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ABSTRACT

Transformers have emerged as dominant predictors in multivariate time series
forecasting (MTSF), prompting an in-depth investigation into their limitations
within this application. Firstly, the conventional temporal information for times-
tamps in MTSF suffers from the unavailability of future timestamps and the di-
versity of timestamp formats across real-world datasets, which poses a significant
practical challenge and necessitates cumbersome adjustments for a unified fore-
casting model. Secondly, existing Variate Transformers, such as iTransformer,
typically model inter-variate dependencies (IVD) predominantly within shallow
self-attention layers, neglecting the critical requirement for deep-layer IVD mod-
eling, thereby causing dependency information loss and difficulties in model op-
timization. We refer to this phenomenon as inconsistent IVD modeling. To
address these limitations, CGTFra, is designed as a general Graph Transformer
framework to promote consistent IVD modeling. Specifically, we introduce a
frequency-domain masking and resampling method for feature enhancement that
preserves periodic characteristics in the frequency domain. Additionally, by com-
prehensive analysis of the distinctions and connections between self-attention
mechanisms of Variate Transformers and Graph Neural Networks (GNNs) in cap-
turing IVD, a dynamic graph learning framework is integrated into the Trans-
former to explicitly model IVD in deep network layer. Crucially, we then pro-
pose a consistency-constrained alignment to strengthen the network to learn more
robust IVD and temporal feature representations. The core design philosophy
of CGTFra can be integrated into any existing Variate Transformer-based frame-
work and CGTFra demonstrates superior predictive performance across 13 long-
and short-term datasets with high computational efficiency. Code is available at
https://anonymous.4open.science/r/CGTFra.

1 INTRODUCTION

Multivariate time series, such as traffic flow, are critical for forecasting the future dynamics of real-
world systems. Multivariate time series forecasting (MTSF) is challenged mainly by two factors: the
intricate temporal patterns of individual variables (intra-series dependency) and the dynamic depen-
dencies among these variables (i.e., inter-series or inter-variate dependency), where one variable’s
fluctuation can affect the others. To illustrate, Figure 1 presents the raw traces of seven variables
from the ETTh1 dataset, supplemented by their Pearson Correlation Coefficient Matrix (PCM) and
Dynamic Time Warping (DTW) distance matrix, which reveal strong correlations and similarities
between two pairs of variables: variable 0 with variable 2, and variable 1 with variable 3.

To achieve more accurate MTSF, numerous advanced methods have been developed, including
CNNs, RNNs, MLPs, and GNN-based forecasters. More recently, Transformer-based networks have
gained prominence due to their inherent strength in capturing long-range dependencies (Vaswani
et al., 2017). However, after a comprehensive analysis of existing Transformer-based approaches,
we argue that they still face two following significant limitations.

(1) Over-reliance on Timestamps for Input Representation. Existing methods typically
employ learnable encodings derived from timestamps to capture temporal positional infor-
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Figure 1: Intra- and inter-series dynamics on ETTh1 dataset. PCM and DTW are used to reveal
inter-variable similarities and dependencies (See Appendix A.6 for more details). We observe two
highly similar pairs of variables: variables 0 with 2, and variables 1 with 3, and these pairs exhibit
high PCM coefficients and low DTW distances, as indicated at coordinates (2,0) and (3,1), where
(x-axis, y-axis) correspond to variable indices. Furthermore, their dependency patterns with other
variables are also analogous (see row 0 vs. row 2, row 1 vs. row 3) in both the PCM and DTW
matrices. Additionally, the strong correlation between variables 4 and 5 (see coordinate (5,4) in
PCM and DTW), is noteworthy and will be further discussed in the context of Figure 9.

mation, as seen in models including Informer (Zhou et al., 2021), Autoformer (Wu et al.,
2021), iTransformer (Liu et al., 2024), VCformer (Yang et al., 2024) and others. How-
ever, future timestamps are often unavailable in real-world scenarios, timestamp formats
can vary across datasets, and issues such as missing or erroneous timestamps all cannot
be effectively handled. Its actual effectiveness, moreover, is yet to be fully established.
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Figure 2: Impact of times-
tamps on iTransformer. The
radar chart presents an im-
proved (green) or decreased
(red) percentage.

To investigate the actual efficacy of such temporal information, we
conducted an ablation study on iTransformer where we removed
the timestamp embedding and instead up-sampled the input signal
using a single linear layer. As shown in Figure 2, this substitution
leads to performance improvements on eight datasets (Full results
and more analysis are provided in Appendix A.4).

To address the limitations of Transformer-based forecasters rely-
ing on timestamp information, we propose a novel and univer-
sal Frequency-domain Masking and Resampling (FMR) method,
which performs learnable feature enhancement and periodicity cap-
ture directly on the frequency components of the signal. Specifi-
cally, a per-variable resampling is performed in the spectral space
by applying a learnable mask and a subsequent linear interpolation.
Through this process, the signal’s periodicity is robustly preserved
and enhanced (see Appendix A.5), thereby significantly diminish-
ing the importance of timestamp information that traditionally serve to retain periodic or seasonal
information.

(2) Inconsistency in Modeling Inter-variate Dependencies. Transformer consists of two key
stages: the multi-head self-attention (MHSA) layer and the subsequent feed-forward network (FFN).
iTransformer introduced the “Variate Transformer” paradigm, which explicitly models IVD by en-
coding each variable as an individual token. This foundational work has inspired further improve-
ments, such as Soatten (Wu, 2025). Nevertheless, we argue that a potential limitation exists here:
an inconsistency in how temporal and inter-variate dependencies are modeled, that is, IVD are mod-
eled exclusively within the shallow self-attention layers. The deeper FFNs, in contrast, completely
disregard these dependencies, focusing solely on capturing the temporal dynamics within each in-
dividual variable (see Figure 3(a)). We acknowledge that numerous Transformer variants have been
proposed to better model IVD, including approaches based on metric learning, such as DUET (Qiu
et al., 2025), and methods employing graph transformers, like STGAGRTN (Wu et al., 2023a) and
GL-STGTN (Li et al., 2024). However, a typical trait in these methods is that they integrate the
learned variable dependencies into the self-attention mechanism, typically as an attention mask or a
bias term. We categorize this parallel fusion strategy as the method depicted in Figure 3(b). We argue
that these approaches do not address the inconsistency in modeling temporal and inter-variate
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dependencies, and such inconsistency poses challenges for model optimization (see Figure 8),
stemming from the degradation or even loss of deep-layer inter-variate dependencies.

Intra- and inter-
series modeling

Non-inter-series 
modeling

Intra-series 
modeling

Inter-series 
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Non-inter-series 
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Figure 3: A Comparison of Paradigms for Modeling
Temporal and Inter-variable Dependencies. (a) and
(b) illustrate existing Transformer-based approaches
for modeling IVD. (c) depicts the consistent depen-
dency modeling paradigm proposed in this work.

The challenge then lies in how to imple-
ment IVD modeling within the Transformer
deep layers. In this study, we resort to
Graph Neural Network (GNN). Notably,
the self-attention mechanism in a Trans-
former can be interpreted as a GNN op-
erating on a fully-connected graph (Joshi,
2025). The primary distinction lies in the
scope of the aggregation: GNNs aggre-
gate information from the local neighbor-
hood nodes, while in Transformer’s self-
attention, the aggregation is performed over
the entire set of tokens in the sequence. For
a more detailed theoretical analysis sup-
porting these arguments and elucidating our rationale for employing GNNs in deep layers to
model IVD, see Appendix A.7 and A.8. Therefore, we propose a Dynamic Graph Learning (DGL)
framework that dynamically optimizes the graph structure based on global input and explicitly mod-
els IVD via a message-passing mechanism. Concurrently, it employs two linear layers to aggregate
and extract deep temporal features. This dual-component design for feature extraction allows us
to replace the FFNs in the Transformer with our DGL, as depicted in Figure 3(c), we consistently
model both temporal and inter-variate dependencies, underscoring the importance of modeling IVD
throughout the network, not only in shallow MHSA.

However, since both the self-attention and the graph learning mechanisms model dependencies from
the global inputs, they should, in theory, depict the same “latent true dependency correlations”. This
raises a critical question: do the dependency structures modeled at these two different stages
exhibit similarity or correlation? To the best of our knowledge, this question remains unexplored
in existing research. By analyzing the dependency matrices actually captured by self-attention and
DGL, they indeed exhibited a high degree of similarity (their Kullback-Leibler (KL) divergence is
0.0260, as detailed in the Appendix A.2).

Despite these similarities, discrepancies exist because GNNs and self-attention layers aggregate
information from distinct perspectives. Acknowledging that both perspectives (i.e., local and
global) offer unique advantages, we aim to find a balance between these two types of de-
pendency modeling. Therefore, we introduce Kullback-Leibler (KL) divergence to quantify the
distance between these two dependency distributions. This divergence is then incorporated as a
regularization term into the overall loss function (the theoretical guarantees based on Information
Bottleneck (IB) principle are provided in Appendix A.9). After the introduction of the alignment
constraint, the correlation matrices captured by self-attention and DGL are converged to be more
similar (the KL divergence decreased from 0.0260 to 0.0249). And importantly, the graph structure
retains specific correlations that are difficult for the standard self-attention mechanism to capture,
such as the strong dependency at coordinate (5,4) (See Figure 9(b) in the Appendix A.2).

Synthesizing the foregoing analysis, we propose CGTFra, a compact framework that considers con-
sistency in modeling IVD. Our primary contributions are as follows:

• We propose a novel, position-agnostic approach based on learnable frequency-domain
masking and linear interpolation, which serves not only as an effective supplement but
also as a potential replacement for existing timestamps encoding or up-sampling methods.

• Motivated by the need for consistent modeling of both intra- and inter-series dependencies
across shallow and deep network layers, we propose a novel graph transformer framework
named CGTFra. Furthermore, the proposed Dynamic Graph Learning in CGTFra can be
integrated into existing variate transformers as a universal method for modeling IVD.

• We are the first to investigate the relationship between IVD modeled at shallow and deep
network layers. To enforce consistency, we introduce an explicit constraint that aligns these
two dependency structures, which is integrated as a regularizer into the main loss function.

• Our proposed CGTFra sets a new state-of-the-art in both long- and short-term time series
forecasting on 13 datasets with superior computational efficiency (see Appendix A.18).
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2 RELATED WORK

Application of Timestamp Encoding in Time Series Forecasting. Inspired by the effectiveness
of positional encoding in NLP, numerous Transformer-based studies in MTSF have adopted this
technique. The fusion of timestamp positional and data encodings is primarily achieved through two
strategies: direct summation, as seen in models like Informer, TimesNet (Wu et al., 2023b), Auto-
former (Wu et al., 2021), and Fedformer (Zhou et al., 2022), or concatenation, employed by iTrans-
former and VCformer. Notably, a distinct approach is presented in GLAFF (Wang et al., 2024). This
work proposes the independent learning of timestamp information—encompassing both historical
and future timestamps—and the data features. These two streams of information are then fused us-
ing an adaptive weighting mechanism, leading to superior forecasting performance. However, such
approaches face significant practical challenges. In many real-world application scenarios, future
timestamps are unavailable. Furthermore, timestamp formats can be inconsistent across different
datasets. Methods like GLAFF are ill-equipped to handle these situations effectively.

Modeling Inter-Variate Dependencies with Transformers. Conventional temporal Transformers
for MTSF typically encode information from different variables at the same timestamp into a single
token. This approach, however, leads to a loss of IVD information, as seen in temporal Transformer-
based studies (Chen et al., 2024; Luo & Wang, 2024; Nie et al., 2023). Crossformer (Zhang & Yan,
2023) employs a tailored two-stage attention layer to explicitly model both intra- and inter-series
dependencies. iTransformer encodes each individual time series as a single token, offering greater
universality in modeling IVD compared to Crossformer. TokenGT (Kim et al., 2022) treats nodes
and edges as independent, learnable tokens, which are then fed into the Transformer alongside the
input tokens. DUET captures IVD in the frequency domain using metric learning. The resulting
dependency is then integrated into the self-attention mechanism as a mask for the attention scores.

Modeling Inter-Variate Dependencies with Graph Transformers. SageFormer (Zhang et al.,
2024) first employs a GNN to capture IVD from the input MTS. The resulting global, graph-
enhanced embeddings are then fused with the original series to serve as the input for a vanilla
Transformer, which subsequently models temporal dependencies. STGAGRTN (Wu et al., 2023a)
utilizes a gating mechanism to fuse the IVD learned separately by a GAT and a spatial Transformer.
GL-STGTN (Li et al., 2024) learns the graph structure from both global and local perspectives, and
then the learned IVD are then encoded into a spatial attention mechanism. For a more detailed
discussion of the implementation specifics of these methods, please see Appendix A.10.

In summary, existing researches can be broadly categorized into two main strategies: (1) methods
like DUET, STGAGRTN, and GL-STGTN, which integrate learned inter-variate dependencies into
the self-attention mechanism as a mask or bias for attention scores; and (2) approaches such as Sage-
Former and TokenGT, which embed graph-structural information directly into the input embeddings.
However, a common limitation of all these methods is their failure to consider the consistency and
correlation of IVD modeling between the shallow and deep layers of the network.
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i .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

For MTSF tasks, given historical inputX = [X1:T
1 , X1:T

2 , . . . , X1:T
N ] ∈ RT×N , where T is the input

length and N is the number of variates, and each X1:T
N ∈ RT is the N -th variate. We use CGTFra

to forecast Y = [XT+1:T+F
1 , XT+1:T+F

2 , ..., XT+1:T+F
N ] ∈ RF×N during future F time steps.

As illustrated in Figure 4, we propose CGTFra, a graph transformer framework designed for consis-
tent IVD modeling. CGTFra inherits the Transformer’s proficiency in capturing long-range depen-
dencies while simultaneously demonstrating exceptional capabilities in modeling IVD. Technically,
CGTFra is built upon three core design principles: (1) A universal, adaptive Frequency-domain
Masking and Resampling (FMR) (Upsampling or downsampling). (2) A Dynamic Graph Learning
(DGL) framework that can be integrated into existing transformers. (3) An alignment constraint that
promotes consistency between the IVD modeled at the shallow and deep network layers.

3.1 ADAPTIVE FREQUENCY MASKING AND RESAMPLING

Compared to resampling directly in time domain with a linear layer, resampling in the frequency
domain introduces a powerful inductive bias of a global receptive field. This paper utilizes DCT
for frequency domain analysis (the motivation is provided in Appendix A.3). Furthermore, given
that each variable possesses its own intrinsic dynamics, we learn an independent frequency mask
for each variable. This allows the model to adaptively highlight critical frequencies and attenuating
irrelevant or detrimental ones. Given an MTS X = {X1, X2, ..., XN} ∈ RT×N where Xn =
[Xn(0), Xn(1)), ..., Xn(T − 1)]⊤ denotes the sequence values for the n-th variable (For simplicity,
we explicitly denote the variable dimension only when computing the DCT and iDCT), this process
is formulated as:

Fn(µ) = c(µ)

√
2

T

T−1∑
t=0

Xn(t) cos[
πµ(2t+ 1)

2T
], c(µ) =

{√
1
2 , µ = 0

1, µ = 1, 2, ..., T − 1
(1)

Fmask = F (µ)⊙ softplus(M) (2)
where F (µ) , Fmask ∈ RT×N represents the DCT coefficients and the masked frequency co-
efficients. M ∈ RT×N denotes the variable-specific learnable mask. In Equation 1, µ ∈
{0, 1, . . . , T − 1} is the DCT index. Subsequently, a learnable linear layer is employed to per-
form linear interpolation on the masked frequency components, yielding the expanded frequency
representation F extend ∈ RD×N , D is the hyperparameter of extended size. Subsequently, the in-
verse Discrete Cosine Transform (iDCT) is applied to convert the frequency components F extend

back into a temporal signal Xextend ∈ RD×N . This process is formulated as:

F extend = Resampling(Fmask) (3)

Xextend
n =

√
2

D

D−1∑
t=0

c(µ)F extend
n cos[

πµ(2t+ 1)

2D
] (4)

where Resampling(·) is implemented by the learnable linear interpolation. By performing masking
and resampling within the frequency domain, the signal’s periodicity is robustly preserved and even
enhanced (see Appendix A.5). Therefore, the importance of timestamps is greatly diminished.

3.2 DYNAMIC GRAPH LEARNING

Unlike SageFormer and MSGNet (Cai et al., 2024), which rely solely on self-learned node embed-
dings to construct graph structure—a process prone to learning spurious correlations (Fan et al.,
2023), we inject the input features (i.e., the output Xsa ∈ RN×Dof the self-attention layer) into
the node embedding generation process. This allows us to define the graph topology from a global
perspective based on the input tokens, aligning the global modeling by self-attention. Specifically,
we first use a linear transformation to derive an adaptive gating weight for each node from the
static node embedding and global dynamic input. This weight is then multiplied with a linearly
transformed representation of the node’s own features, obtaining a dynamic node embedding that is
continuously updated throughout the network.

Θl = ReLU(Tanh(Linear(Concat(Xsa,l,Θl)))) ⊙ Linear(Xsa,l) + Θl (5)

where Θl includes Θl
1,Θ

l
2 ∈ RN×nd, which are trainable parameters (with random initialization)

of l-th layer, nd is a hyperparameter, denoting the dimension of node. Θl
1 and Θl

2 employ the same

5
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update strategy as in Equation 5, but without parameter sharing. ⊙ is the Hadamard Product. Then,
the adjacent matrix Al ∈ RN×N of l-th layer can be represented as: Al = Softmax(ReLU(Θl

1 ·
(Θl

2)
T )). Therefore, the graph structure at the l-th layer can be denoted as Gl = (Al, Xsa,l).

To reconcile the discrepancy between the local neighborhood aggregation of GNNs and the global
modeling of Transformers’ self-attention, we employ a multi-hop GCN (Hamilton et al., 2017) to
capture IVD at the deep feature level. The information from different hop neighborhoods is then
combined using a linear layer byXDGL

out = MLP(GCN(Xsa, A)). By aggregating information from
its i-hop neighborhood, an i-hop GCN effectively enlarges each node’s receptive field, enabling
the capture of higher-order graph structures. To preserve the deep network’s capacity for temporal
feature extraction, our DGL strategically mirrors the two-layer MLP design of a conventional FFN.
Specifically, the first MLP layer is adapted to aggregate multi-hop neighborhood information, while
the second MLP layer extracts temporal features from the deep representations that have already
been enriched with IVD.

3.3 CONSISTENCY ALIGNMENT LOSS FUNCTION

The self-attention mechanism in a Transformer is essentially a GNN operating on a fully-connected
graph, which implies that they can describe the same underlying correlation structure. Based on this
insight, our work is the first to propose an explicit constraint alignment between the dependencies
captured by the deep-layer GNN and the shallow-layer self-attention. This alignment prevents over-
reliance on a single mode of dependency modeling (Figure 9 analyzes the respective disadvantages).
Following iTransformer, each variable Xextend[n, :] ∈ R1×D, n = 1, 2, . . . , N , is regarded as an
independent token and the self-attention layer then is applied to model multivariate correlations:

headi = Softmax(
(XextendWQ

i ) · (XextendWK
i )T√

dK
),MCM = Concat(head1, ..., headh) (6)

where WQ
i ,W

K
i ∈ RD×D

h are the projection metrices of i-th head, and h is the number of attention
heads with a default value 8. We use MCM ∈ Rh×N×N to represent the multivariate correlation
map (a.k.a., attention score). Therefore, the total alignment loss of l layer CGTFra for consistent
IVD modeling can be formalized as follows by Kullback-Leibler (KL) Divergence:

Lalign =

L∑
l=1

KL(Pl ∥ Ql) =

L∑
l=1

N2∑
k=1

epl,k(pl,k − ql,k) (7)

where pl = logPl = log softmax(Vec(Avg(MCMl))), and ql = logQl = log softmax(Vec(Al)).
In our implementation, we directly compute the log-probabilities to avoid log(0) errors. Avg(·)
denotes averaging the attention score along h attention head, and Vec(·) denotes vectorizing the
correlation matrix into a one-dimensional vector. Therefore, the total loss function for optimizing
CGTFra is formulated as:

L = LMAE + λLalign , (8)

where LMAE = 1
F

∑F
i=1 |yi − ŷi| represents the Mean Absolute Error (MAE) for evaluating pre-

diction accuracy with the forecasting length F . yi and ŷi are the ground truth and predicted value at
time i, and λ is a hyperparameter, controlling the contribution of alignment loss. Here, for simplicity,
we omit the batch dimension and illustrate the loss calculation for a single variable.

4 EXPERIMENTS

4.1 DATASETS

We select 13 real-world datasets to comprehensively verify our CGTFra following iTransformer,
including ETT (4 subsets), Weather, Exchange, Electricity (ECL), Solar-Energy, Traffic, PEMS03,
PEMS04, PEMS07 and PEMS08. All datasets are preprocessed following iTransformer. And more
details of these datasets are provided in Appendix A.11.

4.2 BASELINES AND EXPERIMENTAL SETTINGS

We choose 13 sota forecasting methods as our benchmarks, including (1) Transformer-based mod-
els: DUET (Qiu et al., 2025), Soatten (Wu, 2025), Vcformer (Yang et al., 2024), iTransformer (Liu
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et al., 2024), Crossformer (Zhang & Yan, 2023), and PatchTST (Nie et al., 2023); (2) GNN-based
approach, MSGNet (Cai et al., 2024); (3) MLP/Linear-based models: FilterNet (Yi et al., 2024),
RLinear (Li et al., 2023), TiDE (Das et al., 2023), and DLinear (Zeng et al., 2023); (4) CNN-based
one: TimesNet (Wu et al., 2023b); (5) Mamba-based method, TimePro (Ma et al., 2025). Follow-
ing established practice, we evaluate our CGTFra using Mean Absolute Error (MAE) and Mean
Squared Error (MSE). The input length for all datasets is set as 96 in main comparison scenario.
All experiments are implemented in PyTorch 2.0.1 with Python 3.8 on two NVIDIA GeForce RTX
3090 GPUs. Additional implementation details can be found in the Appendix A.12.

4.3 MAIN RESULTS

The long-term and short-term forecasting comparison results are presented in Table 1 and Table
8. Overall, CGTFra demonstrates superior performance in both forecasting tasks. This superiority
is particularly pronounced on datasets with a large number of variables, such as ECL, and Traf-
fic, where modeling IVD poses a significant challenge for existing methods, such as DUET and
VCformer. Specifically, compared to DUET, CGTFra reduces MSE (MAE) by 5.1% (4.5%) on
the Traffic dataset. Additionally, in most scenarios, CGTFra exhibits enhanced performance when
applied to datasets with inherent low predictability (see Table 6), including ETT and Solar, demon-
strating the effectiveness of CGTFra to modeling long-term intra- and inter-variate dependencies.

Table 1: Long-term forecasting results with fixed input Length T=96 and forecasting horizons
F ∈ {96, 192, 336, 720}. The results are averaged from four forecasting horizons. Full results,
short-term forecasting results, and the additional comparison scenario when T=336 are all provided
in Appendix A.13. Bold: best results, underline: second best one.

Models CGTFra DUET TimePro Soatten VCformer FilterNet iTransformer MSGNet PatchTST
(ours) (KDD’25) (ICML’25) (AAAI’25) (IJCAI’24) (NeurIPS’24) (ICLR’24) (AAAI’24) (ICLR’23)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.388 0.386 0.390 0.393 0.391 0.400 0.394 0.402 0.387 0.397 0.384 0.398 0.407 0.410 0.398 0.411 0.387 0.400

ETTm2 0.277 0.316 0.280 0.324 0.281 0.326 0.287 0.331 0.285 0.330 0.276 0.322 0.288 0.332 0.288 0.330 0.281 0.326

ETTh1 0.436 0.428 0.443 0.436 0.438 0.438 0.447 0.440 0.439 0.437 0.440 0.432 0.454 0.447 0.452 0.452 0.469 0.454

ETTh2 0.369 0.394 0.372 0.397 0.377 0.403 0.379 0.405 0.377 0.403 0.378 0.404 0.383 0.407 0.396 0.417 0.387 0.407

Exchange 0.312 0.382 0.318 0.384 0.352 0.399 0.359 0.404 0.355 0.402 0.356 0.395 0.360 0.403 0.399 0.430 0.367 0.404

Weather 0.238 0.260 0.251 0.273 0.251 0.276 0.245 0.273 0.258 0.282 0.245 0.272 0.258 0.278 0.249 0.278 0.259 0.281

ECL 0.165 0.253 0.172 0.258 0.169 0.262 0.166 0.259 0.180 0.267 0.173 0.268 0.178 0.270 0.194 0.300 0.205 0.290

Solar 0.224 0.228 0.237 0.233 0.232 0.266 0.229 0.261 - - - - 0.233 0.262 - - 0.270 0.307

Traffic 0.427 0.257 0.451 0.269 - - 0.437 0.286 0.483 0.325 0.463 0.310 0.428 0.282 - - 0.555 0.362

4.4 FRAMEWORK GENERALITY

To evaluate the effectiveness and scalability of the three core designs in CGTFra: Frequency Mask-
ing and Resampling (FMR), Dynamic Graph Learning (DGL) framework, and Consistency Align-
ment Loss (CAL), we conducted a series of integration and replacement experiments within existing
SOTA models, including DUET, iTransformer, VCformer, FilterNet and CASA (Lee et al., 2025).
For fair comparison, we use their originally published hyperparameter settings. “+ FMR”, “+ DGL”:
substituting their input up-sampling methods with our FMR and their FFNs with our DGL. “+ CAL”:
on top of the DGL substitution, we introduce the CAL. The averaged comparison results are pre-
sented in Table 2. FMR and DGL demonstrated consistent performance improvements in almost all
datasets, and the substantial performance gains brought by DGL underscore the importance
of deep IVD modeling, which has been entirely overlooked in their studies. In addition, we ob-
serve that by introducing CAL, compared to their original performance, iTransformer (VC-
former) reduces the MSE by 4.9% (7.4%) and 7.4% (10.2%) on Weather and ECL datasets,
respectively, approaching or even surpassing the latest sota methods DUET and TimePro. Fur-
thermore, to specifically verify the efficacy of the DGL within the broader family of variate trans-
formers, we integrated it into four architectures mentioned in the iTransformer: iFlashformer (Dao
et al., 2022), iFlowformer (Wu et al., 2022), iInformer (Zhou et al., 2021), and iReformer (Kitaev
et al., 2020). In Table 12, some variate Transformers integrated into DGL show a slight performance
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Table 2: Verification of Framework Generality. Results are averaged from four forecasting horizons.
Full results, additional valuation metrics and further analysis are in Appendix A.14. For a fair
comparison, the results in Table 1 are taken from their officially released reports, whereas the results
below are reproduced under our experimental environment, and consequently, some discrepancies
exist. “–” denotes that the original method was not evaluated on certain datasets, or that we encoun-
tered out-of-memory issues. “iTrans” and “Filter” denote iTransformer and FilterNet, respectively.

Models ETTm1 ETTm2 ETTh1 ETTh2 Exchange Weather ECL Solar Traffic

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

D
U

E
T original 0.391 0.394 0.279 0.322 0.449 0.440 0.372 0.398 0.309 0.380 0.247 0.270 0.172 0.258 0.241 0.246 0.451 0.269

+ DGL 0.389 0.391 0.277 0.320 0.444 0.436 0.368 0.395 0.296 0.373 0.247 0.272 0.166 0.255 0.243 0.258 0.448 0.268
+ CAL 0.391 0.393 0.282 0.324 0.438 0.432 0.373 0.397 0.305 0.376 0.237 0.263 0.164 0.253 0.242 0.253 0.452 0.269

iT
ra

ns

original 0.408 0.412 0.293 0.337 0.457 0.449 0.384 0.407 0.369 0.409 0.262 0.283 0.176 0.268 0.235 0.261 0.422 0.282
+ FMR 0.403 0.406 0.291 0.333 0.448 0.440 0.381 0.406 0.358 0.404 0.259 0.282 0.175 0.266 0.229 0.260 0.423 0.281
+ DGL 0.400 0.406 0.293 0.335 0.449 0.442 0.390 0.412 0.368 0.409 0.252 0.278 0.169 0.263 0.234 0.263 0.434 0.288
+ CAL 0.402 0.405 0.292 0.335 0.444 0.440 0.386 0.408 0.365 0.408 0.249 0.276 0.163 0.257 0.233 0.262 0.440 0.286

V
C

fo
rm

er original 0.404 0.406 0.292 0.334 0.488 0.460 0.384 0.405 0.358 0.403 0.269 0.286 0.186 0.278 - - - -
+ FMR 0.398 0.402 0.291 0.333 0.457 0.441 0.385 0.406 0.367 0.409 0.265 0.285 0.182 0.275 - - - -
+ DGL 0.398 0.401 0.289 0.333 0.456 0.447 0.389 0.410 0.363 0.404 0.249 0.275 0.174 0.266 - - - -
+ CAL 0.401 0.405 0.287 0.331 0.451 0.444 0.388 0.410 0.361 0.406 0.249 0.275 0.167 0.261 - - - -

C
A

SA original 0.391 0.400 0.279 0.323 0.442 0.440 0.383 0.406 - - 0.249 0.276 0.172 0.265 0.226 0.261 0.427 0.278
+ FMR 0.392 0.401 0.277 0.322 0.442 0.440 0.378 0.404 - - 0.245 0.273 0.169 0.263 0.223 0.259 0.444 0.279

Fi
lte

r original 0.384 0.398 0.277 0.322 0.451 0.437 0.379 0.405 - - 0.253 0.280 0.179 0.272 - - 0.460 0.304
+ FMR 0.383 0.398 0.276 0.322 0.450 0.437 0.379 0.405 - - 0.248 0.276 0.177 0.271 - - 0.455 0.300

decline on the Solar, despite a minimal difference in their MAE. Therefore, we provide additional
evaluation metrics in Section A.14 to validate the effectiveness of DGL and CAL.

4.5 ABLATION STUDY

The comparison between aba1, and CGTFra vs aba3, demonstrates that the FMR, by effectively
purifying and enhancing input features, substantially enhances the robustness of deep-layer IVD
modeling, particularly on the ECL and Traffic. Furthermore, by introducing DGL and CAL (see
aba1 vs aba2 and CGTFra vs aba2), consistent performance improvement indicates that constraining
the consistency between shallow- and deep-layer IVD modeling enables the model to achieve a
more robust balance of dependencies. To further validate the necessity of modeling inter-variable
dependencies at deeper layers, we present experiments on variants of CGTFra in Appendix A.15.

Table 3: Ablation studies on five diverse datasets. The results are averaged from four forecasting
horizons. Full results are provided in Table 15 of Appendix.

Part FMR DGL CAL ETTm1 ETTh1 Weather ECL Traffic
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

CGTFra ✓ ✓ ✓ 0.388 0.386 0.436 0.428 0.238 0.260 0.165 0.253 0.427 0.257
aba1 ✓ × × 0.397 0.393 0.442 0.431 0.245 0.266 0.170 0.256 0.431 0.261
aba2 ✓ ✓ × 0.389 0.390 0.437 0.428 0.242 0.266 0.168 0.256 0.430 0.259
aba3 × ✓ ✓ 0.392 0.390 0.437 0.429 0.243 0.266 0.173 0.260 0.444 0.262

4.6 ANALYSIS OF INTER-SERIES DEPENDENCY MODELING

To further analyze CGTFra’s effectiveness in modeling inter-variate dependencies and extracting
complex temporal dynamics, we select a sample from the Weather dataset’s test set (all variable
dynamics are provided in Figure 10 (b)). Within this sample (with 21 variables), four highly corre-
lated variables (variables 3, 7, 8, and 13) are chosen for visualization and analysis. As depicted in
Figure 5, we visualize the prediction curves of these four variables predicted by CGTFra, alongside
the PCC and DTW among the ground truth, and CGTFra predicted variables. We observed that al-
though the predicted sequences do not greatly match with the true sequences, the overall trends are
correctly captured. Furthermore, the close proximity of the predicted PCC and DTW values to their
true counterparts indicates the model’s commendable ability to capture inter-variate dependencies.
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Figure 5: Prediction curves for CGTFra (input 96-predict 96) and the DTW and PCC comparison
between ground truth and predicted sequences among variables [3, 7, 8, 13]. According to DTW and
PCC, variable 3 exhibits a strong association with variable 8, while variable 7 also shows substantial
correlations with both variables 3 and 8, as indicated by small DTW distances and high PCC.
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Figure 6: Inter-variate correlation learned by CGTFra on the test sample. (a) and (b): Dependencies
from CGTFra without CAL; (c) and (d): Dependencies from the complete CGTFra with CAL.
(a) and (c): Correlation matrices from the shallow self-attention layer and deep DGL; (b) and (d):
Zoomed-in visualization of dependencies for variables 3, 7, 8, and 13.

Moving to Figure 6, we present two inter-variate correlation matrices learned by CGTFra from the
selected test sample: one from the self-attention layer and the other from the DGL. Observing Figure
6(b), we are surprised to find that, without the CAL constraint, neither the self-attention layer
nor the DGL success to capture critical dependencies. This phenomenon is not attributed to a
performance degradation caused by introducing DGL, but rather likely represents an inher-
ent modeling challenge for the network (CGTFra’s performance without CAL in the Weather test
set is MSE: 0.159 and MAE: 0.195, both outperforming existing methods, as shown in Table 15
and 7). Nevertheless, DGL still successfully captured the correlation between variables 3 and 7 (see
coordinates (3, 7)), which is consistent with our analysis in Figure 9 on ETTh1, where DGL is
shown to capture indirect dependencies (between variable 4 and 5). This finding indicates that,
compared with the global self-attention mechanism, GNNs possess an advantage in capturing
indirect (or potential) dependencies by aggregating information from adjacent nodes—for ex-
ample, in Weather dataset, the relationship between variable 3 and variable 8 is apparent (direct),
that between variable 3 (or 8) and variable 7 constitutes an indirect dependency (they also have
smaller DTW distances and higher PCC).

Upon the introduction of CAL, both the self-attention layer and DGL effectively model prominent
dependency correlations, as illustrated in Figures 6(c) and 6(d). Let us first examine two strongly
correlated variables: variable 3 and 8 (see (8, 3)). The self-attention layer capture a weight of 0.03,
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whereas DGL captures a weight of 0.06. Subsequently, we observe variable 3 and 7 (see (3, 7)),
where the self-attention layer learns a weight of 0.08, while DGL captures a weight of 0.13. Fur-
thermore, for variable 8 and 7 (see (8, 7)), they show 0.07 and 0.0, respectively. These observations
suggest that the self-attention mechanism (which captures global inter-variate correlations)
and DGL (which leverages multi-hop GCNs for local dependency capture), possess distinct
advantages. Crucially, the introduction of CAL promotes both mechanisms to achieve a more
balanced and robust representation of dependency correlations.

Figure 7 visualizes the t-SNE (Maaten & Hinton, 2008) embeddings learned from 1,500 test samples
of the Weather dataset. Consistent with prior analysis, the embeddings for variables 3 and 8 learned
by all three models (CGTFra, iTransformer, and DUET) are observed to be nearly overlapping (ow-
ing to their strong dependency). Building upon this, CGTFra demonstrates a shorter intra-variable
distance, indicating that its representations for the same variable across different samples are more
compact. Furthermore, in the embedding space of CGTFra, variable 13 is positioned more dis-
tantly from the others, and its sample representations are more tightly clustered. These observations
suggest that CGTFra possesses a superior representation capability for learning individual variable
features while more accurately capturing their inter-dependencies.
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Figure 7: T-SNE visualization for variable 3, 7, 8, and 13 on the Weather test set.
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Figure 8: Visualization of training and valida-
tion loss curves for iTransformer (ECL: Input
96-Predict 96).

We plot the training and validation loss curves of
iTransformer after incorporating DGL and CAL.
The trajectories indicate that deep modeling of
IVD accelerates paremeter adjustment towords
lower loss. Moreover, we observe that introducing
CAL yields a similarly stable loss trajectory as in-
tegrating DGL (this diminishing gain is expected,
as most of the performance boost has already been
achieved by DGL), suggesting that achieve con-
sistency alignment between deep- and shallow-
level IVD provides additional effectiveness and
robustness.

5 CONCLUSION

By conducting a theoretical investigation into the distinctions and connections between how variate
Transformers and GNNs model IVD, this paper proposes CGTFra. This framework addresses the
limitation of existing variate Transformers that neglect deep-layer IVD modeling. Furthermore, we
introduce, for the first time, a consistency constraint applied to IVD learned by both self-attention
and deep graph learning frameworks. This constraint serves as a regularization term in the total
loss function, enabling the model to capture more consistent and robust IVD. This novel learning
paradigm has been validated across multiple existing variate Transformers. We believe that explor-
ing further mutual guidance principles between graph structures and Transformer-based inter-variate
dependency modeling represents a promising future research direction. Additional limitations about
CGTFra are provided in Appendix A.19.
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6 REPRODUCIBILITY STATEMENT

Although an anonymous GitHub link is provided in the main text, we additionally upload the source
code in the supplementary material. The code includes the proposed CGTFra as well as various
baselines used to validate FMR, DGL, and CAL, including DUET, iTransformer, VCformer, CASA,
and other variant Transformers, ensuring that all comparative results in this paper are reproducible.
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A APPENDIX

A.1 LARGE LANGUAGE MODELS (LLMS) USAGE DISCLOSURE

The research methods, datasets, and open-source code in our study were developed without Large
Language Models’ assistance (e.g., ChatGPT). During manuscript preparation, GPT-based tools
were solely employed to polish of selected words or sentences.

A.2 DETAILED ANALYSIS OF IVD SIMILARITY BY SELF-ATTENTION AND DGL
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Figure 9: Comparative analysis of dependency matrices from self-attention and GNN (derived from
the 7 variables in Figure 1). (a) before alignment; (b) after applying the alignment constraint. Con-
sistent with the PCM and DTW matrices in Figure 1, the self-attention mechanism successfully
captures dependencies between highly similar variables, such as the pairs (2, 0) and (3, 1), and show
similar dependency correlations with other variables (see rows (0 vs. 2) and (1 vs. 3) in Attention
Score Map). However, self-attention fails to capture less direct correlations, such as the one
between variables 4 and 5 (See Figure 1, their PCC and DTW are 0.6, 5.3, respectively), which
is successfully identified by the GNN (see coordinate (5,4)). This result effectively demonstrates
the efficacy of using DGL to model IVD in the deeper layers of our network. However, we also
observed that the dependencies modeled by DGL can be exaggerated in some cases (e.g., at coordi-
nate (4, 2)). To address this, we further introduced CAL based on information bottleneck principle
(see Appendix A.9) to impose constraints on the IVD modeling. As shown by the graph structure in
Figure (b), this inconsistency is significantly mitigated: compared to Figure (a), the KL divergence
between the attention score and graph structure reduces form 0.0260 to 0.0249.

A.3 MOTIVATION OF FREQUENCY MASKING AND RESAMPLING

Benefiting from the global receptive field of the frequency domain space, analyzing time series in
the frequency space has become a prevailing trend, as seen in methods such as Fedformer (Zhou
et al., 2022), TSLANet (Eldele et al., 2024), FilterNet (Yi et al., 2024), and DUET (Qiu et al.,
2025). However, these approaches rely on the Discrete Fourier Transform (DFT) for frequency-
domain analysis. Since DFT involves both real and imaginary components, it is computationally
more complex than the Discrete Cosine Transform (DCT). Moreover, methods such as TSLANet
and FilterNet primarily perform filtering on frequency components—similar to the masking mech-
anism proposed in this work—before transforming the filtered components back into the time do-
main for subsequent abstract feature learning. This procedure introduces a potential risk: if
critical frequency information is inadvertently filtered out, the subsequent feature extractor
may struggle to capture informative representations. Consequently, such methods require
both carefully designed frequency-domain filters and well-structured downstream feature ex-
tractors to achieve competitive performance. Therefore, this paper proposes leveraging DCT
to directly conduct frequency-domain analysis in the real-valued space and applying linear inter-
polation to the masked frequency components, thereby mitigating the risk of discarding essential
information. Furthermore, we provide a theoretical discussion on the relationship between DFT and
DCT as well as their computational complexity.

Like Section 3, let {f(l)}, l = 0, 1, . . . , L − 1 be a input sequence. And let an extended sequence
{el} be symmetric about the (2L− 1)/2 point, that is, el can be constructed by:

el =

{
f(l), l = 0, 1, ..., L− 1

f(2L− l − 1), l = L,L+ 1, ..., 2L− 1
(9)
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Here, suppose L=4, then the {f(l)} and {el} are:

{f(l)} = {f(0), f(1), f(2), f(3)}

{el} = {f(0), f(1), f(2), f(3), f(3), f(2), f(1), f(0)}
Let W2L denote exp(−j2π/2L), therefore the Discrete Fourier Transform (DFT) of el can be given
by:

Eµ =

2L−1∑
l=0

elW
lµ
2L (10)

it can be easily reduced to

Eµ =

L−1∑
l=0

f(l)W lµ
2L +

2L−1∑
l=L

f(2L− l − 1)W lµ
2L

=

L−1∑
l=0

f(l)W lµ
2L +

L−1∑
l=0

f(l)W
(2L−l−1)µ
2L

=

L−1∑
l=0

f(l)[W lµ
2L +W

−(l+1)µ
2L ], µ = 0, 1, ..., 2L− 1.

(11)

If we use a factor of 1
2W

µ/2
2L to multiply both sides of Equation 11, resulting in

1

2
W

µ/2
2L Eµ =

L−1∑
l=0

f(l)cos[
πµ(2l + 1)

2L
] (12)

We can see that Equation 12 can be approximately Equation 1 of theL-point sequence f(t), differing
only by the scaling factors. In Equation 10, Eµ is the 2L-point DFT of {el} and Equation 12
indicates that for µ = 0, 1, ..., L − 1, after properly scaled, the transformed sequence {Eµ} can
become the Type II DCT of {f(l)}.

When {f(l)} is real and el is symmetric, {Eµ} can be computed via two N -point FFTs instead of
via a single 2N -point FFT. Given that the computational complexity of an N -point FFT algorithm
scales as O(Nlog2N) complex operations, this optimization reduces the Nlog2N FFT operation
count by 2N complex operations.

A.4 ACTUAL EFFICACY OF TIMESTAMPS INFORMATION

In the introduction, to investigate the actual contribution of timestamp information to iTransformer,
we replace its original timestamp-embedded input upsampling module with a single linear layer
without timestamp embedding. The performance comparison in Table 4 shows that timestamp in-
formation improves prediction performance only on the Traffic dataset, while leading to degradation
on all other datasets, suggesting that its effectiveness deserves reconsideration. To explore this, we
visualize partial time segments of the top five variables from the 862 variables in the Traffic dataset
(see Figure 10 (a)). The results reveal fixed fluctuation patterns in traffic flow at nearly the same pe-
riods each day, and importantly, other variables exhibit highly similar variations. This observation
may explain why timestamp information benefits iTransformer on Traffic. However, such charac-
teristics are rare in real-world systems like weather or stock volatility, where variables tend to have
more complex dependencies (see Figure 10 (b)).

The frequency-domain representations of the signals inherently provides a global perspective, and
the periodic and seasonal characteristics of the signals are effectively represented in its frequency
domain components (Zhou et al., 2022). Based on this insight, we propose a frequency-domain
masking and resampling method (FMR) that preserves and enhances signal periodicity, thereby
mitigating the over-reliance of existing methods on timestamp information for providing additional
periodic insights. As shown in Table 4 (also in Table 2 or Table 11), FMR consistently improves per-
formance across almost all datasets, further diminishing the importance of timestamp information.
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Table 4: Verification of timestamps with four prediction length F ∈ {96, 192, 336, 720} and fixed
input T=96. All results were reproduced using their released code and identical hyperparameters.
“iTrans” is iTransformer, and “R Linear” represents that we replace the input upsampling method
within iTransformer with a sigle linear layer without timestamp embedding. For the “+FMR” sce-
nario, bold results indicate the best performance within all results.

Models ETTm1 ETTm2 ETTh1 ETTh2 Exchange Weather ECL Solar Traffic

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

iT
ra

ns

original

96 0.342 0.377 0.186 0.272 0.387 0.405 0.301 0.350 0.086 0.206 0.181 0.221 0.148 0.239 0.201 0.234 0.392 0.268
192 0.383 0.396 0.254 0.314 0.441 0.436 0.381 0.399 0.181 0.303 0.226 0.259 0.167 0.258 0.239 0.263 0.413 0.277
336 0.418 0.418 0.317 0.353 0.491 0.462 0.423 0.432 0.338 0.422 0.283 0.300 0.181 0.275 0.248 0.272 0.425 0.283
720 0.487 0.456 0.416 0.408 0.509 0.494 0.430 0.446 0.869 0.704 0.359 0.351 0.209 0.299 0.250 0.275 0.459 0.300

iT
ra

ns

R Linear

96 0.347 0.377 0.184 0.267 0.383 0.401 0.303 0.352 0.085 0.205 0.183 0.223 0.147 0.239 0.201 0.233 0.396 0.270
192 0.384 0.393 0.253 0.312 0.434 0.430 0.378 0.397 0.178 0.301 0.226 0.259 0.162 0.253 0.239 0.263 0.416 0.277
336 0.416 0.414 0.319 0.354 0.487 0.457 0.417 0.429 0.336 0.420 0.281 0.299 0.175 0.267 0.248 0.273 0.431 0.285
720 0.483 0.451 0.414 0.406 0.496 0.483 0.424 0.444 0.842 0.692 0.356 0.347 0.211 0.301 0.249 0.275 0.465 0.302

iT
ra

ns

+ FMR

96 0.340 0.373 0.183 0.265 0.382 0.398 0.299 0.350 0.084 0.204 0.180 0.222 0.141 0.235 0.199 0.237 0.393 0.268
192 0.377 0.389 0.249 0.309 0.434 0.429 0.379 0.399 0.176 0.299 0.222 0.258 0.157 0.250 0.233 0.259 0.413 0.276
336 0.412 0.411 0.314 0.350 0.483 0.454 0.419 0.430 0.339 0.423 0.279 0.300 0.171 0.264 0.242 0.269 0.428 0.282
720 0.481 0.450 0.418 0.409 0.492 0.480 0.426 0.445 0.834 0.690 0.356 0.350 0.233 0.316 0.244 0.273 0.458 0.299

A.5 VISUALIZATION OF SPECTRUM

To demonstrate that the proposed FMR preserves signal periodicity and enhances the input signal,
we performed a Fourier Transform on a real signal from ETTh1. We then plotted the spectrum of
the original signal, the spectrum of the embedding obtained by direct single-linear-layer upsam-
pling of the signal, and the spectrum after processing with the proposed FMR, as shown in Figure
11. Compared to direct linear embedding in the time domain (the commonly adopted approaches
in existing methods include embedding techniques that incorporate timestamps), FMR retains more
low-frequency information (where the signal’s primary information is preserved, as seen in the sec-
ond subplot) by learning variable-independent masks and performing linear interpolation in the fre-
quency domain. Simultaneously, FMR exhibits a mid-to-high frequency energy distribution closer
to that of the real signal, demonstrating better periodicity information retention capabilities than
linear embedding directly in time domain.
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Figure 10: Time series trends of different variables in the Traffic (a) and Weather (b) datasets.
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Figure 11: Visualization of spetrum as for raw signal and different embedding methods.

As depicted in Figure 12, we visualize the learned masks for variables 0, 2, 3, and 6 within the
ETTh1 dataset. A high degree of similarity is observed between the masks for variables 0 and 2,
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which is consistent with their strong interdependency (PCC = 1.0 in Figure 1). Conversely, the
masks for variables 3 and 6, being learned independently, exhibit notable distinctions. Specifically,
compared to other variables, the mask for variable 3 suppresses more high-frequency components,
which may be because variable 3 exhibits greater volatility and noise. Importantly, we also observe
that the masks for all variables predominantly preserve low-frequency components, which contain
the signal’s periodic and trend information. This highlights the ability of our FMR to learn adaptive,
variable-specific masks that align with the unique properties of each series.
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Figure 12: Visualization of learned masks on variable 0, 2, 3, and 6 of ETTh1.

A.6 ADDITIONAL EVALUATION METRICS

To evaluate the correlations and similarities among variables in multivariate time series, we introduce
Dynamic Time Warping (DTW) (Müller, 2007) and Pearson Correlation Coefficient (PCC) (Benesty
et al., 2009).

Dynamic Time Warping. Dynamic Time Warping (DTW) calculates the similarity between two
time series by finding the optimal matching path between them. DTW effectively handles ir-
regularities such as temporal shifts and varying speeds within sequences, demonstrating strong
performance in practical problems like speech and gesture recognition. Given two time series
Y = {y0, y1, ..., yT−1} ∈ RT and Ŷ = {ŷ0, ŷ0, ..., ŷT−1} ∈ RT , the DTW distance can be formu-
lated as:

DTW(Y, Ŷ ) = min
A∈A(Y,Ŷ )

∑
(i,j)∈A

d(yi, ŷj) =
∑

(i,j)∈A∗

d(yi, ŷj), (13)

Here, d(·, ·) represents a distance metric, commonly the squared Euclidean distance. A warping
path, denoted by A, comprises K index pairs {(i0, j0) , (i1, j1), . . . , (iK−1, jK−1)}, with indices
ik, jk ranging from 0 to T − 1. The collection of all valid warping paths is given by A(Y, Ŷ ). The
optimal path, A∗ ∈ A(Y, Ŷ ), is the one that minimizes the cumulative distance across aligned time
steps. A warping path A is deemed valid if it fulfills the subsequent conditions:

• Boundary Constraint: (i0, j0) = (0, 0) and (iK−1, jK−1) = (T − 1, T − 1).
• Monotonicity Constraint: The indices must be non-decreasing along the path, specifically
ik+1 ≥ ik and jk+1 ≥ jk for all k ∈ [0,K − 2].

• Step Size Constraint: Each step from (ik, jk) to (ik+1, jk+1) must advance by one
unit horizontally, vertically, or diagonally. Formally, (ik+1 − ik, jk+1 − jk) ∈
{(1, 0), (0, 1), (1, 1)}, for all k ∈ [0,K − 2].

Pearson Correlation Coefficient. Pearson Correlation Coefficient (PCC) evaluates how strongly
two variables are linearly related. Given two tokens Y = {y0, y1, ..., yT−1} ∈ RT and Ŷ =
{ŷ0, ŷ0, ..., ŷT−1} ∈ RT and their mean values ȳ and ¯̂y, PCC can be defined as:

PCC(Y, Ŷ ) =

∑T−1
t=0 (yt − ȳ)(ŷt − ¯̂y)√∑T−1

t=0 (yt − ȳ)2 ·
√∑T−1

t=0 (ŷt − ¯̂y)2
(14)
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A.7 TRANSFORMERS ARE FULLY-CONNECTED GNNS

GNNs employ the graph’s connective structure to propagate and aggregate information among ad-
jacent nodes. Let hi denote the node attributes of node i. In Graph Attention Networks (GATs)
(Veličković et al., 2018), the relationship between the attributes of nodes i and its neighbors j ∈ Ni

can be computed as:

ψ(hli, h
l
j) = Attention(W l

Qh
l
i, {W l

Kh
l
j ,∀j ∈ Ni}, {W l

V h
l
j ,∀j ∈ Ni}),

=
exp(W l

Qh
l
i ·W l

Kh
l
j)∑

j′∈Ni
exp(W l

Qh
l
i ·W l

Kh
l
j′)

·W l
V h

l
j ,

(15)

where W l
Q,W

l
K ,W

l
V ∈ Rd×d are learnable weight matrices. The ψ(hli, h

l
j) allows GATs to deter-

mine the significance of each neighbor for a given node in the aggregation process. The updated
attribute features for node i is derived by combining the information from all of its adjacent nodes:

hl+1
i = hli +

∑
j∈Ni

ψ(hli, h
l
j), (16)

In variate Transformer, the self-attention captures correlations between all input tokens in MTS input
X as follows:

ψ(hli, h
l
j) = Attention(W l

Qh
l
i, {W l

Kh
l
j ,∀j ∈ X}, {W l

V h
l
j ,∀j ∈ X}),

=
exp(W l

Qh
l
i ·W l

Kh
l
j)∑

j′∈X exp(W l
Qh

l
i ·W l

Kh
l
j′)

·W l
V h

l
j ,

(17)

Here, ψ(hli, h
l
j) determines the message between the token pairs (i, j), with each token’s relative

significance derived through an attention mechanism. Subsequently, these weighted messages from
all tokens within the X are combined via summation. Then, the token representations for token i
are updated using residual connection (He et al., 2016), layer normalization and MLP:

hl+1
i = ϕ(hli,m

l
i) = MLP(LayerNorm(hli +

∑
j∈X

ψ(hli, h
l
j))). (18)

Equation. 15 bears a strong resemblance to the self-attention mechanism within the Transformer.
The primary distinction lies in the scope of the aggregation: whereas in GNN the index j is con-
strained to the local neighborhood of node i, in Transformer’s self-attention, the aggregation is
performed over the entire set of tokens in the sequence. This effectively means the Transformer can
be interpreted as a special instance of a GNN operating on a dynamically-weighted, fully-connected
graph, where every token is considered a neighbor to all others.

iTransformer presented insightful experiments (see Table 3 in iTransformer paper) where they re-
placed the FFN with a self-attention layer, essentially constructing a Transformer with two self-
attention layers. The experimental results indicated that simply stacking multiple self-attention
layers did not facilitate the learning of correct inter-variate dependencies and temporal patterns.
Therefore, based on the aforementioned analysis, we resort to GNNs for modeling inter-variate
dependencies within the deeper layers of the Transformer. Theoretically, GNNs and self-attention
layers are closely linked in their ability to capture global relationships. This insight forms the ba-
sis of our novel, theoretically grounded perspective: how to effectively integrate graph-learned
dependencies with inter-variate relationships captured by Transformers.

A.8 WHY WE USE MULTI-HOP GRAPH CONVOLUTION NETWORK WITH THE SAME GRAPH
STRUCTURE?

We reformulate Equation. 16 as Equation. 20. We note that the key distinction between GAT
and GCN lies in their adjacency matrix weights: in GAT, the weights of the adjacency matrix are
learned dynamically and are different for each layer l (a.k.a., each hop in multi-hop GNN), whereas
a standard GCN employs a fixed adjacency matrix for feature propagation.

H l+1 = H l + σ(AlH lW l), (19)
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Table 5: Comparative Performance of different GNNs in Modeling of Inter-Variable Dependencies
in the Network Deep Layer.

GNN F
ETTm1 ETTh1 Weather ECL

MSE MAE MSE MAE MSE MAE MSE MAE

GCN

96 0.315 0.344 0.372 0.387 0.152 0.190 0.137 0.227
192 0.366 0.372 0.424 0.418 0.203 0.239 0.155 0.243
336 0.398 0.395 0.473 0.443 0.257 0.279 0.170 0.259
720 0.472 0.435 0.473 0.464 0.338 0.334 0.198 0.283

GAT

96 0.321 0.348 0.375 0.388 0.150 0.190 0.141 0.231
192 0.370 0.374 0.428 0.420 0.209 0.242 0.165 0.247
336 0.405 0.399 0.469 0.441 0.262 0.281 0.175 0.262
720 0.465 0.432 0.471 0.463 0.344 0.337 0.213 0.289

where σ is the activation function, H and W are node features and learnable weights, respectively.
In our CGTFra, graph structures are dynamically learned from global inputs via linear transforma-
tions and gating mechanisms, rather than being predetermined. Consequently, the typical distinc-
tions between GCN and GAT in terms of their edge weights fixed or varying cross different hops
are attenuated. As presented in Table 5, we compare the performance difference within the CGT-
Fra framework when using either identical or distinct graph weights for information aggregation at
each hop in DGL (Essentially, based on input-constructed graph structures, we implement standard
GCN and GAT). Notably, when each hop employs a dynamically relearned graph structure based
on its current input, we apply a consistency constraint (CAL) to the graph structure of the final hop.
The results indicate that using dynamically updated edge weights at each hop does not yield sig-
nificant performance gains. We attribute this to the fact that shallow self-attention layers capture
inter-variate dependencies based on global tokens, learning association weights only once. Al-
though GNNs in DGL employ multi-hop strategies to aggregate information from broader nodes,
the graph structure proposed is also dynamically learned from the global input tokens (i.e., the out-
put of the self-attention layer). Therefore, utilizing the same graph structure across all hops is more
conducive to subsequent consistent alignment of inter-variate dependencies. Therefore, the DGL
within the proposed CGTFra framework employs consistent adjacency matrix weights across
all hops, akin to a standard multi-hop GCN. Furthermore, for different layers (L in Figure 4)
of CGTFra, the graph structure in DGL is distinct (input-dependent), which aligns with the
re-computation of attention scores in each self-attention layer.

A.9 THE THEORETICAL GUARANTEES OF CAL FROM INFORMATION BOTTLENECK
PRINCIPLE.

The Information Bottleneck (IB) principle (Tishby et al., 2000) aims to find a compressed rep-
resentation, denoted as Z, that maximally preserves information about a target variable Y while
simultaneously compressing the input X . This objective is typically formulated as the following
optimization problem:

max I(Z;Y )− β ∗ I(Z;X), (20)

where I(·; ·) represents mutual information and β is a Lagrange multiplier. Within our CGTFra
framework, we can interpret the self-attention map (MCM) as a high-bandwidth, yet potentially
noisy, representation of the inter-variable relationships in the input X . While its mutual information
with the input, I(MCM;X), is high, much of this information may constitute noise irrelevant to
the final prediction target Y . Conversely, the GNN’s adjacency matrix, A, is intended to be the
compressed and cleaner representation Z that we seek to learn. The goal is for A to discard the
noise present in MCM and retain only the structured information pertinent to predicting Y . In
this context, our alignment loss, Lalign = KL(MCM||A), can be viewed as a proxy or an upper
bound for the compression term, I(Z;X), in the IB objective. By minimizing KL(MCM||A), we
encourage the learned adjacency matrix A not to deviate excessively from the attention map MCM.
This implicitly controls the mutual information I(A;MCM), and by extension, I(A;X), aligning
our method with the core IB principle of learning a compressed yet informative representation.
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Figure 13: Typical Transformer-based approaches to modeling inter-variable dependencies.

A.10 EXISTING TRANSFORMER-BASED METHODS MODELING IVD.

We analyze four representative Transformer-based approaches for modeling inter-variable depen-
dencies, namely Sageformer (Zhang et al., 2024), DUET (Qiu et al., 2025), GL-STGTN (Li et al.,
2024), and STGAGRTN (Wu et al., 2023a). As illustrated in Figure 13, these methods embed inter-
variable dependencies primarily by incorporating them as masks or biases within the Transformer,
which we categorize as Figure 3(b).

• Sageformer (Zhang et al., 2024): SageFormer first employs a GNN (with totally self-
learned graph structure) to capture inter-variate correlations from the input MTS. The re-
sulting global, graph-enhanced embeddings are then fused with the original series to serve
as the input for a vanilla Transformer (i.e., temporal Transformer), which subsequently
models temporal dependencies.

• DUET (Qiu et al., 2025): DUET captures IVD in the frequency domain using metric learn-
ing. The resulting dependency is then integrated into the self-attention mechanism as a
mask for the attention scores of variate Transformer.

• GL-STGTN (Li et al., 2024): GL-STGTN learns the graph structure from both global and
local perspectives, and then the learned inter-variable dependencies are then encoded into
a spatial attention mechanism.

• STGAGRTN (Wu et al., 2023a): STGAGRTN utilizes a gating mechanism to fuse the inter-
variable dependencies learned separately by a GAT and a proposed spatial Transformer.

However, such approaches do not adequately address the challenge of modeling inter-variable de-
pendencies in deeper layers. Although GL-STGTN introduces inter-variable relations after the feed-
forward network (FFN), the additional branch is prone to capturing spurious correlations. More
importantly, unlike our work, GL-STGTN does not explore and account for the consistency be-
tween shallow- and deep-layer modeling of inter-variable dependencies.

Unlike GL-STGTN with graph learning, which uses the raw input X , or methods like Sageformer
and MSGNet that rely solely on self-learned node embeddings, our graph constructor is uniquely
informed by a combination of outputs from the self-attention layer and learnable node embed-
dings. Importantly, to the best of our knowledge, we are the first to comprehensively analyze the
connections and differences between self-attention (within Variate Transformers) and GNNs for
modeling IVD. Furthermore, as we emphasize earlier, we have compactly integrated the two linear
layers of the original FFN into our DGL module. It is this compact architecture that allows our
DGL to serve as a general-purpose IVD modeling method for the deeper layers of Variate Trans-
formers—a level of universality not achieved by existing dynamic graph learning techniques.
Crucially, the introduction of DGL and CAL significantly accelerates the convergence of both train-
ing and validation losses, achieving an 8.78% reduction in MSE of iTransformer (see Figure 8). This
substantial performance gain is achieved with only a minimal computational overhead—time com-
plexity of O(N(D+ nd+D ∗ nd)) (see Equation 5), which is linear with respect to the number of
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variables N , where nd is a small hyperparameter (e.g., 8, 10, or 32), and D is the hidden dimension.
We believe the introduced performance and efficiency is promising.

A.11 DATASET DETAILS

As shown in Table 6, total 13 datasets utilized in our study encompass data from five domains: Tem-
perature, Finance, Weather, Electricity, and Transportation, providing a comprehensive assessment
of a model’s effectiveness and generality. * Forecastability is computed by one minus the entropy
of Fourier decomposition, a lower value indicating worse predictability.

Table 6: Details of different datasets.

Datasets Variables Dataset Size Frequency Forecastability* Information

ETTm1 7 (34465, 11521, 11521) 15min 0.46 Temperature
ETTm2 7 (34465, 11521, 11521) 15min 0.55 Temperature
ETTh1 7 (8545, 2881, 2881) 15min 0.38 Temperature
ETTh2 7 (8545, 2881, 2881) 15min 0.45 Temperature

Exchange 8 (5120, 665, 1422) Daily - Finance
Weather 21 (36792, 5271, 10540) Hourly 0.75 Weather

Solar-Energy 137 (36601, 5161, 10417) 10min 0.33 Electricity
Electricity 321 (18317, 2633, 5261) 10min 0.77 Electricity

Traffic 862 (12185, 1757, 3509) Hourly 0.68 Transportation
PEMS03 358 (15701, 5216, 434) 5min 0.65 Transportation
PEMS04 307 (10172, 3375, 281) 5min 0.45 Transportation
PEMS07 883 (16911, 5622, 468) 5min 0.58 Transportation
PEMS08 170 (10690, 3548, 265) 5min 0.52 Transportation

A.12 IMPLEMENTATION DETAILS

All experiments are conducted on two NVIDIA GeForce RTX 3090 GPUs. We use Adam optimizer
with L = LMAE + λLalign as the loss function for model optimization and evaluate the prediction
performance with the Mean Squared Error: MSE = 1

n

∑n
i=1(yi − ŷi)

2 and MAE, where yi and ŷi
represent the ground truth and predicted value at time i, respectively.

By default, we employ Kullback-Leibler (KL) divergence as the Lalign. And the number of stacked
layers for CGTFra is selected from 1, 2, or 4, with 1 or 2 layers typically used for datasets with
fewer variables, and 2 or 4 layers for those with more variables. DGL’s default number of hops is
2, and the batch size is set between 16 and 128. Hyperparameter sensitivity analysis is provided in
Appendix A.16.

A.13 ADDITIONAL RESULTS

In this section, we present the complete comparison results for both long-term and short-term fore-
casting, as shown in Table 7 and Table 8, respectively. To further compare model performance under
longer input horizons, we also provide results with an input length of 336 in Table 9. Across short-
term forecasting, long-term forecasting, and extended input lengths, CGTFra consistently demon-
strates superior predictive performance, underscoring its overall effectiveness.

Theoretically, a longer given historical input enables models to capture more information, leading to
more accurate predictions. However, higher dimensionality can also introduce side effects such as
model overfitting and training difficulty. To investigate the performance differences of various mod-
els across different historical input lengths, as illustrated in Figure 14, we evaluate the performance
of five methods. We observed that all models achieved relatively comparable prediction accuracy
when the given input length is 336. Further increasing the input length, however, potentially led to
a decline in performance. Consequently, as shown in Table 9, we also conducted a detailed com-
parison of how different models perform when predicting four distinct output lengths, with an input
length of 336.
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Table 7: Long-term forecasting results with forecasting horizons F ∈ {96, 192, 336, 720} and
fixed look-back length T=96. Bold/underline: Best/second best one. “-” indicates that the original
method was not evaluated in the corresponding scenario.

Models CGTFra DUET TimePro Soatten VCformer FilterNet iTransformer MSGNet PatchTST
(ours) (KDD’25) (ICML’25) (AAAI’25) (IJCAI’24) (NeurIPS’24) (ICLR’24) (AAAI’24) (ICLR’23)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.315 0.344 0.324 0.354 0.326 0.364 0.329 0.365 0.319 0.359 0.318 0.358 0.334 0.368 0.319 0.366 0.329 0.367
192 0.366 0.372 0.369 0.379 0.367 0.383 0.37 0.387 0.364 0.382 0.364 0.383 0.377 0.391 0.376 0.397 0.367 0.385
336 0.398 0.395 0.404 0.402 0.402 0.409 0.401 0.407 0.399 0.405 0.396 0.406 0.426 0.420 0.417 0.422 0.399 0.410
720 0.472 0.435 0.463 0.437 0.469 0.446 0.474 0.447 0.467 0.442 0.456 0.444 0.491 0.459 0.481 0.458 0.454 0.439

E
T

T
m

2 96 0.171 0.249 0.174 0.255 0.178 0.260 0.180 0.264 0.180 0.266 0.174 0.257 0.180 0.264 0.177 0.262 0.175 0.259
192 0.238 0.293 0.243 0.302 0.242 0.303 0.245 0.306 0.245 0.306 0.240 0.300 0.250 0.309 0.247 0.307 0.241 0.302
336 0.300 0.333 0.304 0.341 0.303 0.342 0.312 0.349 0.307 0.345 o.297 0.339 0.311 0.348 0.312 0.346 0.305 0.343
720 0.397 0.391 0.399 0.397 0.400 0.399 0.411 0.406 0.406 0.402 0.392 0.393 0.412 0.407 0.414 0.403 0.402 0.400

E
T

T
h1

96 0.372 0.387 0.377 0.393 0.375 0.398 0.383 0.400 0.376 0.397 0.375 0.394 0.386 0.405 0.390 0.411 0.414 0.419
192 0.424 0.418 0.429 0.425 0.427 0.429 0.440 0.433 0.431 0.427 0.436 0.422 0.441 0.436 0.442 0.442 0.460 0.445
336 0.473 0.443 0.471 0.446 0.472 0.450 0.475 0.449 0.473 0.449 0.476 0.443 0.487 0.458 0.480 0.468 0.501 0.466
720 0.473 0.464 0.496 0.480 0.476 0.474 0.491 0.477 0.476 0.474 0.474 0.469 0.503 0.491 0.494 0.488 0.500 0.488

E
T

T
h2

96 0.288 0.336 0.296 0.345 0.293 0.345 0.295 0.348 0.292 0.344 0.292 0.343 0.297 0.349 0.328 0.371 0.302 0.348
192 0.364 0.384 0.368 0.389 0.367 0.394 0.380 0.398 0.377 0.396 0.369 0.395 0.380 0.400 0.402 0.414 0.388 0.400
336 0.410 0.422 0.411 0.422 0.419 0.431 0.420 0.431 0.417 0.430 0.420 0.432 0.428 0.432 0.435 0.443 0.426 0.433
720 0.414 0.433 0.412 0.434 0.427 0.445 0.419 0.441 0.423 0.443 0.430 0.446 0.427 0.445 0.417 0.441 0.431 0.446

E
xc

ha
ng

e 96 0.083 0.202 0.086 0.205 0.085 0.204 0.085 0.204 0.085 0.205 0.083 0.202 0.086 0.206 0.102 0.23 0.088 0.205
192 0.173 0.296 0.182 0.305 0.178 0.299 0.175 0.299 0.176 0.299 0.174 0.296 0.177 0.299 0.195 0.317 0.176 0.299
336 0.324 0.412 0.310 0.403 0.328 0.414 0.330 0.417 0.328 0.415 0.326 0.413 0.331 0.417 0.359 0.436 0.301 0.397
720 0.668 0.619 0.693 0.624 0.817 0.679 0.844 0.695 0.830 0.688 0.840 0.670 0.847 0.691 0.940 0.738 0.901 0.714

W
ea

th
er 96 0.152 0.190 0.163 0.202 0.166 0.207 0.161 0.206 0.171 0.220 0.162 0.207 0.174 0.214 0.163 0.212 0.177 0.218

192 0.203 0.239 0.218 0.252 0.216 0.254 0.208 0.250 0.230 0.266 0.210 0.250 0.221 0.254 0.212 0.254 0.225 0.259
336 0.257 0.279 0.274 0.294 0.273 0.296 0.264 0.291 0.280 0.299 0.265 0.290 0.278 0.296 0.272 0.299 0.278 0.297
720 0.338 0.334 0.349 0.343 0.351 0.346 0.347 0.346 0.352 0.344 0.342 0.340 0.358 0.347 0.350 0.348 0.354 0.348

E
le

ct
ri

ci
ty 96 0.137 0.227 0.145 0.233 0.139 0.234 0.137 0.232 0.150 0.242 0.147 0.245 0.148 0.240 0.165 0.274 0.181 0.270

192 0.155 0.243 0.163 0.248 0.156 0.249 0.155 0.247 0.167 0.255 0.160 0.250 0.162 0.253 0.184 0.292 0.188 0.274
336 0.170 0.259 0.175 0.262 0.172 0.267 0.171 0.265 0.182 0.270 0.173 0.267 0.178 0.269 0.195 0.302 0.204 0.293
720 0.198 0.283 0.204 0.291 0.209 0.299 0.200 0.290 0.221 0.302 0.210 0.309 0.225 0.317 0.231 0.332 0.246 0.324

So
la

r 96 0.191 0.205 0.200 0.207 0.196 0.237 0.198 0.239 - - - - 0.203 0.237 - - 0.234 0.286
192 0.218 0.225 0.228 0.233 0.231 0.263 0.228 0.259 - - - - 0.233 0.261 - - 0.267 0.310
336 0.238 0.240 0.262 0.244 0.250 0.281 0.244 0.272 - - - - 0.248 0.273 - - 0.290 0.315
720 0.249 0.242 0.258 0.249 0.253 0.285 0.246 0.275 - - - - 0.249 0.275 - - 0.289 0.317

Tr
af

fic

96 0.387 0.239 0.407 0.252 - - 0.401 0.270 0.454 0.310 0.430 0.294 0.395 0.268 - - 0.544 0.359
192 0.417 0.249 0.431 0.262 - - 0.424 0.281 0.468 0.315 0.452 0.307 0.417 0.276 - - 0.540 0.354
336 0.434 0.261 0.456 0.269 - - 0.445 0.288 0.486 0.325 0.470 0.316 0.433 0.283 - - 0.551 0.358
720 0.472 0.279 0.509 0.292 - - 0.479 0.306 0.524 0.348 0.498 0.323 0.467 0.302 - - 0.586 0.375

1st Count 25 35 2 1 0 0 3 0 1 0 5 3 3 0 0 0 2 1

Table 8: Short-term forecasting results with forecasting horizons F ∈ {12, 24, 48, 96} and fixed
look-back length T=96.

Models CGTFra iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear
(ours) (ICLR’24) (ArXiv’23) (ICLR’23) (ICLR’23) (TMLR’23) (ICLR’23) (AAAI’23)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PE
M

S0
3 12 0.060 0.159 0.071 0.174 0.126 0.236 0.099 0.216 0.090 0.203 0.178 0.305 0.085 0.192 0.122 0.243

24 0.079 0.184 0.093 0.201 0.246 0.334 0.142 0.259 0.121 0.240 0.257 0.371 0.118 0.223 0.201 0.317
48 0.119 0.228 0.125 0.236 0.551 0.529 0.211 0.319 0.202 0.317 0.379 0.463 0.155 0.260 0.333 0.425
96 0.173 0.278 0.164 0.275 1.057 0.787 0.269 0.370 0.262 0.367 0.490 0.539 0.228 0.317 0.457 0.515

PE
M

S0
4 12 0.070 0.169 0.078 0.183 0.138 0.252 0.105 0.224 0.098 0.218 0.219 0.340 0.087 0.195 0.148 0.272

24 0.084 0.187 0.095 0.205 0.258 0.348 0.153 0.275 0.131 0.256 0.292 0.398 0.103 0.215 0.224 0.340
48 0.112 0.220 0.120 0.233 0.572 0.544 0.229 0.339 0.205 0.326 0.409 0.478 0.136 0.250 0.355 0.437
96 0.153 0.260 0.150 0.262 1.137 0.820 0.291 0.389 0.402 0.457 0.492 0.532 0.190 0.303 0.452 0.504

PE
M

S0
7 12 0.056 0.146 0.067 0.165 0.118 0.235 0.095 0.207 0.094 0.200 0.173 0.304 0.082 0.181 0.115 0.242

24 0.075 0.167 0.088 0.190 0.242 0.341 0.150 0.262 0.139 0.247 0.271 0.383 0.101 0.204 0.210 0.329
48 0.101 0.197 0.110 0.215 0.562 0.541 0.253 0.340 0.311 0.369 0.446 0.495 0.134 0.238 0.398 0.458
96 0.144 0.242 0.139 0.245 1.096 0.795 0.346 0.404 0.396 0.442 0.628 0.577 0.181 0.279 0.594 0.553

PE
M

S0
8 12 0.071 0.167 0.079 0.182 0.133 0.247 0.168 0.232 0.165 0.214 0.227 0.343 0.112 0.212 0.154 0.276

24 0.096 0.193 0.115 0.219 0.249 0.343 0.224 0.281 0.215 0.260 0.318 0.409 0.141 0.238 0.248 0.353
48 0.152 0.243 0.186 0.235 0.569 0.544 0.321 0.354 0.315 0.355 0.497 0.510 0.198 0.283 0.440 0.470
96 0.263 0.299 0.221 0.267 1.166 0.814 0.408 0.417 0.377 0.397 0.721 0.592 0.320 0.351 0.674 0.565

1st Count 13 13 4 3 0 0 0 0 0 0 0 0 0 0 0 0

Furthermore, to validate the effectiveness of our Graph Transformer, which is predicated on mod-
eling consistency between shallow and deep IVD, we conducted a comparison against two other
sota Graph Transformer methods: Ada-MSHyper (Shang et al., 2024) and Sageformer (Zhang et al.,
2024). The results are presented in Table 10. While Ada-MSHyper exhibits certain advantages on
the ETT datasets, this is primarily reflected in its slightly better MSE scores. In contrast, CGTFra
demonstrates a more pronounced advantage on datasets with a larger number of variables, such as
ECL and Traffic. For instance, on the Traffic dataset, CGTFra achieves an average reduction of
7.89% in MAE compared to Ada-MSHyper.
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Figure 14: Performance comparison with different historical input lengths (Predict F=96).

Table 9: Multivariate forecasting results with forecasting horizons F ∈ {96, 192, 336, 720} and
fixed look-back window size T = 336.

Models CGTFra FilterNet iTransformer PatchTST TimesNet
(ours) (NeurIPS’24) (ICLR’24) (ICLR’23) (ICLR’23)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.292 0.335 0.289 0.344 0.303 0.357 0.294 0.345 0.335 0.380
192 0.326 0.361 0.331 0.369 0.345 0.383 0.334 0.371 0.358 0.388
336 0.366 0.381 0.364 0.389 0.382 0.405 0.371 0.392 0.406 0.418
720 0.422 0.417 0.425 0.423 0.443 0.439 0.421 0.419 0.449 0.443

E
T

T
h1

96 0.378 0.396 0.379 0.404 0.402 0.418 0.381 0.405 0.398 0.418
192 0.415 0.420 0.417 0.428 0.450 0.449 0.442 0.446 0.447 0.449
336 0.438 0.435 0.437 0.443 0.479 0.470 0.445 0.454 0.493 0.468
720 0.442 0.428 0.458 0.472 0.584 0.548 0.490 0.493 0.518 0.504

E
xc

ha
ng

e 96 0.087 0.211 0.087 0.216 0.099 0.226 0.093 0.213 0.117 0.253
192 0.169 0.299 0.163 0.301 0.216 0.337 0.194 0.315 0.298 0.410
336 0.312 0.417 0.287 0.399 0.395 0.466 0.354 0.435 0.456 0.513
720 0.673 0.621 0.413 0.492 0.962 0.745 0.903 0.712 1.608 0.961

W
ea

th
er 96 0.147 0.187 0.150 0.183 0.164 0.216 0.151 0.197 0.172 0.220

192 0.188 0.229 0.193 0.221 0.205 0.251 0.197 0.244 0.219 0.261
336 0.241 0.272 0.246 0.258 0.256 0.290 0.251 0.285 0.280 0.306
720 0.308 0.331 0.308 0.295 0.326 0.338 0.321 0.335 0.365 0.359

E
le

ct
ri

ci
ty 96 0.127 0.219 0.132 0.224 0.133 0.229 0.130 0.222 0.168 0.272

192 0.137 0.216 0.143 0.237 0.156 0.251 0.148 0.240 0.184 0.289
336 0.153 0.253 0.155 0.253 0.172 0.267 0.167 0.261 0.198 0.300
720 0.193 0.285 0.195 0.292 0.209 0.304 0.202 0.291 0.220 0.320

1st Count 15 14 7 8 0 0 0 0 0 0

Table 10: Performance comparison of CGTFra and two other graph Transformers.

Models ETTm1 ETTm2 ETTh1 ETTh2 Exchange Weather ECL Traffic

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

C
G

T
Fr

a 96 0.315 0.344 0.171 0.249 0.372 0.387 0.288 0.336 0.083 0.202 0.152 0.190 0.137 0.227 0.387 0.239
192 0.366 0.372 0.238 0.293 0.424 0.418 0.364 0.384 0.173 0.296 0.203 0.239 0.155 0.243 0.417 0.249
336 0.398 0.395 0.300 0.333 0.473 0.443 0.410 0.422 0.324 0.412 0.257 0.279 0.170 0.259 0.434 0.261
720 0.472 0.435 0.397 0.391 0.473 0.464 0.414 0.433 0.668 0.619 0.338 0.334 0.198 0.283 0.472 0.279
Avg 0.388 0.386 0.277 0.316 0.436 0.428 0.369 0.394 0.312 0.382 0.238 0.260 0.165 0.253 0.427 0.257

A
da

-M
SH

yp
er 96 0.309 0.357 0.173 0.261 0.376 0.395 0.291 0.338 - - 0.161 0.202 0.144 0.241 0.405 0.263

192 0.362 0.385 0.235 0.307 0.436 0.418 0.370 0.389 - - 0.209 0.248 0.160 0.247 0.419 0.275
336 0.394 0.409 0.295 0.340 0.468 0.447 0.426 0.434 - - 0.263 0.289 0.176 0.273 0.439 0.278
720 0.461 0.447 0.389 0.402 0.469 0.472 0.418 0.439 - - 0.349 0.346 0.212 0.293 0.467 0.299

Avg 0.382 0.400 0.273 0.328 0.437 0.433 0.376 0.400 - - 0.246 0.271 0.173 0.264 0.433 0.279

Sa
ge

fo
rm

er 96 0.333 0.366 0.175 0.259 0.377 0.394 0.291 0.339 0.082 0.201 0.165 0.207 0.148 0.246 - -
192 0.371 0.389 0.241 0.301 0.428 0.426 0.376 0.394 0.177 0.299 0.211 0.251 0.163 0.248 - -
336 0.406 0.409 0.302 0.341 0.466 0.448 0.417 0.428 0.333 0.418 0.269 0.292 0.181 0.265 - -
720 0.478 0.449 0.399 0.396 0.487 0.476 0.422 0.441 0.866 0.702 0.347 0.345 0.209 0.306 - -

Avg 0.397 0.403 0.279 0.324 0.440 0.436 0.377 0.401 0.365 0.405 0.248 0.274 0.175 0.266 - -
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A.14 VERIFICATION OF FRAMEWORK GENERALITY

To validate the extensibility of the three core designs proposed in this work, we perform correspond-
ing module replacements or introduce CAL for seven existing models, including DUET, iTrans-
former, VCformer, CASA, FilterNet, iFlashformer, iFlowformer, iInformer, and iReformer. To en-
sure a fair comparison, all baseline experiments were conducted using their released code and
hyperparameters, under identical hyperparameters, random seeds, and experimental hard-
ware and software environment versions. Additionally, our released code includes the source
files, scripts, and documentation necessary to reproduce these experiments. As shown in Table
11, we observe that introducing FMR alone yields only marginal gains. In contrast, incorporat-
ing DGL significantly yields greater performance improvements to a certain extent, highlight-
ing the importance of explicitly modeling IVD in deeper layers. Building on this, the introduction
of CAL further improves forecasting performance across multiple heterogeneous datasets, with the
effect being more pronounced for VCformer. For instance, on the ETTh1 dataset, MSE decreases
from 0.398 to 0.382. Moreover, we have to acknowledge that achieving performance gains by mod-
ifying sota methods while using identical hyperparameters poses considerable challenges.

• DUET (Qiu et al., 2025): DUET captures IVD by employing metric learning in the fre-
quency domain, subsequently feeding IVD as masks to the self-attention scores within
a variable Transformer. As DUET does not involve linear upsampling, our proposed
FMR cannot be directly validated. Concurrently, DUET also lacks deep-layer IVD mod-
eling. Therefore, we embed DGL and CAL into DUET for comparative experiments.
https://github.com/decisionintelligence/DUET

• iTransformer (Liu et al., 2024): iTransformer encodes timestamp information into the in-
put signals via concatenation, and computes inter-variable correlations among tokens cor-
responding to individual variables, and then employs FFNs to capture deep temporal dy-
namics. Its architecture is consistent with the standard Transformer (i.e., temporal Trans-
former), except that inverted token embedding. Accordingly, we replace the FFN in iTrans-
former with DGL to emphasize the importance of deep layer IVD, and further incorporate
CAL on top of DGL to enhance consistent IVD modeling across both deep and shallow
layers. https://github.com/thuml/iTransformer

• VCformer (Yang et al., 2024): VCformer likewise encodes timestamp information into the
input via concatenation, and computes the inter-series correlation on different lags between
queries and keys, and employ another Koopman theory-based temporal learner (namely
KTD) to replace the FFN. Therefore, VCformer also captures IVD only at shallow layers.
To validate extensibility, we replace their input embedding layer with our FMR, and replace
KTD with the proposed DGL. https://github.com/CSyyn/VCformer

• CASA (Lee et al., 2025): CASA replaces the self-attention layer in the Transformer with
a CNN autoencoder-based score attention, and is therefore not a Transformer archi-
tecture. Since CASA encodes inputs using a single linear layer, we only replace its
input embedding method with the proposed FMR to evaluate the generality of FMR.
https://github.com/lmh9507/CASA

The complete results for the other variate Transformers are reported in Table 12. As some variant
Transformers redesign more efficient self-attention layers that may lose explicit attention scores,
CAL cannot be integrated into these variate Transformers.

In Figure 1, we present the DTW and PCC of the ETTh1 dataset, they characterize the true similari-
ties and dependencies among variables in multivariate time series. MSE and MAE, focusing solely
on point-wise numerical discrepancies, overlook overall time-series shape similarity and fail to
measure inter-variable correlations. Therefore, we conduct the effectiveness verification of DGL
and CAL on three existing baselines with DTW and PCC as comparative metrics (their definitions
are provided in Appendix A.6). DTW prioritizes trend pattern matching, while PCC quantifies
the model’s capacity to capture co-variation among variables. As shown in Table 13, incor-
porating DGL and CAL enables iTransformer to achieve lower MSE and MAE values, along
with superior DTW and PCC, indicating that deep modeling of IVD enhances forecasting of
future fluctuations (in terms of magnitude) and improves the accuracy of dependency model-
ing (in terms of similarity). These results collectively demonstrate the strong generalizability
of DGL and CAL.
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Table 11: Verification of Framework Generality. Full results for four prediction length and fixed
input T=96. All results were reproduced using their released code and hyperparameters. “iTrans” is
iTransformer. “-” indicates that the original method was not evaluated in the corresponding scenario
or we faced the issue of out of memory. Additional evaluation metrics are provided in Table 13.

Models ETTm1 ETTm2 ETTh1 ETTh2 Exchange Weather ECL Solar Traffic

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

D
U

E
T

original

96 0.322 0.354 0.174 0.254 0.389 0.400 0.295 0.345 0.084 0.203 0.162 0.201 0.146 0.233 0.249 0.269 0.407 0.252
192 0.370 0.380 0.239 0.299 0.431 0.426 0.370 0.391 0.179 0.300 0.217 0.251 0.163 0.249 0.221 0.230 0.431 0.261
336 0.407 0.403 0.301 0.339 0.473 0.450 0.408 0.419 0.285 0.390 0.268 0.290 0.174 0.261 0.245 0.242 0.458 0.271
720 0.464 0.439 0.400 0.396 0.502 0.484 0.415 0.435 0.686 0.625 0.342 0.339 0.204 0.288 0.247 0.244 0.504 0.291

D
U

E
T

+ DGL

96 0.322 0.353 0.171 0.251 0.383 0.398 0.290 0.341 0.083 0.202 0.166 0.208 0.139 0.228 0.230 0.249 0.410 0.253
192 0.367 0.376 0.237 0.295 0.427 0.423 0.366 0.388 0.177 0.299 0.212 0.250 0.155 0.243 0.233 0.246 0.434 0.262
336 0.406 0.403 0.302 0.339 0.476 0.448 0.407 0.421 0.287 0.391 0.268 0.291 0.169 0.257 0.258 0.271 0.453 0.269
720 0.460 0.433 0.399 0.396 0.488 0.476 0.409 0.431 0.636 0.600 0.342 0.339 0.202 0.291 0.251 0.267 0.496 0.288

D
U

E
T

+ CAL

96 0.324 0.356 0.174 0.254 0.378 0.393 0.289 0.340 0.083 0.202 0.152 0.192 0.139 0.228 0.231 0.250 0.412 0.253
192 0.370 0.379 0.239 0.297 0.427 0.421 0.369 0.389 0.177 0.299 0.205 0.244 0.155 0.243 0.238 0.248 0.433 0.260
336 0.405 0.399 0.307 0.344 0.472 0.445 0.415 0.424 0.285 0.388 0.256 0.280 0.169 0.258 0.247 0.245 0.462 0.273
720 0.466 0.437 0.406 0.403 0.475 0.469 0.420 0.434 0.673 0.615 0.333 0.338 0.193 0.284 0.253 0.268 0.501 0.291

iT
ra

ns

original

96 0.342 0.377 0.186 0.272 0.387 0.405 0.301 0.350 0.086 0.206 0.181 0.221 0.148 0.239 0.201 0.234 0.392 0.268
192 0.383 0.396 0.254 0.314 0.441 0.436 0.381 0.399 0.181 0.303 0.226 0.259 0.167 0.258 0.239 0.263 0.413 0.277
336 0.418 0.418 0.317 0.353 0.491 0.462 0.423 0.432 0.338 0.422 0.283 0.300 0.181 0.275 0.248 0.272 0.425 0.283
720 0.487 0.456 0.416 0.408 0.509 0.494 0.430 0.446 0.869 0.704 0.359 0.351 0.209 0.299 0.250 0.275 0.459 0.300

iT
ra

ns

+ FMR

96 0.340 0.373 0.183 0.265 0.382 0.398 0.299 0.350 0.084 0.204 0.180 0.222 0.141 0.235 0.199 0.237 0.393 0.268
192 0.377 0.389 0.249 0.309 0.434 0.429 0.379 0.399 0.176 0.299 0.222 0.258 0.157 0.250 0.233 0.259 0.413 0.276
336 0.412 0.411 0.314 0.350 0.483 0.454 0.419 0.430 0.339 0.423 0.279 0.300 0.171 0.264 0.242 0.269 0.428 0.282
720 0.481 0.450 0.418 0.409 0.492 0.480 0.426 0.445 0.834 0.690 0.356 0.350 0.233 0.316 0.244 0.273 0.458 0.299

iT
ra

ns

+ DGL

96 0.331 0.368 0.183 0.268 0.384 0.403 0.305 0.355 0.086 0.207 0.167 0.211 0.137 0.233 0.200 0.238 0.410 0.281
192 0.376 0.392 0.253 0.313 0.435 0.432 0.392 0.406 0.179 0.303 0.214 0.254 0.154 0.248 0.239 0.264 0.421 0.281
336 0.409 0.412 0.317 0.352 0.481 0.453 0.426 0.436 0.336 0.420 0.275 0.299 0.167 0.263 0.248 0.274 0.440 0.286
720 0.483 0.453 0.417 0.408 0.494 0.481 0.435 0.451 0.870 0.704 0.353 0.349 0.219 0.307 0.249 0.276 0.466 0.304

iT
ra

ns

+ CAL

96 0.333 0.368 0.184 0.269 0.382 0.402 0.306 0.354 0.086 0.207 0.166 0.211 0.135 0.232 0.199 0.234 0.402 0.272
192 0.378 0.390 0.253 0.314 0.434 0.431 0.384 0.401 0.177 0.301 0.213 0.254 0.154 0.248 0.234 0.262 0.437 0.282
336 0.415 0.412 0.316 0.352 0.481 0.455 0.430 0.435 0.338 0.422 0.267 0.294 0.167 0.262 0.251 0.275 0.451 0.287
720 0.482 0.450 0.415 0.407 0.479 0.473 0.426 0.444 0.861 0.702 0.350 0.347 0.194 0.288 0.249 0.276 0.471 0.304

V
C

fo
rm

er

original

96 0.331 0.364 0.184 0.266 0.405 0.410 0.302 0.349 0.085 0.206 0.186 0.224 0.152 0.246 - - - -
192 0.379 0.389 0.250 0.309 0.455 0.439 0.383 0.396 0.175 0.300 0.238 0.266 0.170 0.261 - - - -
336 0.419 0.416 0.318 0.352 0.530 0.476 0.421 0.430 0.327 0.415 0.288 0.303 0.186 0.277 - - - -
720 0.487 0.453 0.414 0.407 0.561 0.515 0.429 0.446 0.844 0.691 0.365 0.352 0.235 0.328 - - - -

V
C

fo
rm

er

+ FMR

96 0.333 0.365 0.183 0.265 0.393 0.401 0.308 0.351 0.088 0.211 0.184 0.224 0.147 0.241 - - - -
192 0.373 0.387 0.250 0.309 0.451 0.434 0.383 0.395 0.176 0.300 0.231 0.264 0.163 0.255 - - - -
336 0.410 0.410 0.314 0.350 0.484 0.450 0.419 0.430 0.336 0.421 0.285 0.302 0.177 0.272 - - - -
720 0.476 0.447 0.415 0.406 0.499 0.480 0.431 0.447 0.869 0.703 0.361 0.351 0.241 0.332 - - - -

V
C

fo
rm

er

+ DGL

96 0.323 0.359 0.184 0.269 0.398 0.410 0.305 0.352 0.085 0.206 0.165 0.208 0.139 0.236 - - - -
192 0.379 0.389 0.249 0.310 0.447 0.439 0.387 0.401 0.175 0.299 0.210 0.252 0.158 0.248 - - - -
336 0.415 0.412 0.310 0.348 0.484 0.456 0.425 0.433 0.326 0.412 0.270 0.293 0.173 0.266 - - - -
720 0.473 0.445 0.412 0.405 0.494 0.482 0.440 0.453 0.868 0.700 0.351 0.347 0.224 0.314 - - - -

V
C

fo
rm

er

+ CAL

96 0.328 0.364 0.179 0.262 0.382 0.400 0.300 0.349 0.085 0.205 0.164 0.208 0.135 0.233 - - - -
192 0.375 0.389 0.246 0.307 0.438 0.434 0.380 0.397 0.176 0.299 0.211 0.251 0.157 0.249 - - - -
336 0.415 0.412 0.309 0.347 0.485 0.457 0.436 0.440 0.339 0.423 0.271 0.295 0.170 0.264 - - - -
720 0.485 0.453 0.414 0.406 0.497 0.486 0.436 0.452 0.846 0.696 0.351 0.346 0.207 0.299 - - - -

C
A

SA original

96 0.322 0.359 0.175 0.257 0.378 0.403 0.298 0.347 - - 0.162 0.207 0.140 0.236 0.193 0.234 0.392 0.260
192 0.368 0.386 0.241 0.300 0.428 0.429 0.375 0.396 - - 0.209 0.251 0.160 0.253 0.227 0.260 0.415 0.274
336 0.407 0.409 0.299 0.339 0.478 0.453 0.420 0.431 - - 0.267 0.292 0.181 0.274 0.240 0.274 0.434 0.281
720 0.468 0.447 0.399 0.397 0.482 0.476 0.439 0.451 - - 0.359 0.352 0.206 0.298 0.242 0.276 0.468 0.296

C
A

SA + FMR

96 0.321 0.359 0.174 0.256 0.378 0.401 0.294 0.346 - - 0.163 0.207 0.136 0.232 0.192 0.233 0.405 0.262
192 0.369 0.386 0.240 0.299 0.426 0.428 0.372 0.395 - - 0.207 0.248 0.159 0.253 0.222 0.258 0.432 0.274
336 0.418 0.416 0.298 0.337 0.480 0.454 0.418 0.430 - - 0.264 0.291 0.179 0.273 0.238 0.272 0.447 0.280
720 0.460 0.444 0.398 0.396 0.484 0.477 0.429 0.446 - - 0.347 0.344 0.204 0.295 0.240 0.274 0.492 0.301

Fi
lte

rN
et

original

96 0.317 0.357 0.175 0.257 0.381 0.399 0.296 0.346 - - 0.164 0.210 0.147 0.242 - - 0.431 0.295
192 0.364 0.384 0.239 0.300 0.440 0.428 0.369 0.396 - - 0.214 0.256 0.162 0.254 - - 0.448 0.298
336 0.396 0.407 0.295 0.337 0.487 0.451 0.420 0.432 - - 0.273 0.299 0.177 0.272 - - 0.465 0.303
720 0.457 0.444 0.398 0.395 0.494 0.471 0.432 0.447 - - 0.359 0.353 0.228 0.318 - - 0.497 0.320

Fi
lte

rN
et

+ FMR

96 0.318 0.359 0.174 0.255 0.376 0.397 0.293 0.343 - - 0.160 0.206 0.144 0.239 - - 0.422 0.289
192 0.364 0.383 0.238 0.299 0.438 0.427 0.368 0.394 - - 0.209 0.252 0.159 0.252 - - 0.445 0.295
336 0.395 0.406 0.295 0.337 0.489 0.451 0.416 0.433 - - 0.270 0.296 0.177 0.273 - - 0.462 0.301
720 0.455 0.442 0.396 0.395 0.496 0.472 0.438 0.450 - - 0.353 0.350 0.228 0.321 - - 0.494 0.317
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Table 12: Verification of Framework Generality on Variate Transformers (fixed input length T=96).
As some variant Transformers redesign more efficient self-attention layers that may lose explicit
attention scores, CAL cannot be integrated into these variate Transformers. To further evaluate the
effectiveness of DGL and CAL, we employed additional evaluation metrics as seen in Table 13.

Datasets ETTh1 Weather ECL Solar

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

iTransformer

original

96 0.387 0.405 0.181 0.221 0.148 0.239 0.201 0.234
192 0.441 0.436 0.226 0.259 0.167 0.258 0.239 0.263
336 0.491 0.462 0.283 0.300 0.181 0.275 0.248 0.272
720 0.509 0.494 0.359 0.351 0.209 0.299 0.250 0.275

+ DGL

96 0.384 0.403 0.167 0.212 0.137 0.233 0.200 0.238
192 0.435 0.432 0.214 0.255 0.154 0.248 0.236 0.264
336 0.481 0.453 0.275 0.299 0.167 0.263 0.248 0.274
720 0.494 0.481 0.353 0.349 0.219 0.307 0.249 0.276

+ CAL

96 0.382 0.402 0.166 0.211 0.135 0.232 0.199 0.234
192 0.434 0.431 0.213 0.254 0.154 0.248 0.234 0.262
336 0.481 0.455 0.267 0.294 0.167 0.262 0.251 0.275
720 0.479 0.473 0.350 0.347 0.194 0.288 0.249 0.276

iFlashformer

original

96 0.388 0.406 0.180 0.221 0.164 0.254 0.213 0.251
192 0.438 0.435 0.227 0.259 0.175 0.263 0.242 0.275
336 0.487 0.458 0.283 0.300 0.192 0.280 0.263 0.291
720 0.504 0.491 0.360 0.351 0.232 0.314 0.267 0.296

+ DGL

96 0.384 0.402 0.171 0.216 0.160 0.253 0.209 0.250
192 0.441 0.434 0.216 0.255 0.175 0.265 0.246 0.275
336 0.484 0.455 0.278 0.299 0.193 0.283 0.266 0.292
720 0.500 0.483 0.352 0.348 0.232 0.315 0.273 0.298

iFlowformer

original

96 0.385 0.402 0.187 0.226 0.169 0.255 0.215 0.255
192 0.446 0.437 0.230 0.262 0.180 0.265 0.246 0.277
336 0.503 0.470 0.285 0.301 0.198 0.283 0.266 0.292
720 0.559 0.522 0.363 0.352 0.238 0.317 0.272 0.297

+ DGL

96 0.387 0.403 0.176 0.220 0.163 0.254 0.218 0.254
192 0.443 0.435 0.220 0.257 0.174 0.265 0.251 0.279
336 0.484 0.454 0.273 0.296 0.197 0.285 0.277 0.297
720 0.500 0.481 0.351 0.345 0.238 0.319 0.285 0.304

iInformer

original

96 0.388 0.404 0.169 0.213 0.168 0.255 0.220 0.264
192 0.445 0.436 0.217 0.254 0.181 0.266 0.254 0.287
336 0.492 0.461 0.273 0.296 0.198 0.284 0.278 0.304
720 0.504 0.490 0.353 0.348 0.242 0.319 0.280 0.305

+ DGL

96 0.390 0.405 0.168 0.214 0.164 0.255 0.223 0.261
192 0.445 0.435 0.212 0.253 0.179 0.267 0.263 0.287
336 0.489 0.457 0.271 0.295 0.198 0.286 0.287 0.305
720 0.501 0.482 0.351 0.347 0.241 0.321 0.292 0.308

+ CAL

96 0.386 0.401 0.168 0.213 0.159 0.251 0.223 0.260
192 0.443 0.433 0.211 0.252 0.178 0.267 0.261 0.286
336 0.482 0.453 0.268 0.293 0.197 0.285 0.290 0.305
720 0.494 0.478 0.347 0.344 0.240 0.320 0.293 0.308

iReformer

original

96 0.386 0.402 0.185 0.226 0.169 0.257 0.222 0.263
192 0.447 0.437 0.230 0.262 0.180 0.266 0.255 0.285
336 0.502 0.469 0.283 0.301 0.198 0.284 0.277 0.302
720 0.548 0.516 0.359 0.349 0.241 0.319 0.280 0.303

+ DGL

96 0.383 0.401 0.176 0.220 0.161 0.254 0.221 0.259
192 0.442 0.434 0.222 0.259 0.176 0.266 0.258 0.283
336 0.480 0.452 0.274 0.296 0.195 0.285 0.285 0.302
720 0.492 0.478 0.351 0.346 0.239 0.320 0.289 0.305
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Table 13: Additional evaluation metrics for evaluating the effectiveness of DGL and CAL.

Datasets ETTh1 Weather ECL Solar

Metrics MSE ↓ DTW ↓ PCC ↑ MSE ↓ DTW ↓ PCC ↑ MSE ↓ DTW ↓ PCC ↑ MSE ↓ DTW ↓ PCC ↑
D

U
E

T

or
ig

in
al

96 0.389 13.95 0.559 0.162 16.16 0.398 0.146 65.68 0.901 0.249 45.68 0.841
192 0.431 21.09 0.532 0.217 27.12 0.362 0.163 97.05 0.897 0.221 66.59 0.917
336 0.473 29.41 0.506 0.268 40.31 0.339 0.174 132.90 0.894 0.245 94.00 0.882
720 0.502 44.36 0.468 0.342 67.91 0.315 0.204 218.83 0.879 0.247 140.27 0.866

Avg 0.449 27.20 0.516 0.247 37.88 0.354 0.172 128.62 0.893 0.241 86.64 0.877

+
D

G
L

96 0.383 13.85 0.562 0.166 16.19 0.392 0.139 63.70 0.913 0.230 42.30 0.875
192 0.427 20.01 0.526 0.212 26.88 0.366 0.155 95.67 0.903 0.233 67.25 0.899
336 0.476 29.62 0.494 0.268 40.33 0.338 0.169 132.73 0.899 0.258 94.90 0.870
720 0.488 44.28 0.466 0.342 67.89 0.317 0.202 216.49 0.882 0.251 140.29 0.858

Avg 0.444 26.94 0.512 0.247 37.82 0.353 0.166 127.15 0.899 0.243 86.19 0.876

+
C

A
L

96 0.378 13.77 0.564 0.152 16.08 0.405 0.139 63.41 0.908 0.231 42.36 0.873
192 0.427 19.98 0.530 0.205 26.63 0.371 0.155 95.49 0.909 0.238 67.68 0.892
336 0.472 29.36 0.500 0.256 40.01 0.349 0.169 132.64 0.899 0.247 94.07 0.883
720 0.475 43.21 0.470 0.333 66.89 0.326 0.193 210.58 0.894 0.253 140.32 0.850

Avg 0.438 26.58 0.516 0.237 37.40 0.363 0.164 125.53 0.903 0.242 86.11 0.875

iT
ra

ns
fo

rm
er

or
ig

in
al

96 0.387 13.92 0.561 0.181 16.97 0.364 0.148 65.77 0.906 0.201 39.56 0.902
192 0.441 21.19 0.527 0.226 27.74 0.354 0.167 99.55 0.899 0.239 67.96 0.895
336 0.491 29.87 0.496 0.283 41.04 0.334 0.181 137.33 0.892 0.248 94.01 0.880
720 0.509 44.49 0.468 0.359 68.12 0.300 0.209 218.70 0.878 0.250 140.50 0.862

Avg 0.457 27.37 0.513 0.262 38.47 0.338 0.176 130.33 0.894 0.235 85.51 0.885

+
D

G
L

96 0.384 13.89 0.562 0.167 16.27 0.383 0.137 63.31 0.911 0.200 39.80 0.904
192 0.435 21.23 0.526 0.214 26.81 0.363 0.154 95.75 0.903 0.236 68.17 0.895
336 0.481 29.66 0.494 0.275 40.24 0.332 0.167 132.85 0.896 0.248 94.20 0.881
720 0.494 44.40 0.466 0.353 67.95 0.290 0.219 223.27 0.875 0.249 140.32 0.863

Avg 0.449 27.30 0.512 0.252 37.82 0.342 0.169 128.79 0.896 0.233 85.62 0.886

+
C

A
L

96 0.382 13.83 0.564 0.166 16.28 0.394 0.135 62.96 0.912 0.199 39.53 0.905
192 0.434 21.07 0.530 0.213 27.01 0.367 0.154 95.44 0.905 0.234 67.32 0.895
336 0.481 29.55 0.500 0.267 40.36 0.340 0.167 132.68 0.898 0.251 94.60 0.880
720 0.479 43.55 0.470 0.350 68.07 0.304 0.194 210.73 0.885 0.249 140.31 0.864

Avg 0.444 27.00 0.516 0.249 37.93 0.351 0.163 125.45 0.900 0.233 85.44 0.886

V
C

fo
rm

er

or
ig

in
al

96 0.405 14.096 0.5496 0.186 17.41 0.346 0.152 66.03 0.892 - - -
192 0.455 21.57 0.528 0.238 28.12 0.339 0.170 99.79 0.896 - - -
336 0.530 30.89 0.502 0.288 41.53 0.336 0.186 138.81 0.890 - - -
720 0.561 47.28 0.4528 0.365 68.49 0.287 0.235 231.67 0.871 - - -

Avg 0.488 28.46 0.508 0.269 38.89 0.327 0.186 134.01 0.887 - - -

+
D

G
L

96 0.398 14.08 0.561 0.165 16.14 0.376 0.139 64.51 0.909 - - -
192 0.447 21.18 0.526 0.210 26.89 0.365 0.158 96.92 0.900 - - -
336 0.484 29.77 0.500 0.270 40.32 0.329 0.173 135.46 0.897 - - -
720 0.494 43.92 0.470 0.351 68.23 0.299 0.224 225.94 0.873 - -

Avg 0.456 27.24 0.514 0.249 37.90 0.342 0.174 130.70 0.895 - - -

+
C

A
L

96 0.382 13.79 0.567 0.164 16.19 0.381 0.135 63.09 0.910 - - -
192 0.438 21.17 0.535 0.211 26.71 0.353 0.157 96.26 0.907 - - -
336 0.485 29.68 0.504 0.271 40.33 0.328 0.170 134.00 0.899 - - -
720 0.497 44.33 0.475 0.351 68.01 0.294 0.207 218.66 0.876 - - -

Avg 0.451 27.24 0.520 0.249 37.81 0.339 0.167 128.00 0.898 - - -

Table 14: Performance comparison of CGTFra and two variants without deep IVD modeling.

Models ETTm1 ETTm2 ETTh1 ETTh2 Exchange Weather ECL Solar Traffic

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

C
G

T
Fr

a

original

96 0.315 0.344 0.171 0.249 0.372 0.387 0.288 0.336 0.083 0.202 0.152 0.190 0.137 0.227 0.191 0.205 0.387 0.239
192 0.366 0.372 0.238 0.293 0.424 0.418 0.364 0.384 0.173 0.296 0.203 0.239 0.155 0.243 0.218 0.225 0.417 0.249
336 0.398 0.395 0.300 0.333 0.473 0.443 0.410 0.422 0.324 0.412 0.257 0.279 0.170 0.259 0.238 0.240 0.434 0.261
720 0.472 0.435 0.397 0.391 0.473 0.464 0.414 0.433 0.668 0.619 0.338 0.334 0.198 0.283 0.249 0.242 0.472 0.279
Avg 0.388 0.386 0.277 0.316 0.436 0.428 0.369 0.394 0.312 0.382 0.238 0.260 0.165 0.253 0.224 0.228 0.427 0.257

C
G

T
Fr

a

shallow
bias

96 0.319 0.346 0.177 0.253 0.372 0.388 0.296 0.340 0.086 0.205 0.159 0.195 0.142 0.230 0.193 0.207 0.395 0.245
192 0.370 0.375 0.243 0.296 0.435 0.423 0.369 0.386 0.179 0.301 0.211 0.244 0.158 0.245 0.221 0.227 0.419 0.254
336 0.404 0.396 0.305 0.336 0.478 0.445 0.420 0.429 0.353 0.429 0.266 0.285 0.170 0.259 0.242 0.242 0.448 0.272
720 0.501 0.445 0.411 0.401 0.487 0.473 0.426 0.438 0.797 0.675 0.345 0.339 0.201 0.285 0.248 0.242 0.485 0.284

Avg 0.399 0.391 0.284 0.322 0.443 0.432 0.378 0.398 0.354 0.403 0.245 0.266 0.168 0.255 0.226 0.230 0.437 0.264

C
G

T
Fr

a

shallow
mask

96 0.314 0.343 0.172 0.249 0.371 0.387 0.291 0.337 0.086 0.205 0.162 0.198 0.144 0.231 0.197 0.212 0.408 0.252
192 0.369 0.375 0.238 0.293 0.438 0.424 0.364 0.383 0.181 0.303 0.211 0.243 0.159 0.244 0.224 0.226 0.426 0.258
336 0.414 0.401 0.302 0.335 0.484 0.446 0.424 0.427 0.338 0.421 0.266 0.284 0.174 0.261 0.246 0.242 0.449 0.270
720 0.479 0.437 0.410 0.339 0.493 0.475 0.432 0.440 1.040 0.773 0.345 0.338 0.213 0.295 0.248 0.242 0.505 0.292

Avg 0.394 0.389 0.281 0.319 0.447 0.433 0.378 0.397 0.411 0.426 0.246 0.266 0.173 0.258 0.229 0.231 0.447 0.268
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A.15 FURTHER ANALYSIS OF CONSISTENT INTER-SERIES DEPENDENCY MODELING

To further investigate the necessity and effectiveness of modeling inter-variable dependencies in the
deeper layers of the network, we conducted additional experiments on model modifications. Specif-
ically, we removed the DGL and CAL modules from our CGTFra framework, retaining only the
FMR module. Concurrently, we integrated the proposed dynamically constructed graph structure
into the self-attention scores (a method similar to that used in DUET, see Figure 13) by using two
fusion strategies: element-wise addition (acting as bias or guidance) and element-wise multiplica-
tion (acting as masking). The comparative results are presented in Table 14. The results indicate
that merely guiding the self-attention mechanism with dynamic graph information is insufficient to
achieve superior performance. We attribute this to the fact that this approach fails to model inter-
variable dependencies in the deeper network layers, a limitation previously discussed in this paper.
This finding implicitly underscores the necessity and effectiveness of consistently modeling inter-
variable dependencies across both the shallow and deep layers of the network architecture.

A.16 EFFECT OF HYPERPARAMETERS

To investigate the influence of hyperparameters on CGTFra’s prediction performance, we conducted
a series of experiments on CGTFra’s stacking layers (L), the number of heads in the self-attention
mechanism, the number of hops in DGL, the type of loss function used in CAL, and the consistency
loss weight (λ) within the loss function. The results are presented in Figure 15. We present the
following analysis: (1) stacking layers (L): Stacking multiple layers in CGTFra enables the model
to adapt to datasets of varying complexity, with the learning of multiple feature levels enhancing its
representational capacity. Experimental results in ECL indicate that stacking multiple CGTFra lay-
ers improves performance for shorter prediction horizons (96 and 192), while showing an inverse,
negative effect for longer horizons (336 and 720). (2) the number of heads in the self-attention
mechanism: Multi-head attention allows the model to capture differentiated features and enhances
parallelism. Concurrently, in our CGTFra, the number of heads influences the granularity of the
alignment loss function’s calculation. CGTFra achieves favorable performance gains when utilizing
4 or 8 heads. (3) the number of hops in DGL: While multi-hop propagation can achieve a larger
global receptive field, it may also lead to negative effects such as oversmoothing, attenuation of node
relevance, and amplified noise. In CGTFra, the default number of hops used is 2. We observe that
as the number of hops increases, predicting excessively long sequences, such as those of length 720,
exhibits significant performance fluctuations. (4) the type of loss function used in CAL: To inves-
tigate the impact of different similarity measures on CGTFra’s performance and the effectiveness
of the regularization term, we explore various loss functions as regularizers, including Kullback-
Leibler (KL) divergence, Mean Absolute Error (MAE), Mean Squared Error (MSE), and Cosine
Similarity. The results indicate that KL divergence, MAE, and MSE yield comparable performance,
whereas Cosine Similarity leads to a significant performance degradation. This is likely attributable
to Cosine Similarity’s exclusive focus on vector direction, disregarding magnitude. Consequently,
when evaluating the discrepancy between inter-variate dependencies captured by self-attention and
GNNs, it merely promotes directional alignment without encouraging similar scales or absolute
values for the tensors. Therefore, Cosine Similarity is unsuitable for quantifying inter-variate de-
pendency differences between shallow and deep layers. (5) the consistency loss weight (λ): In
Equation 8, we use λ to control the contribution of CAL. In Figure 15, different values of λ most
significantly impact performance for scenarios with a prediction length of 720.
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Figure 15: Sensitivity analysis of CGTFra’s hyperparameters on ECL dataset for forecasting four
future lengths {96, 192, 336, 720} with fixed input length 96.
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Table 15: Ablation studies on five diverse datasets.

Part FMR DGL CAL F
ETTm1 ETTh1 Weather ECL Traffic

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

CGTFra ✓ ✓ ✓

96 0.315 0.344 0.372 0.387 0.152 0.190 0.137 0.227 0.387 0.239
192 0.366 0.372 0.424 0.418 0.203 0.239 0.155 0.243 0.417 0.249
336 0.398 0.395 0.473 0.443 0.257 0.279 0.170 0.259 0.434 0.261
720 0.472 0.435 0.473 0.464 0.338 0.334 0.198 0.283 0.472 0.279

aba1 ✓ × ×
96 0.324 0.354 0.372 0.387 0.158 0.194 0.142 0.229 0.393 0.244

192 0.374 0.377 0.425 0.418 0.211 0.242 0.158 0.244 0.416 0.253
336 0.407 0.401 0.485 0.448 0.266 0.285 0.174 0.263 0.437 0.264
720 0.481 0.440 0.487 0.472 0.345 0.338 0.204 0.286 0.478 0.281

aba2 ✓ ✓ ×
96 0.310 0.350 0.373 0.386 0.157 0.195 0.138 0.228 0.393 0.242

192 0.373 0.375 0.431 0.421 0.207 0.243 0.156 0.243 0.419 0.254
336 0.402 0.399 0.468 0.440 0.265 0.286 0.171 0.260 0.438 0.263
720 0.470 0.434 0.475 0.462 0.340 0.338 0.207 0.291 0.469 0.278

aba3 × ✓ ✓

96 0.321 0.353 0.370 0.386 0.158 0.197 0.140 0.230 0.414 0.252
192 0.371 0.375 0.431 0.422 0.209 0.244 0.155 0.244 0.425 0.249
336 0.401 0.397 0.474 0.444 0.262 0.284 0.172 0.261 0.442 0.268
720 0.474 0.436 0.473 0.465 0.344 0.339 0.225 0.306 0.493 0.280
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Figure 16: Prediction curves for VCformer and variates with our DGL and CAL on ETTh1 dataset.
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Figure 17: Computation effectiveness analysis for seven methods on ETTh2 and ECL. The size of
the circle indicates the GPU memory footprint. For fair comparison, all batch sizes are set to 32.
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A.17 ANALYSIS OF INTER-SERIES DEPENDENCY MODELING

To further evaluate the effectiveness of the DGL and CAL, as shown in Figure 16, we visualized
the VCformer’s actual prediction curves for 7 variables of ETTh1 in Figure 1. We observe that VC-
former, when embedded with DGL and CAL, achieves superior prediction accuracy in most cases,
indicating the efficacy of modeling IVD simultaneously in both shallow and deep network layers.
Furthermore, we note that for variable 5, the introduction of DGL alone leads to worse prediction.
However, with the consistency constraint of CAL, thanks to bidirectionally validated inter-variate
dependencies, significantly improved prediction capabilities are obtained, demonstrating that the
introduction of CAL effectively promotes the model’s optimization of deep-layer feature embed-
dings. Furthermore, comprehensive evaluation metrics are provided in Appendix A.14 (Table 13) to
validate the effectiveness of DGL and CAL.

Figure 18 presents a comparison of prediction curves for four variables from the Weather dataset.
CGTFra demonstrates superior trend forecasting performance compared to iTransformer and DUET,
both of which are also capable of modeling inter-variable dependencies.
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Figure 18: Actual prediction curves for three models capturing IVD on Variables 3, 7, 8, and 13 of
Weather dataset.
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A.18 EFFICIENCY COMPARISON

We fairly compare the training time, running GPU memory, and trainable parameter count against
7 sota methods in Figure 17. Benefiting from the computational efficiency of DGL in capturing
variable dependencies and the performance gains of CAL without introducing additional learnable
parameters, CGTFra achieves strong performance and computational efficiency with relatively less
trainbale parameters. Compared to another sota method-DUET (Qiu et al., 2025), known for its
high run-time efficiency, CGTFra reduces GPU memory usage by 61% and demonstrates a train-
ing speed improvement of approximately 42.86% on the complex ECL dataset, indicating the high
effectiveness and efficiency of CGTFra.

A.19 LIMITATIONS

Although our study significantly enhances the performance of existing studies by introducing deep
inter-variate dependency modeling (DGL) within the Variable Transformer and further optimizing
inter-variate associations across both deep and shallow layers through explicit dependency con-
straints (CAL), we still observe that Variable Transformers incorporating DGL and CAL, such
as DUET, and iTransformer—exhibit limited improvements or even performance degradation on
datasets like Solar and Traffic (see Table 2 and Table 12). We posit that there are two primary
reasons for the limited performance improvement, and in some cases degradation, of our proposed
DGL and CAL on datasets with a very large number of variables.

Primarily, as the number of variables (N ) increases, the probability of spurious correlations be-
tween any two variables rises dramatically. The self-attention mechanism, designed to find re-
lationships within an N × N matrix, is compelled to assign attention weights across all variable
pairs. In such a high-dimensional space, these weights are more likely to reflect coincidental
noise within a sample rather than genuine, stable dependencies. Consequently, when CAL is
applied, it forces the adjacency matrix A learned by DGL to align with this noisy Correlation Map
(MCM), effectively instigating negative knowledge transfer instead of beneficial regulariza-
tion. The GNN is thus coerced into encoding numerous useless or even erroneous connections in its
graph structure, which undermines its ability to perform effective information propagation. This can
lead to performance that is even worse than that of a simple FFN, which at least makes a harmless
“variable independence” assumption.

Furthermore, the self-attention mechanism, particularly after the softmax operation, naturally pro-
duces a dense attention map. This inherent density creates a significant discrepancy with the
potentially sparse nature of the adjacency matrix learned by the GNN (see Figure 6(a)), thereby
posing a fundamental challenge to the alignment process.

We will improve upon this in future work by proposing a more general method for modeling corre-
lation constraint between deep and shallow layers.
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