

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EMERGENCE OF SPATIAL REPRESENTATION IN AN ACTOR-CRITIC AGENT WITH HIPPOCAMPUS-INSPIRED SEQUENCE GENERATOR

Anonymous authors

Paper under double-blind review

ABSTRACT

Sequential activation of place-tuned neurons in an animal during navigation is typically interpreted as reflecting the sequence of input from adjacent positions along the trajectory. More recent theories about such place cells suggest sequences to arise from abstract cognitive objectives like planning. Here, we propose a mechanistic and parsimonious interpretation to complement these ideas: hippocampal sequences arise from intrinsic recurrent circuitry that propagates activity without sustained input, acting as a temporal memory buffer for extremely sparse inputs. We implement a minimal sequence generator inspired by neurobiology and pair it with an actor-critic learner for egocentric visual navigation. Our agent reliably solves a continuous maze without explicit geometric cues, with performance depending on the length of the recurrent sequence. Crucially, the model outperforms LSTM cores under sparse input conditions (16 channels, $\sim 2.5\%$ activity), but not under dense input, revealing a strong interaction between representational sparsity and memory architecture. Hidden units develop localized place fields, distance-dependent spatial kernels, and task-dependent remapping, while inputs to the generator orthogonalize and spatial information increases across layers. These phenomena align with neurobiological data and are causal to performance. Together, our results show that sparse input synergizes with sequence-generating dynamics, providing both a mechanistic account of place cell sequences in the mammalian hippocampus and a simple inductive bias for reinforcement learning based on sparse egocentric inputs in navigation tasks.

1 INTRODUCTION

Hippocampal place cells track the animal’s location during navigation (O’Keefe & Dostrovsky, 1971) and they fire in sequence reflecting the behavioral order of the place fields (Foster & Wilson, 2007). Spatial locations are thus thought to serve as anchors for episodic memories Aronowitz & Nadel (2023), a view reinforced by observations of “look-ahead” replay sequences linked to trajectory planning Foster & Wilson (2007); Kay et al. (2020). On the other hand, hippocampal neurons are also found fire at successive moments inexplicable by variations in location (Eichenbaum, 2014), suggesting the place cell sequences could reflect timing rather than spatial input.

The intertwinement of spatial and temporal representation in hippocampus has been touched upon in many recent computational models. Successor representations interpret place cells as predictive states (Stachenfeld et al., 2017; Mattar & Daw, 2018); reservoir models emphasize pre-existing dynamics in shaping place cell sequences (Leibold, 2020); probabilistic approaches model place cells as latent states inferred from successive inputs (Raju et al., 2024); and self-supervised methods refine spatial tuning by capturing the temporal smoothness of trajectory (Wang et al., 2024). While these approaches reproduce place-like activity and even sequential patterns, they rarely address explicitly where hippocampal sequences originate.

We propose a parsimonious account that directly addresses this question: hippocampal sequences arise from intrinsic recurrent circuitry in CA3 that can propagate activity over long timescales in the absence of input (Fig. 1A-C). The CA3 sequence generator receives sparse inputs from dentate gyrus (DG) to yield localized spatial codes in CA3 that support navigation (Leibold, 2020; 2022).

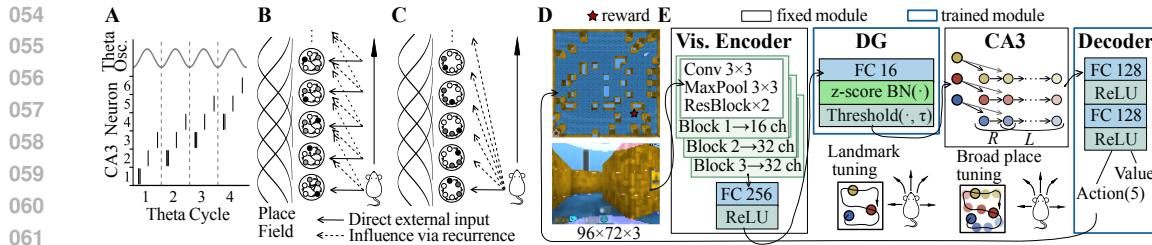


Figure 1: Model summary. **A:** Illustration of theta sequences observed in rodent hippocampus. In each theta cycle, $R = 3$ neurons are activated and the activation propagates over $L = 4$ theta cycles in a sequence of $\ell = L + R - 1 = 6$ neurons. **B:** The theta sequences are thought to be driven by sequential inputs despite the recurrent connections in hippocampus. **C:** The recurrent connections could support generating long horizon sequential activity without sequential external inputs. **D:** Virtual environment (19×19 tiles) were constructed using deepmind lab with walls randomly placed on 15 % of the tiles. Wall layouts are kept fixed for repeated trials, with an invisible reward near the bottom right. In each episode, the agent was initially placed at a random location at least 5 tiles away from the goal. **E:** The agent receives a first person perspective vision input that is processed via a visual encoder (shallow ResNet with 3 convolutional blocks; matching the SOTA in deepmind lab environment (Espeholt et al., 2018), pretrained and fixed in our experiments). These output was linearly mapped to $F=16$ features (FC: fully connected layer), and then sparsified using batch normalization and high thresholding ($\tau = 2.43$), such that the percentage of activation ($\sim 2.5\%$) matches the sparse activity of DG granular cells that project to CA3. CA3 is modeled as sequences of neurons each for a DG input feature. The activity of all CA3 neurons are then flattened and linearly mapped to the Decoder multilayer perceptron. The visual encoder is pretrained and fixed. CA3 is hard coded to isolate the effect of long range integration. The DG and decoder modules are trained.

The sparse-input regime is not incidental but central: it reflects the ecological reality that navigation is often guided by only a few reliable landmarks amid abundant sensory noise; the biology of DG granule cells, which fire at extremely low rates; and the computational advantages of high-capacity, low-interference codes that promote compositionality and generalization.

This mechanism also mirrors key ideas from modern machine learning. State-space models and structured linear RNNs preserve long-range information by expanding inputs into high-dimensional temporal features before compressing them via shallow nonlinear readouts (Fu et al., 2022; Gu et al., 2020; 2021). Our model resonates with this principle: DG sparsification provides a low-activity code that is sustained and expanded by intrinsic recurrence, offering a rich set of features for downstream policy learning.

To test this hypothesis, we implement an agent with a DG-like sparsification module, a recurrent sequence generator (CA3 proxy), and an actor-critic learner for egocentric navigation. We show that sequence generation and sparse input synergize, outperforming LSTMs of comparable size in the sparse-input regime, while LSTMs remain competitive under dense input. Moreover, place-like fields, DG orthogonalization, and task-dependent remapping emerge naturally during training.

These results suggest that a sequence-based reservoir, inspired by CA3, is well suited for constructing spatial representations from sparse low-bandwidth inputs. The synergy between sparse coding and intrinsic sequence dynamics thus offers both a mechanistic explanation for hippocampal sequences and a simple inductive bias for reinforcement learning in navigation tasks.

2 METHODS

2.1 VIRTUAL ENVIRONMENT

We consider an agent navigating a continuous environment with sparse obstacles and uniform visual textures. The environment was simulated using Deepmind lab (Beattie et al., 2016). It has 19×19 squares (excluding the confining walls) with obstacle walls randomly placed on 15 % of the tiles. The wall layouts were kept fixed for repeated episodes unless otherwise stated. The environment was designed such that spatial relations between locations cannot be trivially inferred from the similarity

108 of their corresponding visual features and that it allows multiple possible trajectories from a given
 109 location to the target.
 110

111 In each episode, the agent was initially placed in a random location at least 5 units from the goal.
 112 An episode is finished when the agent reaches the goal location or a maximum of 7200 frames
 113 (with action repeat=8 corresponding to a maximum of 900 action steps). For the map displayed in
 114 Figure 1D, the reward was placed near the bottom right corner and then moved to the lower left
 115 corner to test generalization. Since our navigation task does not require complex actions, we reduced
 116 the action space used in IMPALA (Espeholt et al., 2018), to facilitate training speed (Table A1).
 117

2.2 VISUAL PROCESSING

119 The visual input is intended to mimic visual cortical preprocessing, extracting general-purpose visual
 120 features for the hippocampus. We pretrained a ResNet encoder (He et al., 2015) in combination with
 121 an LSTM core as in Espeholt et al. (2018) and kept it fixed when training our hippocampus model.
 122 We also tested a variant using the layer2 output from ResNet pretrained on Imagenet. The model
 123 produces similar performance (Fig. A2).
 124

2.3 HIPPOCAMPUS MODEL

126 **Dentate gyrus as a sparsification module.** The main cortical input to the hippocampus is routed
 127 through the dentate gyrus (DG) (Amaral et al., 2007). DG activity is characteristically sparse, with
 128 only about 2–5% of granule cells active in a given environment (Henze et al., 2000; Leutgeb &
 129 Leutgeb, 2007). We model the DG as a linear projection of visual features followed by batch
 130 normalization (running estimates of mean and variance, retention rate 0.95 per minibatch) and a high
 131 activation threshold to match the sparsity of activity ($\sim 2.5\%$).
 132

133 **CA3 as a sequence-generating shift register.** We model CA3 as a linear RNN shift register that
 134 propagates inputs as theta sequences (Fig. 1C and E, CA3) and, for this paper, we keep it fixed
 135 to isolate the effects of intrinsic sequence generation from effects potentially induced by recurrent
 136 plasticity. The DG provides input $u_t \in \mathbb{R}^F$ over F features. Each feature is assigned a dedicated
 137 prewired sequence of length ℓ , so the CA3 state is $X_t \in \mathbb{R}^{F\ell}$. Motivated by hippocampal theta
 138 sequences (Dragoi & Buzsáki, 2006; Foster & Wilson, 2007; Leibold, 2020), we parameterize the
 139 total number of sequence units as $\ell = L + (R - 1)$, where L is the number of theta cycles and R the
 140 number of active units per cycle.
 141

142 **Single-feature dynamics ($F = 1$).** Let $x_t \in \mathbb{R}^\ell$ denote the CA3 state for a single feature and
 143 $u_t \in \mathbb{R}$ the corresponding DG input. Sequence propagation is
 144

$$x_{t+1} = S x_t + J u_t, \quad (1)$$

145 where $S \in \mathbb{R}^{\ell \times \ell}$ is the shift operator and $J \in \mathbb{R}^{\ell \times 1}$ injects the input into the first R slots:
 146

$$S = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & 0 \end{bmatrix}_{\ell \times \ell}, \quad J = \underbrace{[1, 1, \dots, 1]}_{R \text{ times}}, \underbrace{[0, 0, \dots, 0]}_{L-1 \text{ times}}^T \in \mathbb{R}^{\ell \times 1}. \quad (2)$$

151 Thus a transient input u_t creates activity in the first R positions which is then shifted one step per
 152 timestep along the length- ℓ register.
 153

154 **Multiple features ($F > 1$).** Each feature dimension evolves independently under the same dynam-
 155 ics. Stacking all F sequences with Kronecker expansion gives the block-structured update
 156

$$A = I_F \otimes S, \quad B = I_F \otimes J, \quad (3)$$

158 where I_F is an identity matrix that has the size of the number of DG features. S and J are the same as
 159 the single feature case (For an extended explanation, see Appendix B.2). and the full CA3 dynamics
 160

$$X_{t+1} = A X_t + B u_t, \quad (4)$$

161 with fixed recurrent matrix A and input matrix B .
 162

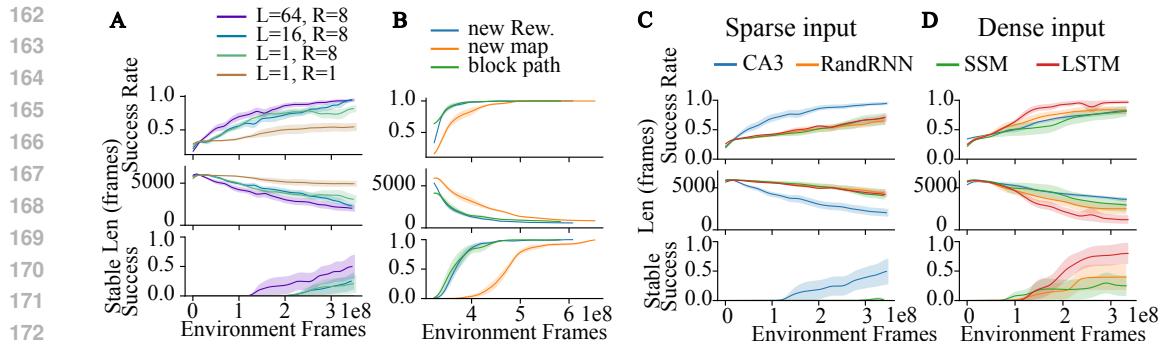


Figure 2: Training performance **A** Agents with different sequence length L and repeat R . Line and shaded area are mean and s.e.m. across 6 random seeds. Len: number of frames to reach the goal location. Stable success: the rate of having 100 consecutive successful episodes. Metrics were Gaussian smoothed, $\sigma = 6 \times 10^6$ frames. **B** The best performing agent with $L=64$ and $R=8$ across all seeds was tested for its transfer learning. new Rew.: new reward location at the lower left corner. new map: a randomly generated map with the same statistics. block path: new walls are added to block paths to the reward, while the previous blocking walls are removed. **C** and **D** Performance of agents with different recurrent modules and inputs. **C**: sparse input. **D**: dense input where batch-normalization and high thresholding was removed. CA3: our CA3 model with $L=64$ and $R=8$. RandRNN: randomly initialized fixed RNN of the same state size. SSM_LegS: fixed SSM HiPPO-LegS from Gu et al. (2020) with the same state size. LSTM: trainable LSTM with matching number of parameters.

2.4 ACTOR CRITIC NETWORK

The activity of hippocampal units is fed into a decoder module with two linear/fully connected (FC) layers with ReLU activation. The actions and value are computed as the linear readout from the decoder module. We trained the agent with a standard advantage actor–critic objective (policy-gradient + value-baseline + entropy regularization) as implemented in Sample Factory (Petrenko et al., 2020; Espeholt et al., 2018).

3 RESULTS

3.1 BEHAVIORAL PERFORMANCE

Training the naive agent ($L=64$, $R=8$) on one fixed reward location in the maze exhibits robust performance measures after about 350 million frames (Fig. 2A). Thus our model effectively maintains information about sparse inputs in its trajectories of the RNN-like dynamics across time like in a reservoir (Jaeger & Haas, 2004). This view is further supported by our simulations with reduced sequence length showing inferior performance (Fig. 2 A). In the most extreme case ($L = 1, R = 1$) without sequences, essentially a pure feedforward architecture corresponding to a brain with DG output bypassing CA3, the agent did not achieve robust behavior. While agents with reduced sequence lengths ($L = 1, 16, R = 8$) still can express reasonable success rates and trajectory lengths, their behavior is considerably more unstable as evidenced by the low fraction of consecutive successes (Fig. 2A). The agent’s performance is stable within a wide range of R and becomes more sensitive to R when running speed is slower (Fig. A1 and Tab. A3). Transfer learning for new reward location and blocked paths, however, requires only about 50 million frames, and transfer learning to a new map requires about 150 million frames. These indicate that the agent was able to form a generalizing representation of the map and task (Fig. 2B).

The agent equipped with a sequence-generating module (CA3; eq.4) learns faster under sparse DG input than an agent in which CA3 is replaced by an LSTM core, resembling the SOTA architecture of Hessel et al. (2019) on the DMLab-30 benchmark (Beattie et al., 2016), from which our environment is adapted. Our CA3 module also outperforms state-space model HiPPO-LegS (Gu et al., 2020) and, as an additional control, randomly initialized RNNs, indicating that its theta-sequence dynamics provide a distinct advantage (Fig. 2C).

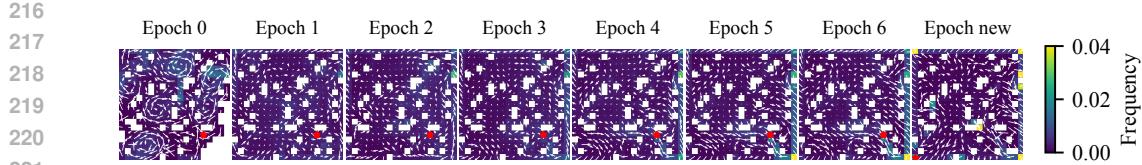


Figure 3: Evolution of occupancy over the course of learning. Color represents a normalized measure of the amount of time points the agent spent at a location. Mean head directions at a location were visualized in arrows. From epoch 5 onwards, the agent has a preference to reach the bottom right corner (independent of the random starting location) and proceed to the goal location (red star) from there.

Table 1: Performance comparison across architectures. Training steps indicate the number of environment frames (in millions) required to reach 80% success. “X” indicates that the threshold was not reached in all random seeds within 350M frames.

Input	CA3	Random RNN	HiPPO-LegS	HiPPO-LegT	HiPPO-LagT	LSTM
Sparse (Steps)	173.6±77.6	X	X	X	X	X
Sparse (Succ.)	0.86±0.10	0.51±0.12	0.52±0.11	0.57±0.15	0.65±0.10	0.56±0.06
Dense (Steps)	X	X	X	X	X	135.9±27.6
Dense (Succ.)	0.71±0.07	0.78±0.15	0.64±0.21	0.65±0.28	0.38±0.02	0.93±0.09

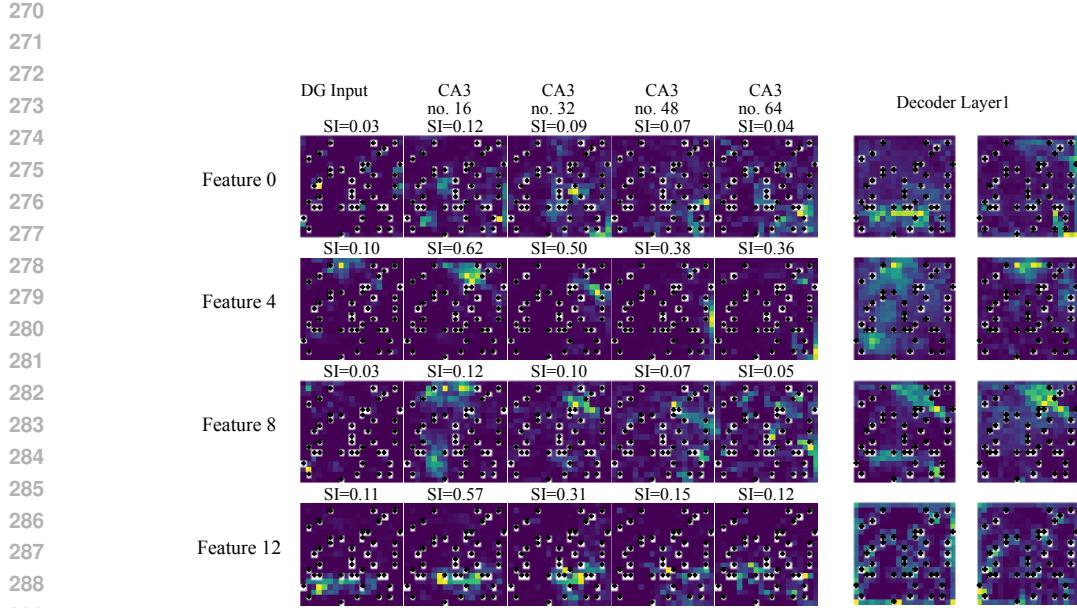
Crucially, this advantage is confined to the sparse-input regime. Under dense input, LSTMs perform better—consistent with prior reports (Hessel et al., 2019)—and our CA3 module performs worse than HiPPO-LegS and random RNNs (Fig. 2D). We also tested other variants from Gu et al. (2020) and they performed similar to HiPPO-LegS (Tab. 1, Fig. A4). These results highlight a specific synergy between sparse representations and intrinsic sequence generator.

3.2 OCCUPANCY

We divided the training into 6 epochs and evaluated the behavior and learned representations at these checkpoints. The agent develops a stable trajectory after 4 to 5 epochs. Between Epoch 4 and Epoch 5, the agent learned to get around the obstacle in the upper part of the right edge and started to spend more time at the lower right corner before reaching the reward site (Fig. 3). The agent appears to develop a strategy of visiting locations with salient input/landmarks and converging from different starting locations to the habituated paths, even after switching to new reward location. This goes in line with the typical strategies employed by animals in familiar environments Gibson et al. (2013). In comparison, the LSTM agent under dense sensory input has fewer converging trajectories before reaching the reward (Fig. A11, likely due to the goal information being more readily available in the visual input, thereby implementing a strategy more related to visual search.

3.3 PLACE FIELD ANALYSIS

In order to understand how the agent executes a successful strategy and whether the representations in the hippocampus-inspired model would also align with the known physiology of place cells, we further computed activity maps of the units for the different layers of the model network. For the input units (DG), we (by construction) observe sparse activation that is distributed across few locations in the map (Fig. 4). More interestingly, learning the weights from the visual encoder to DG leads to orthogonalization, such that DG population activity over time develops a unique representation of individual locations (Fig. 5A). Units farther away from DG input in CA3 sequences show broader spatial tuning (Fig. 4; quantified in Fig. 5B) matching previous reports (Jung & McNaughton, 1993; Parra-Barrero et al., 2021). The place fields of DG and CA3 units gradually stabilize through learning and exhibit remapping after adapting to a new reward location, measured by shifts of the place field center of mass (Fig. A10). In contrast, the input to LSTM agents did not show orthogonalization of the learned input projection (Fig. A14) and the spatial tuning of the LSTM units are disperse across the entire map, distinct from localized place-cell-like tunings (Fig. A12).



290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 4: Left: spatial tuning of DG and CA3 units from epoch 6. Pixel coordinates correspond to environment (black crosses correspond to walls). Each row shows the CA3 units ordered by their positions in the activity sequence. We selected 4 out of the 16 feature sequences for visualization. Spatial Information (SI): bits per time step. Right: spatial tuning of randomly selected Decoder layer 1 units from epoch 6.

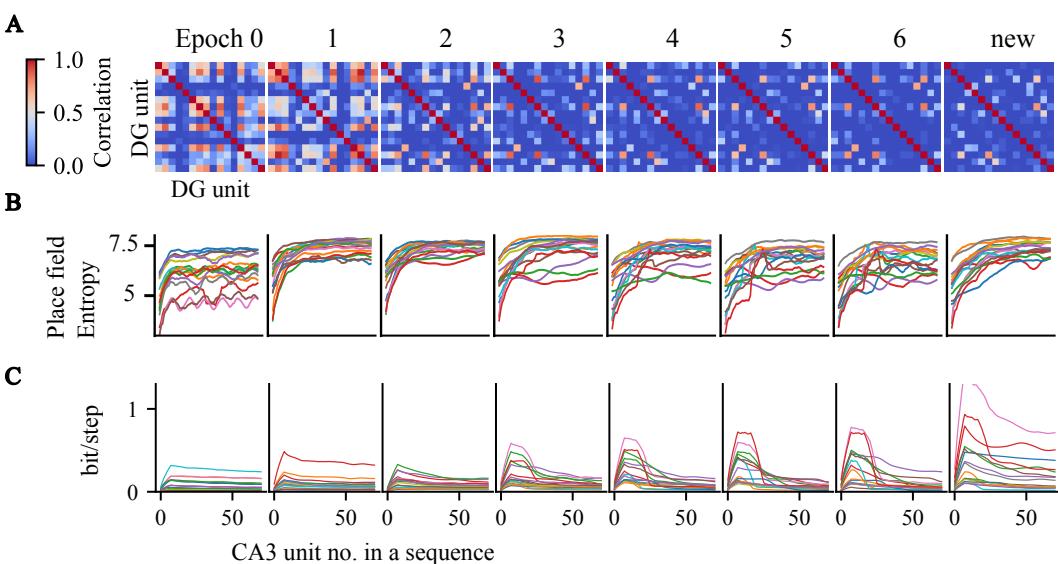


Figure 5: **A** Correlation (color code) of the 16 DG activity maps evoked by the visual features. Throughout training, the DG input to CA3 got increasingly orthogonalized. **B** The spread of CA3 place field measured by entropy. The units are ordered by their positions in a sequence. Each sequence is indicated by a unique color across epochs. **C** same as **B** but for the spatial information of CA3 units.

324 3.4 SPATIAL INFORMATION ANALYSIS
325326 Qualitative inspection of the spatial tunings in Fig. 4 is also quantitatively supported by the distribu-
327 tions of spatial information (SI) of the neural activity maps: CA3 units activated ~ 16 steps after
328 the input have larger SI (Fig. 5C). This corroborates our training results that agents with sequence
329 length $L = 16$ are able to acquire the task reasonably well (Fig. 2). Units activated later in a sequence
330 exhibit smaller spatial information (Fig. 5C).331 Tracking the distribution of SI rates across training epochs, we observe a growing long tail indicative
332 for the development of a neural space representation throughout all layers (Fig. A8). Furthermore,
333 SI also increases with increasing hierarchical level of the network layer until the first layer of the
334 decoder network.335 To test whether SI is causal to behavior, we selectively permute the output weights of Decoder layer
336 1 units. When the permutation was done on the 32 units with the lowest SI, the performance was
337 not impaired with respect to success rate and trajectory length (100% and 1065 frames). When the
338 permutation was done on the 32 units with the highest SI, the success rate dropped by 4.9% and the
339 average trajectory length increased from 1065 frame to 2794 frames.
340341 3.5 POPULATION-LEVEL REPRESENTATIONS
342343 We next examined population-level representations. We employ a novel method inspired by popu-
344 lation vector (PV) correlation and representational (dis)similarity analysis (Kornblith et al., 2019;
345 Kriegeskorte & Wei, 2021). It measures the mean population vector correlation in a pair of location
346 bins grouped by the spatial displacement $\Delta x, \Delta y$. This measure can be interpreted as a spatial
347 kernel learned by the network (Fig. 6). An unbiased representation of spatial geometry would show a
348 kernel function that is isotropically, smoothly and monotonically dependent on the distance between
349 locations bins. Conversely, the representation could be restricted to specific location bin pairs, dis-
350 placement along specific orientation, specific spatial frequency, or simple visual resemblance. Kernels
351 from all layers (DG, CA3, and Decoder layers) exhibit some dependence on distance throughout
352 learning. However, CA3 kernels are smoother than the DG kernels. Both DG and CA3 show lower
353 correlation values compared to the actor-critic layers. Notably, the first Decoder layer (Decoder1)
354 develops the most pronounced spatial tuning (Fig. 6), consistent with the single-unit selectivity
355 observed in Fig. A8. After the reward location was changed (“new”), kernels became less sharply
356 defined, indicating that the representations are disrupted although behavior is adapted. Most layers in
357 the agent with LSTM core and dense input did not show spatial kernels with strong displacement
358 dependency. Only the LSTM output units showed a gradually refined spatial kernel during learning
359 but it is strongly non-isotropic (Fig. A15).360 Over training, a stable place code gradually emerges and remaps after learning the new reward location,
361 indicated by the correlation of population vectors across training epochs (Fig. A9). Interestingly, the
362 similarity between fully trained networks (epoch 6) and the novel reward condition (“new”) is higher
363 than between the naive (epoch 0) and trained (epoch 6) networks, suggesting that the agent acquires
364 generalizable knowledge about the arena’s spatial layout.
365366 4 DISCUSSION
367368 In this study, we presented a minimal model of the hippocampus that enables navigation in a vision-
369 based virtual environment and reproduces key phenomena of spatial representation observed in the
370 mammalian hippocampus.371 The cornerstone of our model—the sequential connectivity in CA3—is biologically plausible and
372 inspired by established findings on theta sequence firing Dragoi & Buzsáki (2006); Foster & Wilson
373 (2007). By constraining CA3 recurrent connectivity as a dynamical reservoir and limiting training
374 to input and output weights via reinforcement learning, we clearly isolate the effect of this theta
375 sequence generator.376 Agents equipped with the CA3 sequence module achieved superior navigation from sparse input
377 (analogous to DG activity) compared to LSTMs of similar complexity or SSM-based cores. Crucially,
378 this advantage was regime-dependent: under sparse input, CA3 dynamics and DG sparsification

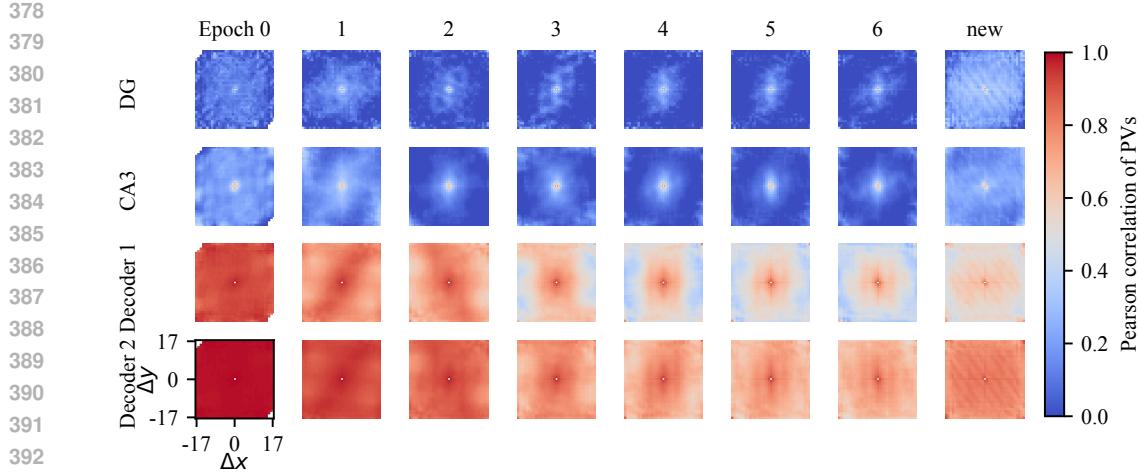


Figure 6: Kernel representation of distance. Mean Pearson correlation (color code) between two population activity vectors as a function of their spatial displacement. Rows correspond to different layers (brain regions) of the network, columns to learning stages (epochs).

synergized to support robust navigation, whereas under dense input, conventional recurrent cores such as LSTMs performed better. Performance also degraded substantially when CA3 sequence length was ablated or shortened (Fig. 2), highlighting the functional role of theta sequence generator.

Analysis of neural activities revealed clear parallels with experimental observations of place cell properties, including robust place field formation (Fig. 4), population-level encoding of spatial distance (Fig. 6), progressive orthogonalization of DG outputs (Fig. 5A), and dynamic remapping triggered by changes in reward locations (Fig. A9 A10), consistent with experimental findings Leutgeb & Leutgeb (2007); Fenton (2024).

Interpretation. The CA3 module expands sparse DG codes into a temporally smoothed canonical basis set, providing long-horizon history without the indiscriminate feature mixing of fully connected RNNs. This is especially beneficial under sparse input, where immediate sensory signals are limited and long-range context is critical for policy learning. The parameter R function as a built-in prior of the temporal smoothness of latent states, thereby smoothing the CA3 spatial tuning via the agent’s movement, at the cost of imprecise timing of input memory.

At first sight, sparsifying input to a recurrent core seems purely detrimental—leaving the agent “blind” most of the time. Yet it also filters out noisy, non-informative cues, making each supra-threshold input more reliably tuned to restricted regions of space. Through sequence propagation and policy learning, a spatially smooth representations can then be stabilized. This mechanism is consistent with habitual trajectories: neuronal activity late in a sequence only remains informative if the policy converges onto consistent paths.

In contrast, with dense input streams, conventional recurrent cores such as LSTMs performed better, consistent with their ability to rapidly integrate continuous signals. Our CA3 model, however, performed worse under dense input. A likely reason is that its long-range memory buffer provides little benefit when input is already abundant, and temporal smoothing from parameter R obscures informative short-term variations.

These intuitions are supported by comparative experiment where different levels of Gaussian noise were added to the pixel input to the DG+CA3 and dense LSTM agents. The DG+CA3 agent suffers less from increasing noise level (Fig. A5; Tab. A4). The CA3 module simply propagates the DG input, with repeat number R rigidly combining adjacent inputs together (as compared to other RNNs which could have various input response functions). It helps to preserve the timing information of the input, but requires the input to be highly informative. Thus CA3 benefits specifically from thresholding that improves the information per input at the cost of reducing total amount of inputs.

432 Overall, these results suggest that different recurrent architectures are suited to different sensory
 433 regimes: sparse coding naturally complements sequential expansion, whereas dense input favors
 434 mixing-oriented recurrent dynamics. The agents' behaviors also diverged, resembling memory-driven
 435 navigation in our model versus more sensory-driven "visual search" navigation with LSTMs.
 436

437 **Biological and computational relevance.** We proposed a parsimonious account of hippocampal
 438 theta sequences: they can be intrinsically maintained without requiring external input. While
 439 actual theta sequences in biological systems likely arise from multiple factors and vary across
 440 contexts Chance (2012); Schlesiger et al. (2015); Ahmadi et al. (2025), our abstraction nonetheless
 441 reproduced hallmark hippocampal phenomena, including robust place fields (Fig. 4), progressive DG
 442 orthogonalization (Fig. 5A), distance-dependent population kernels (Fig. 6), remapping after goal
 443 changes (Fig. A9 and A10), and, by construction, theta sequences (Foster & Wilson, 2007). These
 444 representational effects were linked to performance and align with evidence on sparse DG activity
 445 and CA3 sequences (Leutgeb & Leutgeb, 2007; Fenton, 2024).

446 Importantly, the visual encoder can be viewed as capturing the visually driven components of
 447 entorhinal cortex (EC) input to DG and CA3: the dorsal "where" and ventral "what" streams that
 448 project to medial and lateral EC (Wang et al., 2011). The depth sensor signal fed to Decoder can be
 449 seen as temporoammonic pathway from EC to CA1. To reflect the multi-modal nature of EC, additional
 450 modalities could be incorporated as input features.

451 Beyond explaining brain phenomena, our brain-inspired minimal model also proved useful as a
 452 module in competitive deep RL agents. The CA3 shift register can be viewed as a sparsely active
 453 reservoir that generates finite-length temporal bases, contrasting with the rotational modes of Legendre
 454 SSMs and the fading modes of Laguerre SSMs. Its structure resonates with recent shift-diagonal
 455 architectures (Fu et al., 2022), but tuned to sparse sensory regimes and navigation tasks. Thus, the
 456 model not only explains how theta sequences and place cells form but also provides a normative
 457 account of the computational effectiveness of this mechanism for navigation.

458 The comparison between our hippocampus-inspired model and LSTM agent with dense input demon-
 459 strate the distinction of learned strategies and representations, even though the performance indicators
 460 are comparable (Figs. A15A14A11A12A13).

461

462 **Biological Predictions.** Our model predicts that larger environments or sparser inputs require longer
 463 sequences for successful navigation, consistent with developmental adaptability of sequence length
 464 (Wikenheiser & Redish, 2015; Farooq & Dragoi, 2019). More broadly, it suggests that hippocampal
 465 spatial representations could rely largely on intrinsic sequence-generating circuitry, with experience
 466 primarily shaping feedforward and readout connections. It offers an explanation for how place cells
 467 can persist despite lesions of entorhinal cortex (Brun et al., 2008; Steffenach et al., 2002). The
 468 parsimonious nature of our model also provides a unified mechanism how navigation can be built
 469 upon sequences, no matter how they arise and how they differ across species. This is particularly
 470 important in species without prominent theta oscillations, e.g. bats show hippocampal sequences
 471 locked to wingbeats (Forli et al., 2025).

472

473 **Future Directions.** Several extensions follow naturally. On the biological side, incorporating local
 474 plasticity rules into the DG-CA3 pathway or CA3 readouts would align the model more closely
 475 with known mechanisms while preserving the benefits of prewired dynamics. Interactions with
 476 path integration in medial EC could further clarify their complementary roles in spatial cognition.
 477 Moreover, theta sequences have also been observed in other brain areas, raising the possibility of
 478 hierarchical coordination across regions.

479

480 These ideas resonate with developments in machine learning: structured dynamics akin to SSMs and
 481 linear attention are increasingly used in modern sequence models, including LLMs (Fu et al., 2022;
 482 Katharopoulos et al., 2020), suggesting that hippocampal-like motifs may illuminate principles of
 483 efficient long-range computation. The simplicity of our model also makes it interpretable: sequentially
 484 connected CA3 units can be seen as structurally representing trajectories, which could in turn motivate
 485 algorithms that minimize internally measured trajectory length without relying on external reward.

486

487 On the ML side, combining sparse sequential reservoirs with learned SSMs may yield hybrid
 488 architectures capable of adapting flexibly across input regimes. More broadly, the bottom-up ap-

486 proach—focusing on circuit motifs rather than top-down expert informed objectives—suggests a path
 487 toward scaling to larger networks and more complex tasks.
 488

489 **RL for neuroscience.** Our framework also showcases how modern RL can serve as a testbed for
 490 computational neuroscience. By embedding a biologically inspired hippocampal circuit within an
 491 end-to-end reinforcement-learning agent, the model enables us to study brain computation in the
 492 context of the full perception–action loop, rather than in isolated modules for sensory processing,
 493 cognition, or motor control. This perspective is particularly relevant for association cortices such
 494 as hippocampus and prefrontal cortex, where representations are shaped jointly by sensory inputs,
 495 movement statistics, and behavioral goals.

496 An important conceptual point concerns how our representations relate to existing theoretical frame-
 497 works. Our CA3 representations relate to both successor-representation (SR) and reward/value-based
 498 frameworks, but with important distinctions. As in SRs, CA3 activity is policy dependent and shows
 499 a consistent temporal ordering: because the CA3 module propagates an intrinsic sequence, each unit
 500 predicts its downstream neighbors. This produces SR-like anticipatory structure, yet it arises solely
 501 from the fixed physiology-inspired architecture—CA3 does not learn a predictive map and receives
 502 no TD updates or discounted occupancy signal.

503 At the same time, unlike many previous RL studies of hippocampus (Kumar et al., 2022; Leibold,
 504 2020), that takes allocentric input and analyze how policy shapes and utilizes them, our contribution
 505 is complementary: we show how localized, Gaussian-like place tuning can emerge from egocentric
 506 observations when combined with sparse DG input and intrinsic CA3 sequences. Our work also
 507 distinguishes itself from many other work that takes egocentric input but where the spatial similarity
 508 structure is already reflected in the input (e.g. small room where each wall has a different color;
 509 Vijayabaskaran & Cheng (2022); Raju et al. (2024)). Our environment is large maze, with uniform
 510 looking obstacles scattered in the arena, accounting for a more realistic discrepancy between visual
 511 representation and spatial representation.

512 Finally, the behavioral and representational divergence between the CA3-agent and the LSTM-agent il-
 513 lustrates a promising direction for future comparative work. Differences in qualitative strategies—not
 514 only performance—can reveal how architectural constraints shape navigation, representational geom-
 515 etry, and generalization, providing insights that are difficult to obtain from performance benchmarks
 516 alone.

517 **Conclusion** A minimal, sparsely driven sequence generator in actor-critic agent not only supports
 518 successful navigation but also gives rise to hippocampus-like spatial representations.
 519

520 REFERENCES

- 522 Siavash Ahmadi, Takuya Sasaki, Marta Sabariego, Christian Leibold, Stefan Leutgeb, and Jill K
 523 Leutgeb. Distinct roles of dentate gyrus and medial entorhinal cortex inputs for phase precession
 524 and temporal correlations in the hippocampal CA3 area. *Nat. Commun.*, 16(1):13, January 2025.
- 525 David G Amaral, Helen E Scharfman, and Pierre Lavenex. The dentate gyrus: fundamental neu-
 526 roanatomical organization (dentate gyrus for dummies). In *The Dentate Gyrus: A Comprehensive
 527 Guide to Structure, Function, and Clinical Implications*, Progress in brain research, pp. 3–790.
 528 Elsevier, 2007.
- 530 Sara Aronowitz and Lynn Nadel. *Space, and not Time, Provides the Basic Structure of Memory*.
 531 Oxford University Press, 2023.
- 532 Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
 533 Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
 534 Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
 535 Shane Legg, and Stig Petersen. Deepmind lab, 2016. URL <https://arxiv.org/abs/1612.03801>.
- 538 V. H. Brun, T. Solstad, K. B. Kjelstrup, M. Fyhn, M. P. Witter, E. I. Moser, and M.-B. Moser. Impaired
 539 spatial representation in cal after lesion of direct entorhinal input. *Neuron*, 57(2):290–302, 2008.
 doi: 10.1016/j.neuron.2007.11.034.

- 540 Frances S Chance. Hippocampal phase precession from dual input components. *J. Neurosci.*, 32(47):
 541 16693–703a, November 2012.
 542
- 543 George Dragoi and György Buzsáki. Temporal encoding of place sequences by hippocampal cell
 544 assemblies. *Neuron*, 50(1):145–157, April 2006.
 545
- 546 Howard Eichenbaum. Time cells in the hippocampus: a new dimension for mapping memories.
 547 *Nature Reviews Neuroscience*, 15(11):732–744, 2014.
 548
- 549 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
 550 Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
 551 importance weighted actor-learner architectures. In *International conference on machine learning*,
 552 pp. 1407–1416. PMLR, 2018.
 553
- 554 U Farooq and G Dragoi. Emergence of preconfigured and plastic time-compressed sequences in early
 555 postnatal development. *Science*, 363(6423):168–173, January 2019.
 556
- 557 André A. Fenton. Remapping revisited: how the hippocampus represents different spaces. *Nature
 558 Reviews Neuroscience*, 25(6):428–448, 2024. ISSN 1471-0048. doi: 10.1038/s41583-024-00817-x. Publisher: Na-
 559 ture Publishing Group.
 560
- 561 Angelo Forli, Wudi Fan, Kevin K Qi, and Michael M Yartsev. Replay and representation dynamics in
 562 the hippocampus of freely flying bats. *Nature*, 645(8082):974–980, 2025.
 563
- 564 David J Foster and Matthew A Wilson. Hippocampal theta sequences. *Hippocampus*, 17(11):
 565 1093–1099, 2007.
 566
- 567 Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
 568 Hungry hungry hippos: Towards language modeling with state space models. *arXiv preprint
 569 arXiv:2212.14052*, 2022.
 570
- 571 Brett Gibson, William N Butler, and Jeffery S Taube. The head-direction signal is critical for
 572 navigation requiring a cognitive map but not for learning a spatial habit. *Current Biology*, 23(16):
 573 1536–1540, 2013.
 574
- 575 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
 576 with optimal polynomial projections. *Advances in neural information processing systems*, 33:
 577 1474–1487, 2020.
 578
- 579 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 580 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.
 581
- 582 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 583 recognition, 2015. URL <https://arxiv.org/abs/1512.03385>.
 584
- 585 D A Henze, N N Urban, and G Barrientos. The multifarious hippocampal mossy fiber pathway: a
 586 review. *Neuroscience*, 98(3):407–427, 2000.
 587
- 588 Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado
 589 Van Hasselt. Multi-task deep reinforcement learning with popart. In *Proceedings of the AAAI
 590 Conference on Artificial Intelligence*, volume 33, pp. 3796–3803, 2019.
 591
- 592 Herbert Jaeger and Harald Haas. Harnessing nonlinearity: predicting chaotic systems and saving
 593 energy in wireless communication. *Science*, 304(5667):78–80, April 2004.
 594
- 595 M W Jung and B L McNaughton. Spatial selectivity of unit activity in the hippocampal granular
 596 layer. *Hippocampus*, 3(2):165–182, April 1993.
 597
- 598 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
 599 Fast autoregressive transformers with linear attention. In *International conference on machine
 600 learning*, pp. 5156–5165. PMLR, 2020.
 601

- 594 Kenneth Kay, Jason E Chung, Marielena Sosa, Jonathan S Schor, Mattias P Karlsson, Margaret C
 595 Larkin, Daniel F Liu, and Loren M Frank. Constant sub-second cycling between representations
 596 of possible futures in the hippocampus. *Cell*, 180(3):552–567.e25, February 2020.
- 597
- 598 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
 599 network representations revisited. In *International conference on machine learning*, pp. 3519–3529.
 600 PMLR, 2019. ISBN 2640-3498.
- 601 Nikolaus Kriegeskorte and Xue-Xin Wei. Neural tuning and representational geometry. *Nature
 602 Reviews Neuroscience*, 22(11):703–718, 11 2021. ISSN 1471-0048. doi: 10.1038/
 603 s41583-021-00502-3. number: 11 publisher: Nature Publishing Group.
- 604
- 605 Benjamin Kuipers. The spatial semantic hierarchy. *Artificial intelligence*, 119(1-2):191–233, 2000.
- 606
- 607 M Ganesh Kumar, Cheston Tan, Camilo Libedinsky, Shih-Cheng Yen, and Andrew Y Y Tan. A
 608 nonlinear hidden layer enables actor–critic agents to learn multiple paired association navigation.
 609 *Cerebral Cortex*, 32(18):3917–3936, 01 2022. ISSN 1047-3211. doi: 10.1093/cercor/bhab456.
 610 URL <https://doi.org/10.1093/cercor/bhab456>.
- 611
- 612 Christian Leibold. A model for navigation in unknown environments based on a reservoir of
 613 hippocampal sequences. *Neural Networks*, 124:328–342, 2020. ISSN 08936080. doi: 10.1016/
 614 j.neunet.2020.01.014. URL [https://linkinghub.elsevier.com/retrieve/pii/
 S0893608020300162](https://linkinghub.elsevier.com/retrieve/pii/S0893608020300162).
- 615
- 616 Christian Leibold. Neural kernels for recursive support vector regression as a model for episodic
 617 memory. *Biological Cybernetics*, 116(3):377–386, 2022.
- 618
- 619 Stefan Leutgeb and Jill K. Leutgeb. Pattern separation, pattern completion, and new neuronal codes
 620 within a continuous CA3 map. *Learning & Memory*, 14(11):745–757, 2007. ISSN 1072-0502,
 621 1549-5485. doi: 10.1101/lm.703907. URL [http://learnmem.cshlp.org/content/
 14/11/745](http://learnmem.cshlp.org/content/14/11/745). Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor
 622 Laboratory Press Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor
 623 Laboratory Press Publisher: Cold Spring Harbor Lab.
- 624
- 625 Marcelo G Mattar and Nathaniel D Daw. Prioritized memory access explains planning and hippocam-
 pal replay. *Nat. Neurosci.*, 21(11):1609–1617, November 2018.
- 626
- 627 J O’Keefe and J Dostrovsky. The hippocampus as a spatial map. preliminary evidence from unit
 628 activity in the freely-moving rat. *Brain Res.*, 34(1):171–175, November 1971.
- 629
- 630 Eloy Parra-Barrero, Kamran Diba, and Sen Cheng. Neuronal sequences during theta rely on behavior-
 631 dependent spatial maps. *Elife*, 10:e70296, 2021.
- 632
- 633 Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sample
 634 factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement learn-
 635 ing. In *Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
 636 July 2020, Virtual Event*, volume 119 of *Proceedings of Machine Learning Research*, pp. 7652–
 637 7662. PMLR, 2020. URL <http://proceedings.mlr.press/v119/petrenko20a.html>.
- 638
- 639 Rajkumar Vasudeva Raju, J. Swaroop Guntupalli, Guangyao Zhou, Carter Wendelken, Miguel
 640 Lázaro-Gredilla, and Dileep George. Space is a latent sequence: A theory of the hippocampus.
 641 *Science Advances*, 10(31):eadm8470, 2024. ISSN 2375-2548. doi: 10.1126/sciadv.adm8470. URL
<https://www.science.org/doi/10.1126/sciadv.adm8470>.
- 642
- 643 Magdalene I Schlesiger, Christopher C Cannova, Brittney L Boublil, Jena B Hales, Emily A Mankin,
 644 Mark P Brandon, Jill K Leutgeb, Christian Leibold, and Stefan Leutgeb. The medial entorhinal
 645 cortex is necessary for temporal organization of hippocampal neuronal activity. *Nat. Neurosci.*, 18
 (8):1123–1132, August 2015.
- 646
- 647 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

- 648 William Skaggs, Bruce McNaughton, and Katalin Gothard. An information-theoretic approach to deciphering the hippocampal code. In S. Hanson, J. Cowan, and C. Giles (eds.), *Advances in Neural Information Processing Systems*, volume 5. Morgan-Kaufmann, 649 1992. URL https://proceedings.neurips.cc/paper_files/paper/1992/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.
- 650
- 651
- 652
- 653
- 654 Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as a 655 predictive map. *Nature neuroscience*, 20(11):1643–1653, 2017.
- 656
- 657 H.A. Steffenach, S. Sloviter, R. I. Moser, E. and B. Moser, M. Impaired retention of spatial memory 658 after transection of longitudinally oriented axons of hippocampal ca3 pyramidal cells. *Proceedings* 659 *of the National Academy of Sciences of the United States of America*, 99(5):3194–3198, 2002. doi: 660 10.1073/pnas.042700999.
- 661
- 662 Edward C Tolman. Cognitive maps in rats and men. *Psychological review*, 55(4):189, 1948.
- 663
- 664 Sandhiya Vijayabaskaran and Sen Cheng. Navigation task and action space drive the emergence of 665 egocentric and allocentric spatial representations. *PLoS Comput. Biol.*, 18(10):1010320, 2022. doi: 666 10.1371/JOURNAL.PCBI.1010320. URL <https://doi.org/10.1371/journal.pcbi.1010320>.
- 667
- 668 Quanxin Wang, Enquan Gao, and Andreas Burkhalter. Gateways of ventral and dorsal streams in 669 mouse visual cortex. *Journal of Neuroscience*, 31(5):1905–1918, 2011.
- 670
- 671 Zhaoze Wang, Ronald W. Di Tullio, Spencer Rooke, and Vijay Balasubramanian. Time 672 makes space: Emergence of place fields in networks encoding temporally continuous sensory 673 experiences. *Advances in Neural Information Processing Systems*, 37:37836–37864, 674 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/42aae0e655c77d93edad9171ad9f4717-Abstract-Conference.html.
- 675
- 676 Andrew M Wikenheiser and A David Redish. Hippocampal theta sequences reflect current goals. 677 *Nature neuroscience*, 18(2):289–294, 2015.
- 678
- 679

680 APPENDIX

682 A LIMITATIONS

684 **Physiological Limitations** Our model has fixed sequential connectivity in CA3, ignoring dynamic 685 processes such as synaptic turnover, plasticity, and sequence length adaptations observed biologically. 686 This simplification may limit the biological realism and generalizability of the model to adaptive 687 neural processes. Additionally, the absence of direct entorhinal cortex inputs means we have not 688 modeled potential interactions between hippocampal sequences and detailed sensory-motor driven 689 activity.

691 **Conceptual Assumptions** We assume sequential activity in CA3 arises exclusively from 692 connectivity rather than sequential inputs, potentially oversimplifying hippocampal dynamics. This 693 assumption excludes possible interactions between external sequential signals and intrinsic CA3 694 network dynamics, which could affect real-world predictive accuracy.

696 **Reinforcement Learning Methodological Limitations** Our gradient-based reinforcement learning 697 approach lacks clear biological analogs, as organisms likely utilize local Hebbian synaptic updates 698 rather than global gradient propagation. Furthermore, the biological interpretation of the multilayer 699 perceptron decoder remains unclear, posing challenges to direct biological interpretations of our 700 results. Additionally, our use of asynchronous, batch-based training may not accurately reflect the 701 temporal continuity or real-time single-organism learning dynamics seen biologically, thus potentially 702 limiting ecological validity.

702 **Technical Limitations** Our results depend on the environment specifications and hyperparameter
 703 settings. We chose a reasonably difficult environment setting where the difference between archi-
 704 tectures can be highlighted. It does not imply the effect can generalize to all environments. We
 705 tested the agent with $L=64$ and $R=8$ on 5 other randomly generated maps, it could converge at a
 706 similar speed with the map shown in other results A3. We also tested different frame-skip number,
 707 larger frame-skip leads to faster learning, and the effect of sequence length on performance is weaker
 708 (Fig. A16). This is probably due to the fact that our environment has sparse obstacles and that larger
 709 frame-skip leads to effectively longer sequence and memory. Most results in our report use 4 policies
 710 for population based training and 8 environments per worker. These parameters also change the
 711 dynamics of learning. having more policies made agents with $L=64$ learn slower and $L=8$ learn
 712 slower. Further systematic investigation of these factors is required to establish broader applicability.
 713

714 Taken together, these limitations highlight important areas for further experimental and theoretical
 715 investigation.

716 B IMPLEMENTATION DETAILS

718 B.1 ENVIRONMENT

Description	Look (dx)	Pitch (dy)	Strafe	Forward	Fire	Jump	Crouch
Forward	0	0	0	1	0	0	0
Strafe Left	0	0	-1	0	0	0	0
Strafe Right	0	0	1	0	0	0	0
Look Left + Forward	-20	0	0	1	0	0	0
Look Right + Forward	20	0	0	1	0	0	0

728 Table A1: Reduced action set used in DeepMind Lab experiments. Each action is defined
 729 over the 7-dimensional control space (look, pitch, strafe, forward, fire, jump,
 730 crouch).

732 Since we are mainly interested in modeling the way-finding aspect of navigation (Tolman, 1948;
 733 Kuipers, 2000), the MLP also receives average depth of the pixels, down-sampled to 10 horizontal
 734 pixels to aid motor control (going around walls and avoiding collisions). This procedure is supposed
 735 to mimic the sensory motor collision avoidance habits that do not depend on hippocampus. This
 736 depth information is directly routed to the decoder layer, so the representations in the recurrent core
 737 and its input are not directly influenced.

739 B.2 MULTI-FEATURE DYNAMICS

741 As a more direct illustration for the recurrent dynamics of the sequence network $X_{t+1} = A X_t + B u_t$,
 742 we, here, provide the matrices A and B for the multi-feature case:

$$743 \quad A = \begin{bmatrix} S & 0 & 0 & \dots & 0 \\ 0 & S & 0 & \dots & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & \dots & & S & \\ \end{bmatrix}_{F\ell \times F\ell}, \quad B = \begin{bmatrix} J & 0 & 0 & \dots & 0 \\ 0 & J & 0 & \dots & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & \dots & & J & \\ \end{bmatrix}_{F\ell \times F}. \quad (5)$$

748 with

$$750 \quad S = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \ddots & \ddots & \vdots \\ 0 & \dots & 1 & 0 \end{bmatrix}_{\ell \times \ell}, \quad J = \underbrace{[1, 1, \dots, 1]}_{R \text{ times}}, \underbrace{[0, 0, \dots, 0]}_{L-1 \text{ times}}^T \in \mathbb{R}^{\ell \times 1}. \quad (6)$$

755 Note that the rows in A corresponding to the first time step of each feature only contain 0s, i.e.,
 sequences can only be started from DG input and not from the dynamics itself.

756 Table A2: Network architecture of the CA3 agent.
757

758 Component	759 Details
760 Encoder (ResNet)	3 conv blocks with residual layers, 16–32 channels, max pooling
761 MLP head	Linear ($3456 \rightarrow 256$), ReLU
762 DG projection	Linear ($256 \rightarrow 16$), BatchNorm (momentum 0.05, no affine), ReLU, intercept 2.43
763 CA3 (recurrent core)	Fixed shift-register reservoir, size $16 \times (64+8-1) = 1136$
764 Decoder	MLP: Linear ($1136 + 10 \rightarrow 128$), ReLU, Linear ($128 \rightarrow 128$), ReLU
765 Critic	Linear ($128 \rightarrow 1$)
766 Actor	Linear ($128 \rightarrow 5$)

767 B.3 ARCHITECTURE
768

769 CA3 agent has learnable parameters in DG projection and from CA3 to Decoder, the CA3 output in
770 the full version has $1136 \times 128 = 149504$ parameters. LSTM has learnable parameters $4 * (m^2 + mn)$
771 where m is hidden size and n is input and output size. Solving this gives a hidden size of roughly 137,
772 which we used in the implementation. SSM agents have matching state size with CA3 agent. They
773 also have block-diagonal recurrent weights, where the weights in each block are obtained through the
774 original implementation by Gu et al. (2020) with zero-order-hold discretizations.

775 B.4 ACTOR CRITIC
776

777 We optimize an actor–critic objective with advantage estimates as in Espeholt et al. (2018), consisting
778 of a clipped policy loss, a value regression loss, and an entropy bonus:

$$779 \mathcal{L}(\theta, \phi) = -\mathbb{E}_t [\min(r_t(\theta)A_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t)] + c_v \mathbb{E}_t [(R_t - V_\phi(s_t))^2] - c_e \mathbb{E}_t [\mathcal{H}(\pi_\theta(\cdot | s_t))],$$

780 where $r_t(\theta) = \pi_\theta(a_t | s_t) / \pi_{\theta_{\text{old}}}(a_t | s_t)$.

781 Here R_t and the advantage estimates A_t are computed using V-trace returns (Espeholt et al., 2018),
782 which correct for off-policy updates arising in the asynchronous actor–learner setup of Sample Factory
783 (Petrenko et al., 2020). This formulation—known as Asynchronous PPO (APPO)—combines PPO’s
784 clipped surrogate objective (Schulman et al., 2017) with IMPALA’s V-trace corrections, enabling
785 scalable training with many actors while maintaining stable policy updates.

786 B.5 TRAINING CONFIGURATION
787

788 We trained agents using `sample-factory` (Petrenko et al., 2020) with the following setup.

789 **Environment.** frameskip 8, repeating action for 8 frames until getting the next observation. Each
790 run used 32 workers \times 8 envs/worker, with decorrelation up to 120s.

791 **Algorithm.** APPO (Espeholt et al., 2018), $\gamma = 0.99$, rollout length 64, recurrence 64, batch size
792 2048, 2 batches/epoch. Optimizer learning rate 2×10^{-4} .

793 **Architecture.** Visual encoder: pretrained ResNet on DMLab and the second layer of ResNet
794 pretrained on ImageNet DG: batchnorm + ReLU, intercept 2.43, with 16 features. Decoder: 2 MLP
795 layers of size 128.

796 **Population Based Training.** Enabled PBT with 4 policies, replacement gaps 0.05 (relative) and
797 0.2 (absolute), mutation start after 10M steps, period every 2M steps. Policy lag tolerance set to 35.

798 **Logging and checkpoints.** Training for 108k seconds, milestones every 5400s.

799 **Miscellaneous.** Seeds: [1111,2222,3333,4444,5555]. Device: CPU. Affinity pinning disabled.
800 Inputs not normalized. Other parameters were default in sample-factory for Deepmind Lab.

810 B.6 SKAGGS' SPATIAL INFORMATION MEASURE
811812 We quantify how much information a unit's activity conveys about the agent's location in our discrete-
813 time simulation by a "bits per step" version of Skaggs' spatial information Skaggs et al. (1992). Let
814 the environment be divided into N spatial bins, and define:

- 815
- p_i — fraction of timesteps (steps) spent in bin i (occupancy probability),
 - λ_i — mean activity rate in bin i , measured in activity per step,
 - $\lambda = \sum_{i=1}^N p_i \lambda_i$ — overall activity rate (activity per step).
- 816

817 First, the information conveyed per timestep is
818

819
$$I_{\text{step}} = \sum_{i=1}^N p_i \lambda_i \log_2 \left(\frac{\lambda_i}{\lambda} \right) \quad [\text{bits/step}].$$
820

821 This measures the average reduction in positional uncertainty (in bits) each simulation step provides.

822 Interpretation:

- 823
- Uniform firing ($\lambda_i = \lambda$ for all i) yields zero information ($I_{\text{step}} = I_{\text{spike}} = 0$).
 - Elevated λ_i in particular bins gives positive contributions proportional to $p_i \lambda_i$ (for bits/step)
or $p_i (\lambda_i / \lambda)$ (for bits/spike).
 - Bins visited rarely (small p_i) contribute less, guarding against over-weighing seldom-visited
locations.
- 824

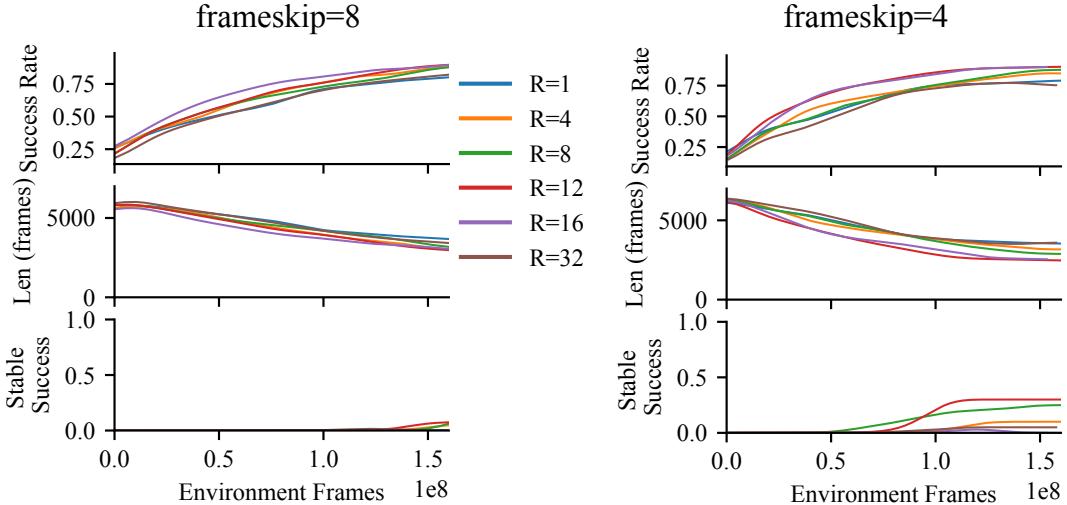
825 In our simulations, λ_i and λ are estimated from spatially binned sum of activity divided by the
826 number of steps in each bin. Bins with $\lambda_i = 0$ are omitted (treating $0 \cdot \log 0 = 0$).
827
828
829
830
831
832
833834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

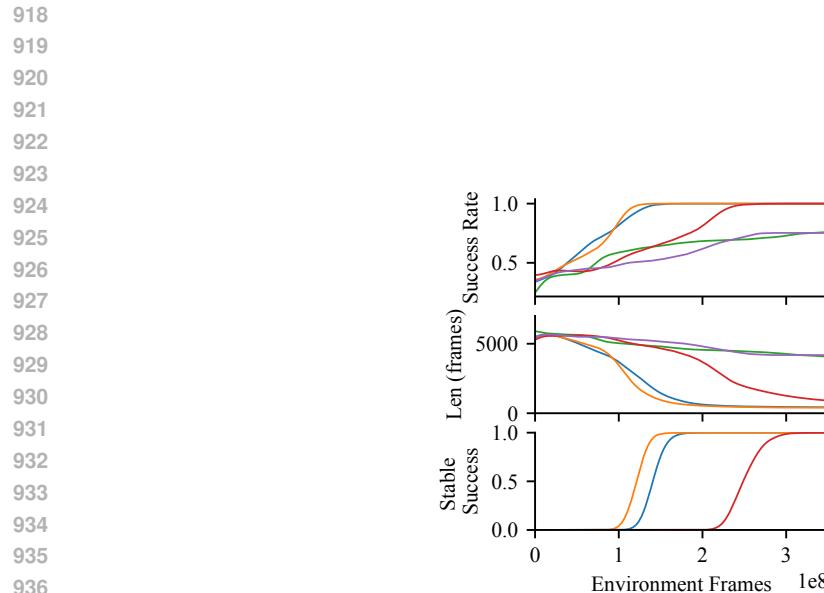
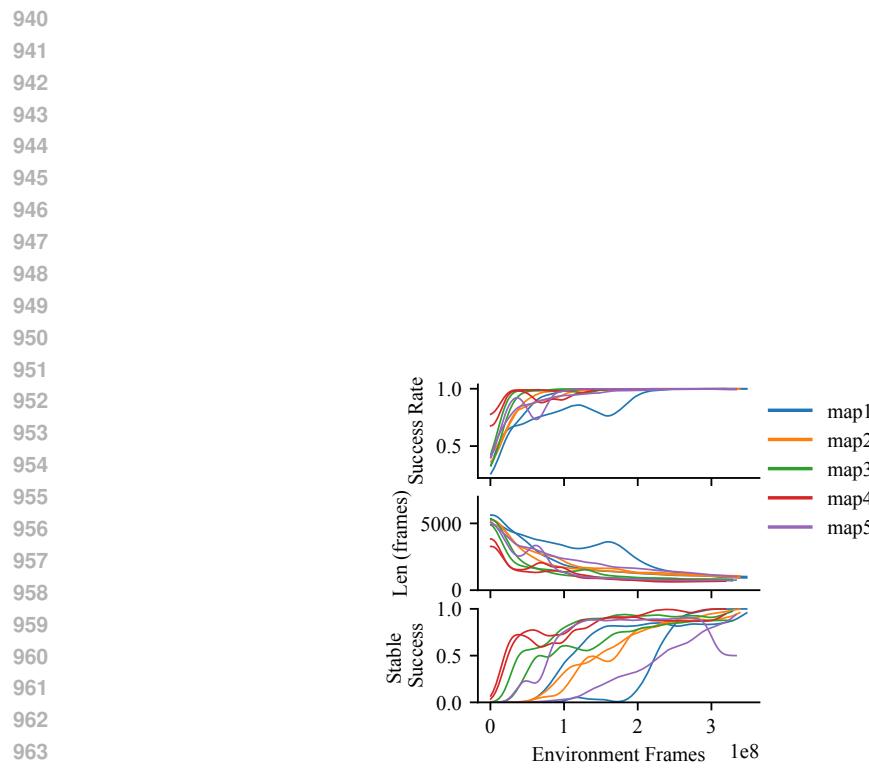
864 C SUPPLEMENTARY TABLE
865866 Table A3: The effect of parameter R at different running speed (frameskip). Performance is measured
867 as the success rate at 150 million training frames. This is a summary of Fig. A1.
868

Frameskip	R=1	R=4	R=8	R=12	R=16	R=32
8	0.788 \pm 0.097	0.866 \pm 0.098	0.857 \pm 0.068	0.886 \pm 0.089	0.880 \pm 0.036	0.806 \pm 0.097
4	0.785 \pm 0.153	0.848 \pm 0.126	0.874 \pm 0.106	0.902 \pm 0.116	0.901 \pm 0.114	0.758 \pm 0.226

873 Table A4: The performance at different noise level. Performance is measured as the success rate at
874 100 million training frames. This is a summary of Fig. A5.
875

Model \ Noise	0	10	20	40	80
DG+CA3	0.693 \pm 0.137	0.492 \pm 0.167	0.539 \pm 0.108	0.685 \pm 0.186	0.477 \pm 0.072
Dense LSTM	0.638 \pm 0.063	0.707 \pm 0.178	0.495 \pm 0.010	0.449 \pm 0.064	0.373 \pm 0.008

881 D SUPPLEMENTARY FIGURES
882901 Figure A1: **Effect of parameter R with different running speed.** Training performance of CA3
902 agent with L=64 different R. Random seeds: [1111, 2222, 3333, 4444, 5555].
903



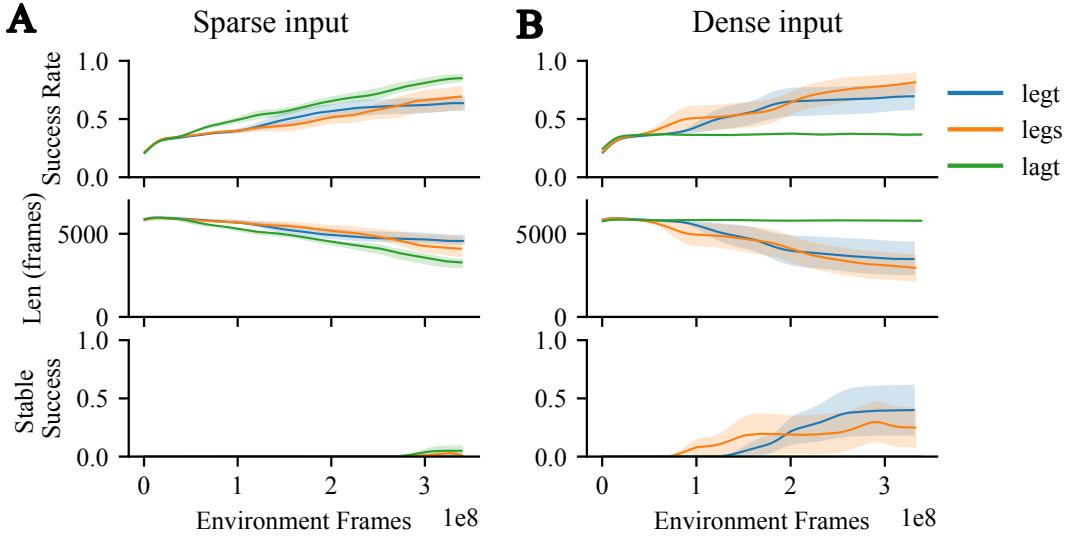


Figure A4: Training performance of agents with fixed SSM cores described by Gu et al. (2020). legt: Legendre bases with fixed memory horizon. legs: Legendre bases with infinite memory from the beginning of an episode. lagt: Laguerre bases, i.e. memory with decay. All three SSMs were implemented with the same state size as our CA3 module, each input feature is expanded into $64+8-1=71$ states. The SSMs were fixed, with three additional learnable parameter controlling the input, recurrent scales and timestep length for discretizations, as a common practice described by Gu et al. (2021).

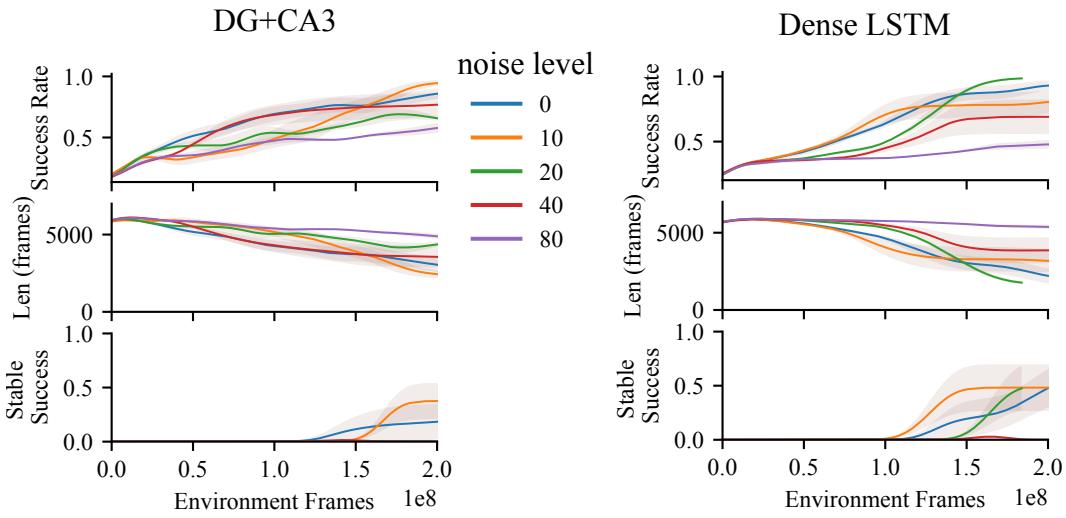
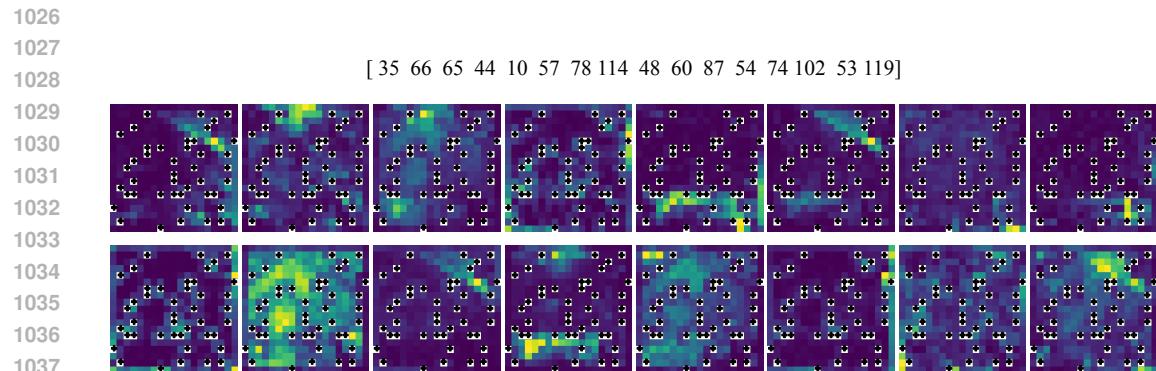
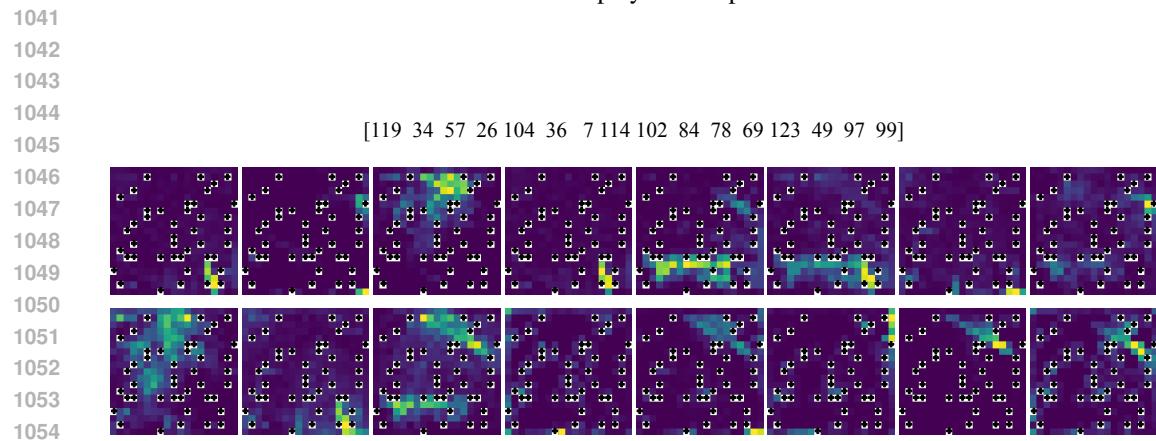


Figure A5: **Training performance of agents under different noise levels.** Independent Gaussian noise of different sigmas was added to the input image pixels (intensity 0-255). Random seeds: [1111, 2222, 3333, 4444, 5555].



1039 Figure A6: Rate maps from decoder layer 1 in the last training epoch. Showing the random 16 units
1040 out of the 50 units with the best SI. Unit id displayed on top.



1056 Figure A7: Rate maps from decoder layer 2 in the last training epoch. Showing the random 16 units
1057 out of the 50 units with the best SI. Unit id displayed on top.

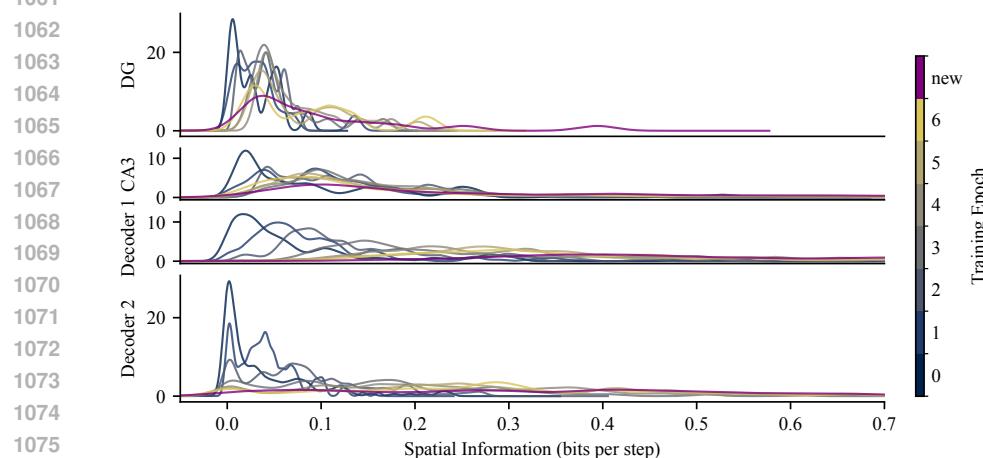


Figure A8: Distribution of SI rates for different layers (brain regions rows) over the progress of learning (colors) and change of reward site (purple). Y axes: unit fraction density.

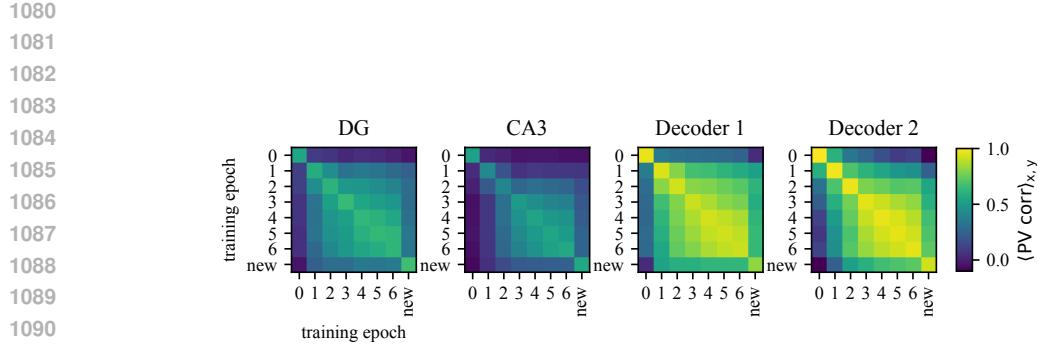


Figure A9: PV correlations across training. Although performance saturates by epochs 5–6, representational changes continue. The last epoch shows the effect of learning a new goal location.

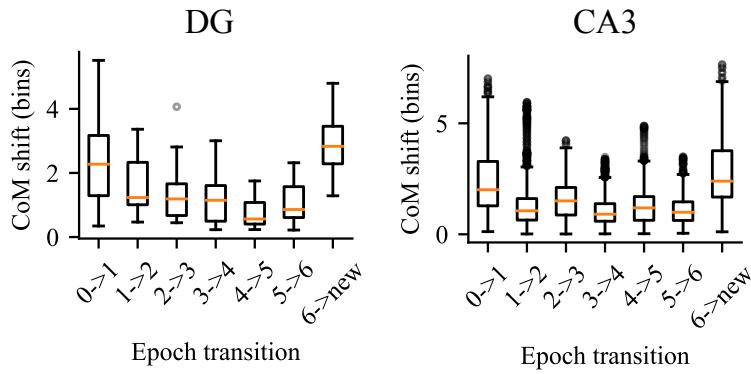


Figure A10: Convergence and Remapping. The center of mass (CoM) shift of place fields of individual units from epoch to epoch reveals higher stability in DG and remapping for a new goal location.

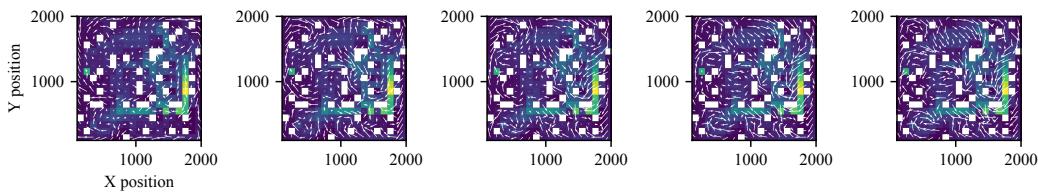
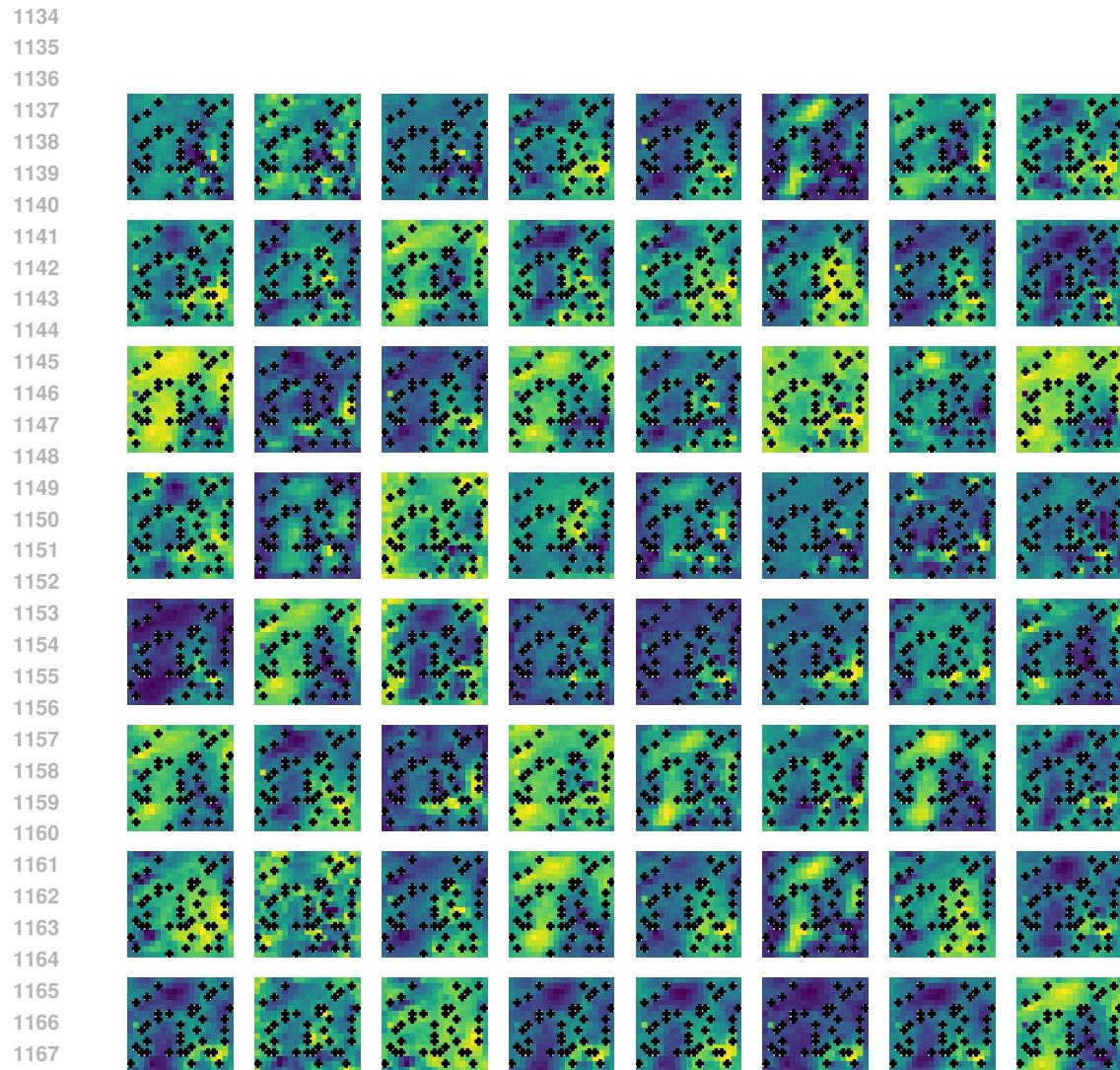
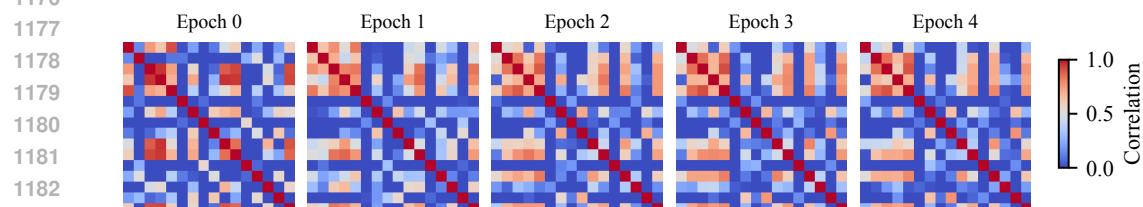


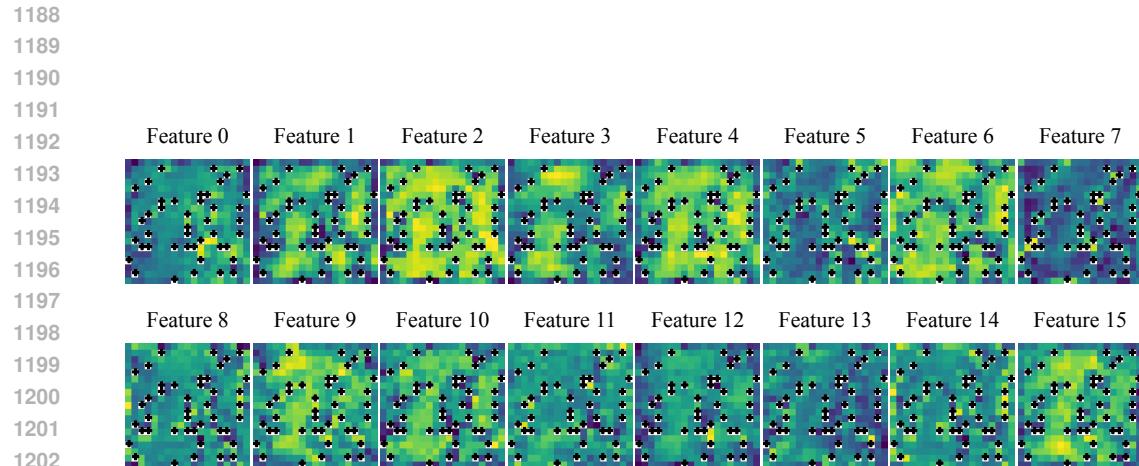
Figure A11: Occupancy map of LSTM agent's trajectories across training.



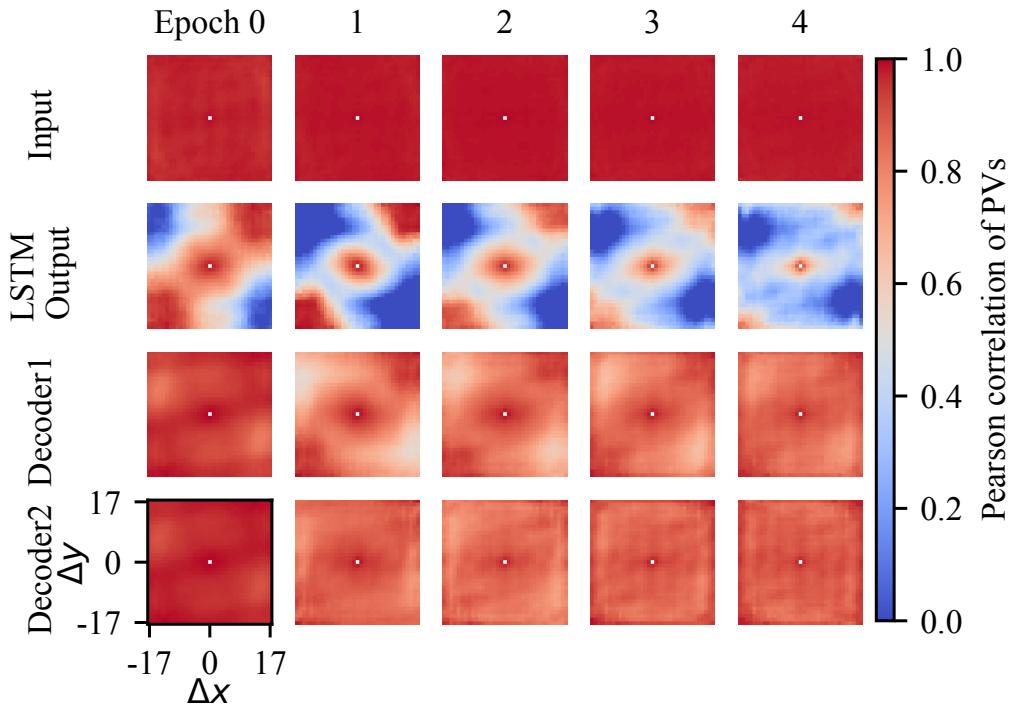
1170 Figure A12: Place fields from the LSTM core (randomly selected units). Each panel shows the
 1171 normalized spatial activity of one unit.



1184 Figure A13: Population vector correlation across epochs. Color indicates Pearson correlation; rows
 1185 show epochs 0–4.
 1186



1204 Figure A14: Learned dense input features in LSTM agent. Each tile shows the spatial receptive field
 1205 of one feature.



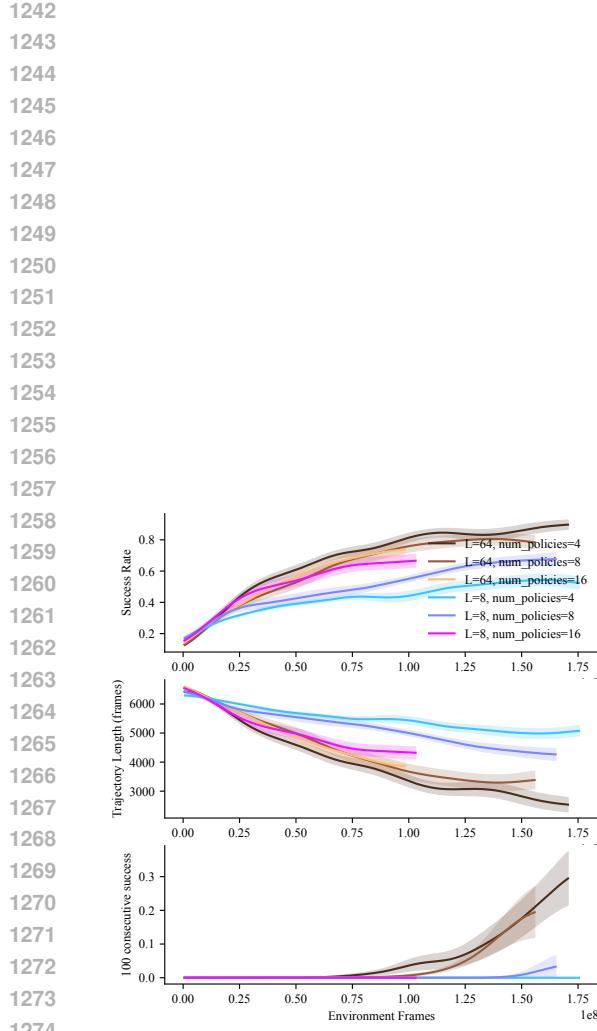


Figure A16: Training performance with different environment action repeats and number of policies in population based training. Left: environment frame skip / action repeat = 8. Right: environment frame skip / action repeat = 4. The frame skip controls the fine-graininess of actions, which is not required for the current navigation task. On the other hand, larger frame skip effectively make sequences propagate over longer traversals.