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Abstract

Federated learning (FL) is greatly challenged by
the communication bottleneck and computation
limitation on clients. Existing methods based on
quantization for FL cannot simultaneously reduce
the uplink and downlink communication cost and
mitigate the computation burden on clients. To ad-
dress this problem, in this paper, we propose the
first low-bit integerized federated learning (LBI-
FL) framework that quantizes the weights, acti-
vations, and gradients to lower than INT8 preci-
sion to evidently reduce the communication and
computational costs. Specifically, we achieve dy-
namical temporal bit-width allocation for weights,
activations, and gradients along the training tra-
jectory via reinforcement learning. An agent is
trained to determine bit-width allocation by com-
prehensively considering the states like current
bit-width, training stage, and quantization loss as
the state. The agent efficiently trained on small-
scale datasets can be well generalized to train
varying network architectures on non-independent
and identically distributed datasets. Furthermore,
we demonstrated in theory that federated learning
with gradient quantization achieves an equivalent
convergence rate to FedAvg. The proposed LBI-
FL can reduce the communication costs by 8 times
compared to full-precision FL. Extensive experi-
ments show that the proposed LBI-FL achieves a
reduction of more than 50% BitOPs per client on
average for FL with less than 2% accuracy loss
compared to low-bit training with INT8 precision.
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Figure 1: Image classification results on CIFAR-10 with the
low-bit integerized federated learning framework (LBI-FL).
The proposed method can simultaneously reduce both the
communication cost and computational cost. The areas of
bubbles are positively correlated with the communication
cost or the BitOPs for training the model.

1. Introduction
Federated learning (FL) is a distributed machine learning
framework designed to enable model training without the
local data exchange. In FL, multiple clients independently
train a model on their local data and periodically send the
updated model parameters (or model updates) to a central
server for aggregation. This paradigm can address the data
privacy and security concerns while effectively leveraging
the computational resources distributed over local clients.

However, a significant challenge in FL is the communi-
cation overhead, as it necessitates a frequent transmission
of models or updates between local clients and the central
server. To address this, a substantial body of literature has fo-
cused on compressing the model updates through techniques
such as quantization and sparsification. Compression-based
federated algorithms such as QSGD (Alistarh et al., 2017)
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and SignSGD (Bernstein et al., 2018) reduce the amount of
model updates to be uploaded to the server by quantizing the
gradient values into lower-precision integers. Though these
methods can mitigate the uplink communication cost, they
still require downloading a full-precision model. Exploring
lower bit-width training in both the uplink and downlink
communication becomes promising to further reduce the
communication overhead for FL systems.

Network quantization (Hubara et al., 2017; Jacob et al.,
2018), as a mainstream strategy to achieve network com-
pression, has been extensively studied for network inference
and training, since it enjoys the merit of reducing compu-
tation burden without modifying the model architecture.
Different from inference quantization (Jacob et al., 2018;
Banner et al., 2019; Choi et al., 2018; Jung et al., 2019)
that quantizes the weights and activations of networks to
accelerate the inference process for deployment, low-bit
training (training quantization) simultaneously projects gra-
dients, weights, and activations into low bit-width during
training. Thus, low-bit training can reduce the uplink and
downlink communication overhead for federated learning
using low-bit representation of weights for training. More-
over, it can decrease the computation load for each client by
reducing the computational cost of backward computation
(backpropagation) that is nearly twice the cost for forward
computation (Zhao et al., 2021).

Recent attempts on low-bit training, including directive sen-
sitive gradient clipping (Zhu et al., 2020) and vectorized
gradient quantization (Zhao et al., 2021), can alleviate or
even eliminate the accuracy loss of networks trained under
the INT8 precision. However, these methods could collapse
when the precision is further decreased to INT4. Consider-
ing that neural networks vary in sensitivity to quantization
at different training stages, it is reasonable to assign differ-
ent bit-widths for quantization at different stage of network
training to minimize the impact of quantization error. In
this paper, we focus on a mixed precision of INT4, INT6,
and INT8 for dynamic temporal bit-width assignment to
reduce both communication and computation costs for FL.
Zhang et al. (2020) use a predetermined threshold to decide
layer-wise switching of bit-widths for gradients with fixed
bit-widths for weights and activations. Nevertheless, as
shown in Figure 2, the quantization loss varies for different
networks during the training process and a predetermined
threshold cannot achieve consistent compression ratio for
varying networks or datasets. There is a lack of a mixed-
precision bit-width allocation that can dynamically fit the
varying training processes for different networks on non-
independent and identically distributed training data.

In this paper, we propose the first low-bit integerized federal
learning (LBI-FL) framework that allows an average preci-
sion below INT8 to further reduce the communication and

computation costs at a tolerable level of performance loss
as shown in Figure 1. We leverage reinforcement learning
(RL) to dynamically determine the bit-widths for weights,
activations, and gradients by comprehensively considering
the quantization loss along the training trajectory. An agent
is efficiently trained on a small local dataset and generalized
to large-scale models and complicated datasets. Our main
contributions are summarized as follows.

• To our best knowledge, this is the first successful at-
tempt to achieve low-bit training FL that evidently
reduces the communication overhead and computation
cost compared to full-precision and INT8 training.

• We propose a novel reinforcement learning method for
temporally dynamic bit-width allocation for weights,
activations and gradients along the training trajectory
to achieve an average bit-width below INT8.

• We demonstrate in theory that federated learning with
gradient quantization achieves equivalent convergence
rate to the standard FedAvg algorithm (McMahan et al.,
2017) with sufficiently large number of communication
rounds and further empirically verify the convergence
rate.

• Comprehensive experiments on low-bit integerized fed-
erated learning with a wide range of network models
including ResNets and ViTs validate the effectiveness
of the proposed method.

2. Related Work
Inference quantization. According to the stage of quan-
tization, model quantization can be divided into two cat-
egories: inference quantization and training quantization.
Inference quantization quantizes the weights or activations
of the trained neural networks from full precision to low-bit
data format representations before deploying the models.
Typical works (Hubara et al., 2016; Rastegari et al., 2016;
Liu et al., 2023) utilize the binary or ternary bit-widths for
weights and activations to speed up the inference. Dong
et al. (2019; 2020) achieve a good compression performance
through the mixed-precision quantization.

Training quantization. Training quantization stands for
quantizing simultaneously the gradients, weights, and activa-
tions to accelerate the training process. There are two main
types of methods in existing studies of low-bit training. The
first is to use low-bit floating point for training (Wang et al.,
2018; Mellempudi et al., 2019; Cambier et al., 2020). This
method can achieve almost lossless accuracy with the full-
precision model, but harms the acceleration performance
compared to integer quantization. The second involves
quantizing the model with integers. Some methods quantize
the entire network (Zhou et al., 2016; Yang et al., 2020a)
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which yields a higher compression but harms the model
performance. Some other methods only quantize the con-
volutional layers in the model (Zhu et al., 2020; Zhao et al.,
2021) which can achieve a better model performance. The
low-bit training framework in this paper is closest to these
methods, but the goal is to further reduce the bit-width on
the existing full INT8 basis for a more efficient FL scheme.

Federated learning. Federated learning, as a rapidly evolv-
ing application of distributed learning in large-scale client
networks, has garnered significant research interest. This
surge of attention has led to a substantial body of work
exploring the intersection of FL with various domains, in-
cluding robustness (Ghosh et al., 2019), fairness (Wei &
Huang, 2024), federated reinforcement learning (Yue et al.,
2024), and federated optimization (Reddi et al., 2021). For
a more detailed comparison, we defer to the comprehensive
survey papers (Li et al., 2020; Kairouz et al., 2021).

Efficient FL. Given the communication bottlenecks and
computational resource constraints on the client side in FL,
introducing pruning (Prakash et al., 2022; Meinhardt et al.,
2024) or quantization techniques is a natural progression,
and we mainly introduce the quantization methods here. To
enhance communication efficiency, various methods have
adopted quantized SGD (Alistarh et al., 2017; Bernstein
et al., 2018; Mishchenko et al., 2022), where model updates
(i.e., the sum of gradients) are directly quantized and com-
pressed. Some methods (Li & Li, 2023; Bernstein et al.,
2018) also incorporate error feedback to mitigate quanti-
zation errors. However, these quantized model updates
primarily reduce the uploaded traffic without accelerating
training or alleviating downloaded traffic. To further expe-
dite the local training and inference, certain strategies (Chen
et al., 2024) explore the use of quantized neural networks
within FL. Nevertheless, these methods often treat the prob-
lem as an optimization task, focusing on determining the
optimal quantization bit-width. While theoretically perfor-
mant, their empirical results exhibit a slight decrease in the
model effectiveness. Moreover, some methods improve the
FL efficiency by optimizing energy consumption. Yang
et al. (2020b) derive the time energy consumption models
and Marnissi et al. (2024) propose an optimization frame-
work to minimize the total energy consumption.

3. Preliminaries
Quantization. Integer quantization maps a floating-point
value to a fixed-point number. Uniform quantization is pop-
ular in network quantization. It is classified into two kinds,
i.e., symmetric quantization and asymmetric quantization,
based on whether the mapping is identical for the zero point.

Asymmetric quantization first substracts the zero-point z
from the clipped data x′

f = clamp(xf ,m,M) and then

multiplies the data by the scaling factor s. Here, M and m
are the maximal and minimal clipping values for xf , respec-
tively. The scaled data is fed into the rounding function,

xq=round

(
1

s
· (x′

f−m)

)
=round

(
1

s
· xf+z

)
, (1)

where the scaling factor s = (M −m)/(2N − 1) given the
bit-width N for quantization. De-quantization is realized by
x̂f = (xq − z) · s. Different from asymmetric quantization,
symmetric quantization obtains zeros for the zero point.

xq = round

(
1

s
· x′

f

)
, x̂f = xq ·s, s =

max(|xf |)
2N−1 − 1

. (2)

Nearest rounding is usually used for the weight and
activation quantization, while stochastic rounding is
adopted (Gupta et al., 2015) for the gradient quantization,
since its loss has much more impact on model accuracy,

round(x) =

{
⌊x⌋, w.p. 1− (x− ⌊x⌋)
⌊x⌋+ 1, w.p. x− ⌊x⌋ (3)

where ⌊x⌋ returns the largest integer not greater than x.

Deep Q-Network. Reinforcement learning optimizes the
accumulative rewards interacting with the environment. The
interaction between the agent and environment can be mod-
eled as a Markov decision process (MDP) represented by a
five-tuple (s, a, t, r, γ) of state s, action a, transition func-
tion t, reward function r, and discounting factor γ.

The Q-function qπ(s, a) is defined as the expectation re-
ward of taking specific action on the current state. Deep
Q-network (DQN) is a classic value-based algorithm using
a neural network qθ(s, a) to approximate this Q-function
qπ(s, a). DQN consists two important components, i.e., tar-
get network and experience replay (Mnih et al., 2015). The
target network stabilizes the training results and experience
replay diversifies the batch data. In this paper, we employ
DQN considering that it is lightweight and sample-efficient.
DoubelDQN and DuelDQN are two typical improved ver-
sions of DQN (Van Hasselt et al., 2016; Wang et al., 2016).

Federated Learning. In general, the optimization problem
of federated learning (FL) can be formulated as:

min
w∈Rd

f(w) :=
1

m

m∑
i=1

Fi(w), (4)

where Fi(w)
∆
=Eξ∼Di

[Fi(w, ξ)] represents the local loss
function of the i-th client with the data sample ξ drawn from
distribution Di. Data is typically heterogeneous for FL such
that Di and Dj can be extremely different for two distinct
clients i and j. Additionally, the FL systems often operate
under a limited bandwidth and constrained client-side com-
puting resources, making both the communication overhead
from exchanging model parameters and the computational
burden on the client a significant bottleneck.
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Table 1: Classification accuracy (%) by altering bitwidths
from INT4 to INT8 or from INT8 to INT4 on CIFAR-10.

LeNet ResNet-18 MobileNetV2

INT4→INT8 82.67 83.76 85.19
INT8→INT4 82.30 82.81 NaN

4. Proposed Method
In this section, we first introduce our motivations, and then
propose the low-bit integerized training framework for fed-
eral learning (LBI-FL), and finally elaborate on the training
process of the temporal bit-width selection agent.

4.1. Motivation

Communication and computational costs are the two main
costs in FL. Low-bit training can reduce the computational
load during training, while the calculation with low bit-
width weights helps mitigate both of these costs. However,
low-bit integerized federated learning needs to address two
challenges as summarized below.

i) Varying impacts of quantization at different stages
of training. We conduct experiments on the CIFAR-10
dataset by switching from INT4 to INT8 at 40% of the
training process and from INT8 to INT4 at 60% of the
training process, respectively. Table 1 shows that using
lower bit-widths in the later stage of training suffers from an
evident performance loss, and might cause a model collapse.
Therefore, it is meaningful to use different bit-widths at
different training stages.

ii) Varying training curves for different datasets and
models. Figure 2 shows that the quantization loss calculated
by Equation (5) in (Zhang et al., 2020) varies across different
models. We are thus motivated to train an RL agent to
dynamically determine the temporal bit-width allocation for
different models at different stages of training.

4.2. Low-Bit Integerized Federal Learning

As depicted in Figure 3, the proposed framework for low-
bit integerized federal learning consists of two parts. First,
the temporal bit-width selection agent is trained with re-
inforcement learning. The pretraining is conducted on a
relatively small local dataset (10% of CIFAR-10 used in
our approach). Second, the pre-trained agent is distributed
to the clients to perform federated learning on new mod-
els or datasets. For every Itv epochs, the agent on each
client decides whether to adjust the bit-widths of weights,
activations, and gradients.

The low-bit integerized federal training framework is de-
tailed in Algorithm 1. This framework offers two main ben-

(a) Gradient (b) Weight (c) Activation

Figure 2: Average quantization loss of full INT8 quanti-
zation on (a) gradients, (b) weights, and (c) activations,
respectively, over all the layers through the training process.
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Model Training

Quant Quant

QuantQuant

Server

Agent Training

Dataset
10% CIFAR10

Agent

1

Server
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Control
Download

Upload
Quantize

Shared
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Figure 3: Overview of the proposed low-bit integerized fed-
erated learning. The agent is firstly pre-trained on a small lo-
cal dataset, such as 10% of the CIFAR-10 dataset. It is then
applied to another model or dataset for federated learning
with low-bit training, which can reduce both the communi-
cation overhead and computational cost. The purple arrows,
representing the uplinks and downlinks for communication,
transmit low-bit weights with bit-width wk

bit, leading to a
significantly reduction in the communication cost.

efits for the acceleration of federated learning. (i) Since the
model weights are quantized with low bit-widths, only the
low-bit weights are transmitted when the model is uploaded
from the clients to the server. Similarly, when the model
is downloaded from the server, the weight is quantized be-
fore transmission. As a result, the communication overhead
during both the uploading and downloading process is sig-
nificantly reduced compared to the full-precision commu-
nication. (ii) Moreover, we implement a low-bit training
on each client, replacing the full-precision matrix opera-
tions with low-bit integer ones, which can further reduce
the computation cost and accelerate the training process.

4.3. Agent Training for Temporal Bit-Width Allocation

As illustrated in Figure 4, in our framework, temporally dy-
namic bit-width allocation is achieved with reinforcement
learning. The agent is trained to determine whether to alter
the bit-widths for the weights, activations, and gradients,
considering the training state of the networks including train-
ing time and quantization loss of data. After each action,
a reward is obtained based on the current model training
accuracy and the compression ratio. The reward function,
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Algorithm 1 Low-bit Integerized Federated Learning.
Input: Pretrained agent, number of clients M , number of
epochs N , and update interval Itv.
Output: Trained model with low-bit weights and activa-
tions.

1: Initialize the weight, activation, and gradient bit-widths
wbit, abit, and gbit for each client as INT4.

2: for i = 1 to N do
3: Train and update the local model with low bit-width

wk
bit, a

k
bit, and gkbit on each client.

4: Quantize the model on each client with bit-width wk
bit

(k ∈ [1,M ]) before uploading to the server.
5: Server averages models to obtain a new global model.
6: Quantize the model with bit-width wk

bit before down-
loading the model from the server to each client.

7: if i%Itv == 0 then
8: Utilize the pre-trained agent to determine whether

each client should adjust its bit-widths.
9: end if

10: end for

therefore, needs to balance the maintenance of model ac-
curacy and the reduction of computation cost. Since the
early stage of training can tolerate more noise as shown
in Section 4.1, the bit-widths are initialized as INT4 and
can only switch from lower bit-widths to higher low-widths.
Details of the reinforcement learning method are elaborated
below.

State space. To well transfer the agent to different models
and datasets, we exclude factors that are strongly related to
the models and datasets. Consequently, the designed state
space is composed of four types of factors.

(i) Time step that denotes the ratio of the current training
epoch to the total number of epochs.
(ii) Current bit-width of weights, activations, and gradients.
(iii) Quantization loss of weights, activations, and gradi-
ents. The quantization loss is calculated using Equation (5)
in (Zhang et al., 2020) to capture the data distribution differ-
ence for revealing the training process.
(iv) Last changing time step of the bit-width for weights, ac-
tivations, and gradients. If the bit-width has never changed,
the value is set to −1. From this value, the agent can esti-
mate the compression ratio,

Loss =

∣∣∣∣∑n
i |xf | −

∑n
i |xq|∑n

i |xf |

∣∣∣∣ . (5)

Action space. We adopt the mixed INT4, INT6 and INT8
format during the training stage. We set the agent only able
to increase bit-widths. The agent has four actions: (i) Do
not change the bit-widths. (ii-iv) Increase the bit-width of
weights, activations, or gradients by ∆ = 2.

Figure 4: Overview of the reinforcement learning method
of selecting bit-widths for the network during training.

Balanced reward function. As the agent aims to preserve
accuracy and reduce the bit-width simultaneously, the re-
ward function needs to balance the model accuracy and com-
pression ratio. The balanced reward formulation is carefully
designed, which consists of three parts: the quantization
index, accuracy index, and time step.

reward = q idx · a idx · t step (6)

Quantization index. In this paper, the computation cost of
convolution is approximately calculated with BitOPs (Yang
& Jin, 2021). Supposing the multiplication of a kw bit
weight value and a ka bit activation value, the BitOPs of
this multiplication is kwka. BitOPs is an easy-to-calculate
metric and is independent of the actual hardware.

The compression ratio λ is obtained by comparing the cur-
rent training with full INT8 quantization. The quantization
index is formulated in Equation (7), where θ is the hyperpa-
rameter to adjust the quantization importance in the reward,

q idx = θ/(1− λ) (7)

Accuracy index. To evaluate the model accuracy of low
bit training, the model accuracy of full INT8 training at
each epoch is stored as reference ar. The accuracy index is
obtained by comparing the current training accuracy with
full INT8 model. δ in Equation (8) is also a hyperparameter
to adjust the accuracy importance,

a idx =

{
1 if a > ar
1/(1 + (ar − a) ∗ δ) if a ≤ ar

. (8)

Time step. The ultimate objective of the agent is to increase
the final compression ratio while maintaining the model
accuracy. Therefore, the reward at the late stage of training
is more important for which the reward is multiplied by the
time step.

Value network. To keep the extra computation cost of
the agent low during training, the agent network should be
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kept small. Our Q-network has only one hidden layer of 128
neurons and the number of neurons in the first and final layer
is equal to the number of states and the actions, respectively.

Since we do not have access to all the data in many situa-
tions, we train the agent on a relatively small local dataset
(10% of the CIFAR-10) with ResNet-20 model and transfer
it to other models and datasets.

4.4. Teacher Samples for Behaviour Cloning

As pure policy-based method (Schulman et al., 2017) usually
needs the whole episode and the episode number in this
scenario is limited, pure policy-based method is not suitable.
Therefore, we adopt the typical off-policy method: deep Q-
network (Mnih et al., 2015) to utilize its sample efficiency.

Behaviour cloning as a regularization (Goecks et al., 2020;
Nair et al., 2018) is an effective tool to accelerate reinforce-
ment learning from samples. Based on the observation
in (Ding et al., 2024) that gradient and activation quanti-
zation have more impact on the model performance, we
accumulate some state-action-reward pairs from this prior
knowledge as the teacher samples DT . Specifically, the
possible teacher samples have gradient bit-width switched
to INT8 with a time step ranging from 0.10 to 0.45 and the
activation bit-width switched to INT8 with a time step from
0.50 to 0.90 and the changing time step of weight bit-width
ranges from 0.50 to 0.95 or keeps at INT4. These samples
can achieve a better balance between model performance
and compression ratio than the random bit-width allocation.

The Q-network is trained on the teacher samples by super-
vised learning. To push the agent favored with the teacher
sample’s action, only calculating the value differences is
not enough. We use the softmax function on the action di-
mension and utilize KL divergence to measure the distance
between the agent policy and the accumulated teacher sam-
ples. Thus, the training loss is calculated as sum of value
differences and the KL divergence between the agent policy
and the teacher samples. Equation (9) is the training loss
that makes the initial agent close to the teacher samples,
where πT (s) is the teacher policy from the accumulated
sample,

LBC
θ =E(s,a)∈DT

( M∑
t=1

r(st=s, at=a)−q(s, a; θ)

)2


+Es∈DT
[KL(πT , πθ)], (9)

where πθ(a|s) = exp (q(s, a; θ))/
∑

a∈A exp (q(s, a; θ))
denotes the softmax of Q-values for different actions, M is
the episode length. By utilizing the teacher samples in the
behavior cloning, the agent can be trained quickly in our
scenario.

4.5. Convergence Analysis

In this section, we focus on the convergence analysis of the
gradient quantization, considering that the impact of weight
and activation quantization on the loss function could be ac-
cumulated by layers and is difficult to analyze quantitatively.
Similar to Yang et al. (2021), we introduce Assumption 4.1
on the loss functions f and Fi, i = 1, · · · ,m.

Assumption 4.1. Given any client i ∈ M in the client set
M , for wt,w

′
t ∈ Rd, we have the following assumptions.

i) If F -function is L-smooth, then ∥∇Fi(wt) −
∇Fi(w

′
t)∥ ≤ L∥w −w′

t∥.

ii) Let ξi be a random local data sample in the t-th step
at the i-th worker, the local gradient estimator is unbiased
E[∇Fi(wt, ξi)] = ∇Fi(wt).

iii) The variance σL of each local gradient estimator
is bounded by E[∥∇Fi(wt, δ

i
t) − ∇Fi(wt)∥2] ≤ σ2

L,
and the global variance σG is bounded by ∥∇Fi(wt) −
∇f(wt)∥2 ≤ σ2

G.

We further assume in Assumption 4.2 the equivalent additive
noise for gradient quantization at each client.

Assumption 4.2. The gradient quantization noise on each
client has a well-defined expectation and variance (denoted
as µi

N and (σi
N )2 for the i-th client), and the quantization

noise expectation µi
N can be viewed as zero.

In Theorem 4.3, we develop the convergence rate for LBI-
FL (with gradient quantization) associated with the total
number of communication rounds T , and demonstrate that
the theoretical convergence rate is equivalent to the rate of
existing FL algorithms like FedAvg.

Theorem 4.3. Under Assumptions 4.1 and 4.2 and full
worker participation, when the learning rate η ≤ (8LK)−1

for each client, the output wt generated with gradient quan-
tization satisfies:

min
t∈[T ]

E
[
∥∇f (wt)∥22

]
≤ f0 − f∗

cηKT
+Φ, (10)

where T is the number of communication rounds
and Φ = 1

c

[
Lη
2m

(
σ2
L + 1

m

∑m
i=1

(
(µi

N )2 + (σi
N )2

))
+

5Kη2L2

2

(
σ2
L + 6Kσ2

G

)]
, with c as a constant, K as the

number of local updates, and m as the number of clients.

Proof. Please refer to Appendix A.

Theorem 4.3 implies that, given η = (
√
TLK)−1, the con-

vergence rate of gradient quantization is O(1/
√
T ) when T

is sufficiently large, and is equivalent to the convergence rate
of the standard FedAvg algorithm. In Section 5.4, we verify
the convergence rate of LBI-FL with empirical evaluations.
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5. Experiments
In this section, we first introduce the agent training result
and then carry out extensive experiments on different models
and datasets. Finally, ablation studies are conducted to
evaluate the proposed method.

5.1. Agent Training

Experiment setting. We collect the teacher samples by
training ResNet-20 (He et al., 2016) for 100 epochs on a
subset of the CIFAR-10 dataset randomly sampled with 10%
of the original data. In the reward function, θ is set as 0.25
and δ as 0.5. 200 episodes of samples are collected. The
scaling parameters for quantization are updated every 100
iterations. The experiments in this paper are conducted on a
single NVIDIA 3090 GPU.

Training result. The training agent converges where the
gradient bit-width switches to high bit-widths in the very
early stage and the activation bit-width switches based on
the quantization difference during training while the weight
bit-width fixes at INT4. Therefore, the communication
overhead is reduced to 1/8 of the full-precision training
method. The learned agent can achieve a good balance
between compression ratio and model performance. In a
new training scenario, we can directly use this agent or
train a new agent with a small subset of the local data.
Moreover, the agent consists of two linear layers with only
1.92K parameters, and requires 1.97G BitOPs for making
one decision. The RL agent makes decision for every 5
epochs. Therefore, the computation cost is much smaller
than the network training.

5.2. Evaluation Metrics

In our experiment, the communication cost reduced ratio and
BitOPs reduced ratio (RR) compared to INT8 training, and
the accuracy (Acc) are used as evaluation metrics. As the
agent keeps weights at INT4 during the training process, the
reduction ratio of communication cost is 87.5% compared to
full precision and 50% compared to INT8 training. Below,
we only report the results for Acc and BitOPs RR. For
simplicity, the BitOPs of weight-activation convolution in
the forward propagation are approximately treated the same
as the gradient-weight convolution and gradient-activation
convolution. For example, as the forward propagation of
LeNet on CIFAR-10 is 14.81M Mac, the BitOPs under full
precision are 14.81M×32×32×3 = 45.5G.

5.3. Image Classification

Experiment setting. We evaluate with LeNet (LeCun
et al., 1998), ResNet-18/50/101 (He et al., 2016), Mo-
bileNetV2 (Sandler et al., 2018), and ViT-S (Dosovitskiy
et al., 2021) on the CIFAR-10/100 dataset. The agent deter-

Table 2: Top-1 classification accuracy (%) on CIFAR-10.

Model Method Top-1 Acc (%) BitOPs RR (%)

LeNet

FP32 83.36 45.5G -
UI4 81.97 0.71G 75
UI8 82.91 2.84G 0
LBI-FL 81.79 1.38G 51.49

ResNet-18

FP32 84.21 114.2G -
UI4 82.71 1.78G 75
UI8 84.23 7.14G 0
LBI-FL 84.16 3.28G 54.06

ResNet-50

FP32 85.19 258.4G -
UI4 77.90 4.04G 75
UI8 84.93 16.15G 0
LBI-FL 83.52 8.45G 47.68

ViT-S

FP32 73.85 1910.5G -
UI4 69.33 29.9G 75
UI8 71.85 119.4G 0
LBI-FL 72.55 60.3G 49.51

MobileNet-V2

FP32 92.04 290.6G -
UI4 85.83 4.54G 75
UI8 89.65 18.2G 0
LBI-FL 89.02 8.83G 51.39

Table 3: Top-1 classification accuracy (%) on CIFAR-100.

Model Method Top-1 Acc (%) BitOPs RR (%)

Lenet

FP32 48.55 45.5G -
UI4 44.83 0.71G 75
UI8 46.91 2.85G 0
LBI-FL 47.41 1.39G 50.98

ResNet-18

FP32 54.35 114.4G -
UI4 49.35 1.79G 75
UI8 53.57 7.15G 0
LBI-FL 53.48 3.30G 53.81

ViT-S

FP32 51.71 1910.5G -
UI4 46.39 29.9G 75
UI8 49.32 119.4G 0
LBI-FL 48.32 57.2G 52.08

MobileNet-V2

FP32 74.52 291.0G -
UI4 60.31 4.55G 75
UI8 72.37 18.2G 0
LBI-FL 71.61 8.84G 51.40

mines the bit-widths of weights, activations, and gradients
from INT4, INT6, and INT8 for every 5 epochs from the
10th epoch. For LeNet, the number of training epochs is set
at 2000 and the client number is 100. 10% of the clients are
selected to update at every epoch. For other larger networks,
the number of training epochs is set at 200 and the client
number is 10. All the clients are updated at every epoch.
The local update epoch is 2 and the learning rate decay is 1.

Results. Tables 2 and 3 show that, compared to UI8 (Zhu
et al., 2020), the proposed LBI-FL achieves less than 1.5%
accuracy loss with 50% reduced BitOPs in most cases (ex-
cept for LeNet on CIFAR-10) for various network architec-
tures like LeNet, ResNet-18, ViT-S, and MobileNet-V2 on
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Table 4: Convergence rate of LBI-FL compared with full-
precision, full INT4, and INT8 training. It lists the number
of epochs needed to obtain a target accuracy.

Model Acc (%) FP32 UI8 UI4 LBI-FL

LeNet 81 472 612 624 569
ResNet-18 81 68 70 106 76
ViT-S 68 38 52 66 56
MobileNet-V2 84 36 39 61 50

Table 5: Comparison of our method with random selection.

Model Method Acc (%) BOPS RR (%)

LeNet Random 81.76 (-0.03) 1.41G 50.25
LBI-FL 81.79 1.38G 51.49

ResNet-18 Random 83.02 (-1.14) 3.39G 52.5
LBI-FL 84.16 3.28G 54.06

MobileNet-V2 Random 86.91 (-2.11) 8.65G 52.5
LBI-FL 89.02 8.83G 51.39

Table 6: The effectiveness of our proposed method under
non-iid conditions (Dirichlet = 0.25 / 0.5).

Dataset Dirichlet Method Top-1 Acc (%) RR (%)

CIFAR-10 0.25

FP32 80.39 -
UI4 75.79 75
UI8 78.71 0

LBI-FL 78.56 52.03

CIFAR-10 0.5

FP32 81.27 -
UI4 77.42 75
UI8 78.97 0

LBI-FL 78.90 51.68

CIFAR-100 0.25

FP32 46.22 -
UI4 43.78 75
UI8 45.81 0

LBI-FL 46.09 51.07

CIFAR-100 0.5

FP32 46.73 -
UI4 44.43 75
UI8 46.33 0

LBI-FL 46.25 51.06

CIFAR-10/100.

Morever, the storage overhead of trained network weights
and BitOPs for inference are reduced by 50%.

5.4. Convergency analysis

In addition to the model performance, the convergence rate
(the number of epochs required to reach a target accuracy) is
also a critical metric in federal learning. Table 4 compares
the convergence rate of LBI-FL with full-precision, INT4,
and INT8 training to obtain a target accuracy. The dataset is
selected as CIFAR-10.

From Table 4, it is evident that the convergence rate of
our method lies between full INT4 and INT8 training in

Table 7: Effect of local update epochs.

Dataset Lep Dirichlet Top-1 Acc (%) RR (%)

CIFAR-10

2 iid 81.79 51.49
2 0.25 78.56 52.03
5 iid 81.62 52.03
5 0.25 77.93 53.20

CIFAR-100

2 iid 47.41 50.98
2 0.25 46.09 51.07
5 iid 45.49 51.46
5 0.25 43.38 51.70

Table 8: Effects of the learning rate decay.

Dataset LD Dirichlet Top-1 Acc (%) RR (%)

CIFAR-10

1.0 iid 81.79 51.49
1.0 0.25 78.56 52.03

0.998 iid 81.53 51.59
0.998 0.25 77.49 52.15

CIFAR-10

1.0 iid 47.41 50.98
1.0 0.25 46.09 51.07

0.998 iid 42.69 51.00
0.998 0.25 42.06 51.01

Table 9: Effect of initialization seeds.

Dataset Model Seed Top-1 Acc (%) RR (%)

CIFAR-10 LeNet

23 81.79 51.49
60 82.01 51.43
90 81.71 51.45
200 81.92 51.60

CIFAR-10 ResNet-18

23 84.16 54.06
60 84.59 54.05
90 84.33 53.80
200 84.49 53.98

CIFAR-10 ViT-S

23 72.55 49.41
60 72.52 49.66
90 72.21 49.75
200 72.17 49.74

CIFAR-10 MobileNet-V2

23 89.02 51.39
60 89.11 51.40
90 89.38 51.43
200 89.44 51.41

most cases, and is even slightly faster than INT8 on the
LeNet. Considering that the communication overload is half
of that in INT8 training, and the computational load is also
reduced by more than half, the slight increase in the number
of convergence epochs is acceptable.

5.5. Ablation Studies

In this section, we first validate the effectiveness of the
agent for the temporal bit-width selection, and then conduct
ablation studies on some parameters in our method.

Effect of temporal bit-width selection. We compare the
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proposed method with a direct approach where the clients
at INT4 are randomly selected with a similar reduced ratio.
The dataset is selected as CIFAR-10. For LeNet, 33 clients
(100 clients overall) are set at INT4, and for ResNet-18 and
MobileNet-V2, 3 clients (10 clients overall) are set at INT4.

Table 5 demonstrates that on small networks like LeNet, the
performance of random selection may be acceptable, but the
loss of performance on larger networks like ResNet-18 and
MobileNet-V2 is not ignorable.

Effect of data distribution. We consider both iid (inde-
pendent and identically distributed) and non-iid data distri-
butions. The parameters of non-iid Dirichlet distribution
are 0.25 and 0.5 in our experiments. Table 6 shows that,
compared to INT8 training, the proposed method yields less
than 0.5% performance loss on non-iid ddata distributions.

Effect of local update epochs. Table 7 demonstrates the
impact of the number of local update epochs. It shows that
using a smaller number of local update epochs at 2 has a
small impact on CIFAR-10, but can significantly improve
model performance on CIFAR-100.

Effect of learning rate decay. Table 8 compares two differ-
ent learning rate decay (LD). It demonstrates that a learning
rate decay of 1 is better, with the superiority being more
pronounced on the CIFAR-100 dataset.

Effect of initialization seeds. We verify the impact of ini-
tialization seeds on our method. Table 9 reports the accuracy
(Acc) and reduced ratio (RR) for training LeNet, ResNet-
18, ViT-S, and MobileNet-V2 on CIFAR-10 using different
seeds. The proposed method is not obviously affected by
initialization seeds and performs well with all the seeds.

6. Conclusions
This paper proposes a low-bit training method in the feder-
ated learning scenario. We propose a scheme for temporally
dynamic bit-width adjustment for deep neural networks.
Deep Q-Network is employed to search for bit-width allo-
cation schemes. Our approach significantly reduces com-
munication overhead and computational cost in federated
learning compared to full-precision training and achieves
a good balance between compression rate and model per-
formance. Comprehensive experiments on different models
and datasets verify the versatility of our method. This paper
provides a new effective approach to reducing overhead in
federated learning and is worthy of further research.
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A. Proof of Theorem 4.3
Our derivation is basically similar to that in Appendix A in (Yang et al., 2021). For a better understanding, please refer to
Appendix A in (Yang et al., 2021).

The average update over the clients is ∆̄t =
1
m

∑m
i=1(∆

i
t + ni

t). Take expectation of f(xt+1) at communication round t,
we can have:

Et [f (wt+1)] ≤ f (wt) + ⟨∇f (wt) ,Et [wt+1 −wt]⟩+
L

2
Et

[
∥wt+1 −wt∥2

]
= f (wt) +

〈
∇f (wt) ,Et

[
∆̄t + ηK∇f (wt)− ηK∇f (wt)

]〉
+

L

2
Et

[∥∥∆̄t

∥∥2]
= f (wt)− ηK ∥∇f (wt)∥2 +

〈
∇f (wt) ,Et

[
∆̄t + ηK∇f (wt)

]〉︸ ︷︷ ︸
A1

+
L

2
Et

[∥∥∆̄t

∥∥2]︸ ︷︷ ︸
A2

. (11)

As the noise ni
t from the gradient quantization has a well-defined expectation which can be viewed as zero (Assumption 4),

we have Et[n
i
t] = 0. The term A1 is calculated similar to (Yang et al., 2021):

A1 =
〈
∇f (wt) ,Et

[
∆̄t + ηK∇f (wt)

]〉
=

〈
∇f (wt) ,Et

[
− 1

m

m∑
i=1

K−1∑
k=0

η(gi
t,k + ni

t) + ηK∇f (wt)

]〉

=

〈
∇f (wt) ,Et

[
− 1

m

m∑
i=1

K−1∑
k=0

ηgi
t,k + ηK∇f (wt)

]〉

≤ ηK

(
1

2
+ 15K2η2L2

)
∥∇f (wt)∥2 +

5K2η3L2

2

(
σ2
L + 6Kσ2

G

)
− η

2Km2
Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

∇Fi

(
wi

t,k

)∥∥∥∥∥
2

. (12)

Moreover, the term A2 can be bounded as:

A2 = Et

[∥∥∆̄t

∥∥2] = Et

∥∥∥∥∥ 1

m

m∑
i=1

(∆i
t + ni

t)

∥∥∥∥∥
2


≤ 1

m2
Et

∥∥∥∥∥
m∑
i=1

(∆i
t + ni

t)

∥∥∥∥∥
2
 =

η2

m2
Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

gi
t,k

∥∥∥∥∥
2
+

η2

m2
K · Et

∥∥∥∥∥
m∑
i=1

ni
t

∥∥∥∥∥
2
 . (13)

Considering the quantization noise on each client can be supposed independent, the expectation in the second term is
calculated as:

Et

∥∥∥∥∥
m∑
i=1

ni
t

∥∥∥∥∥
2
 =

m∑
i=1

Et

[∥∥ni
t

∥∥2]+ 2
∑
i<j

Et

[
ni
tn

j
t

]
=

m∑
i=1

(
(µi

N )2 + (σi
N )2

)
+ 2

∑
i<j

µi
Nµj

N . (14)

According to the assumption that the quantization noise expectation µi
N and µj

N can be viewed as zero, we can have:

Et

∥∥∥∥∥
m∑
i=1

ni
t

∥∥∥∥∥
2
 =

m∑
i=1

(
(µi

N )2 + (σi
N )2

)
. (15)
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Table 10: Ablation studies on training LeNet on CIFAR-10.

Dirichlet Lep LD CIFAR-10 CIFAR-100

Top-1 Acc (%) RR (%) Top-1 Acc (%) RR (%)

iid
2 1 81.79(-1.12) 51.49 47.41(+0.50) 50.98

0.998 81.53(-0.57) 51.59 42.69(-1.15) 51.00

5 1 81.62(-1.10) 52.03 45.49(+1.23) 51.46
0.998 81.73(-0.28) 52.83 39.74(+0.62) 51.31

0.25
2 1 78.56(+0.25) 52.03 46.09(+1.28) 51.07

0.998 77.49(-0.83) 52.15 42.06(-1.08) 51.01

5 1 77.93(-1.41) 53.20 43.38(-0.62) 51.70
0.998 78.62(+0.10) 53.74 40.00(-0.08) 51.59

0.5
2 1 78.90(+0.13) 51.68 46.25(-0.08) 51.06

0.998 79.81(+0.09) 51.91 44.53(-0.58) 51.00

5 1 80.05(-0.73) 52.56 45.14(+0.51) 51.56
0.998 79.83(-0.38) 53.35 40.09(-0.51) 51.44
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(a) Activations
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(b) Gradients

Figure 5: The bitwidth change process (INT4 → INT6, INT6 → INT8) of (a) activations, and (b) gradients through training
LeNet on CIFAR-10.

From A1 and A2, we can have:

Et [f (wt+1)] ≤ f (wt)− ηK ∥∇f (wt)∥2 +< ∇f (wt) ,Et

[
∆̄t + ηK∇f (wt)

]
> +︸ ︷︷ ︸

A1

L

2
Et

[∥∥∆̄t

∥∥2]︸ ︷︷ ︸
A2

≤ f (wt)− cηK ∥∇f (wt)∥2 +
LKη2

2m

(
σ2
L +

1

m

m∑
i=1

((µi
N )2 + (σi

N )2)

)
+

5ηK2η3L2

2

(
σ2
L + 6Kσ2

G

)
.

(16)

Similarly to (Yang et al., 2021), rearranging and summing from t = 0 to t = T − 1, we have:

min
t∈[T ]

E
[
∥∇f (wt)∥22

]
≤ f0 − f∗

cηKT
+Φ, (17)

where Φ = 1
c

[
Lη
2m (σ2

L + 1
m

(∑m
i=1((µ

i
N )2 + (σi

N )2))
)]

+ 1
c

[
5Kη2L2

2

(
σ2
L + 6Kσ2

G

)]
. As a result, Equation (10) is valid.
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B. Ablation Studies Results
Table 10 presents more comprehensive results of ablation studies under different data distributions and hyperparameters.
The numbers in parentheses indicate the model performance loss compared to full INT8 training. It can be seen that our
method performs well in iid and non-iid scenarios. In most cases, models with local update epochs (Lep) of 2 and learning
rate decay (LD) of 1 perform better, which is consistent with what is mentioned in the main text.

C. Bit-Width Change Process
Figure 5 illustrates the bit-width change process of activations and gradients during the training of LeNet on the CIFAR-10
dataset. The weights are maintained at INT4 precision during training. It can be observed that gradient bit-widths increase
at an earlier stage, while activations increase in the later process. There are some differences among different clients, but
these differences are not significant.
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