding techniques that incorporate timestamps), FMR retains more low-frequency information (where the signal’s primary information is preserved, as seen in the second subplot) by learning variable-independent masks and performing linear interpolation in the frequency domain. Simultaneously, FMR exhibits a mid-to-high frequency energy distribution closer to that of the real signal, demonstrating better periodicity information retention capabilities than linear embedding directly in time domain.



851 Figure 10: Time series trends of different variables in the Traffic (a) and Weather (b) datasets.
852



861 Figure 11: Visualization of spectrum as for raw signal and different embedding methods.
862

863 As depicted in Figure 12, we visualize the learned masks for variables 0, 2, 3, and 6 within the
864 ETTh1 dataset. A high degree of similarity is observed between the masks for variables 0 and 2,

which is consistent with their strong interdependency (PCC = 1.0 in Figure 1). Conversely, the masks for variables 3 and 6, being learned independently, exhibit notable distinctions. Specifically, compared to other variables, the mask for variable 3 suppresses more high-frequency components, which may be because variable 3 exhibits greater volatility and noise. Importantly, we also observe that the masks for all variables predominantly preserve low-frequency components, which contain the signal’s periodic and trend information. This highlights the ability of our FMR to learn adaptive, variable-specific masks that align with the unique properties of each series.

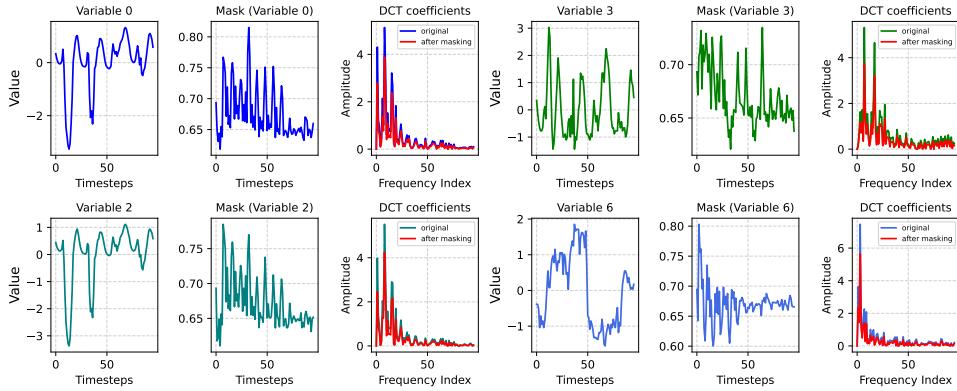


Figure 12: Visualization of learned masks on variable 0, 2, 3, and 6 of ETTh1.

A.6 ADDITIONAL EVALUATION METRICS

To evaluate the correlations and similarities among variables in multivariate time series, we introduce Dynamic Time Warping (DTW) (Müller, 2007) and Pearson Correlation Coefficient (PCC) (Benesty et al., 2009).

Dynamic Time Warping. Dynamic Time Warping (DTW) calculates the similarity between two time series by finding the optimal matching path between them. DTW effectively handles irregularities such as temporal shifts and varying speeds within sequences, demonstrating strong performance in practical problems like speech and gesture recognition. Given two time series $Y = \{y_0, y_1, \dots, y_{T-1}\} \in \mathbb{R}^T$ and $\hat{Y} = \{\hat{y}_0, \hat{y}_1, \dots, \hat{y}_{T-1}\} \in \mathbb{R}^T$, the DTW distance can be formulated as:

$$\text{DTW}(Y, \hat{Y}) = \min_{\mathbf{A} \in \mathcal{A}(Y, \hat{Y})} \sum_{(i, j) \in \mathbf{A}} d(y_i, \hat{y}_j) = \sum_{(i, j) \in \mathbf{A}^*} d(y_i, \hat{y}_j), \quad (13)$$

Here, $d(\cdot, \cdot)$ represents a distance metric, commonly the squared Euclidean distance. A warping path, denoted by \mathbf{A} , comprises K index pairs $\{(i_0, j_0), (i_1, j_1), \dots, (i_{K-1}, j_{K-1})\}$, with indices i_k, j_k ranging from 0 to $T - 1$. The collection of all valid warping paths is given by $\mathcal{A}(Y, \hat{Y})$. The optimal path, $\mathbf{A}^* \in \mathcal{A}(Y, \hat{Y})$, is the one that minimizes the cumulative distance across aligned time steps. A warping path \mathbf{A} is deemed valid if it fulfills the subsequent conditions:

- **Boundary Constraint:** $(i_0, j_0) = (0, 0)$ and $(i_{K-1}, j_{K-1}) = (T - 1, T - 1)$.
- **Monotonicity Constraint:** The indices must be non-decreasing along the path, specifically $i_{k+1} \geq i_k$ and $j_{k+1} \geq j_k$ for all $k \in [0, K - 2]$.
- **Step Size Constraint:** Each step from (i_k, j_k) to (i_{k+1}, j_{k+1}) must advance by one unit horizontally, vertically, or diagonally. Formally, $(i_{k+1} - i_k, j_{k+1} - j_k) \in \{(1, 0), (0, 1), (1, 1)\}$, for all $k \in [0, K - 2]$.

Pearson Correlation Coefficient. Pearson Correlation Coefficient (PCC) evaluates how strongly two variables are linearly related. Given two tokens $Y = \{y_0, y_1, \dots, y_{T-1}\} \in \mathbb{R}^T$ and $\hat{Y} = \{\hat{y}_0, \hat{y}_1, \dots, \hat{y}_{T-1}\} \in \mathbb{R}^T$ and their mean values \bar{y} and $\hat{\bar{y}}$, PCC can be defined as:

$$\text{PCC}(Y, \hat{Y}) = \frac{\sum_{t=0}^{T-1} (y_t - \bar{y})(\hat{y}_t - \hat{\bar{y}})}{\sqrt{\sum_{t=0}^{T-1} (y_t - \bar{y})^2} \cdot \sqrt{\sum_{t=0}^{T-1} (\hat{y}_t - \hat{\bar{y}})^2}} \quad (14)$$

918 A.7 TRANSFORMERS ARE FULLY-CONNECTED GNNs
919

920 GNNs employ the graph’s connective structure to propagate and aggregate information among ad-
921 jacent nodes. Let h_i denote the node attributes of node i . In Graph Attention Networks (GATs)
922 (Veličković et al., 2018), the relationship between the attributes of nodes i and its neighbors $j \in \mathcal{N}_i$
923 can be computed as:

$$\begin{aligned} 924 \psi(h_i^l, h_j^l) &= \text{Attention}(W_Q^l h_i^l, \{W_K^l h_j^l, \forall j \in \mathcal{N}_i\}, \{W_V^l h_j^l, \forall j \in \mathcal{N}_i\}), \\ 925 &= \frac{\exp(W_Q^l h_i^l \cdot W_K^l h_j^l)}{\sum_{j' \in \mathcal{N}_i} \exp(W_Q^l h_i^l \cdot W_K^l h_{j'}^l)} \cdot W_V^l h_j^l, \\ 926 \\ 927 \end{aligned} \quad (15)$$

928 where $W_Q^l, W_K^l, W_V^l \in \mathbb{R}^{d \times d}$ are learnable weight matrices. The $\psi(h_i^l, h_j^l)$ allows GATs to deter-
929 mine the significance of each neighbor for a given node in the aggregation process. The updated
930 attribute features for node i is derived by combining the information from all of its adjacent nodes:
931

$$932 h_i^{l+1} = h_i^l + \sum_{j \in \mathcal{N}_i} \psi(h_i^l, h_j^l), \quad (16) \\ 933 \\ 934$$

935 In variate Transformer, the self-attention captures correlations between all input tokens in MTS input
936 X as follows:

$$\begin{aligned} 937 \psi(h_i^l, h_j^l) &= \text{Attention}(W_Q^l h_i^l, \{W_K^l h_j^l, \forall j \in X\}, \{W_V^l h_j^l, \forall j \in X\}), \\ 938 &= \frac{\exp(W_Q^l h_i^l \cdot W_K^l h_j^l)}{\sum_{j' \in X} \exp(W_Q^l h_i^l \cdot W_K^l h_{j'}^l)} \cdot W_V^l h_j^l, \\ 939 \\ 940 \end{aligned} \quad (17)$$

941 Here, $\psi(h_i^l, h_j^l)$ determines the message between the token pairs (i, j) , with each token’s relative
942 significance derived through an attention mechanism. Subsequently, these weighted messages from
943 all tokens within the X are combined via summation. Then, the token representations for token i
944 are updated using residual connection (He et al., 2016), layer normalization and MLP:
945

$$946 h_i^{l+1} = \phi(h_i^l, m_i^l) = \text{MLP}(\text{LayerNorm}(h_i^l + \sum_{j \in X} \psi(h_i^l, h_j^l))). \quad (18) \\ 947 \\ 948$$

949 Equation. 15 bears a strong resemblance to the self-attention mechanism within the Transformer.
950 The primary distinction lies in the scope of the aggregation: whereas in GNN the index j is con-
951 strained to the local neighborhood of node i , in Transformer’s self-attention, the aggregation is
952 performed over the entire set of tokens in the sequence. This effectively means the Transformer can
953 be interpreted as a special instance of a GNN operating on a dynamically-weighted, fully-connected
954 graph, where every token is considered a neighbor to all others.

955 iTransformer presented insightful experiments (see Table 3 in iTransformer paper) where they re-
956 placed the FFN with a self-attention layer, essentially constructing a Transformer with two self-
957 attention layers. *The experimental results indicated that simply stacking multiple self-attention*
958 *layers did not facilitate the learning of correct inter-variate dependencies and temporal patterns.*
959 *Therefore, based on the aforementioned analysis, we resort to GNNs for modeling inter-variate*
960 *dependencies within the deeper layers of the Transformer.* Theoretically, GNNs and self-attention
961 layers are closely linked in their ability to capture global relationships. **This insight forms the ba-**
962 **sis of our novel, theoretically grounded perspective: how to effectively integrate graph-learned**
963 **dependencies with inter-variate relationships captured by Transformers.**

964 A.8 WHY WE USE MULTI-HOP GRAPH CONVOLUTION NETWORK WITH THE SAME GRAPH
965 STRUCTURE?
966

967 We reformulate Equation. 16 as Equation. 20. We note that the key distinction between GAT
968 and GCN lies in their adjacency matrix weights: in GAT, the weights of the adjacency matrix are
969 learned dynamically and are different for each layer l (a.k.a., each hop in multi-hop GNN), whereas
970 a standard GCN employs a fixed adjacency matrix for feature propagation.
971

$$H^{l+1} = H^l + \sigma(A^l H^l W^l), \quad (19)$$

972
973
974
Table 5: Comparative Performance of different GNNs in Modeling of Inter-Variable Dependencies
in the Network Deep Layer.

GNN	F	ETTm1		ETTh1		Weather		ECL	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
GCN	96	0.315	0.344	0.372	0.387	0.152	0.190	0.137	0.227
	192	0.366	0.372	0.424	0.418	0.203	0.239	0.155	0.243
	336	0.398	0.395	0.473	0.443	0.257	0.279	0.170	0.259
	720	0.472	0.435	0.473	0.464	0.338	0.334	0.198	0.283
GAT	96	0.321	0.348	0.375	0.388	0.150	0.190	0.141	0.231
	192	0.370	0.374	0.428	0.420	0.209	0.242	0.165	0.247
	336	0.405	0.399	0.469	0.441	0.262	0.281	0.175	0.262
	720	0.465	0.432	0.471	0.463	0.344	0.337	0.213	0.289

975
976
977
978
979
980
981
982
983
984
985
986
987 where σ is the activation function, H and W are node features and learnable weights, respectively.
988 In our CGTFra, graph structures are dynamically learned from global inputs via linear transfor-
989 mations and gating mechanisms, rather than being predetermined. Consequently, the typical distinc-
990 tions between GCN and GAT in terms of their edge weights fixed or varying cross different hops
991 are attenuated. As presented in Table 5, we compare the performance difference within the CGT-
992 Fra framework when using either identical or distinct graph weights for information aggregation at
993 each hop in DGL (Essentially, based on input-constructed graph structures, we implement standard
994 GCN and GAT). Notably, when each hop employs a dynamically relearned graph structure based
995 on its current input, we apply a consistency constraint (CAL) to the graph structure of the final hop.
996 The results indicate that using dynamically updated edge weights at each hop does not yield sig-
997 nificant performance gains. We attribute this to the fact that **shallow self-attention layers capture**
998 **inter-variate dependencies based on global tokens, learning association weights only once**. Al-
999 though GNNs in DGL employ multi-hop strategies to aggregate information from broader nodes,
1000 the graph structure proposed is also dynamically learned from the global input tokens (i.e., the out-
1001 put of the self-attention layer). Therefore, utilizing the same graph structure across all hops is more
1002 conducive to subsequent consistent alignment of inter-variate dependencies. **Therefore, the DGL**
1003 **within the proposed CGTFra framework employs consistent adjacency matrix weights across**
1004 **all hops, akin to a standard multi-hop GCN. Furthermore, for different layers (L in Figure 4)**
1005 **of CGTFra, the graph structure in DGL is distinct (input-dependent), which aligns with the**
1006 **re-computation of attention scores in each self-attention layer.**

1007
1008 A.9 THE THEORETICAL GUARANTEES OF CAL FROM INFORMATION BOTTLENECK
1009 PRINCIPLE.

1010 The Information Bottleneck (IB) principle (Tishby et al., 2000) aims to find a compressed rep-
1011 resentation, denoted as Z , that maximally preserves information about a target variable Y while
1012 simultaneously compressing the input X . This objective is typically formulated as the following
1013 optimization problem:

1014
1015
$$\max I(Z; Y) - \beta * I(Z; X), \quad (20)$$

1016 where $I(\cdot; \cdot)$ represents mutual information and β is a Lagrange multiplier. Within our CGTFra
1017 framework, we can interpret the self-attention map (MCM) as a high-bandwidth, yet potentially
1018 noisy, representation of the inter-variable relationships in the input X . While its mutual information
1019 with the input, $I(MCM; X)$, is high, much of this information may constitute noise irrelevant to
1020 the final prediction target Y . Conversely, the GNN’s adjacency matrix, A , is intended to be the
1021 compressed and cleaner representation Z that we seek to learn. The goal is for A to discard the
1022 noise present in MCM and retain only the structured information pertinent to predicting Y . In
1023 this context, our alignment loss, $\mathcal{L}_{align} = KL(MCM||A)$, can be viewed as a proxy or an upper
1024 bound for the compression term, $I(Z; X)$, in the IB objective. By minimizing $KL(MCM||A)$, we
1025 encourage the learned adjacency matrix A not to deviate excessively from the attention map MCM.
1026 This implicitly controls the mutual information $I(A; MCM)$, and by extension, $I(A; X)$, aligning
1027 our method with the core IB principle of learning a compressed yet informative representation.

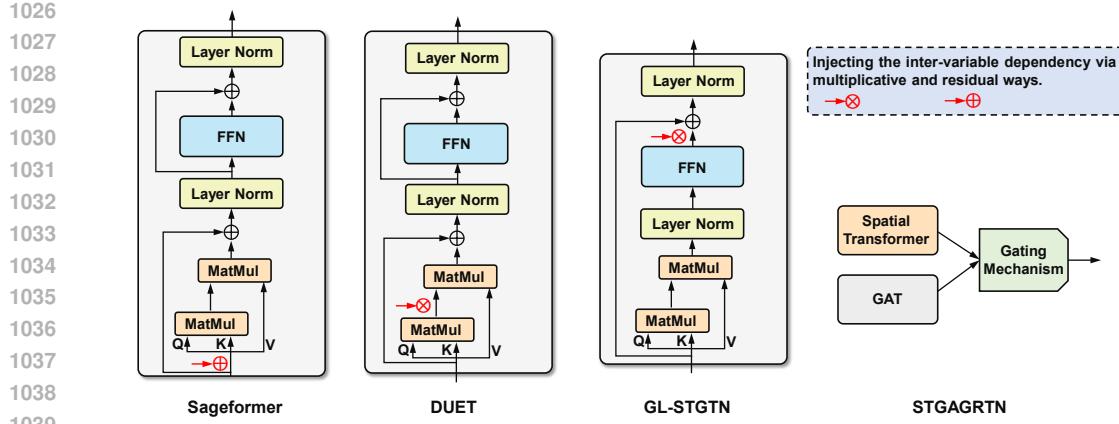


Figure 13: Typical Transformer-based approaches to modeling inter-variable dependencies.

A.10 EXISTING TRANSFORMER-BASED METHODS MODELING IVD.

We analyze four representative Transformer-based approaches for modeling inter-variable dependencies, namely Sageformer (Zhang et al., 2024), DUET (Qiu et al., 2025), GL-STGTN (Li et al., 2024), and STGAGRTN (Wu et al., 2023a). As illustrated in Figure 13, these methods embed inter-variable dependencies primarily by incorporating them as masks or biases within the Transformer, which we categorize as Figure 3(b).

- Sageformer (Zhang et al., 2024): SageFormer first employs a GNN (with totally self-learned graph structure) to capture inter-variate correlations from the input MTS. The resulting global, graph-enhanced embeddings are then fused with the original series to serve as the input for a **vanilla Transformer** (i.e., temporal Transformer), which subsequently models temporal dependencies.
- DUET (Qiu et al., 2025): DUET captures IVD in the frequency domain using metric learning. The resulting dependency is then integrated into the self-attention mechanism as a mask for the attention scores of **variate Transformer**.
- GL-STGTN (Li et al., 2024): GL-STGTN learns the graph structure from both global and local perspectives, and then the learned inter-variable dependencies are then encoded into a spatial attention mechanism.
- STGAGRTN (Wu et al., 2023a): STGAGRTN utilizes a gating mechanism to fuse the inter-variable dependencies learned separately by a GAT and a proposed spatial Transformer.

However, such approaches do not adequately address the challenge of modeling inter-variable dependencies in deeper layers. Although GL-STGTN introduces inter-variable relations after the feed-forward network (FFN), the additional branch is prone to capturing spurious correlations. More importantly, unlike our work, **GL-STGTN does not explore and account for the consistency between shallow- and deep-layer modeling of inter-variable dependencies.**

Unlike GL-STGTN with graph learning, which uses the **raw input X** , or methods like Sageformer and MSGNet that rely **solely on self-learned node embeddings**, our graph constructor is uniquely informed by a combination of **outputs from the self-attention layer** and **learnable node embeddings**. Importantly, to the best of our knowledge, we are the first to comprehensively analyze the connections and differences between self-attention (within Variate Transformers) and GNNs for modeling IVD. Furthermore, as we emphasize earlier, we have compactly integrated the two linear layers of the original FFN into our DGL module. It is this compact architecture that allows our DGL to serve as a general-purpose IVD modeling method for the deeper layers of Variate Transformers—**a level of universality not achieved by existing dynamic graph learning techniques**. Crucially, the introduction of DGL and CAL significantly accelerates the convergence of both training and validation losses, achieving an 8.78% reduction in MSE of iTransformer (see Figure 8). This substantial performance gain is achieved with only a minimal computational overhead—time complexity of $\mathcal{O}(N(D + nd + D * nd))$ (see Equation 5), which is linear with respect to the number of

1080 variables N , where nd is a small hyperparameter (e.g., 8, 10, or 32), and D is the hidden dimension.
 1081 We believe the introduced performance and efficiency is promising.
 1082

1083 A.11 DATASET DETAILS

1085 As shown in Table 6, total 13 datasets utilized in our study encompass data from five domains: Temperature
 1086 Finance, Weather, Electricity, and Transportation, providing a comprehensive assessment
 1087 of a model’s effectiveness and generality. * Forecastability is computed by one minus the entropy
 1088 of Fourier decomposition, a lower value indicating worse predictability.
 1089

1090 Table 6: Details of different datasets.
 1091

1092 Datasets	1093 Variables	1094 Dataset Size	1095 Frequency	1096 Forecastability*	1097 Information
1098 ETTm1	1099 7	1100 (34465, 11521, 11521)	1101 15min	1102 0.46	1103 Temperature
1104 ETTm2	1105 7	1106 (34465, 11521, 11521)	1107 15min	1108 0.55	1109 Temperature
1110 ETTh1	1111 7	1112 (8545, 2881, 2881)	1113 15min	1114 0.38	1115 Temperature
1116 ETTh2	1117 7	1118 (8545, 2881, 2881)	1119 15min	1120 0.45	1121 Temperature
1122 Exchange	1123 8	1124 (5120, 665, 1422)	1125 Daily	1126 -	1127 Finance
1128 Weather	1129 21	1130 (36792, 5271, 10540)	1131 Hourly	1132 0.75	1133 Weather
1135 Solar-Energy	1136 137	1137 (36601, 5161, 10417)	1138 10min	1139 0.33	1140 Electricity
1142 Electricity	1143 321	1144 (18317, 2633, 5261)	1145 10min	1146 0.77	1147 Electricity
1150 Traffic	1151 862	1152 (12185, 1757, 3509)	1153 Hourly	1154 0.68	1155 Transportation
1158 PEMSO3	1159 358	1160 (15701, 5216, 434)	1161 5min	1162 0.65	1163 Transportation
1166 PEMSO4	1167 307	1168 (10172, 3375, 281)	1169 5min	1170 0.45	1171 Transportation
1174 PEMSO7	1175 883	1176 (16911, 5622, 468)	1177 5min	1178 0.58	1179 Transportation
1182 PEMSO8	1183 170	1184 (10690, 3548, 265)	1185 5min	1186 0.52	1187 Transportation

1107 A.12 IMPLEMENTATION DETAILS

1109 All experiments are conducted on two NVIDIA GeForce RTX 3090 GPUs. We use Adam optimizer
 1110 with $\mathcal{L} = \mathcal{L}_{MAE} + \lambda \mathcal{L}_{align}$ as the loss function for model optimization and evaluate the prediction
 1111 performance with the Mean Squared Error: $MSE = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$ and MAE, where y_i and \hat{y}_i
 1112 represent the ground truth and predicted value at time i , respectively.

1113 By default, we employ Kullback-Leibler (KL) divergence as the \mathcal{L}_{align} . And the number of stacked
 1114 layers for CGTFra is selected from 1, 2, or 4, with 1 or 2 layers typically used for datasets with
 1115 fewer variables, and 2 or 4 layers for those with more variables. DGL’s default number of hops is
 1116 2, and the batch size is set between 16 and 128. Hyperparameter sensitivity analysis is provided in
 1117 Appendix A.16.

1119 A.13 ADDITIONAL RESULTS

1121 In this section, we present the complete comparison results for both long-term and short-term fore-
 1122 casting, as shown in Table 7 and Table 8, respectively. To further compare model performance under
 1123 longer input horizons, we also provide results with an input length of 336 in Table 9. Across short-
 1124 term forecasting, long-term forecasting, and extended input lengths, CGTFra consistently demon-
 1125 strates superior predictive performance, underscoring its overall effectiveness.

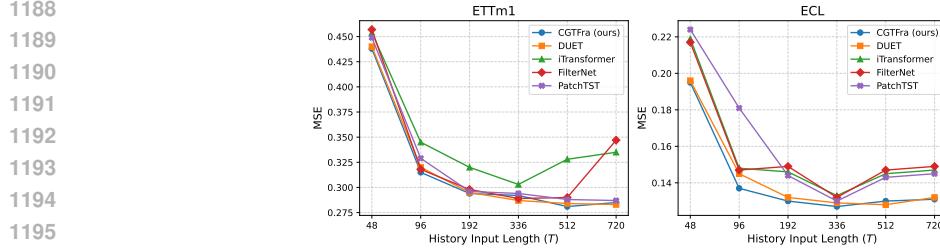
1126 Theoretically, a longer given historical input enables models to capture more information, leading to
 1127 more accurate predictions. However, higher dimensionality can also introduce side effects such as
 1128 model overfitting and training difficulty. To investigate the performance differences of various mod-
 1129 els across different historical input lengths, as illustrated in Figure 14, we evaluate the performance
 1130 of five methods. We observed that all models achieved relatively comparable prediction accuracy
 1131 when the given input length is 336. Further increasing the input length, however, potentially led to
 1132 a decline in performance. Consequently, as shown in Table 9, we also conducted a detailed com-
 1133 parison of how different models perform when predicting four distinct output lengths, with an input
 1134 length of 336.

1134
 1135
 1136
 1137
 1138 Table 7: Long-term forecasting results with forecasting horizons $F \in \{96, 192, 336, 720\}$ and
 1139 fixed look-back length $T=96$. **Bold/underline**: Best/second best one. “-” indicates that the original
 1140 method was not evaluated in the corresponding scenario.

Models	CGTFra (ours)		DUET (KDD'25)		TimePro (ICML'25)		Soatten (AAAI'25)		VCformer (IJCAI'24)		FilterNet (NeurIPS'24)		iTTransformer (ICLR'24)		MSGNet (AAAI'24)		PatchTST (ICLR'23)			
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
ETTm1	96	0.315	0.344	0.324	<u>0.354</u>	0.326	0.364	0.329	0.365	0.319	0.359	<u>0.318</u>	0.358	0.334	0.368	0.319	0.366	0.329	0.367	
	192	<u>0.366</u>	0.372	0.369	<u>0.379</u>	0.367	0.383	0.37	0.387	<u>0.364</u>	0.382	0.364	0.383	0.377	0.391	0.376	0.397	0.367	0.385	
	336	0.398	<u>0.395</u>	0.404	0.402	0.402	0.409	0.401	0.407	0.399	0.405	<u>0.396</u>	0.406	0.426	0.420	0.417	0.422	0.399	0.410	
	720	0.472	0.435	0.463	<u>0.437</u>	0.469	0.446	0.474	0.447	0.467	0.442	<u>0.456</u>	0.444	0.491	0.459	0.481	0.458	0.454	0.439	
ETTm2	96	0.171	0.249	0.174	<u>0.255</u>	0.178	0.260	0.180	0.264	0.180	0.266	<u>0.174</u>	0.257	0.180	0.264	0.177	0.262	0.175	0.259	
	192	0.238	<u>0.293</u>	0.243	0.302	0.242	0.303	0.245	0.306	0.245	0.306	<u>0.240</u>	0.300	0.250	0.309	0.247	0.307	0.241	0.302	
	336	0.300	<u>0.333</u>	0.304	0.341	0.303	0.342	0.312	0.349	0.307	0.345	<u>0.297</u>	0.339	0.311	0.348	0.312	0.346	0.305	0.343	
	720	<u>0.397</u>	0.391	0.399	0.397	0.400	0.399	0.411	0.406	0.406	0.402	<u>0.392</u>	0.393	0.412	0.407	0.414	0.403	0.402	0.400	
ETTH1	96	0.372	0.387	0.377	<u>0.393</u>	0.375	0.398	0.383	0.400	0.376	0.397	<u>0.375</u>	0.394	0.386	0.405	0.390	0.411	0.414	0.419	
	192	0.424	0.418	0.429	0.425	<u>0.427</u>	0.429	0.440	0.433	0.431	0.427	0.436	<u>0.422</u>	0.441	0.436	0.442	0.460	0.445	0.460	0.446
	336	0.473	<u>0.443</u>	0.471	0.446	<u>0.472</u>	0.450	0.475	0.449	0.473	0.449	0.476	<u>0.443</u>	0.487	0.458	0.480	0.468	0.501	0.466	0.466
	720	0.473	<u>0.464</u>	0.496	0.480	0.476	0.474	0.491	0.477	0.476	0.474	<u>0.474</u>	0.469	0.503	0.491	0.494	0.488	0.500	0.488	0.488
ETTH2	96	0.288	0.336	0.296	0.345	0.293	0.345	0.295	0.348	<u>0.292</u>	0.344	<u>0.292</u>	0.343	0.297	0.349	0.328	0.371	0.302	0.348	
	192	<u>0.364</u>	0.384	0.368	<u>0.389</u>	0.367	0.394	0.380	0.398	0.377	0.396	0.369	0.395	0.380	0.400	0.402	0.414	0.388	0.400	
	336	0.410	<u>0.422</u>	<u>0.411</u>	0.422	0.419	0.431	0.420	0.431	0.417	<u>0.430</u>	0.420	0.432	0.428	0.432	0.435	0.443	0.426	0.433	
	720	<u>0.414</u>	0.433	<u>0.412</u>	<u>0.434</u>	0.427	0.445	0.419	0.441	0.423	0.443	0.430	0.446	0.427	0.445	0.417	0.441	0.431	0.446	
Exchange	96	0.083	0.202	0.086	0.205	<u>0.085</u>	0.204	<u>0.085</u>	0.204	0.085	0.205	0.083	0.202	0.086	0.206	0.102	0.23	0.088	0.205	
	192	0.173	<u>0.296</u>	0.182	0.305	0.178	<u>0.299</u>	0.175	0.299	0.176	0.299	<u>0.174</u>	0.296	0.177	<u>0.299</u>	0.195	0.317	0.176	0.299	
	336	0.324	0.412	<u>0.310</u>	0.403	0.328	0.414	0.330	0.417	0.328	0.415	0.326	0.413	0.331	0.417	0.359	0.436	0.301	0.397	
	720	0.668	<u>0.619</u>	0.693	0.624	0.817	0.679	0.844	0.695	0.830	0.688	0.840	0.670	0.847	0.691	0.940	0.738	0.901	0.714	
Weather	96	0.152	0.190	0.163	0.202	0.166	0.207	<u>0.161</u>	0.206	0.171	0.220	0.162	0.207	0.174	0.214	0.163	0.212	0.177	0.218	
	192	0.203	<u>0.239</u>	0.218	<u>0.252</u>	0.216	<u>0.254</u>	0.208	<u>0.250</u>	0.230	0.266	<u>0.210</u>	<u>0.250</u>	0.221	0.254	0.212	0.254	0.225	0.259	
	336	<u>0.257</u>	0.279	0.274	0.294	0.273	0.296	0.264	<u>0.291</u>	0.280	<u>0.299</u>	0.265	0.290	0.278	0.296	0.272	0.299	0.278	0.297	
	720	0.338	<u>0.334</u>	0.349	0.343	0.351	0.346	0.347	0.346	0.352	0.344	<u>0.342</u>	0.340	0.358	0.347	0.350	0.348	0.354	0.348	0.348
Electricity	96	0.137	0.227	0.145	0.233	<u>0.139</u>	0.234	0.137	<u>0.232</u>	0.150	0.242	0.147	0.245	0.148	0.240	0.165	0.274	0.181	0.270	
	192	<u>0.155</u>	0.243	0.163	0.248	<u>0.156</u>	0.249	<u>0.155</u>	0.247	0.167	0.255	0.160	0.250	0.162	0.253	0.184	0.292	0.188	0.274	
	336	0.176	<u>0.259</u>	0.175	<u>0.262</u>	0.172	0.267	<u>0.171</u>	0.265	0.182	0.270	0.173	0.267	0.178	0.269	0.195	0.302	0.204	0.293	
	720	<u>0.198</u>	0.283	0.204	0.291	0.209	0.299	0.200	0.290	0.221	0.302	0.210	0.309	0.225	0.317	0.231	0.332	0.246	0.324	
Solar	96	0.191	0.205	0.200	0.207	<u>0.196</u>	0.237	0.198	0.239	-	-	-	-	0.203	0.237	-	-	0.234	0.286	
	192	0.218	<u>0.225</u>	0.228	<u>0.233</u>	0.231	0.263	<u>0.228</u>	0.259	-	-	-	-	0.233	0.261	-	-	0.267	0.310	
	336	0.238	0.240	0.262	0.244	0.250	0.281	<u>0.244</u>	0.272	-	-	-	-	0.248	0.273	-	-	0.290	0.315	
	720	<u>0.249</u>	0.242	0.258	<u>0.249</u>	0.253	0.285	0.246	0.275	-	-	-	-	0.249	0.275	-	-	0.289	0.317	
Traffic	96	0.387	0.239	0.407	<u>0.252</u>	-	-	0.401	0.270	0.454	0.310	0.430	0.294	0.395	0.268	-	-	0.544	0.359	
	192	0.417	0.249	0.431	<u>0.262</u>	-	-	0.424	0.281	0.468	0.315	0.452	0.307	0.417	0.276	-	-	0.540	0.354	
	336	0.434	0.261	0.456	<u>0.269</u>	-	-	0.445	0.288	0.486	0.325	0.470	0.316	0.433	0.283	-	-	0.551	0.358	
	720	<u>0.472</u>	0.279	0.509	<u>0.292</u>	-	-	0.479	0.306	0.524	0.348	0.498	0.323	0.467	0.302	-	-	0.586	0.375	
1st Count	25	35	2	1	0	0	3	0	1	0	5	3	3	0	0	0	2	1		

1162
 1163 Table 8: Short-term forecasting results with forecasting horizons $F \in \{12, 24, 48, 96\}$ and fixed
 1164 look-back length $T=96$.

Models	CGTFra (ours)		iTransformer (ICLR'24)		RLinear (ArXiv'23)		PatchTST (ICLR'23)		Crossformer (ICLR'23)		TiDE (TMLR'23)		TimesNet (ICLR'23)		DLinear (AAAI'23)		
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE
PEMS03	12	0.060	0.159	0.071	<u>0.174</u>	0.126	0.236	0.099	0.216	0.090	0.203	0.178	0.305	0.085	0.192	0.122	0.243
	24	0.079	<u>0.184</u>	0.093	<u>0.201</u>	0.246	0.334	0.142	0.259	0.121	0.240	0.257	0.371	0.118	0.223	0.201	0.317
	48	0.119	0.228	0.125	0.236	0.551	0.529	0.211	0.319	0.202	0.317	0.379	0.463	0.155	0.260	0.333	0.425
	96	0.173	<u>0.278</u>	0.164	0.275	1.057	0.787	0.269	0.370	0.262	0.367	0.490	0.539	0.228	0.317	0.457	0.515
PEMS04	12	0.070	0.169	0.078	<u>0.183</u>	0.138	0.252	0.105	0.224	0.098	0.218	0.219	0.340	0.087	0.195	0.148	0.272
	24	0.084	<u>0.187</u>	0.095	<u>0.205</u>	0.258	0.348	0.153	0.275	0.131	0.256	0.292	0.398	0.103	0.215	0.224	0.340
	48	0.112	0.220	0.120	<u>0.233</u>	0.572	0.544	0.229	0.339	0.205	0.326	0.409	0.478	0.136	0.250	0.355	0.437
	96	0.153	0.260	<u>0.150</</u>													

Figure 14: Performance comparison with different historical input lengths (Predict $F=96$).Table 9: Multivariate forecasting results with forecasting horizons $F \in \{96, 192, 336, 720\}$ and fixed look-back window size $T = 336$.

Models	CGTFra (ours)		FilterNet (NeurIPS'24)		iTransformer (ICLR'24)		PatchTST (ICLR'23)		TimesNet (ICLR'23)		
	Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETM1	96	0.292	0.335	0.289	0.344	0.303	0.357	0.294	0.345	0.335	0.380
	192	0.326	0.361	0.331	0.369	0.345	0.383	0.334	0.371	0.358	0.388
	336	0.366	0.381	0.364	0.389	0.382	0.405	0.371	0.392	0.406	0.418
	720	0.422	0.417	0.425	0.423	0.443	0.439	0.421	0.419	0.449	0.443
ETTh1	96	0.378	0.396	0.379	0.404	0.402	0.418	0.381	0.405	0.398	0.418
	192	0.415	0.420	0.417	0.428	0.450	0.449	0.442	0.446	0.447	0.449
	336	0.438	0.435	0.437	0.443	0.479	0.470	0.445	0.454	0.493	0.468
	720	0.442	0.428	0.458	0.472	0.584	0.548	0.490	0.493	0.518	0.504
Exchange	96	0.087	0.211	0.087	0.216	0.099	0.226	0.093	0.213	0.117	0.253
	192	0.169	0.299	0.163	0.301	0.216	0.337	0.194	0.315	0.298	0.410
	336	0.312	0.417	0.287	0.399	0.395	0.466	0.354	0.435	0.456	0.513
	720	0.673	0.621	0.413	0.492	0.962	0.745	0.903	0.712	1.608	0.961
Weather	96	0.147	0.187	0.150	0.183	0.164	0.216	0.151	0.197	0.172	0.220
	192	0.188	0.229	0.193	0.221	0.205	0.251	0.197	0.244	0.219	0.261
	336	0.241	0.272	0.246	0.258	0.256	0.290	0.251	0.285	0.280	0.306
	720	0.308	0.331	0.308	0.295	0.326	0.338	0.321	0.335	0.365	0.359
Electricity	96	0.127	0.219	0.132	0.224	0.133	0.229	0.130	0.222	0.168	0.272
	192	0.137	0.216	0.143	0.237	0.156	0.251	0.148	0.240	0.184	0.289
	336	0.153	0.253	0.155	0.253	0.172	0.267	0.167	0.261	0.198	0.300
	720	0.193	0.285	0.195	0.292	0.209	0.304	0.202	0.291	0.220	0.320
1 st Count		15	14	7	8	0	0	0	0	0	0

Table 10: Performance comparison of CGTFra and two other graph Transformers.

Models	ETTm1	ETTm2	ETTh1	ETTh2	Exchange	Weather	ECL	Traffic									
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE							
CGTFra	96	0.315	0.344	0.171	0.249	0.372	0.387	0.288	0.336	0.083	0.202	0.152	0.190	0.137	0.227	0.387	0.239
	192	0.366	0.372	0.238	0.293	0.424	0.418	0.364	0.384	0.173	0.296	0.203	0.239	0.155	0.243	0.417	0.249
	336	0.398	0.395	0.300	0.333	0.473	0.443	0.410	0.422	0.324	0.412	0.257	0.279	0.170	0.259	0.434	0.261
	720	0.472	0.435	0.397	0.391	0.473	0.464	0.414	0.433	0.668	0.619	0.338	0.334	0.198	0.283	0.472	0.279
Avg		0.388	0.386	0.277	0.316	0.436	0.428	0.369	0.394	0.312	0.382	0.238	0.260	0.165	0.253	0.427	0.257
Ada-MSHyper	96	0.309	0.357	0.173	0.261	0.376	0.395	0.291	0.338	-	-	0.161	0.202	0.144	0.241	0.405	0.263
	192	0.362	0.385	0.235	0.307	0.436	0.418	0.370	0.389	-	-	0.209	0.248	0.160	0.247	0.419	0.275
	336	0.394	0.409	0.295	0.340	0.468	0.447	0.426	0.434	-	-	0.263	0.289	0.176	0.273	0.439	0.278
	720	0.461	0.447	0.389	0.402	0.469	0.472	0.418	0.439	-	-	0.349	0.346	0.212	0.293	0.467	0.299
Avg		0.382	0.400	0.273	0.328	0.437	0.433	0.376	0.400	-	-	0.246	0.271	0.173	0.264	0.433	0.279
Sageformer	96	0.333	0.366	0.175	0.259	0.377	0.394	0.291	0.339	0.082	0.201	0.165	0.207	0.148	0.246	-	-
	192	0.371	0.389	0.241	0.301	0.428	0.426	0.376	0.394	0.177	0.299	0.211	0.251	0.163	0.248	-	-
	336	0.406	0.409	0.302	0.341	0.466	0.448	0.417	0.428	0.333	0.418	0.269	0.292	0.181	0.265	-	-
	720	0.478	0.449	0.399	0.396	0.487	0.476	0.422	0.441	0.866	0.702	0.347	0.345	0.209	0.306	-	-
Avg		0.397	0.403	0.279	0.324	0.440	0.436	0.377	0.401	0.365	0.405	0.248	0.274	0.175	0.266	-	-

1242 A.14 VERIFICATION OF FRAMEWORK GENERALITY
1243

1244 To validate the extensibility of the three core designs proposed in this work, we perform corresponding
1245 module replacements or introduce CAL for seven existing models, including DUET, iTransformer,
1246 VCformer, CASA, [FilterNet](#), iFlashformer, iFlowformer, iInformer, and iReformer. **To ensure a fair comparison, all baseline experiments were conducted using their released code and hyperparameters, under identical hyperparameters, random seeds, and experimental hardware and software environment versions.** Additionally, our released code includes the source
1247 files, scripts, and documentation necessary to reproduce these experiments. As shown in Table
1248 11, we observe that introducing FMR alone yields only marginal gains. In contrast, incorporating
1249 DGL significantly yields greater performance improvements to a certain extent, highlighting
1250 the importance of explicitly modeling IVD in deeper layers. Building on this, the introduction
1251 of CAL further improves forecasting performance across multiple heterogeneous datasets, with the
1252 effect being more pronounced for VCformer. For instance, on the ETTh1 dataset, MSE decreases
1253 from 0.398 to 0.382. Moreover, we have to acknowledge that achieving performance gains by
1254 modifying sota methods while using identical hyperparameters poses considerable challenges.
1255

- 1256 • DUET (Qiu et al., 2025): DUET captures IVD by employing metric learning in the frequency
1257 domain, subsequently feeding IVD as masks to the self-attention scores within
1258 a variable Transformer. As DUET does not involve linear upsampling, our proposed
1259 FMR cannot be directly validated. Concurrently, DUET also lacks deep-layer IVD modeling.
1260 Therefore, we embed DGL and CAL into DUET for comparative experiments.
<https://github.com/decisionintelligence/DUET>
- 1261 • iTransformer (Liu et al., 2024): iTransformer encodes timestamp information into the input
1262 signals via concatenation, and computes inter-variable correlations among tokens corresponding
1263 to individual variables, and then employs FFNs to capture deep temporal dynamics. Its architecture is consistent with the standard Transformer (i.e., temporal Transformer), except that inverted token embedding. Accordingly, we replace the FFN in iTransformer with DGL to emphasize the importance of deep layer IVD, and further incorporate CAL on top of DGL to enhance consistent IVD modeling across both deep and shallow
1264 layers. <https://github.com/thuml/iTransformer>
- 1265 • VCformer (Yang et al., 2024): VCformer likewise encodes timestamp information into the input
1266 via concatenation, and computes the inter-series correlation on different lags between
1267 queries and keys, and employ another Koopman theory-based temporal learner (namely KTD) to replace the FFN. Therefore, VCformer also captures IVD only at shallow layers.
1268 To validate extensibility, we replace their input embedding layer with our FMR, and replace
1269 KTD with the proposed DGL. <https://github.com/CSynn/VCformer>
- 1270 • CASA (Lee et al., 2025): CASA replaces the self-attention layer in the Transformer with a CNN
1271 autoencoder-based score attention, and is therefore not a Transformer architecture. Since CASA
1272 encodes inputs using a single linear layer, we only replace its input embedding method with the proposed
1273 FMR to evaluate the generality of FMR. <https://github.com/lmh9507/CASA>

1274 The complete results for the other variate Transformers are reported in Table 12. As some variant
1275 Transformers redesign more efficient self-attention layers that may lose explicit attention scores,
1276 CAL cannot be integrated into these variate Transformers.
1277

1278 In Figure 1, we present the DTW and PCC of the ETTh1 dataset, they characterize the true similarities
1279 and dependencies among variables in multivariate time series. **MSE and MAE, focusing solely on point-wise numerical discrepancies, overlook overall time-series shape similarity and fail to measure inter-variable correlations.** Therefore, we conduct the effectiveness verification of DGL
1280 and CAL on three existing baselines with DTW and PCC as comparative metrics (their definitions
1281 are provided in Appendix A.6). **DTW prioritizes trend pattern matching, while PCC quantifies the model’s capacity to capture co-variation among variables.** As shown in Table 13, incorporating
1282 DGL and CAL enables iTransformer to achieve lower MSE and MAE values, along with superior DTW and PCC, indicating that deep modeling of IVD enhances forecasting of
1283 future fluctuations (in terms of magnitude) and improves the accuracy of dependency modeling
1284 (in terms of similarity). These results collectively demonstrate the strong generalizability
1285 of DGL and CAL.

1296
1297
12981299 Table 11: Verification of Framework Generality. Full results for four prediction length and fixed
1300 input $T=96$. All results were reproduced using their released code and hyperparameters. “iTans” is
1301 iTansformer. “-” indicates that the original method was not evaluated in the corresponding scenario
1302 or we faced the issue of out of memory. Additional evaluation metrics are provided in Table 13.

Models	ETTm1	ETTm2	ETTh1	ETTh2	Exchange	Weather	ECL	Solar	Traffic	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
DUET original	96 0.322 0.354	0.174 0.254	0.389 0.400	0.295 0.345	0.084 0.203	0.162 0.201	0.146 0.233	0.249 0.269	0.407 0.252	
	192 0.370 0.380	0.239 0.299	0.431 0.426	0.370 0.391	0.179 0.300	0.217 0.251	0.163 0.249	0.221 0.230	0.431 0.261	
	336 0.407 0.403	0.301 0.339	0.473 0.450	0.408 0.419	0.285 0.390	0.268 0.290	0.174 0.261	0.245 0.242	0.458 0.271	
	720 0.464 0.439	0.400 0.396	0.502 0.484	0.415 0.435	0.686 0.625	0.342 0.339	0.204 0.288	0.247 0.244	0.504 0.291	
DUET + DGL	96 0.322 0.353	0.171 0.251	0.383 0.398	0.290 0.341	0.083 0.202	0.166 0.208	0.139 0.228	0.230 0.249	0.410 0.253	
	192 0.367 0.376	0.237 0.295	0.427 0.423	0.366 0.388	0.177 0.299	0.212 0.250	0.155 0.243	0.233 0.246	0.434 0.262	
	336 0.406 0.403	0.302 0.339	0.476 0.448	0.407 0.421	0.287 0.391	0.268 0.291	0.169 0.257	0.258 0.271	0.453 0.269	
	720 0.460 0.433	0.399 0.396	0.488 0.476	0.409 0.431	0.636 0.600	0.342 0.339	0.202 0.291	0.251 0.267	0.496 0.288	
DUET + CAL	96 0.324 0.356	0.174 0.254	0.378 0.393	0.289 0.340	0.083 0.202	0.152 0.192	0.139 0.228	0.231 0.250	0.412 0.253	
	192 0.370 0.379	0.239 0.297	0.427 0.421	0.369 0.389	0.177 0.299	0.205 0.244	0.155 0.243	0.238 0.248	0.433 0.260	
	336 0.405 0.399	0.307 0.344	0.472 0.445	0.415 0.424	0.285 0.388	0.256 0.280	0.169 0.258	0.247 0.245	0.462 0.273	
	720 0.466 0.437	0.406 0.403	0.475 0.469	0.420 0.434	0.673 0.615	0.333 0.338	0.193 0.284	0.253 0.268	0.501 0.291	
iTrans original	96 0.342 0.377	0.186 0.272	0.387 0.405	0.301 0.350	0.086 0.206	0.181 0.221	0.148 0.239	0.201 0.234	0.392 0.268	
	192 0.383 0.396	0.294 0.314	0.441 0.436	0.381 0.399	0.181 0.303	0.226 0.259	0.167 0.258	0.239 0.263	0.413 0.277	
	336 0.418 0.418	0.317 0.353	0.491 0.462	0.423 0.432	0.338 0.422	0.283 0.300	0.181 0.275	0.248 0.272	0.425 0.283	
	720 0.487 0.456	0.416 0.408	0.509 0.494	0.430 0.446	0.869 0.704	0.359 0.351	0.209 0.299	0.250 0.275	0.459 0.300	
iTrans + FMR	96 0.340 0.373	0.183 0.265	0.382 0.398	0.299 0.350	0.084 0.204	0.180 0.222	0.141 0.235	0.199 0.237	0.393 0.268	
	192 0.377 0.389	0.249 0.309	0.434 0.429	0.379 0.399	0.176 0.299	0.222 0.258	0.157 0.250	0.233 0.259	0.413 0.276	
	336 0.412 0.411	0.314 0.350	0.483 0.454	0.419 0.430	0.339 0.423	0.279 0.300	0.171 0.264	0.242 0.269	0.428 0.282	
	720 0.481 0.450	0.418 0.409	0.492 0.480	0.426 0.445	0.834 0.690	0.356 0.350	0.233 0.316	0.244 0.273	0.458 0.299	
iTrans + DGL	96 0.331 0.368	0.183 0.268	0.384 0.403	0.305 0.355	0.086 0.207	0.167 0.211	0.137 0.233	0.200 0.238	0.410 0.281	
	192 0.376 0.392	0.253 0.313	0.435 0.432	0.392 0.406	0.179 0.303	0.214 0.254	0.154 0.248	0.239 0.264	0.421 0.281	
	336 0.409 0.412	0.317 0.352	0.481 0.453	0.426 0.436	0.336 0.420	0.275 0.299	0.167 0.263	0.248 0.274	0.440 0.286	
	720 0.483 0.453	0.417 0.408	0.494 0.481	0.435 0.451	0.870 0.704	0.353 0.349	0.219 0.307	0.249 0.276	0.466 0.304	
iTrans + CAL	96 0.333 0.368	0.184 0.269	0.382 0.402	0.306 0.354	0.086 0.207	0.166 0.211	0.135 0.232	0.199 0.234	0.402 0.272	
	192 0.378 0.390	0.253 0.314	0.434 0.431	0.384 0.401	0.177 0.301	0.213 0.254	0.154 0.248	0.234 0.262	0.437 0.282	
	336 0.415 0.416	0.316 0.352	0.481 0.455	0.430 0.435	0.338 0.422	0.267 0.294	0.167 0.262	0.251 0.275	0.451 0.287	
	720 0.482 0.450	0.415 0.407	0.479 0.473	0.426 0.444	0.861 0.702	0.350 0.347	0.194 0.288	0.249 0.276	0.471 0.304	
VCformer original	96 0.331 0.364	0.184 0.266	0.405 0.410	0.302 0.349	0.085 0.206	0.186 0.224	0.152 0.246	-	-	
	192 0.379 0.389	0.250 0.309	0.455 0.439	0.383 0.396	0.175 0.300	0.238 0.266	0.170 0.261	-	-	
	336 0.419 0.416	0.318 0.352	0.530 0.476	0.421 0.430	0.327 0.415	0.288 0.303	0.186 0.277	-	-	
	720 0.487 0.453	0.414 0.407	0.561 0.515	0.429 0.446	0.844 0.691	0.365 0.352	0.235 0.328	-	-	
VCformer + FMR	96 0.333 0.365	0.183 0.265	0.393 0.401	0.308 0.351	0.088 0.211	0.184 0.224	0.147 0.241	-	-	
	192 0.373 0.387	0.250 0.309	0.451 0.434	0.383 0.395	0.176 0.300	0.231 0.264	0.163 0.255	-	-	
	336 0.410 0.410	0.314 0.350	0.484 0.450	0.419 0.430	0.336 0.421	0.285 0.302	0.177 0.272	-	-	
	720 0.476 0.447	0.415 0.406	0.499 0.480	0.431 0.447	0.869 0.703	0.361 0.351	0.241 0.332	-	-	
VCformer + DGL	96 0.323 0.359	0.184 0.269	0.398 0.410	0.305 0.352	0.085 0.206	0.165 0.208	0.139 0.236	-	-	
	192 0.379 0.389	0.249 0.310	0.447 0.439	0.387 0.401	0.175 0.299	0.210 0.252	0.158 0.248	-	-	
	336 0.415 0.412	0.310 0.348	0.484 0.456	0.425 0.433	0.326 0.412	0.270 0.293	0.173 0.266	-	-	
	720 0.473 0.445	0.412 0.405	0.494 0.482	0.440 0.453	0.868 0.700	0.351 0.347	0.224 0.314	-	-	
VCformer + CAL	96 0.328 0.364	0.179 0.262	0.382 0.400	0.300 0.349	0.085 0.205	0.164 0.208	0.135 0.233	-	-	
	192 0.375 0.389	0.246 0.307	0.438 0.434	0.380 0.397	0.176 0.299	0.211 0.251	0.157 0.249	-	-	
	336 0.415 0.412	0.310 0.348	0.484 0.456	0.425 0.433	0.339 0.421	0.285 0.302	0.177 0.272	-	-	
	720 0.485 0.453	0.414 0.406	0.497 0.486	0.436 0.452	0.846 0.696	0.351 0.346	0.207 0.299	-	-	
CASA original	96 0.322 0.359	0.175 0.257	0.378 0.403	0.298 0.347	-	-	0.162 0.207	0.140 0.236	0.193 0.234	
	192 0.368 0.386	0.241 0.300	0.428 0.429	0.375 0.396	-	-	0.209 0.251	0.160 0.253	0.227 0.260	
	336 0.407 0.409	0.299 0.339	0.478 0.453	0.420 0.431	-	-	0.267 0.292	0.181 0.274	0.240 0.274	
	720 0.468 0.447	0.399 0.397	0.482 0.476	0.439 0.451	-	-	0.359 0.352	0.206 0.298	0.242 0.276	
CASA + FMR	96 0.321 0.359	0.174 0.256	0.378 0.401	0.294 0.346	-	-	0.163 0.207	0.136 0.232	0.192 0.233	
	192 0.369 0.386	0.240 0.299	0.426 0.428	0.372 0.395	-	-	0.207 0.248	0.159 0.253	0.222 0.258	
	336 0.418 0.416	0.298 0.337	0.480 0.454	0.418 0.430	-	-	0.264 0.291	0.179 0.273	0.238 0.272	
	720 0.460 0.444	0.398 0.396	0.484 0.477	0.429 0.446	-	-	0.347 0.344	0.204 0.295	0.240 0.274	
FilterNet original	96 0.317 0.357	0.175 0.257	0.381 0.399	0.296 0.346	-	-	0.164 0.210	0.147 0.242	-	
	192 0.364 0.384	0.239 0.300	0.440 0.428	0.369 0.396	-	-	0.214 0.256	0.162 0.254	-	
	336 0.396 0.407	0.295 0.337	0.487 0.451	0.420 0.432	-	-	0.273 0.299	0.177 0.272	-	
	720 0.457 0.444	0.398 0.395	0.494 0.471	0.432 0.447	-	-	0.359 0.353	0.228 0.318	-	
FilterNet + FMR	96 0.318 0.359	0.174 0.255	0.376 0.397	0.293 0.343	-	-	0.160 0.206	0.144 0.239	-	
	192 0.364 0.383	0.238 0.299	0.438 0.427	0.368 0.394	-	-	0.209 0.252	0.159 0.252	-	
	336 0.395 0.406	0.295 0.337	0.489 0.451	0.416 0.433	-	-	0.270 0.296	0.177 0.273	-	
	720 0.455 0.442	0.396 0.395	0.496 0.472	0.438 0.450	-	-	0.353 0.350	0.228 0.321	-	

1342
1343
1344
1345
1346
1347
1348
1349

1350
 1351 Table 12: Verification of Framework Generality on Variate Transformers (fixed input length $T=96$).
 1352 As some variant Transformers redesign more efficient self-attention layers that may lose explicit
 1353 attention scores, CAL cannot be integrated into these variate Transformers. To further evaluate the
 1354 effectiveness of DGL and CAL, we employed additional evaluation metrics as seen in Table 13.
 1355

		Datasets		ETTh1		Weather		ECL		Solar	
		Metrics		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
1359	original	96	0.387	0.405	0.181	0.221	0.148	0.239	0.201	0.234	
		192	0.441	0.436	0.226	0.259	0.167	0.258	0.239	0.263	
		336	0.491	0.462	0.283	0.300	0.181	0.275	0.248	0.272	
		720	0.509	0.494	0.359	0.351	0.209	0.299	0.250	0.275	
1362	iTransformer	96	0.384	0.403	0.167	0.212	0.137	0.233	0.200	0.238	
		192	0.435	0.432	0.214	0.255	0.154	0.248	0.236	0.264	
		336	0.481	0.453	0.275	0.299	0.167	0.263	0.248	0.274	
		720	0.494	0.481	0.353	0.349	0.219	0.307	0.249	0.276	
1366	+ CAL	96	0.382	0.402	0.166	0.211	0.135	0.232	0.199	0.234	
		192	0.434	0.431	0.213	0.254	0.154	0.248	0.234	0.262	
		336	0.481	0.455	0.267	0.294	0.167	0.262	0.251	0.275	
		720	0.479	0.473	0.350	0.347	0.194	0.288	0.249	0.276	
1370	original	96	0.388	0.406	0.180	0.221	0.164	0.254	0.213	0.251	
		192	0.438	0.435	0.227	0.259	0.175	0.263	0.242	0.275	
		336	0.487	0.458	0.283	0.300	0.192	0.280	0.263	0.291	
		720	0.504	0.491	0.360	0.351	0.232	0.314	0.267	0.296	
1374	iFlashformer	96	0.384	0.402	0.171	0.216	0.160	0.253	0.209	0.250	
		192	0.441	0.434	0.216	0.255	0.175	0.265	0.246	0.275	
		336	0.484	0.455	0.278	0.299	0.193	0.283	0.266	0.292	
		720	0.500	0.483	0.352	0.348	0.232	0.315	0.273	0.298	
1378	original	96	0.385	0.402	0.187	0.226	0.169	0.255	0.215	0.255	
		192	0.446	0.437	0.230	0.262	0.180	0.265	0.246	0.277	
		336	0.503	0.470	0.285	0.301	0.198	0.283	0.266	0.292	
		720	0.559	0.522	0.363	0.352	0.238	0.317	0.272	0.297	
1382	iFlowformer	96	0.387	0.403	0.176	0.220	0.163	0.254	0.218	0.254	
		192	0.443	0.435	0.220	0.257	0.174	0.265	0.251	0.279	
		336	0.484	0.454	0.273	0.296	0.197	0.285	0.277	0.297	
		720	0.500	0.481	0.351	0.345	0.238	0.319	0.285	0.304	
1386	original	96	0.388	0.404	0.169	0.213	0.168	0.255	0.220	0.264	
		192	0.445	0.436	0.217	0.254	0.181	0.266	0.254	0.287	
		336	0.492	0.461	0.273	0.296	0.198	0.284	0.278	0.304	
		720	0.504	0.490	0.353	0.348	0.242	0.319	0.280	0.305	
1390	iInformer	96	0.390	0.405	0.168	0.214	0.164	0.255	0.223	0.261	
		192	0.445	0.435	0.212	0.253	0.179	0.267	0.263	0.287	
		336	0.489	0.457	0.271	0.295	0.198	0.286	0.287	0.305	
		720	0.501	0.482	0.351	0.347	0.241	0.321	0.292	0.308	
1394	+ DGL	96	0.386	0.401	0.168	0.213	0.159	0.251	0.223	0.260	
		192	0.443	0.433	0.220	0.257	0.178	0.267	0.261	0.286	
		336	0.482	0.453	0.268	0.293	0.197	0.285	0.290	0.305	
		720	0.494	0.478	0.347	0.344	0.240	0.320	0.293	0.308	
1402	original	96	0.386	0.402	0.185	0.226	0.169	0.257	0.222	0.263	
		192	0.447	0.437	0.230	0.262	0.180	0.266	0.255	0.285	
		336	0.502	0.469	0.283	0.301	0.198	0.284	0.277	0.302	
		720	0.548	0.516	0.359	0.349	0.241	0.319	0.280	0.303	
1403	+ CAL	96	0.383	0.401	0.176	0.220	0.161	0.254	0.221	0.259	
		192	0.442	0.434	0.222	0.259	0.176	0.266	0.258	0.283	
		336	0.480	0.452	0.274	0.296	0.195	0.285	0.285	0.302	
		720	0.492	0.478	0.351	0.346	0.239	0.320	0.289	0.305	

1404
1405

Table 13: Additional evaluation metrics for evaluating the effectiveness of DGL and CAL.

Datasets		ETTh1			Weather			ECL			Solar		
Metrics		MSE ↓	DTW ↓	PCC ↑	MSE ↓	DTW ↓	PCC ↑	MSE ↓	DTW ↓	PCC ↑	MSE ↓	DTW ↓	PCC ↑
original	96	0.389	13.95	0.559	0.162	16.16	0.398	0.146	65.68	0.901	0.249	45.68	0.841
	192	0.431	21.09	0.532	0.217	27.12	0.362	0.163	97.05	0.897	0.221	66.59	0.917
	336	0.473	29.41	0.506	0.268	40.31	0.339	0.174	132.90	0.894	0.245	94.00	0.882
	720	0.502	44.36	0.468	0.342	67.91	0.315	0.204	218.83	0.879	0.247	140.27	0.866
	Avg	0.449	27.20	0.516	0.247	37.88	0.354	0.172	128.62	0.893	0.241	86.64	0.877
DUET	96	0.383	13.85	0.562	0.166	16.19	0.392	0.139	63.70	0.913	0.230	42.30	0.875
	192	0.427	20.01	0.526	0.212	26.88	0.366	0.155	95.67	0.903	0.233	67.25	0.899
	336	0.476	29.62	0.494	0.268	40.33	0.338	0.169	132.73	0.899	0.258	94.90	0.870
	720	0.488	44.28	0.466	0.342	67.89	0.317	0.202	216.49	0.882	0.251	140.29	0.858
	Avg	0.444	26.94	0.512	0.247	37.82	0.353	0.166	127.15	0.899	0.243	86.19	0.876
+ DGL	96	0.378	13.77	0.564	0.152	16.08	0.405	0.139	63.41	0.908	0.231	42.36	0.873
	192	0.427	19.98	0.530	0.205	26.63	0.371	0.155	95.49	0.909	0.238	67.68	0.892
	336	0.472	29.36	0.500	0.256	40.01	0.349	0.169	132.64	0.899	0.247	94.07	0.883
	720	0.475	43.21	0.470	0.333	66.89	0.326	0.193	210.58	0.894	0.253	140.32	0.850
	Avg	0.438	26.58	0.516	0.237	37.40	0.363	0.164	125.53	0.903	0.242	86.11	0.875
+ CAL	96	0.387	13.92	0.561	0.181	16.97	0.364	0.148	65.77	0.906	0.201	39.56	0.902
	192	0.441	21.19	0.527	0.226	27.74	0.354	0.167	99.55	0.899	0.239	67.96	0.895
	336	0.491	29.87	0.496	0.283	41.04	0.334	0.181	137.33	0.892	0.248	94.01	0.880
	720	0.509	44.49	0.468	0.359	68.12	0.300	0.209	218.70	0.878	0.250	140.50	0.862
	Avg	0.457	27.37	0.513	0.262	38.47	0.338	0.176	130.33	0.894	0.235	85.51	0.885
iTransformer	96	0.384	13.89	0.562	0.167	16.27	0.383	0.137	63.31	0.911	0.200	39.80	0.904
	192	0.435	21.23	0.526	0.214	26.81	0.363	0.154	95.75	0.903	0.236	68.17	0.895
	336	0.481	29.66	0.494	0.275	40.24	0.332	0.167	132.85	0.896	0.248	94.20	0.881
	720	0.494	44.40	0.466	0.353	67.95	0.290	0.219	223.27	0.875	0.249	140.32	0.863
	Avg	0.449	27.30	0.512	0.252	37.82	0.342	0.169	128.79	0.896	0.233	85.62	0.886
+ CAL	96	0.382	13.83	0.564	0.166	16.28	0.394	0.135	62.96	0.912	0.199	39.53	0.905
	192	0.434	21.07	0.530	0.213	27.01	0.367	0.154	95.44	0.905	0.234	67.32	0.895
	336	0.481	29.55	0.500	0.267	40.36	0.340	0.167	132.68	0.898	0.251	94.60	0.880
	720	0.479	43.55	0.470	0.350	68.07	0.304	0.194	210.73	0.885	0.249	140.31	0.864
	Avg	0.444	27.00	0.516	0.249	37.93	0.351	0.163	125.45	0.900	0.233	85.44	0.886
original	96	0.405	14.096	0.5496	0.186	17.41	0.346	0.152	66.03	0.892	-	-	-
	192	0.455	21.57	0.528	0.238	28.12	0.339	0.170	99.79	0.896	-	-	-
	336	0.530	30.89	0.502	0.288	41.53	0.336	0.186	138.81	0.890	-	-	-
	720	0.561	47.28	0.4528	0.365	68.49	0.287	0.235	231.67	0.871	-	-	-
	Avg	0.488	28.46	0.508	0.269	38.89	0.327	0.186	134.01	0.887	-	-	-
+ DGL	96	0.398	14.08	0.561	0.165	16.14	0.376	0.139	64.51	0.909	-	-	-
	192	0.447	21.18	0.526	0.214	26.89	0.365	0.158	96.92	0.900	-	-	-
	336	0.484	29.77	0.500	0.270	40.32	0.329	0.173	135.46	0.897	-	-	-
	720	0.494	43.92	0.470	0.351	68.23	0.299	0.224	225.94	0.873	-	-	-
	Avg	0.456	27.24	0.514	0.249	37.90	0.342	0.174	130.70	0.895	-	-	-
+ CAL	96	0.382	13.79	0.567	0.164	16.19	0.381	0.135	63.09	0.910	-	-	-
	192	0.438	21.17	0.535	0.211	26.71	0.353	0.157	96.26	0.907	-	-	-
	336	0.485	29.68	0.504	0.271	40.33	0.328	0.170	134.00	0.899	-	-	-
	720	0.497	44.33	0.475	0.351	68.01	0.294	0.207	218.66	0.876	-	-	-
	Avg	0.451	27.24	0.520	0.249	37.81	0.339	0.167	128.00	0.898	-	-	-

1443
1444

Table 14: Performance comparison of CGTFra and two variants without deep IVD modeling.

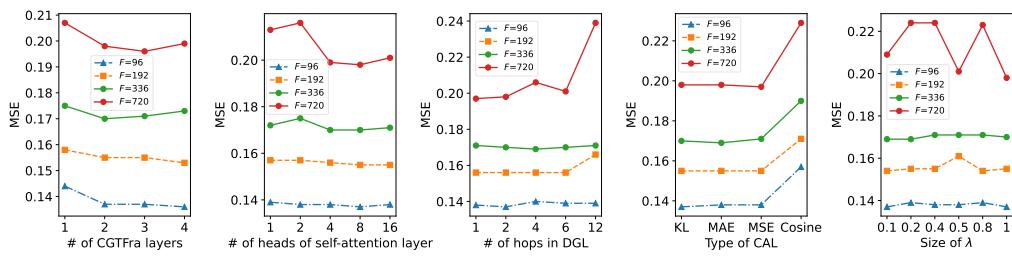
Models	ETTm1	ETTm2	ETTh1	ETTh2	Exchange	Weather	ECL	Solar	Traffic										
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE					
CGTFra	96	0.315	0.344	0.171	0.249	0.372	0.387	0.288	0.336	0.083	0.202	0.152	0.190	0.137	0.227				
	192	0.366	0.372	0.238	0.293	0.424	0.418	0.364	0.384	0.173	0.296	0.203	0.239	0.155	0.243	0.218	0.225		
	336	0.398	0.395	0.300	0.333	0.473	0.443	0.410	0.422	0.324	0.412	0.257	0.279	0.170	0.259	0.238	0.240	0.434	0.261
	720	0.472	0.435	0.397	0.391	0.473	0.464	0.414	0.433	0.668	0.619	0.338	0.334	0.198	0.283	0.249	0.472	0.279	0.277
	Avg	0.388	0.386	0.277	0.316	0.436	0.428	0.369	0.394	0.312	0.382	0.238	0.260	0.165	0.253	0.224	0.228	0.427	0.257
CGTFra shallow bias	96	0.319	0.346	0.177	0.253	0.372	0.388	0.296	0.340	0.086	0.205	0.159	0.195	0.142	0.230	0.193	0.207	0.395	0.245
	192	0.370	0.375	0.243	0.296	0.435	0.423	0.369	0.386	0.179	0.301	0.211	0.244	0.158	0.245	0.221	0.227	0.419	0.254
	336	0.404	0.396	0.305	0.336	0.478	0.445	0.420	0.429	0.353	0.429	0.266	0.285	0.170	0.259	0.242	0.242	0.448	0.272
	720	0.501	0.445	0.411	0.401	0.487	0.473	0.426	0.438	0.797	0.675	0.345	0.339	0.201	0.285	0.248	0.242	0.485	0.284
	Avg	0.399	0.391	0.284	0.322	0.443	0.432	0.378	0.398	0.354	0.403	0.245	0.266	0.168	0.255	0.226	0.230	0.437	0.264
CGTFra shallow mask	96	0.314	0.343	0.172	0.249	0.371	0.387	0.291	0.337	0.086	0.205	0.162	0.198	0.144	0.231	0.197	0.212	0.408	0.252
	192	0.369	0.375	0.238	0.293	0.438	0.424	0.364	0.383	0.181	0.303	0.211	0.243	0.159	0.244	0.224	0.226	0.426	0.258
	336	0.414	0.401	0.302	0.335	0.484	0.446	0.424	0.427	0.338	0.421	0.266	0.284	0.174	0.261	0.246	0.242	0.449	0.270
	720	0.479	0.437	0.410	0.339	0.493	0.475	0.432	0.440	1.040	0.773	0.345	0.338	0.213	0.295	0.248	0.242	0.505	0.

1458 A.15 FURTHER ANALYSIS OF CONSISTENT INTER-SERIES DEPENDENCY MODELING
1459

1460 To further investigate the necessity and effectiveness of modeling inter-variable dependencies in the
1461 deeper layers of the network, we conducted additional experiments on model modifications. Speci-
1462 cally, we removed the DGL and CAL modules from our CGTFra framework, retaining only the
1463 FMR module. Concurrently, we integrated the proposed dynamically constructed graph structure
1464 into the self-attention scores (a method similar to that used in DUET, see Figure 13) by using two
1465 fusion strategies: element-wise addition (acting as bias or guidance) and element-wise multipli-
1466 cation (acting as masking). The comparative results are presented in Table 14. The results indicate
1467 that merely guiding the self-attention mechanism with dynamic graph information is insufficient to
1468 achieve superior performance. We attribute this to the fact that this approach fails to model inter-
1469 variable dependencies in the deeper network layers, a limitation previously discussed in this paper.
1470 This finding implicitly underscores the necessity and effectiveness of consistently modeling inter-
1471 variable dependencies across both the shallow and deep layers of the network architecture.
1472

1472 A.16 EFFECT OF HYPERPARAMETERS
1473

1474 To investigate the influence of hyperparameters on CGTFra’s prediction performance, we conducted
1475 a series of experiments on CGTFra’s stacking layers (L), the number of heads in the self-attention
1476 mechanism, the number of hops in DGL, the type of loss function used in CAL, and the consistency
1477 loss weight (λ) within the loss function. The results are presented in Figure 15. We present the
1478 following analysis: (1) **stacking layers (L)**: Stacking multiple layers in CGTFra enables the model
1479 to adapt to datasets of varying complexity, with the learning of multiple feature levels enhancing its
1480 representational capacity. Experimental results in ECL indicate that stacking multiple CGTFra layers
1481 improves performance for shorter prediction horizons (96 and 192), while showing an inverse,
1482 negative effect for longer horizons (336 and 720). (2) **the number of heads in the self-attention
1483 mechanism**: Multi-head attention allows the model to capture differentiated features and enhances
1484 parallelism. Concurrently, in our CGTFra, the number of heads influences the granularity of the
1485 alignment loss function’s calculation. CGTFra achieves favorable performance gains when utilizing
1486 4 or 8 heads. (3) **the number of hops in DGL**: While multi-hop propagation can achieve a larger
1487 global receptive field, it may also lead to negative effects such as oversmoothing, attenuation of node
1488 relevance, and amplified noise. In CGTFra, the default number of hops used is 2. We observe that
1489 as the number of hops increases, predicting excessively long sequences, such as those of length 720,
1490 exhibits significant performance fluctuations. (4) **the type of loss function used in CAL**: To investi-
1491 giate the impact of different similarity measures on CGTFra’s performance and the effectiveness
1492 of the regularization term, we explore various loss functions as regularizers, including Kullback-
1493 Leibler (KL) divergence, Mean Absolute Error (MAE), Mean Squared Error (MSE), and Cosine
1494 Similarity. The results indicate that KL divergence, MAE, and MSE yield comparable performance,
1495 whereas Cosine Similarity leads to a significant performance degradation. This is likely attributable
1496 to Cosine Similarity’s exclusive focus on vector direction, disregarding magnitude. Consequently,
1497 when evaluating the discrepancy between inter-variate dependencies captured by self-attention and
1498 GNNs, it merely promotes directional alignment without encouraging similar scales or absolute
1499 values for the tensors. Therefore, Cosine Similarity is unsuitable for quantifying inter-variate dep-
1500 endency differences between shallow and deep layers. (5) **the consistency loss weight (λ)**: In
1501 Equation 8, we use λ to control the contribution of CAL. In Figure 15, different values of λ most
1502 significantly impact performance for scenarios with a prediction length of 720.
1503



1510 Figure 15: Sensitivity analysis of CGTFra’s hyperparameters on ECL dataset for forecasting four
1511 future lengths {96, 192, 336, 720} with fixed input length 96.
1512

Table 15: Ablation studies on five diverse datasets.

Part	FMR	DGL	CAL	F	ETTm1		ETTh1		Weather		ECL		Traffic	
					MSE	MAE								
CGTFra	✓	✓	✓	96	0.315	0.344	0.372	0.387	0.152	0.190	0.137	0.227	0.387	0.239
				192	0.366	0.372	0.424	0.418	0.203	0.239	0.155	0.243	0.417	0.249
				336	0.398	0.395	0.473	0.443	0.257	0.279	0.170	0.259	0.434	0.261
				720	0.472	0.435	0.473	0.464	0.338	0.334	0.198	0.283	0.472	0.279
aba1	✓	✗	✗	96	0.324	0.354	0.372	0.387	0.158	0.194	0.142	0.229	0.393	0.244
				192	0.374	0.377	0.425	0.418	0.211	0.242	0.158	0.244	0.416	0.253
				336	0.407	0.401	0.485	0.448	0.266	0.285	0.174	0.263	0.437	0.264
				720	0.481	0.440	0.487	0.472	0.345	0.338	0.204	0.286	0.478	0.281
aba2	✓	✓	✗	96	0.310	0.350	0.373	0.386	0.157	0.195	0.138	0.228	0.393	0.242
				192	0.373	0.375	0.431	0.421	0.207	0.243	0.156	0.243	0.419	0.254
				336	0.402	0.399	0.468	0.440	0.265	0.286	0.171	0.260	0.438	0.263
				720	0.470	0.434	0.475	0.462	0.340	0.338	0.207	0.291	0.469	0.278
aba3	✗	✓	✓	96	0.321	0.353	0.370	0.386	0.158	0.197	0.140	0.230	0.414	0.252
				192	0.371	0.375	0.431	0.422	0.209	0.244	0.155	0.244	0.425	0.249
				336	0.401	0.397	0.474	0.444	0.262	0.284	0.172	0.261	0.442	0.268
				720	0.474	0.436	0.473	0.465	0.344	0.339	0.225	0.306	0.493	0.280

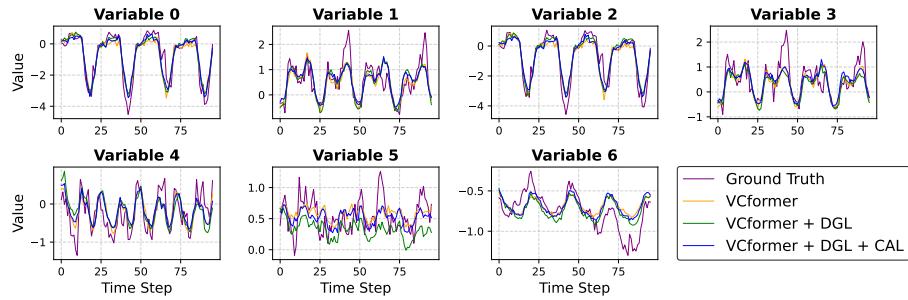


Figure 16: Prediction curves for VCformer and variates with our DGL and CAL on ETTh1 dataset.

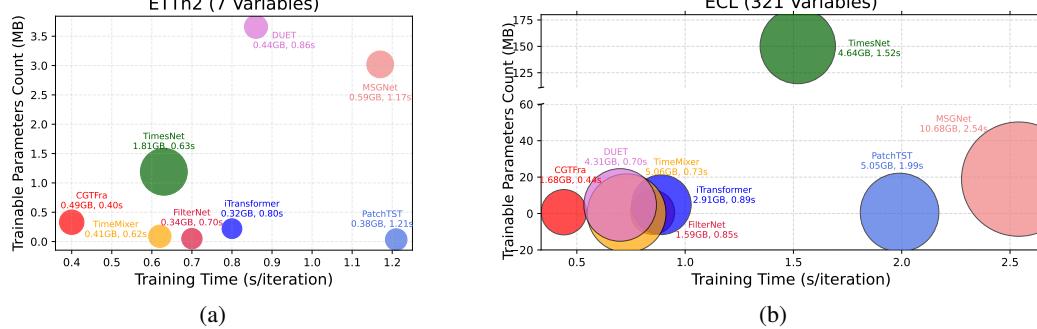


Figure 17: Computation effectiveness analysis for seven methods on ETTh2 and ECL. The size of the circle indicates the GPU memory footprint. For fair comparison, all batch sizes are set to 32.

1566
1567

A.17 ANALYSIS OF INTER-SERIES DEPENDENCY MODELING

1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

To further evaluate the effectiveness of the DGL and CAL, as shown in Figure 16, we visualized the VCformer’s actual prediction curves for 7 variables of ETTh1 in Figure 1. We observe that VCformer, when embedded with DGL and CAL, achieves superior prediction accuracy in most cases, indicating the efficacy of modeling IVD simultaneously in both shallow and deep network layers. Furthermore, we note that for variable 5, the introduction of DGL alone leads to worse prediction. However, with the consistency constraint of CAL, thanks to bidirectionally validated inter-variate dependencies, significantly improved prediction capabilities are obtained, demonstrating that the introduction of CAL effectively promotes the model’s optimization of deep-layer feature embeddings. Furthermore, comprehensive evaluation metrics are provided in Appendix A.14 (Table 13) to validate the effectiveness of DGL and CAL.

1578
1579
1580

Figure 18 presents a comparison of prediction curves for four variables from the Weather dataset. CGTFra demonstrates superior trend forecasting performance compared to iTransformer and DUET, both of which are also capable of modeling inter-variable dependencies.

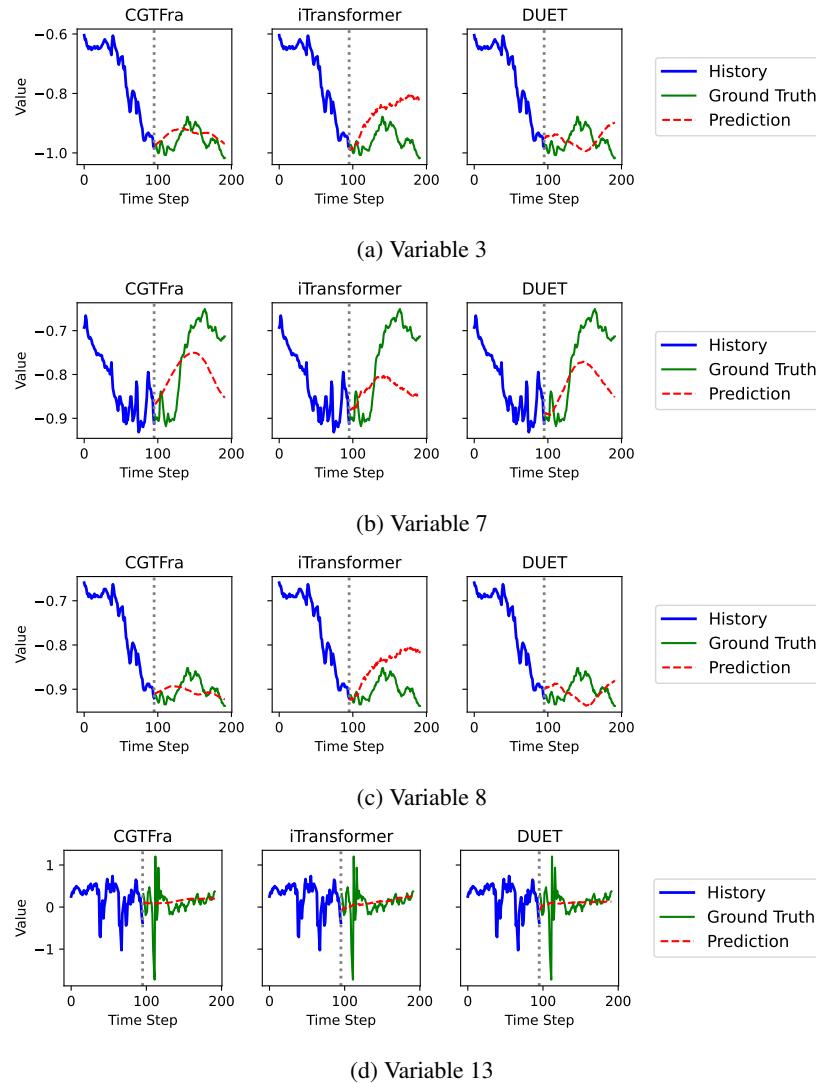
1581
1582
1583
1584
1585
1586
1587
1588
15891617
1618
1619

Figure 18: Actual prediction curves for three models capturing IVD on Variables 3, 7, 8, and 13 of Weather dataset.

1620
1621

A.18 EFFICIENCY COMPARISON

1622
1623
1624
1625
1626
1627
1628
1629

We fairly compare the training time, running GPU memory, and trainable parameter count against 7 sota methods in Figure 17. Benefiting from the computational efficiency of DGL in capturing variable dependencies and the performance gains of CAL without introducing additional learnable parameters, CGTFra achieves strong performance and computational efficiency with relatively less trainable parameters. Compared to another sota method-DUET (Qiu et al., 2025), known for its high run-time efficiency, CGTFra reduces GPU memory usage by 61% and demonstrates a training speed improvement of approximately 42.86% on the complex ECL dataset, indicating the high effectiveness and efficiency of CGTFra.

1630
1631

A.19 LIMITATIONS

1632
1633
1634
1635
1636
1637
1638
1639

Although our study significantly enhances the performance of existing studies by introducing deep inter-variate dependency modeling (DGL) within the Variable Transformer and further optimizing inter-variate associations across both deep and shallow layers through explicit dependency constraints (CAL), we still observe that Variable Transformers incorporating DGL and CAL, such as DUET, and iTransformer—exhibit limited improvements or even performance degradation on datasets like Solar and Traffic (see Table 2 and Table 12). We posit that there are two primary reasons for the limited performance improvement, and in some cases degradation, of our proposed DGL and CAL on datasets with a very large number of variables.

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

Primarily, as the number of variables (N) increases, **the probability of spurious correlations between any two variables rises dramatically**. The self-attention mechanism, designed to find relationships within an $N \times N$ matrix, is compelled to assign attention weights across all variable pairs. **In such a high-dimensional space, these weights are more likely to reflect coincidental noise within a sample rather than genuine, stable dependencies**. Consequently, when CAL is applied, it forces the adjacency matrix A learned by DGL to align with this noisy Correlation Map (MCM), **effectively instigating negative knowledge transfer instead of beneficial regularization**. The GNN is thus coerced into encoding numerous useless or even erroneous connections in its graph structure, which undermines its ability to perform effective information propagation. This can lead to performance that is even worse than that of a simple FFN, which at least makes a harmless “variable independence” assumption.

1651
1652
1653
1654

Furthermore, the self-attention mechanism, particularly after the softmax operation, naturally produces a dense attention map. **This inherent density creates a significant discrepancy with the potentially sparse nature of the adjacency matrix learned by the GNN** (see Figure 6(a)), thereby posing a fundamental challenge to the alignment process.

1655
1656

We will improve upon this in future work by proposing a more general method for modeling correlation constraint between deep and shallow layers.

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673