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Abstract

Reinforcement learning (RL) algorithms are effective in solving problems that can be modeled
as Markov decision processes (MDPs). They primarily target forward MDPs whose dynamics
evolve over time from an initial state. However, several important problems in stochastic
control and network systems, among others, exhibit both a forward and a backward dynamics.
As a consequence, they cannot be expressed as a standard MDP, thereby calling for a novel
theory for RL in this context. Accordingly, this work introduces the concept of Forward-
Backward Markov Decision Processes (FB-MDPs) for multi-objective problems, develops a
novel theoretical framework to characterize their optimal solutions, and propose a general
forward-backward step-wise template based on which RL algorithm can be adapted to address
FB-MDP problems. It then introduces the Forward Backward Multi Objective Actor Critic
(FB-MOAC) algorithm that obtain optimal policies with guaranteed convergence and a
competitive rate with respect to standard approaches in RL. FB-MOAC is finally evaluated
on three use cases in the context of mathematical finance, mobile resource management, and
edge computing. The obtained results show that FB-MOAC outperforms the state of the art
across different metrics, highlighting its ability to learn and maximize rewards.

1 Introduction

Reinforcement Learning (RL) is a very important field of artificial intelligence, as it enables agents to learn
from experience and adapt to complex, dynamic environments (Mnih et al., 2013; Lillicrap et al., 2016;
Schulman et al., 2017b). Moreover, recent breakthroughs in deep learning have led to solutions that surpass
human performance in a wide variety of challenges. As a result, deep reinforcement learning has lately
emerged as a combination of these two fields, with successful applications in different use cases (Mnih et al.,
2015; Jaderberg et al., 2018; Rigoli et al., 2021).

Existing RL algorithms mainly address sequential decision-making problems modeled as a forward Markov
decision process (MDP) or controlled forward dynamics (Zare et al., 2023). However, there are several
sequential tasks whose environment cannot be exclusively captured by this type of dynamics, as they also
encompass states evolving backwards in time (Lai et al., 2020; Wang et al., 2021). Such backward dynamics
describe a trajectory in a reverse chronological order, wherein the future affects the past. Even further, there
are environments exhibiting both controlled forward and backward dynamics at the same time (Ji et al.,
2022a; Zhang, 2022), namely, as a forward-backward MDP (FB-MDP) illustrated in Figure 1a.

FB-MDPs have wide applications (Section 2.1), including modeling delay / latency in the context of network
communications and analyzing computation time of offloading tasks in cloud/edge computing systems (Liu
et al., 2019; Wei et al., 2019; Chen et al., 2019b). Moreover, FB-MDPs can be employed to discretize forward-
backward stochastic differential equations (SDEs) (see Section F for a detailed account), thereby allowing to
solve stochastic optimal control problems (Zhang, 2017; Ji et al., 2020). However, forward-backward dynamics
have been marginally addressed in the context of RL and MDPs (Section 2.2). In fact, existing research
only formulated a deep learning problem in terms of forward-backward SDEs (Ji et al., 2020) or considered
artificial backward trajectories in forward MDPs to increase sample efficiency of RL algorithms (Goyal
et al., 2019; Wang et al., 2021). In contrast, and to fill this gap, we introduce the concept of FB-MDPs
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Figure 1: Overview of our approach. (a) A forward-backward MDP in which forward states {st}t∈{1,T } and backward
states {yt}t∈{1,T } apply the same actions {at}t∈{1,T }, but with a different ordering in time. (b) The FB-MOAC
algorithm comprises three steps: forward evaluation, backward evaluation and bidirectional learning. During the first
two steps, the forward and backward dynamics are evaluated and the resulting experiences are buffered. The policy
distribution is optimized in the bidirectional learning step based on the experiences of both forward and backward
dynamics. For this purpose, it employs a forward-backward multi-objective optimization by following an appropriate
chronological order. The episodic MCS-average add-on boosts the convergence to Pareto-optimal solutions. (c) The
multi-objective optimization module of the FB-MOAC algorithm computes: the vector-valued gradients of forward
and backward objectives; the descent direction q(·) to ensure that all rewards increase simultaneously; and finally the
parameters of the actor network based on q(·). (d) Cumulative reward of our approach (FB-MOAC) compared to
the widely-used PPO and to MOAC (our multi-objective extension of A2C) in the edge caching use case for different
metrics (see Section 5.2 for a detailed account). FB-MOAC performs better than the other algorithms in terms of the
overall reward.

for multi-objective problems entailing both forward and backward rewards that conflict with each other
throughout the action space. We then extract the properties of Pareto-optimal solutions and extend the
optimality Bellman equation for this class of MDPs. By providing a general solution mechanism, we then
develop an RL algorithm specifically suited to FB-MDPs. In detail, this work establishes the following
contributions.

• We introduce the notion of multi-objective FB-MDPs to express sequential multi-task decision-making
problems with both controlled forward and backward dynamics, whose rewards are coupled within the
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action space. We notably show that these MDPs cannot be expressed as a standard MDP, and we
consequently develop a novel theoretical framework to characterize their optimal solutions (Section 3).

• According to our theoretical developments, we introduce an algorithmic mechanism, called FB-SW, which
includes three sequential phases forward evaluation, backward evaluation, and bidirectional learning. This
mechanism serves as a general and versatile template which RL algorithms can adapt to address FB-MDP
problems (Section 4).

• Following FB-SW mechanism, we thus devise a multi-objective RL algorithm, called Forward-Backward
Multi-Objective Actor-Critic (FB-MOAC), the first of its kind, to obtain Pareto-optimal solutions with
capability of extracting the Pareto front. We further provide a rigorous analysis of FB-MOAC, showing
that it reaches convergence with a rate of O(1/

√
K), where K is the number of policy updates (Section 4).

• We conduct a comprehensive evaluation by considering diverse use cases expressed as FB-MDPs in the
context of mathematical finance, mobile resource management, and edge computing. The results not only
show the necessity of modeling those problems using FB-MDP and this fact that approximating them
using standard MDP leads to a sub-optimal solution but also demonstrates the effectiveness of FB-MOAC
compared to the standard RL algorithms. (Section 5).

Notation: we use lower-case a for scalars, bold-face lower-case a for vectors, and bold-face uppercase A
for matrices. Moreover, A⊤ is the transpose of A, ∥A∥ is the induced matrix norm of A, I is the identity
matrix, 1 a vector with all elements equal to one, 0 a vector with all elements equal to zero, and em a vector
with all elements equal to zero except the m-th element which is equal to one. Finally, a = [a1, . . . , an]⊤ are
the components of a n-dimensional column vector a, |S| is the cardinality of the set S, and [ · ] indicates the
components of row vectors.

2 Background

This section first introduces a few motivating examples of FB-MDPs and then reviews the most relevant
works in the existing literature.

2.1 Motivating Examples

Network Content Delivery

Let us consider a scenario in which a content provider (e.g., in a video streaming service) serves users by
transmitting N content items with different popularity {pn}Nn=1 over a lossy network. Transmissions take
place in time slots indexed by t, and the delivery of content n fails with the error probability en(t). Upon
failure, user requests are re-transmitted until successful delivery. The request probability of content n clearly
depends on the success rate of previous requests and the error probability en(t). Therefore, it establishes a
controlled forward dynamics as the content provider affects en(t). Now, the average latency ln(t) experienced
by a typical user to successfully receive file n is obtained by: ln(t) = d(t) (1− en(t)) + (τ(t) + ln(t + 1)) en(t),
where: d(t) is the transmission delay between the content provider and he user; and τ(t) is the duration of
time slot t. This equation is obtained by the law of total expectation and exhibits a controlled backward
dynamics with ln(t) as a backward state. As a consequence, minimizing the overall latency

∑N
n=1 pn(t)ln(t)

in this context makes the problem an FB-MDP. Now, since a backward MDP cannot be converted to a
standard forward MDP (see Theorem 3.6), existing RL algorithms cannot be applied. Here, we explain that
this FB-MDP cannot be completely replaced by a standard MDP problem. In this regard, one rewarding
policy can be to track the number of successful transmissions. Although a higher success rate over [0, T ]
correlates with lower latency, these two goals are not identical; one can maintain the same success percentage
yet obtain different overall latency

∑N
n=1 pn(t)ln(t). For example, by fixing the error probability en(t) over

[0, T ], both the number of successful transmissions and the average latency ln(t) become determined. If we
then permute en(t) in time, the total count of successful transmissions remains unchanged, but the overall
latency will differ due to presence of pn(t). Therefore, Success/failure of content transmissions does not
completely map to the overall latency. This is only one instance of network problems that can be modeled
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as a FB-MDP: Section 5 presents two use cases, one on edge caching in wireless networks and another on
computation offloading.

Problems Described by Stochastic Differential Equations

SDEs exhibiting anti-causal dynamics have several applications in the context of differential games (Hamadene
& Lepeltier, 1995), diffusion models (Yang et al., 2023), and mathematical finance (Ji et al., 2022a). In
particular, problems involving FB-SDEs represent a significant portion of the ongoing research in the field of
stochastic control theory (Yong, 2023). Among them, one example is given by an investment-consumption
scenario in mathematical finance. Consider a financial market with a single risky asset whose price follows a
stochastic process. A trader can invest in this risky asset or engage in risk-free borrowing / lending. The
trader’s total wealth, Y (t), evolves based on their investment in the asset and the risk-free rate. Now, consider
a payoff at a future time T , which depends on the asset’s price. The goal is to determine the minimal initial
Y0, required to replicate this payoff. The investment strategy guaranteeing that the final wealth matches the
option’s payoff is characterized by a backward dynamics (Ji et al., 2022a). In such a context, Section 5.1
presents a use case related to mathematical finance, based on a general method to transform an FB-SDE into
a FB-MDP (see Section F for more details).

2.2 Related Work

Forward-Backward MDPs. Our work shares conceptual similarity with prior research on RL algorithms
(Edwards et al., 2018; Goyal et al., 2019; Wang et al., 2021; Lai et al., 2020; Archibald et al., 2023). These
studies hypothesize that (creating) a virtual backward trajectory, in relation to a forward dynamics, enhances
the sample-efficiency of RL algorithms. Specifically, they employ the generated backward trajectories to
augment the training dataset for learning forward-MDP (forward SDE) problems. Edwards et al. (2018)
train a learnable backwards dynamics that generates imagined reversal steps from known goal states. These
backward paths are then used to augment the replay buffer and contribute to the learning procedure of
considered RL algorithm. Similarly, Goyal et al. (2019) learn an artificial backward model – called backtracking
model – trained on agent experiences to predict preceding state-action pairs leading to high-value states.
The backtracking model then enriches the training dataset by alternative trajectories leading to promising
outcomes. Lai et al. (2020) construct a backward dynamics model and utilise it alongside the forward model
to generate short branched rollouts for policy optimization. This approach theoretically derives a tighter
bound of return discrepancy and demonstrates improved performance compared to forward-only mode. Wang
et al. (2021) introduce a learnable backward dynamics trained on the offline datasets to generate rollouts
targeting goal states. They provide data augmentation for the training dataset to deal with the distributional
shift between the learning policy and the given offline dataset. Our reference model is characterized based on
real backward and forward dynamics, in contrast with the works described above, wherein backward dynamics
are artificially constructed based on a forward MDP (dynamics); in those works there is not any independently
controlled backward dynamics. Our model deals with actual controlled backward and forward dynamics,
accompanied with rewards jointly competing in both directions of time. Consequently, our investigation is
centered around a class of FB-MDPs of multi-task problems and allows for the development of RL algorithms
that inherently consider bidirectional dynamics, rather than relying on artificially constructed backward
trajectories. It thus provides a more integrated and principled method for incorporating backward reasoning
into RL.

Multi-objective RL Algorithms. The majority of Multi-Objective Reinforcement Learning (MO-RL)
algorithms has primarily been designed for discrete environments. Mossalam et al. (2016) introduce a MO-RL
algorithm that combines deep Q-learning and optimistic linear support learning. Their approach take into
account a scalarized vector and potential optima to formulate a convex combination of all objectives. However,
they require searching over all potential scalarizing vectors as an a priori knowledge on the importance
of distinct objectives is not available. Yang et al. (2019) utilize a multi-objective Q-learning together
with a single-agent framework to acquire a preference-related adjustment that can be generalized across
different preferences. Such an approach is computationally efficient, however, it often suffers from sample
inefficiency and results in a sub-optimal policy. MO-RL algorithms have been specifically developed for
continuous environments as well. Zhan & Cao (2019) establish reward-specific state-value functions based on
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a correlation matrix to obtain the relative importance of objectives with respect to each other. However,
their approach requires to adjust the weight of such a matrix to determine an appropriate inter-objective
relationship. Abdolmaleki et al. (2020) devise a MO-RL approach according to the maximum a posteriori
policy optimization algorithm. They learn objective-specific policy distributions to identify Pareto-optimal
solutions in a scale-independent manner. However, objective-specific coefficients must be adjusted to control
the impact on the policy update. In contrast, we propose a MO-RL algorithm for the continuous-valued
FB-MDPs, termed as FB-MOAC, without considering any initial preferences for the different objectives.
Different from previous works (Abdolmaleki et al., 2020; Zhan & Cao, 2019; Chen et al., 2019a), we devise a
single-policy approach to simplify the algorithm and avoids the need for an initial assumption on the reward
preference. Moreover, a comprehensive analysis has been conducted to ensure the convergence of FB-MOAC
to Pareto-front solutions at a certain rate. A remarkable result of this convergence analysis is the ability of
FB-MOAC to monotonically increase all expected objectives for any reward preference, thereby making the
algorithm scale-insensitive.

Convergence Analysis of RL algorithms. A few recent works (Qiu et al., 2021; Xu et al., 2020; Fu
et al., 2021; Yang et al., 2018; Khodadadian et al., 2022) have explored the characterization of stochastic
policy RL algorithms, such as Actor-Critic (AC) and Policy Gradient (Sutton & Barto, 2018). Qiu et al.
(2021) conduct a rigorous convergence analysis on the AC algorithm. Notably, their analysis is limited to a
linear representation of the state-value function. Xu et al. (2020) provide a comprehensive characterization of
the convergence rate and sample complexity of the Natural Actor-Critic (NAC) algorithm (Peters & Schaal,
2008). Their analysis requires that the considered MDP is ergodic. Fu et al. (2021) analyze the convergence
of the AC algorithm under the assumption that the considered family of Neural Networks (NNs) are closed
under the Bellman operator. Lastly, Khodadadian et al. (2022) perform a meticulous convergence analysis
of the Natural Policy Gradient algorithm (Kakade, 2002). However, their investigation assumes that the
initialization value of the state-value function is sufficiently close to the optimal value function. All the
aforementioned works address the convergence of stochastic policies of single-objective RL algorithms for
forward MDP problems. In contrast, this work targets multi-task problems involving a FB-MDP. We carry
out a rigorous convergence analysis as a solid foundation to characterize multi-objective and forward-backward
RL algorithms in such a context.

Applications of RL to Network Systems. RL algorithms have also been applied to network systems,
particularly, to design dynamic caching and offloading policies (Zhang et al., 2021; Chen et al., 2021;
Amidzadeh et al., 2021; Jiang et al., 2022; Chen et al., 2022; Zhou et al., 2023). Chen et al. (2021) devise a
multi-agent reinforcement learning for ultra-dense networks, whereas Zhang et al. (2021) employ a deep RL
algorithm to jointly optimize resource allocation and caching for Internet-of-Things scenarios. Amidzadeh
et al. (2021) leverage a deep RL-based approach to develop an optimal cache policy for multicast-enabled
cellular networks. Moreover, Jiang et al. (2022) develop an actor-critic RL algorithm for proactive caching in
mobile edge networks. Finally, Chen et al. (2022) and Zhou et al. (2023) employ deep RL for joint caching
and offloading problems in edge computing networks. All the works mentioned above only consider forward
dynamics, whereas this work entails a more complex characterization that allows to obtain an optimal solution
(see Section 5 for a detailed account).

3 Multi-Objective FB-MDPs

This section briefly describes multi-objective optimization and its associated Pareto-optimality as a basis to
formally define FB-MDPs. The section concludes by characterizing the optimal solution of a multi-objective
FB-MDP problem.

3.1 Pareto Optimality

Consider the following multi-objective optimization problem:

Q1 : min
x∈X

[
f1(x), . . . , fr(x)

]
,

where fj : RN → R, X is the feasible set and r the number of objectives.
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Definition 3.1. We say that y ∈ X Pareto-dominates x ∈ X , if fi(y) ≤ fi(x) for all i ∈ {1, . . . , r} and there
exists j ∈ {1, . . . , r} such that fj(y) < fj(x).
Definition 3.2. x∗ ∈ X is called a Pareto-optimal solution of Q1, if there is no other solution y ∈ X that dom-
inates x∗. Accordingly,

[
f1(x∗), . . . , fr(x∗)

]
is called a Pareto-optimal vector, and minx∈X

[
f1(x), . . . , fr(x)

]
indicates to the set of Pareto-optimal solutions.

The following lemma (Schäffler et al., 2002; Ma et al., 2020) is instrumental to jointly minimize all objectives
of Q1.
Lemma 3.3. Consider a vector-valued multivariate function f = [f1, . . . , fr], fj : Rn → R for j ∈ {1, . . . , r}.
Let q(·) =

∑r
j=1 α∗

j∇fj(·), then −q(·) is a descent direction for all functions {fj(·)}r1, where {α∗
j}r1 are the

solutions of the following optimization problem:

Q2 : min
{αj}r

j=1

∥∥∥∥ r∑
j=1

αj∇fj(·)
∥∥∥∥2

, s.t.
r∑
j=1

αj = 1, αj ≥ 0, j ∈ {1, . . . , r}.

Remark 3.4. The lemma above can be leveraged to develop a multi-objective gradient descent algorithm.
To jointly decrease different objectives, it suffices to optimize α = [{αj}rj=1] by using the quadratic program
Q2 and obtain q(·), which is nonlinear as α itself depends on {∇fj(·)}j .

Accordingly, the optimal solution of problem Q2 can be obtained as follows.
Corollary 3.5. If ∇f(·)⊤∇f(·) is invertible and all αj ≥ 0, the solution of Q2 is given by:

α∗ =
(

1⊤
r

(
∇f(·)⊤∇f(·)

)−1 1r
)−1 (

∇f(·)⊤∇f(·)
)−1 1r, (1)

where ∇f(·) is an n× r matrix with ∇f(·) =
[
∇f1, . . . ,∇fr

]
(·). For the case αj < 0 for j ∈ S0 ⊂ {1, . . . , r},

we set ∇f(·) = [∇fk(·)]k ∈{1,...,r}\S0 .

3.2 Forward-Backward Markov Decision Processes

We introduce a class of multi-objective FB-MDPs, expressed by a tuple
(
S,Y,A, Pf (·), Pb(·), rf (·), rb(·)

)
, where: S

and Y are the forward and backward state-spaces, respectively; A is the action space; Pf : S ×A×S → [0, 1]
is the forward transition probability, which describes the forward dynamics; Pb : Y ×A× Y → [0, 1] is the
backward transition probability, which expresses the backward dynamics; and rf : S × A → R|Sf | finally,
rb : Y ×A → R|Sb| are the forward and backward reward functions, respectively, where Sf and Sb are the
sets of indices of the forward and backward rewards. The forward transition probability determines the
next forward state of the system st+1 ∼ Pf (·|st, at) starting from st ∈ S and performing the action at ∈ A.
Moreover, in an anti-causal way, the previous backward state of the system follows yt−1 ∼ Pb(·|yt, at) from
yt ∈ Y and performing the action at ∈ A. The initial forward state s1 and final backward state yT are
assumed to be known. Figure 1a on page 2 illustrates a FB-MDP.

Assumption. This work constrains the definition of FB-MDPs to the case where the forward (backward)
dynamics does not depend on the backward (forward) state.
Remark 3.6 (FB-MDPs cannot be expressed as standard MDPs). The backward dynamics cannot
be represented based on a standard forward system in presence of a forward dynamics. We can consider
the transformations zT−t := yt and t′ := T − t to convert the backward MDP with transition probability
yt−1 ∼ Pb(·|yt, at) into a forward one. Consequently, we get a forward MDP over zt′ with transition
probability zt′+1 ∼ Pb(·|zt′ , aT−t′). However, this is a non-standard MDP as state zt becomes a function of
actions that are scheduled for future time steps aT−t. Specifically, the state relies on future actions that are
not available when progressing forward in time. This violation of the conventional causal structure prevents
the use of standard RL algorithms.

The aim of a FB-MDP problem is thus to optimize the following discounted multi-objective cumulative
reward from the Pareto-optimality perspective:

max
{at∈A}t∈{1,T }

E

{
T∑
t=1

γt−1
[
rf (st, at), rb(yT−t+1, aT−t+1)

]}
, (2)
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In Equation (2), T ∈ N is the finite horizon of the optimization, γ ∈ [0, 1] the discount factor, and the
expectation refers to the different realizations of the forward-backward trajectory.

Remark 3.6 highlights that solving a FB-MDP problem of the type in Equation (2) requires developing novel
theoretical foundations. To do so, we build on the following observation and the resulting optimal solutions.
Remark 3.7. Both the forward and backward dynamics of a FB-MDP problem can be accurately learned
through a θ-parametric stochastic policy at ∼ πθ(·|st), whereas employing the policy at ∼ πθ(·|st, yt) is
unfeasible due to the anti-causal nature of the backward dynamics. Therefore, we need to optimize the policy
πθ(·|st) based on the trajectories of both forward and backward dynamics.

The following section delves into this process.

3.3 Characterizing an Optimal Solution

We now analyze Remark 3.7 and provide a theoretical framework to characterize the optimal solution of
a multi-objective FB-MDP problem. Accordingly, the probability of a forward-backward trajectory τ is
determined by:

Pθ(τ ) : = P(s1, a1, . . . , sT , aT , yT , . . . , y1)

= P(s1)
T−1∏
t=1

Pf (st+1|st, at)
T−1∏
t=1

πθ(at|st)
T−1∏
t=1

Pb(yT−t|yT−t+1, aT−t+1)P(yT ). (3)

The problem in Equation (2) is then reformulated as the following policy distribution optimization:

O2 : max
θ

Eτ∼Pθ(τ )

{
T∑
t=1

γt−1
[
rf (st, at), rb(yT−t+1, aT−t+1)

] ∣∣∣ θ}
s.t.

{
st+1 ∼ Pf (·|st, at), yt−1 ∼ Pb(·|yt, at), at ∼ πθ(·|st)

}
. (4)

The multivariate objective of O2 can thus be expressed as:

J(θ) :=
[
Eτ∼Pθ(τ )

T∑
k=1

γk−1rf (sk, ak)︸ ︷︷ ︸
Jf (θ)

, Eτ∼Pθ(τ )

T∑
k=1

γk−1rb(yT−k+1, aT−k+1)︸ ︷︷ ︸
Jb(θ)

]
.

To Pareto optimize J(θ), we need to first compute its component-wise gradient with respect to θ, i.e.,
∇θJ(θ) = ∂J(θ)

∂Pθ(τ )
∂Pθ(τ )
∂θ . For the forward cumulative rewards Jf (θ), we have (Grondman et al., 2012):

∇θJf (θ) = E

{
T∑
k=1
∇θ log πθ(ak|sk)Af (sk, ak)

∣∣∣ θ}, (5)

where: Af : S × A → R|Sf |, Af (sk, ak) := rf (sk, ak) + γV f (sk+1) − V f (sk) is the forward advantage
multivariate function; and V f : S → R|Sf | with

V f (sk) := EPθ(τ )

{ T∑
k′=k

γk
′−krf (sk′ , ak′)

∣∣sk} (6)

is the forward state-value multivariate function. We finally obtain the following lemma to characterize the
optimal backward trajectories and the Pareto-optimal solutions of FB-MDP problem O2.
Lemma 3.8. For the backward cumulative reward Jb(θ), it is:

∇θJb(θ) = EPθ(τ )

{
T−1∑
k=0
∇θ log πθ(aT−k|sT−k)Ab(yT−k, sT−k, aT−k)

∣∣∣ θ}, (7)
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where Ab : Y × S ×A → R|Sb| is the bidirectional advantage multivariate function:

Ab(yT−k, sT−k, aT−k) := rb(yT−k, aT−k) + γV b(yT−k−1, sT−k−1)− V b(yT−k, sT−k),

and V b : Y × S → R|Sb| is the bidirectional state-value multivariate function:

V b(yT −k, sT −k) := E
{ 1∑

k′=T −k

γT −k′−1rb(yk′ , ak′ )
∣∣yT −k, sT −k

}
= E
{ T −1∑

k′=k

γk′−krb(yT −k′ , aT −k′ )
∣∣yT −k, sT −k

}
,

(8)

which adheres to the backward Bellman’s equation:

V b(yT−k, sT−k) = E
aT −k ∼ πθ (·|sT −k)

yT −k−1 ∼ Pb(·|yT −k, aT −k)
sT −k−1 ∼ P (·|sT −k)

{
rb(yT−k, aT−k) + γV b(yT−k−1, sT−k−1)

∣∣θ}. (9)

For the stationary forward and backward transition probabilities, a Bellman Pareto-optimality equation is
given by:[

V f∗
(s), V b∗

(y, s)
]
∈ max

a

[
E

s+ ∼ Pf (·|s, a)

{
rf (s, a) + γV f∗ (

s+)} , E
y− ∼ Pb(·|y, a)

s− ∼ P (·|s)

{
rb(y, a) + γV b∗ (

y−, s−)}],

(10)

for (s, y, a) ∈ S × Y ×A, where
[
V f∗(s), V b∗(y, s)

]
is a Pareto-optimal vector, s+ ∈ S is the forward state

following s, and y− ∈ Y is the backward state preceding y.

Proof. Please refer to Appendix A.

Remark 3.9. The formulation of this lemma differs from its counterpart for forward MDPs. Specifically,
the bidirectional state-value V b(yT−k, sT−k) is defined in Equation (9) so as to have a backward Bellman’s
equation. Note that Equation (9) exhibits a forward dynamics with a dependency on the policy distribution
that itself relies on the forward state rather than the backward state. Moreover, the Bellman’s Pareto-
optimality equation [i.e., Equation (10)] characterizes an optimal solution for FB-MDPs, which notably
exhibits a bidirectional optimality dynamics, due to presence of s− and s+ on RHS. This requires that both
dynamics should be jointly and simultaneously considered to obtain an optimal policy. We leverage these
findings in devising our algorithm next.

4 Forward-Backward Multi-Objective RL

We now build upon the results in the previous section to develop an RL algorithm for multi-objective
FB-MDP problems. Specifically, we devise a Forward-Backward Step-Wise (FB-SW) mechanism according to
Remark 3.7 and Lemma 3.8. The mechanism comprises of three steps: (i) forward evaluation, in which the
forward dynamics is evaluated by generating actions using the policy at ∼ πθ(·|st); (ii) backward evaluation,
in which the backward dynamics is evaluated in a time-reversed way by leveraging the actions generated in
the previous step; and (iii) bidirectional learning, leveraging a multi-objective optimization mechanism with a
suitable chronological order to optimize the policy πθ(·|st) based on the experiences obtained from both the
forward and backward dynamics. In the next sections, we exploit this general mechanism as an adaptable
framework to devise an RL algorithms tackling FB-MDP problems. Figures 1b and 1c on page 2 outline the
resulting algorithm.

4.1 The Forward-Backward Algorithm

According to Equations (5) and (7), the gradient of J(θ) depends on the policy distribution πθ(·|·) in addition
to the state-value functions V f (·) and V b(·, ·). For the policy distribution πθ(·|·), we consider an actor
agent represented by a θ-parametric neural network (NN). For the forward state-value function V f (·), we

8
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set a forward-critic network represented by a ϕ-parametric NN, denoted by V f
ϕ (·). Moreover, we use a

backward-critic network with a ψ-parametric NN for the bidirectional state-value function, indicated by
V b
ψ(·, ·). We must now align the evaluation and update procedures for the actor and critic networks with the

FB-SW mechanism. In this regard, πθ(·|·) and V f
ϕ (·) are evaluated during the forward-evaluation step of the

FB-SW mechanism, V b
ψ(·, ·) is evaluated during the backward-evaluation step, then their values are employed

to compute ∇θJ(θ) and update πθ(·|·) during the forward-backward optimization step.

The update mechanism of actor policy πθ(·|·) depends on the forward and bidirectional state-value functions,
i.e., V f

ϕ (·) and V b
ψ(·, ·). As a consequence, we need to set some losses to also update these state-value functions.

In line with Bellman’s equation V f (sk) = Esk+1,ak|sk
{rf (sk, ak) + γV f (sk+1)} and Temporal Difference

(TD)-learning (Grondman et al., 2012), the following forward-critic losses are considered to update ϕ:
T∑
k=1

Af
ϕ,i(sk, ak)2, for i ∈ Sf , (11)

where Af
ϕ,i(sk, ak) = V f

ϕ,i(sk) − rfi (sk, ak) − γV f
ϕ,i(sk+1) are parametric representations for the so-called

forward advantage functions. Conversely, we set the following backward-critic losses to update the parameter
ψ based on the derived backward Bellman’s equation [i.e., Equation (9)]:

T−1∑
k=0

Ab
ψ,i(yT−k, sT−k, aT−k)2, for i ∈ Sb, (12)

where Ab
ψ,i(yT−k, sT−k, aT−k) = V b

ψ,i(yT−k, sT−k)− rbi (yT−k, aT−k)− γV b
ψ,i(yT−k−1, sT−k−1) are the para-

metric bidirectional advantage functions.

Equations (5) and (7) indicate multiple directions for optimizing the actor and Equations (11) and (12) show
multiple losses for optimizing the forward / bidirectional critic networks. A straightforward approach to carry
out multi-objective optimization involves using the scalarization technique, namely, obtaining a single-objective
loss through a preference function (or scales) for different rewards. However, Pareto solutions cannot be
necessarily obtained via this method (Kirlik & Sayın, 2014). As a consequence, tuning the scalarization
settings might require a trial-and-error approach, which is sensitive to the selected setup. Instead, we use a
scale-insensitive multi-objective optimization method (Schäffler et al., 2002) to devise a forward-backward
RL algorithm. Accordingly, we employ Lemma 3.3 to formulate forward / bidirectional critic networks and a
multi-objective actor agent shared between the forward and bidirectional critics.

4.1.1 Forward / Bidirectional Critic Networks

Equation (11) [Equation (12)] provides multiple losses for the forward (backward) critic network. By recalling
Lemma 3.3, we formulate the multi-objective loss Kf (ϕ) [Kb(ψ)] by using the coefficients βf (βb), so that a
common descent direction is formulated for all forward (backward) critic losses. Accordingly, we have:

Kf (ϕ) =
∑
j∈Sf

β∗
f,j

T∑
k=1

Af
ϕ,j(sk, ak)2, Kb(ψ) =

∑
j∈Sb

β∗
b,j

T−1∑
k=0

Ab
ψ,j(yT−k, sT−k, aT−k)2, (13)

where β∗
f and β∗

b are tuned by the following problems (see Q2 of Lemma 3.3):

β∗
f = argmin

βj ≥ 0∑
j∈Sf

βj = 1

∥∥∥∥∑
j∈Sf

βj∇ϕ
T∑
k=1

Af
ϕ,j(sk, ak)2

∥∥∥∥2
, β∗

b = argmin
βj ≥ 0∑

j∈Sb
βj = 1

∥∥∥∥∑
j∈Sb

βj∇ψ
T−1∑
k=0

Ab
ψ,j(yT−k, sT−k, aT−k)2

∥∥∥∥2
.

(14)
These critic networks are then updated via TD-learning with the following Stochastic Gradient Descent
(SGD) rules (Grondman et al., 2012):

ϕ← ϕ− µf∇ϕKf (ϕ), ψ ← ψ − µb∇ψKb(ψ), (15)

where µf and µb are the learning rates of the forward and bidirectional critic networks, respectively.

9
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4.1.2 Actor Agent

We follow the same strategy as in the previous section to devise a single-policy multi-objective actor agent
shared between the forward and backward processes. The following forward and backward gradients follow
from Equations (5) and (7) and are given by:

∇θĴfi (θ,ϕ)=
T∑
k=1
∇θlogπθ(ak|sk)Af

ϕ,i(sk, ak),

∇θĴbj (θ,ψ)=
T−1∑
k=0
∇θlogπθ(aT−k|sT−k)Ab

ψ,j(yT−k, sT−k, aT−k) (16)

for i ∈ Sf and j ∈ Sb. We then employ Lemma 3.3 to provide a simultaneous ascent direction for all
forward / backward rewards. Note that in contrast to the critic network, an ascent direction is desired
as the actor maximizes the rewards. Hence, the multi-objective actor agent is updated by the following
multi-objective SGD:

θ ← θ + µ
( ∑
j∈Sf

βact,j∇θĴfj (θ,ϕ) +
∑
j∈Sb

βact,j∇θĴbj (θ,ψ)
)
, (17)

where µ is the learning rate of actor agent, and

βact = argmin
{βj}j

∥∥∥∥ ∑
j∈Sf

βj∇θJ̄fj (θ) +
∑
j∈Sb

βj∇θJ̄bj (θ)
∥∥∥∥2

,

s.t. βj ≥ 0,
∑

j∈Sf ∪Sb

βj = 1, (18)

with

∇θJ̄fj (θ) := EϕE

{
T∑
k=1
∇θ log πθ(ak|sk)Af

ϕ,j(sk, ak)
∣∣∣ θ,ϕ

}
= E

{
∇θĴfi (θ,ϕ) | θ

}
,

∇θJ̄bj (θ) := EψE

{
T−1∑
k=0
∇θ log πθ(aT−k|sT−k)Ab

ψ,j(yT−k, sT−k, aT−k)
∣∣∣ θ,ψ

}
= E

{
∇θĴbj (θ,ψ) | θ

}
, (19)

for j ∈ Sb and i ∈ Sf . Note that, as opposed to the critic losses, we theoretically leverage the expected
gradients ∇θJ̄fj (θ) and ∇θJ̄bj (θ) to optimize βact in Equation (18) [compare with Equation (14)]. This
approach interestingly ensures that all forward and backward cumulative rewards – namely, {Jfj (θ)}j∈|S|f

and
{Jbi (θ)}i∈|S|b

– monotonically increase with each iteration and more importantly facilitates the convergence
of FB-MOAC algorithm. Please refer to Theorem 4.3 in the appendix for more details.

To estimate the expected gradients ∇θJ̄fj (θ) and ∇θJ̄bj (θ), we employ Monte Carlo Sampling (MCS) together
with an exponential moving average, applied to ∇θĴfj (θ,ϕ) and ∇θĴbj (θ,ψ). Specifically, we first implement
Nmcs distinct backward and forward critic networks with learnable parameters {ψl}Nmcs

l=1 and {ϕl}Nmcs
l=1 ,

respectively, and use the approximations

∇θJ̄fj (θ) ≈ 1
NMCS

NMCS∑
l=1

E
{
∇θĴfj (θ,ϕl)|θ

}
, ∇θJ̄bi (θ) ≈ 1

NMCS

NMCS∑
l=1

E
{
∇θĴbi (θ,ψl)|θ

}
.

In addition, we consider different episodes to take an exponential average with a smoothing factor γmov to
estimate E

{
∇θĴfj (θ,ϕl)|θ

}
and E

{
∇θĴbi (θ,ψl)|θ

}
. We name this approach episodic MCS-average.

Figure 1b overviews the proposed Forward-Backward Multi-Objective Actor-Critic (FB-MOAC) algorithm,
whereas Algorithm 1 provides its pseudo-code.

10
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Algorithm 1 Pseudo-code of the Forward-Backward Multi-Objective Actor-Critic (FB-MOAC) algorithm.
1: for episode = 1 to Emax do
2: Input: Initial forward-backward state (s1, yT ).
3: Actor, forward-critic and backward-critic parameters: θ, ϕ and ψ.
4: Forward Evaluation:
5: for t = 1 to T do
6: Select at ∼ πθ(·|st), interact with environment.
7: Observe forward state st+1 and forward rewards {rf

j (st, at)}j∈Sf .
8: Compute {Af

ϕ,j(st, at)}j∈Sf by forward state-value {V f
ϕ,j(st)}j∈Sf , Equation (11).

9: Compute log
(
πθ(at|st)

)
.

10: end for
11: Backward Evaluation:
12: for t = 1 to T do
13: Observe backward state yT −t and backward rewards {rb

j(yT −t, aT −t)}j∈Sb depending on the drawn action
of step Forward-Evaluation.

14: Compute {Ab
ψ,j(yT −t, sT −t, aT −t)}j∈Sb by bidirectional state-value {V b

ψ,j(yT −t, sT −t)}j∈Sb , Equation (12).
15: end for

16: Forward-Backward Optimization:
17: Forward / bidirectional critic Update:
18: Obtain β∗

f and β∗
b by Equation (14).

19: Compute multi-objective forward-critic loss Kf (ϕ) and backward-critic loss Kb(ψ).
20: Apply the rules:

ϕ← ϕ− µf∇ϕKf (ϕ), ψ ← ψ − µb∇ψKb(ψ).

21: Forward-Backward Optimization:
22: Obtain β∗ using Equation (18) and the outcomes of episodic MCS-average.
23: Compute stochastic forward and backward gradients ∇θĴf

j (θ,ϕ) and ∇θĴb
j (θ,ψ) using Equation (16).

24: Apply the SGD rule:

θ ← θ − µ
( ∑

j∈Sf

βact,j∇θĴf
j (θ,ϕ) +

∑
j∈Sb

βact,j∇θĴb
j (θ,ψ)

)
,

25: end for

4.2 Convergence Analysis

In this section, we perform an analytical study of the convergence characteristics of the FB-MOAC algorithm.
Our investigation starts by establishing of some foundational assumptions and the presentation of important
theorems and corollaries. Please refer to Section B for a more comprehensive study. Subsequently, we study
the convergence analysis for the scenario where the expected rewards are Lipschitz-smooth.

We emphasize that stochastic nature of FB-MDP affects the values of ϕ, ψ and θ, based on the SGD rules
(Equations (15) and (17)), so they are treated as random variables. We now make the following assumptions.

Assumption 1: The estimations of state-value functions are unbiased up to residual terms, i.e.,

E
{

V f
ϕ,i(s) | s,θ

}
= V f

i (s) + δfi , i ∈ Sf , s ∈ S

E
{

V b
ψ,j(y, s) | y, s,θ

}
= V b

j (y, s) + δbj , j ∈ Sb, (y, s) ∈ Y × S,

where {δfi }i∈Sf
and {δbj}j∈Sb

are forward and backward residuals arising from approximation of true value
functions V f

i (s) / V b
j (s, y) by neural network parameterization and stochastic gradient updates (15).

Assumption 2: The forward and backward expected rewards (Jfj (θ), Jbj (θ)) are Lipschitz-smooth functions
with constants Lf and Lb, respectively, w.r.t θ:∥∥∥∇θJfj (θ′)−∇θJfj (θ)

∥∥∥ ≤ Lf∥θ′ − θ∥, j ∈ Sf ,
∥∥∥∇θJbj (θ′)−∇θJbj (θ)

∥∥∥ ≤ Lb∥θ′ − θ∥, j ∈ Sb.

11
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Assumption 2 can be mapped to a set of assumptions related to the architecture of neural networks.
Proposition 4.1. Let the actor be represented by a θ-parametric neural network, where all activation
functions are Lipschitz-continuous, Lipschitz-smooth, and bounded both above and below. Moreover, assume
that either the action space A is compact or actions sampled from the policy distribution πθ(·|·) are clipped.
For any family of distributions that are bounded whenever its parameters and input are bounded, Assumption
2 holds.

Proof. please refer to Proposition (B.1).

Assumption 3: Consider the following stochastic forward / backward gradient:

∇Ĵ fb(θ,ϕ,ψ) =
[[
∇θĴf

j (θ,ϕ)
]

j∈Sf
,
[
∇θĴb

j (θ,ψ)
]

j∈Sb

]
,

then, its conditional covariance is bounded by a positive semi-definite matrix B:

E
{
∇Ĵ fb(θ,ϕ,ψ)⊤∇Ĵ fb(θ,ϕ,ψ)

∣∣ θ}−∇J fb(θ)⊤∇J fb(θ) ⪯ B,

where ∇J fb(θ) =
[[
∇θjf (θ)

]
j∈Sf

,
[
∇θJbj (θ)

]
j∈Sb

]
.

Note that the assumptions outlined in this context align with the conventions in the literature related to
convergence analysis (Tian et al., 2023; Xiong et al., 2022; Zhou et al., 2022; Qiu et al., 2021).

We now need to present a definition for the convergence to locally Pareto-optimal solutions.
Definition 4.2. The parameter sequence {θi}Ii=1 is said to converges to locally Pareto-optimal solutions
(Zhou et al., 2022) if

lim
i→∞

E

{
min

βj ≥ 0∑
j

βj = 1

∥∥∥ ∑
j∈|Sf ∪Sb|

∇θJ fb
j (θi)βj

∥∥∥2
}
→ 0,

where ∇J fb
j (θ) is the j-th element of ∇J fb(θ) with ∇J fb(θ) =

[[
∇θJfj (θ)

]
j∈Sf

,
[
∇θJbj (θ)

]
j∈Sb

]
We are now ready to present the main theorem and resulting consequences related to the convergence.
Theorem 4.3. Assume forward / backward state-value estimations, i.e., {V f

j,ϕ(·)}j∈Sf
and {V b

j,ψ(·)}j∈Sb
,

following Assumption 1. Moreover, consider forward / backward expected rewards, i.e., {Jfj (·)}j∈Sf
and

{Jbj (·)}j∈Sb
, and forward / backward stochastic rewards, i.e., {Ĵfj (·, ·)}j∈Sf

and {Ĵbj (·, ·)}j∈Sb
, complying with

Assumptions 2 and 3, and βact being the solution of Equation (18). Moreover, consider SGDs in Equations (14)
and (17) characterized by iteration number i and actor learning rate {µi}Ii=1 with

µi ≤ min
{

1
max{Lf , Lb}

,
1

max{Lf , Lb}∥B∥

(
1⊤ (∇J fb(θi)⊤∇J fb(θi)

)−1 1
)−1

}
,

and 0 < µI ≤ . . . ≤ µi ≤ . . . ≤ µ1, which generate sequences {ϕi}Ii=1, {ψi}Ii=1 and {θi}Ii=1. Then, we get:

1
I

I∑
i=1

E
{
∥∇J fb(θi)βiact∥2

}
≤ max{Lf , Lb} ∥B∥

I

I∑
i=1

µi
2− µi max{Lf , Lb}

+ 2
I µI |Sf ∪ Sb|

∑
j∈Sf ∪Sb

E
{

J fb
j (θI)− J fb

j (θ1)
}

. (20)

Proof (sketch). It can be shown that the episodic MCS-average approach ensures the forward and backward
expected rewards {Jfj (θ)}j∈|Sf | and {Jbi (θ)}i∈|Sb| constantly increase at each iteration based on Corollary 3.5
(see Theorem B.3). We exploit this fact and the characteristic features of Lipschitz-smooth rewards to
guarantee the convergence to a locally Pareto-optimal solution. Appendix B.2 provides a complete proof.

12
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Remark 4.4. (sublinear convergence): Theorem 4.3 implies the convergence to a locally Pareto-optimal
solution (Zhou et al., 2022) with convergence rate ofO(1/

√
I) under the learning-rate scheduling µi = O(1/

√
i),

where I is the number of algorithm iterations. This rate is notably consistent with that of single-objective
actor-critic methods for forward-MDPs, which exhibit a convergence rate of O(1/

√
I) (Fu et al., 2021).

Remark 4.5. (complexity): The overall architectural complexity of FB-MOAC algorithm is comparable to
that of standard actor-critic approaches. Nonetheless, the episodic MCS-average add-on makes FB-MOAC
computationally different from standard algorithms. The computational burden introduced by this add-on
depends on the number of critic agents. Empirically, utilizing as few as three agents is sufficient to achieve
desirable performance (see Section 5 for more details). Given that the convergence rate of FB-MOAC
algorithm is comparable to the standard RL algorithms, the computational complexity required to achieve
convergence is the same order as that of standard forward-only methods.

4.3 Deriving the Pareto-Front

Our FB-MOAC algorithm is designed as a multi-objective framework where a single-policy agent interacts
with multiple reward-specific critic networks. Crucially, these critics are updated through a non-linear
mechanism with respect to the reward functions, as described by Remark 3.4 in addition to Equations (13)
and (15). Hence, we consider the critics for developing a preference policy with respect to different rewards.
To systematically explore the Pareto front, we introduce forward and backward preference parameters,
ϵf ∈ (0, 1]|Sf |, ϵb ∈ (0, 1]|Sb|, which are used to re-scale the corresponding advantage functions:

Af
i (sk, ak) = ϵfi rfi (sk, ak) + γV f

i (sk+1)− V f
i (sk), for i ∈ Sf

Ab
j(yT−k, sT−k, aT−k) = ϵbj rbj(yT−k, aT−k) + γV b

j (yT−k−1, sT−k−1)− V b
j (yT−k, sT−k), for j ∈ Sb. (21)

We then apply the FB-MOAC algorithm with the updated advantage functions. Note that this re-scaling
does not lead to a linear preference due to Remark 3.4. We thus use different preference parameters to
steer the learning process toward different regions of the Pareto front. It is also important to highlight that
the scalarization technique cannot be applied on the forward and backward rewards to formulate a single
reward, since the resulting reward would depend on both the forward and backward states. As a result, a
state-coupled FB-MDP would occur and Lemma 3.8 would no longer hold. This further motivates using
multi-objective optimization to find the Pareto-optimal solutions.

The non-linear re-scaling mechanism described above allows to characterize the Pareto-front of a problem.
Note that theorems 4.3 guarantees convergence to (locally) Pareto-optimal solutions. On the other hand,
theorem B.3 ensures that the expected rewards monotonically increase for any preference policy. Consequently,
the convergence to a (locally) Pareto-optimal solution is preserved regardless of the different preferences.
These considerations explain that the mechanism in Equation (21) allows to derive locally Pareto-optimal
solutions for the case of Lipschitz-smooth rewards. n evaluation of the proposed mechanism is provided
in Section E.

5 Evaluation

FB-MDPs find application in stochastic optimal control problems driven by forward-backward stochastic
differential equations (FB-SDEs) and networked systems (Zabihi et al., 2023). Accordingly, we evaluate FB-
MOAC against the state of the art through diverse representative problems in these domains: mathematical
finance, as an example of how a FB-SDE-driven stochastic control problem can be solved by FB-MOAC;
and cache-assisted content delivery in wireless networks. Section D provides an additional use case in the
context of computation offloading through an edge (cloud) server. The code of FB-MOAC is available at:
https://anonymous.4open.science/r/FBMOAC-2025.

5.1 Use Case: Mathematical Finance

We consider an investment-consumption problem (Ma & Yong, 1999; El Karoui, 1997) In particular, we
consider a stochastic optimal control problem driven by a forward-backward stochastic differential equation
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Figure 2: Evaluation in a stochastic optimal control problem: (a) performance of FB-MOAC for N = 50 and for
different horizons and (b) comparison of the optimal investor utility u(0) against the state of the art.

(FB-SDE), which is then discretized according to the method in Section F to find an optimal solution with
the FB-MOAC algorithm.

5.1.1 System Model

A financial market consists of n risky assets whose prices follow the following F-SDEs:

dpn(t) = pn(t)
(
rapp
n (t)dt + ⟨σvol

n (t), dβ(t)⟩
)
, pn(0) > 0,

for n ∈ {1, . . . , N}, where β(t) ∈ RN is the Wiener process with identity diffusion matrix, rapp
n (t) is the

instantaneous appreciation rate, and σvol
n (t) ∈ RN is the asset volatility. A trader invests in risky assets by

fractional investments {0 ≤ ϕn(t) ≤ 1}Nn=1 or borrow / lend money with an interest rate rint(t). Hence, the
wealth w(t) of the trader with consumption plan c(t) can be obtained by a F-SDE:

dw(t) = fdrf(w(t), c(t), {ϕn(t)}n
)
dt +

N∑
n=1

w(t)ϕn(t)⟨σvol
n (t), dβ(t)⟩, (22)

where fdrf is the respective drift function obtained as:

fdrf(w(t), c(t), {ϕn(t)}n
)

= rint(t)w(t) +
N∑
n=1

w(t)ϕn(t)
(
rapp
n (t)− rint

n (t)− c(t)
)

with w(0) = w0 and w0 the initial wealth. Note that {ϕn(t)}Nn=1 is called the investment portfolio, with∑N
n=0 ϕn(t) = 1.

Then, an utility process u(t) of the investor is taken into account. This process at time t depends on the
consumption plan c(t) and the future utility, and is described by the following backward SDE (B-SDE):

du(t) =−fgen(c(t), u(t), z(t)
)
dt + ⟨z(t), dβ(t)⟩, u(T )=ffin(w(T )), (23)

where fgen(·) is the generator function, z ∈ RN is the control process of the backward dynamics, T is the
finite horizon, and ffin(·) is the final utility function. The objective of this problem is to optimize the initial
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backward state u(0) by designing an optimal portfolio and consumption plan. This is formulated based on
the following stochastic optimal control problem:

max
{ϕn(t)}N

n=0, c(t)
E
{

ffin(w(T )) +
∫ T

0
fgen(c(t), u(t), z(t))dt

}
,

s.t. FB-SDE (22) and (23). (24)

So as to apply FB-MOAC, we discretize this stochastic optimal control problem by the Euler-Maruyama
scheme (Kloeden & Platen, 1992) (please see Section F). The forward state is set to the wealth w(t)
(s(t) = w(t)) the backward state to the utility process u(t) (y(t) = u(t)), the action is to the investment
portfolio {ϕi(t)}Ni=1, control process of the backward dynamics, and the consumption plan c(t) ≥ 0, i.e.
a(t) = [{ϕi(t)}Ni=1, c(t), z(t)], and the accumulative backward reward is the initial backward state u(0)
expressed by E

{
ffin(w(T )) +

∫ T
0 fgen(c(t), u(t), z(t))dt

}
. Note that discretization of B-SDE (24) leads to

a backward-MDP due to the backward flow of action information (see Remark 3.6). This motivates the
usage of FB-MOAC algorithm. We thus partition the time interval [0, T ] into N sub-intervals [tk−1, tk) for
k ∈ {1, . . . , N}, each sub-interval with length ∆t = T

Ndis , where t0 = 0 and tNdis = T . By applying this
discretization, the backward accumulative reward leads to

Rb(a,y) = E
{

ffin(w(tNdis)) +
Ndis∑
i=0

fgen(c(i∆t), u(i∆t), z(i∆t)
)
∆t
}

, (25)

where a = {a(tk)}Ndis

k=1 and y = {y(tk)}Ndis

k=1 . Further, the F-SDE (22) converts to the following forward-MDP:

w(tk+1)− w(tk) = fdrf(w(tk), c(tk), {ϕn(tk)}n
)
∆t +

N∑
n=1

w(tk)ϕn(tk)⟨σvol
n (tk), ∆β(tk)⟩, (26)

where ∆β(tk) is a normal random variable with zero mean and variance ∆t, and the B-SDE (23) converts to
the following backward-MDP:

u(tk) = u(tk+1)+ fgen(c(tk+1), u(tk+1), z(tk+1))∆t, u(tNdis)=ffin(w(tNdis)), (27)

The respective sequential decision-making problem is then expressed as follows:

max
θ

Rb(a,y),

s.t.
{

a(tk) ∼ πθ(·|s(tk)), FB-MDP of 26− 27
}

.

5.1.2 Experiment Setup and Hyper-parameters

We use the same settings as those in (Ji et al., 2022a). The number of assets is N ∈ {10, 20, 50}, the generator
function fgen(c(t), u(t), z(t)) = −0.05u(t) + c(t) − c(t)2, the final utility function ffin(x) = exp(−x), the
interest rate rint(t) = 0.03, the appreciation rate rapp(t) = 0.05, the volatility σvol

n = 0.1In for n ∈ {1, . . . , N},
the finite horizon T ∈ {0.5, 0.75, 1.0}, and the initial wealth x0 = 100.

As this problem only entails a backward reward, we only establish the backward-critic network; moreover,
we set NMCS = 1, the number of neurons in the hidden layer for the actor and critics to 8, the actor
and bidirectional critic learning rates 2 × 10−2, and the smoothing factor γmov = 1. We use the Dirichlet
distribution for {ϕn(t)}Nn=0 to jointly motivate the exploration and satisfy

∑N
n=0 ϕn(t) = 1. Finally, the

rectified linear unit (ReLU) activation function is used for the neurons connection, the number of neurons in
the hidden layer for the actor and critics is 100, the actor and forward / bidirectional critic learning rates are
3× 10−4, and the smoothing factor is γmov = 0.95.
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5.1.3 Performance Evaluation

Figure 2a shows the performance of FB-MOAC as a function of time steps for different values of finite horizon
T ∈ {0.5, 0.75, 1.0}. For comparison purposes, we consider the approaches in (Ji et al., 2022b; 2020), which
develop deep learning methods by focusing on stochastic control theory and incorporate the system dynamics
a priori for the optimization purposes. In contrast, FB-MOAC learns multivariate rewards for FB-MDPs
without knowing the transition probability of the underlying dynamics. Table 2b compares FB-MOAC against
state of the art in terms of the optimal initial investor utility u(0). The FB-MOAC solution is close to the
values obtained by (Ji et al., 2022b; 2020) for different values of T despite treating the system dynamics as a
black-box during the learning process. This demonstrates the ability of the proposed algorithm to find an
optimal solution for environments characterized as FB-MDPs, thereby broadening its application to a variety
of stochastic optimal control problems described by FB-SDEs.

5.2 Case Study: Edge Caching

We now consider a real-world forward-backward multi-task problem in the context of edge caching (Nomikos
et al., 2022). For conciseness, the rest of the section omits details that can be found in Section C.

5.2.1 System Model

The environment of this experiment is a wireless network with cache-equipped Base-Stations (BSs) The
environment also includes a library containing N different contents as well as fixed mobile users requesting
them from the cellular network. The network operates over time slots with discrete index t ∈ {1, . . . , T},
where T is the total duration of the operation. The network thus addresses that user requests in the beginning
of each time slot. Contents have different popularity {ppop

n (t)}Nn=1, where ppop
n (t) is the probability that

content n is requested by a randomly selected user at time t. The goal is to satisfy as many users as possible
during the network operation. At the beginning of each time-slot, the BSs cache the most popular contents
with probability {pcach

n (t)}Nn=1 and simultaneously multicast them toward users by consuming content-specific
radio resources {wn(t)}Nn=1. The transmission at time-slot t is completed within a duration of d(t) seconds.
We thus denote the system action parameters by the vector a(t), which depends on the content-specific
bandwidth allocation and cache placement of BSs, i.e., a(t) = [{pcach

n (t)}Nn=1, {wn(t)}Nn=1]. A multicast outage
may occur with probability {On(a(t), t)}Nn=1. As a result, certain users fail to receive the requested content
in the current time slot and their request is deferred to the subsequent one. Hence, each time-slot sees a
distribution of users accounting for the repeated requests and a distribution describing the new preferences
toward contents. This leads to a time-varying model for the request probability of content n, preq

n (t):

preq
n (t) = preq

n (t− 1)On

(
a(t− 1), t− 1

)︸ ︷︷ ︸
repeated request

+ ppop
n (t)

N∑
m=1

(
1−Om

(
a(t− 1), t− 1

))
preq
m (t− 1)︸ ︷︷ ︸

new request based on the popularity

. (28)

Note that preq
n (t) indicates the request probability of content n averaged over all users. Then, it can

be simply verified that
∑N
n=1 preq

n (t) = 1, considering
∑N
n=1 ppop

n (t) = 1. Equation (28) therefore rep-
resents a forward dynamics, with the forward state vector s(t) = preq(t) and the action vector
a(t) = [{pcach

n (t)}Nn=1, {wn(t)}Nn=1].

A request for a content is repeated across several time-slots until successfully fulfilled, resulting in an expected
latency Ln(t) for successful delivery of content n. For this quantity, a time-varying dynamics can be derived
by the law of total expectation as follows:

Ln(a(t), t) =
(

d(t) + Ln(a(t + 1), t + 1)
)

On(a(t), t) + d(t)
2
(
1−On(a(t), t)

)
, Ln(a(T ), T ) = 0, (29)

where d(t) is the duration of time-slot t in seconds, and we have Ln(a(T ), T ) = 0 since system operations finish
at t = T and the users do not need to wait any longer. Equation (29) represents a backward dynamics,
with the backward state vector y(t) = L(a(t), t) and the action vector a(t). Note that this model fully
captures the trade-offs involved in the delay dynamics and differs from the conventional formalism that does
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not provide a continuum model when accounting for successive slots; for the delivery without outage, the
expected latency simply becomes Ln(t) = d(t)

2 , as its realizations follow a uniform distribution with values
between 0 and d(t).

Equation (29) may suggest that it is possible to convert it to a standard forward dynamics. For this purpose,
we can consider a variable transformation Kn(T − t) := Ln(a(t), t) as well as a time transformation t′ := T − t.
We can then obtain the following forward dynamics on Kn(t′):

Kn(t′) =
(
d(T − t′) + Kn(t′ − 1)

)
On(a(T − t′), T − t′) + d(T − t′)

2
(
1−On(a(T − t′), T − t′)

)
, for t′ ≥ 1,

with K ′
n(0) = 0. However, this shows a non-standard MDP, as the state Kn(t′) depends on the far future of

action an(T − t′) that cannot be revealed by moving forward in time. This argument aligns with Remark 3.6.

Equation (29) also shows that for a full-error transmission scheme (i.e., with the outage equal to one)
Ln(t) = d(t) + Ln(t + 1) holds, which means that the expected latency maximally accumulates as one goes
backwards in time. This is expected, as no successful receptions take place. Moreover, it is worth stressing
that minimizing the expected latency (29) enables to optimally keep track of the precise time slot at which
requests are finally fulfilled. Alternatively, one could track the service time of requests to prioritize those
that have waited longer, or track for the failed/succeeded content transmissions. However, these policies do
not completely map to the tracking of overall latency, and oversimplify the problem. Consequently, they fail
to account for the complex interactions within the system, leading to a sub-optimal solution. Numerical
evaluations in Section 5.2.3 empirically prove this.

The problem is therefore modeled as a FB-MDP, coupling forward and backward dynamics through system
actions, where the action space is [0, 1]n×[0,∞)n with n the number of contents.

Three widely-used network performance metrics (Li et al., 2018b) are considered as reward functions to
design an optimal policy: the quality of service rQoS(·); the total bandwidth consumption rBW(·); and
the overall expected latency rLat(·). The QoS determines the overall probability of unsatisfied UEs and is
given by rQoS(t) = −

∑N
n=1 preq

n (t)On

(
a(t), t

)
, 0 ≤ −rQoS(t) ≤ 1, namely, the likelihood of a UE request

remaining unfulfilled during the multicast transmission at time-slot t. The total bandwidth consumption
is rBW(t) = −W

(
a(t), t

)
= −

∑N
n=1 wn(t), where W

(
·) represents the total bandwidth consumption for the

network. Finally, the overall expected latency is rLat(t) = −
∑N
n=1 preq

n (t)Ln(a(t), t), with Ln(t) obtained
from Equation (29). Note that these rewards compete with each other. For instance, reducing rBW requires
increasing wn which, in turn, decreases the outage On. Furthermore, a decrease in On makes rQoS grow but
reduces the latency Ln which, in turn, increases rlat.

Clearly, rQoS(t) and rBW(t) relate to the forward state, and constitute the forward bivariate reward function
rf (t) = [rQoS(t), rBW(t)]. Instead, rLat(t) relates to the backward state, and constitutes a backward univariate
reward function rb(t) = rLat(t). The respective sequential decision-making problem is then expressed as
follows:

max
θ

E

{
T∑
t=1

γt−1 [rf (t), rb(t)
]}

,

s.t.
{

at ∼ πθ(·|st), FB-MDP 28− 29
}

.

5.2.2 Experiment Setup and Hyper-parameters

We select the following parameters for the considered environment. The number of content items is set to
N = 200, the spatial intensity of the BSs to λbs = 100 points/km2, and the transmission rate to 1 Mbps. The
total number of time slots is T = 256. For the content popularity, we use time-varying Zipf distributions (Li
et al., 2018a).

As for FB-MOAC, three separate sets of NNs representing the multi-objective actor in addition to the
forward-critic and the backward-critic networks. We use NMCS = 4 many NNs for the forward critic as well
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Figure 3: Pareto-optimal solutions in the edge caching use case for different settings of the preference parameters
ϵ = [ϵf , ϵb]: (a) [0.3, 1.0, 1.0], (b) [0.3, 0.3, 1.0] , (c) [0.3, 1.0, 0.3] , and (d) [1.0, 1.0, 0.3] . Note that these solutions are
Pareto-optimal as none of them dominates the others.

as for the backward critic. The forward critic outputs two values representing the reward-specific state-value
functions V f

ϕ,j(·), related to rQoS(·) and rBW(·). On the other hand, the backward critic outputs one value
representing the state-value functions V b

ψ(·), related to rLat(·). We set the actor and critic learning rates to
4× 10−4 and the discount factor to γ = 0.92.

To leverage the convergence result of Theorem 4.3, we assess whether a neural network can be used for this
problem so as to give Lipschitz-smooth expected rewards. For this, we resort to Proposition (4.1). The
actions {pcach

n (t), wn(t)}Nn=1 can be parameterized by a neural network with Sigmoid activation functions and
can be sampled from LogNormal (for wn) and Dirichlet (for pcach

n ) distributions. They are also bounded, as
0 < pn < 1 and wn is clipped (though it is not initially bounded) to avoid a large latency and bandwidth
consumption. Therefore, Proposition (4.1) can be considered for the neural network of this problem, and
log πθ(a|s) thus inherits Lipschitz-smoothness in θ.

5.2.3 Performance Evaluation

Figure 3 illustrates the learning results of FB-MOAC in deriving most of the Pareto-optimal solutions, i.e., the
resulting solution of each figure does not dominate the others. Recall that Section 4.3 describes a mechanism
for obtaining a Pareto-front; Section E further characterizes such a front for the use case considered here.
For clarity, the performance metrics are normalized based on the value of rQoS, so that they can be clearly
shown in a single plot and more importantly the value of rQoS shows the average percentage of failed requests.
As the results of forward and backward rewards eventually evolve into a stable solution, the actor and the
forward / bidirectional critics are effectively learned.

We consider three baselines for comparison: a widely-used rule-based approach for caching, the Least
Frequently Used (LFU) strategy (Ahmed et al., 2013); and two learning-based algorithms by replacing
the backward reward with a related one (for fairness) so that the backward MDP can be safely removed.
Specifically, we manage the time slot during which requests are served by optimizing d(t). We further
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Figure 4: Performance of FB-MOAC for the edge caching use case: (a) performance comparison against forward
learning with F-PPO, F-MOAC, and LFU; (b) comparison between the test solution of FB-MOAC with those of
F-PPO, F-MOAC, and LFU; (c) learning in absence of backward optimization.

leverage the fact that maximizing rQoS reduces rLat based on Equation (29). Hence, we consider rQoS and
rBW as forward rewards, replace the backward reward with optimizing d(t), then use the baseline algorithm
PPO (Schulman et al., 2017a) as well as F-MOAC, derived from FB-MOAC by excluding the backward
learning mechanism. Notably, F-MOAC is considered a multi-objective extension of the baseline algorithm
A2C (Grondman et al., 2012). We term the resulting solutions of these strategies as F-PPO and F-MOAC,
since they are developed for forward MDPs. Figure 4a compares the training performance of FB-MOAC
against baselines F-PPO and F-MOAC, in terms of normalized rewards, while Figure 4b shows the solutions
of these algorithms during test. We select a solution for FB-MOAC among different ones by prioritizing rQoS.
Instead, we learn forward rewards and additionally optimize d(t) for the two baselines (F-PPO and F-MOAC)
to achieve a rLat comparable (or slightly worse) to that of FB-MOAC. The results show that FB-MOAC
remarkably outperforms both F-MOAC and F-PPO in terms of all rewards. This means that FB-MOAC
strategy can fulfill the content requests considerably better than forward-only strategies. Specifically, more
than 15% of the content items are lost due to the values of quality of service in both F-PPO and F-MOAC,
whereas the failure rate of FB-MOAC is only 2%. Moreover, FB-MOAC gives a comparable or better policy
than those obtained by F-PPO and F-MOAC. Furthermore, the solution of FB-MOAC Pareto-dominates
those of F-PPO and F-MOAC. The LFU policy does not benefit from any preference settings with respect to
rewards. Although, it is better than FB-MOAC from the bandwidth-consumption rBW perspective; it is very
unreliable because 45% of the requests fail. These findings show that minimizing the failure of transmissions
(minimizing the outage) leads to a sub-optimal solution for the overall latency, also indicates the importance
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Figure 5: Train performance when single-objective optimization is used with different values of the scalarization
settings s = [sf , sb]: (a) [0.3, 0.3, 1.0], (b) [1.0, 1.0, 0.3], (c) [0.3, 1.0, 0.3] and (d) [0.3, 1.0, 1.0].

of explicitly incorporating the backward MDP instead of trying to remove it through adjustments to the
backward rewards. They also demonstrate the effectiveness of the proposed FB-MOAC algorithm in solving
the respective FB-MDP problem.

5.2.4 Ablation Study

We now conduct an ablation study to assess the benefit of the backward evaluation / optimization in FB-MOAC.
For this purpose, we first disable the backward evaluation of the algorithm and only consider the forward
actor and critic updates. Figure 4c shows the resulting rewards as a function of time steps, highlighting
that rlat does not improve over time. As a consequence, the results establish the necessity of the backward
evaluation / optimization in FB-MOAC.

We further carry out another ablation study to evaluate the impact of the multi-objective procedure in
Equations (17) to (19) on the performance. For this purpose, we replace the proposed multi-objective
optimization with a single-objective one accompanied with a linear scalarization technique. Specifically, we
update the actor parameter θ using the following rule:

θ ← θ − µ
( ∑
j∈Sf

sfj∇θĴfj (θ,ϕ) +
∑
j∈Sb

sbj∇θĴbj (θ,ψ)
)
,

where sf = [{sfj }j∈Sf
] ∈ [0.1, 1]|Sf | and sf = [{sbj}j∈Sb

] ∈ [0.1, 1]|Sb| are the scalarization settings. Accordingly,
Figure 5 shows the train performance of this approach for different scalarization settings [sf , sb]: [0.3, 0.3, 1.0],
[1.0, 1.0, 0.3] and [0.3, 1.0, 0.3]. Clearly, the single-objective mechanism fails to provide stable solutions, in
contrast with the proposed multi-objective approach (see also Figure 3).
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6 Conclusion and Limitations

We introduced the notion of forward-backward Markov decision processes (FB-MDPs), a class of MDPs
that cannot be expressed as standard MDPs. We then obtained an optimality condition for the solution of
FB-MDPs based on which we devised a multi-objective RL algorithm called FB-MOAC. We analytically
characterized the optimality and convergence of FB-MOAC, then conducted an extensive evaluation in two
diverse use cases to demonstrate its effectiveness.

As a limitation, our mechanism targeted FB-MDP problems wherein forward and backward dynamics are
purely coupled within the action space. Addressing fully-coupled FB-MDPs is an interesting direction for
future work.
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SUPPLEMENTARY MATERIAL

A Proof of Lemma 3.8

Proof. We simply denote the conditional expectation E{·|θ} by E{·} for convenience. Accordingly, we have:

∇θJb(θ) = ∇θ EPθ(τ )

{
T−1∑
k=0

γkrb(yT−k, aT−k)
}

(30)

a= EPθ(τ )

{
T−1∑
k=0

γkrb(yT−k, aT−k)
T−1∑
k=0
∇θ log πθ(aT−k|sT−k)

}
b= EPθ(τ )

{
T−1∑
k=0
∇θ log πθ(aT−k|sT−k)

T−1∑
k′=k

γk
′−krb(yT−k′ , aT−k′)

}
c=
T−1∑
k=0

E
yT −k
aT −k
sT −k

{
∇θ log πθ(aT−k|sT−k)E

{T−1∑
k′=k

γk
′−krb(yT−k′ , aT−k′)

∣∣yT−k, sT−k, aT−k

}
︸ ︷︷ ︸

Qb(yT −k,sT −k,aT −k)

}

d=
T−1∑
k=0

E
yT −k
aT −k
sT −k

{
∇θ log πθ(aT−k|sT−k)

(
Qb(yT−k, sT−k, aT−k)− V b(yT−k, sT−k)

)}

e=
T−1∑
k=0

E
yT −k
aT −k
sT −k

{
∇θ log πθ(aT−k|sT−k)

(
E

yT −k−1 ∼ Pb(·|yT −k, aT −k)
sT −k−1 ∼ P (·|sT −k)

{rb(yT−k, aT−k) + γV b(yT−k−1, sT−k−1)} − V b(yT−k, sT−k)
)}

=
T−1∑
k=0

E

{
∇θ log πθ(aT−k|sT−k)

(
rb(yT−k, aT−k) + γV b(yT−k−1, sT−k−1)− V b(yT−k, sT−k)

)}

= EPθ(τ )

{
T−1∑
k=0
∇θ log πθ(aT−k|sT−k)Ab(yT−k, sT−k, aT−k)

}
, (31)

where V b(·, ·) : Y × S → R|Sb|, Qb(·, ·, ·) : Y × S × A → R|Sb| and Ab(·, ·, ·) : Y × S × A → R|Sb| are
the bidirectional state-value, backward action-value, and bidirectional advantage multivariate functions,
respectively. We also have:

V b(yT −k, sT −k) := E

{
T −1∑
k′=k

γk′−krb(yT −k′ , aT −k′ )
∣∣yT −k, sT −k

}
. (32)

For (a), we used ∇θPθ(τ ) = Pθ(τ ) ∇θ log Pθ(τ ), and ∇θ log Pθ(τ ) =
∑T−1
k=0 ∇θ log πθ(aT−k|sT−k) based

on Equation (3). For (b), we considered the anti-causality; the current action does not affect the future of
backward rewards, for (c), the definition of backward action-value functions is applied, for (d), including a bias
term, here V b(yT−k, sT−k), does not change the result due to EaT −k∼πθ(·|sT −k) {∇θ log πθ(aT−k|sT−k)} = 0
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and for (e) we derive the Bellman’s equation for the backward action-value function as follows:

Qb(yT−k, sT−k, aT−k)

=
∫
E

{
T−1∑
k′=k

γk
′−krb(yT−k′ , aT−k′ )

∣∣∣yT−k, aT−k, yT−k−1, sT−k, sT−k−1

}
Pb(yT−k−1|yT−k, aT−k)×

P (sT−k−1|sT−k)dyT−k−1dsT−k−1

α=
∫ (
rb(yT−k, aT−k) + γE

{ T−1∑
k′=k+1

γk
′−krb(yT−k′ , aT−k′ )

∣∣∣yT−k−1, sT−k−1

})
Pb(yT−k−1|yT−k, aT−k)×

P (sT−k−1|sT−k)dyT−k−1dsT−k−1

= E
yT −k−1 ∼ Pb(·|yT −k, aT −k)

sT −k−1 ∼ P (·|sT −k)

{
rb(yT−k, aT−k) + γV b(yT−k−1)

}
, (33)

where for (α) we considered that (yT−k−1, sT−k−1) is the only relevant information to compute the expectation
E
{∑T−1

k′=k+1 γk
′−krb(yT−k′ , aT−k′)

}
. The same strategy can be applied to obtain the Bellman’s equation for

the bidirectional state-value function as follows:

V b(yT−k, sT−k) = E
aT −k ∼ πθ (·|sT −k)

yT −k−1 ∼ Pb(·|yT −k, aT −k)
sT −k−1 ∼ P (·|sT −k)

{
rb(yT−k, aT−k) + γV b(yT−k−1, sT−k−1)

∣∣ θ}.

Note that no distinct forward and backward Bellman optimality equations do exist for the FB-MDPs. However,
a Bellman Pareto-optimality equation can be instead found. For this, we consider this fact that the forward
and backward value functions become stationary when forward and backward transition probabilities are
stationary. By recalling the notion of Pareto-optimality and Pareto front, we then define the Pareto-optimal
forward and backward value functions as follows:[

Qf∗
(s, a), Qb∗

(y, s, a)
]
∈ max
π(·|·)

[
Qf (s, a), Qb(y, s, a)

]
,

[
V f∗

(s), V b∗
(y)
]
∈ max
π(·|·)

[
V f (s), V b(y, s)

]
,

for all (s, y, a) ∈ S × Y × A, where
[
Qf∗(s, a), Qb∗(y, s, a)

]
and

[
V f∗(s), V b∗(y, s)

]
are the Pareto-optimal

vector for the above multi-objective optimization. Now, we consider the following policy:

π∗(a|s) =
{

1, a ∈ argmaxa
[
Qf∗(s, a), Qb∗(y, s, a)

]
0, otherwise

.

Note that here argmaxa
[
Qf∗(s, a), Qb∗(y, s, a)

]
returns a set of vectors. We then have:[

V f∗
(s), V b∗

(y, s)
]
∈ max

a

[
Qf∗

(s, a), Qb∗
(y, s, a)

]
.

On the other hand, based on Equation (33) and the Bellman’s equation for the forward action-value function,
we can get:

Qf∗
(s, a) = E

s+∼Pf (·|s,a)

{
rf (s, a) + γV f∗ (

s+)}
Qb∗

(y, s, a) = E
y− ∼ Pb(·|y, a)

s− ∼ P (·|s)

{
rb(y, a) + γV b∗ (

y−, s−)} ,

where y− is the backward state preceding y and s+ is the forward state following s. We therefore obtain the
following Bellman Pareto-optimality equation:[

V f∗
(s), V b∗

(y, s)
]
∈ max

a

[
E

s+ ∼ Pf (·|s, a)

{
rf (s, a) + γV f∗ (

s+)} , E
y− ∼ Pb(·|y, a)

s− ∼ P (·|s)

{
rb(y, a) + γV b∗ (

y−, s−)}],

This equation, termed as Bellman Pareto-optimality equation, provides a base to formulate dynamic program-
ming algorithms for multi-objective FB-MOAC problems as well as motivates the usage of a multi-objective
optimization framework.
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B Convergence of the FB-MOAC Algorithm

In this section, we perform a comprehensive study of the convergence properties of the FB-MOAC algorithm.
Our investigation starts by establishing of some foundational assumptions and the introduction of preliminary
theorems and corollaries. Subsequently, we study the convergence analysis for the scenario where the expected
rewards are Lipschitz-smooth. Through a rigorous examination of these cases, we thus intend to provide a
comprehensive understanding of the convergence characteristics of FB-MOAC algorithm.

For this analysis, we need to emphasize that stochastic nature of FB-MDP affects the values of ϕ, ψ and θ,
based on the SGD rules (Equations (15) and (17)), so they are treated as random variables.

We now make the following assumptions.

Assumption 1: The estimations of state-value functions are unbiased up to residual terms, i.e.,

E
{

V f
ϕ,i(s) | s,θ

}
= V f

i (s) + δfi , i ∈ Sf , s ∈ S

E
{

V b
ψ,j(y, s) | y, s,θ

}
= V b

j (y, s) + δbj , j ∈ Sb, (y, s) ∈ Y × S,

where {δfi }i∈Sf
and {δbj}j∈Sb

are forward and backward residuals. These terms arise from approximation of
true value functions V f

i (s) /V b
j (s, y) by neural network parameterization and stochastic gradient updates (15).

Assumption 2: The forward and backward expected rewards are Lipschitz-smooth functions with constants
Lf and Lb, respectively, w.r.t θ:∥∥∥∇θJfj (θ′)−∇θJfj (θ)

∥∥∥ ≤ Lf∥θ′ − θ∥, j ∈ Sf .∥∥∥∇θJbj (θ′)−∇θJbj (θ)
∥∥∥ ≤ Lb∥θ′ − θ∥, j ∈ Sb.

Assumption 2 can be connected to assumptions related to the architecture of neural networks.
Proposition B.1. Let the actor be represented by a neural network parameterized by θ ∈ Θ, where all
activation functions are regular, i.e. Lipschitz-smooth with constant Lsact, Lipschitz-continuous with constant
Lcact, and bounded both above and below. Moreover, assume that either the action space A is compact or
actions sampled from the policy distribution πθ(·|·) are clipped. For any family of distributions that are
bounded whenever its parameters and input are bounded, Assumption 2 then holds.

Proof. Referring to Equations (34) and (35), since the sum of Lipschitz-smooth functions is itself Lipschitz-
smooth, it suffices to evaluate Lipschitz-smoothness of log-policy log πθ(a|s). Let denote the log-policy by a
bi-variate function f(a, g(θ, s)) : A× G → R, wherein a is the sampled actions being detached (so they do
not depend on θ), g : Θ× S → G is the output of the θ-parametric neural network, and G is the space of
neural network output. Based on the chain rule, we then have:∥∥∇θf(a, g(θ1, s))−∇θf(a, g(θ2, s))

∥∥
≤
∥∥∇gf(a, g(θ1, s))

∥∥.
∥∥Jθg(θ1, s)− Jθg(θ2, s)

∥∥+
∥∥Jθg(θ2, s)

∥∥.
∥∥∇gf(a, g(θ1, s))−∇gf(a, g(θ2, s))

∥∥
(a)
≤
∥∥∇gf(a, g(θ1, s))

∥∥fN (Ls
act, Lc

act)∥θ1 − θ2∥+ hN (Lc
act)
∥∥∇gf(a, g(θ1, s))−∇gf(a, g(θ2, s))

∥∥,

where Jθg is the Jacobian of g w.r.t. θ, ∇gf is the gradient of f w.r.t. g, and fN and hN are two functions
depending on the architecture of the neural network. As all of the activation functions are regular, for (a),
we use this fact that the compositions of bounded and Lipschitz-smooth (continuous) functions remains
Lipschitz-smooth (continuous). Therefore, the output of neural network g is Lipschitz-smooth with constant
fN (Lsact, Lcact) and Lipschitz-continuous with constant hN (Lcact). Now, as g and a are bounded (if a is
inherently unbounded, it can be clipped whenever the problem permits), the norm of first and second
derivatives of log-policy f(a, g(θ, s)) with respect to network output g(θ, s) are bounded for typical policy
distributions like Normal, LogNormal, Dirichlet and Beta. Therefore, there exists a parameter A1, such that
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∥∥fg(a, g(θ, s))
∥∥ ≤ A1. As the boundedness of norm of second derivative is equivalent to Lipschitz-smoothness,

there exists also A2 so that
∥∥∇gf(a, g(θ1, s))−∇gf(a, g(θ2, s))

∥∥ ≤ A2∥g(θ2, s)−g(θ1, s)∥. Therefore, we get:∥∥∇θf(a, g(θ1, a))−∇θf(a, g(θ2, a))
∥∥ ≤ A1fN (Lsact, Lcact)∥θ1 − θ2∥+ hN (Lcact)A2∥g(θ1, s)− g(θ2, s)∥
≤ A1fN (Lsact, Lcact)∥θ1 − θ2∥+ hN (Lcact)

2
A2∥θ1 − θ2∥

=
(
A1fN (Lsact, Lcact) + hN (Lcact)

2
A2
)
∥θ1 − θ2∥

Hence, the log-policy is L-smooth with parameter A1fN (Lsact, Lcact) + hN (Lcact)
2
A2 and the statement thus

proves.

Assumption 3: Consider the following stochastic forward / backward gradient:

∇Ĵ fb(θ,ϕ,ψ) =
[[
∇θĴfj (θ,ϕ)

]
j∈Sf

,
[
∇θĴbj (θ,ψ)

]
j∈Sb

]
,

then, its conditional covariance is bounded by a positive semi-definite matrix B:

E
{
∇Ĵ fb(θ,ϕ,ψ)⊤∇Ĵ fb(θ,ϕ,ψ)

∣∣ θ}−∇J fb(θ)⊤∇J fb(θ) ⪯ B,

where

∇J fb(θ) =
[[
∇θJfj (θ)

]
j∈Sf

,
[
∇θJbj (θ)

]
j∈Sb

]
,

Note that the assumptions outlined in this context align with the conventions in the literature related to
convergence analysis (Tian et al., 2023; Qiu et al., 2021; Zhou et al., 2022; Xiong et al., 2022).

B.1 Preliminary Theorems and Corollaries

The following Corollary is a consequence from Assumption 1.
Corollary B.2. Under Assumption 1, the expected forward / backward gradients (19) coincide with the
corresponding reward gradients given in Equations (5) and (7), respectively.

∇θJ̄fj (θ) = ∇θJfj (θ), j ∈ Sf , ∇θJ̄bj (θ) = ∇θJbj (θ), j ∈ Sb

Proof. Based on Equations (16) and (19) we can get:

∇θJ̄fj (θ) = E
{
∇θĴfj (θ,ϕ)

∣∣ θ} =
T∑
k=1

E
{
∇θ log πθ(ak|sk)Af

ϕ,j(sk, ak)
∣∣ θ}

=
T∑
k=1

Esk,ak,sk+1|θ E
{
∇θ log πθ(ak|sk)Af

ϕ,j(sk, ak)
∣∣ θ, sk, ak, sk+1

}
=

T∑
k=1

Esk,ak,sk+1|θ

{
∇θ log πθ(ak|sk)E

{
Af
ϕ,j(sk, ak)

∣∣ θ, sk, ak, sk+1

}}
(a)=

T∑
k=1

Esk,ak,sk+1|θ

{
∇θ log πθ(ak|sk)

(
Af
j (sk, ak) + (γ − 1)δfj

)}
= E

{
T∑
k=1
∇θ log πθ(ak|sk)

(
Af
j (sk, ak) + (γ − 1)δfj

) ∣∣∣ θ} (b)= ∇θJfj (θ) (34)

where (a) follows from Assumption 1, and the definition of advantage function Af
ϕ,j(sk, ak) = r(sk, ak) +

γV f
ϕ,j(sk+1)− V f

ϕ,j(sk), and (b) from E
{∑T

k=1∇θ log πθ(ak|sk)δfj
∣∣∣ θ} = 0. Likewise, it can be shown that:

∇θJ̄bj (θ) = E

{
T∑
k=1
∇θ log πθ(ak|sk)Ab

j(yk, sk, ak)
∣∣∣ θ} = ∇θJbj (θ) (35)
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The following theorem proves that forward / backward expected rewards monotonically increase with each
update iteration.
Theorem B.3. Consider forward / backward expected rewards, i.e., {Jfj (·)}j∈Sf

and {Jbj (·)}j∈Sb
, and for-

ward / backward stochastic rewards, i.e., {Ĵfj (·, ·)}j∈Sf
and {Ĵbj (·, ·)}j∈Sb

, complying with Assumptions 2 and
3, and βact being the solution of Equation (18). Moreover, consider SGDes in Equations (14) and (17)
characterized by iteration number i and actor learning rate {µi}i∈I with

µi ≤ min
{

1
max{Lf , Lb}

,
1

max{Lf , Lb}∥B∥
E
{ 1

1⊤ (∇J fb(θi)⊤∇J fb(θi))−1 1

}}
,

which generate sequences {ϕi}i∈I , {ψi}i∈I and {θi}i∈I , we then get:

E
{

Jfj (θi+1)
}
≥ E

{
Jfj (θi)

}
, j ∈ Sf

and

E
{

Jbk(θi+1)
}
≥ E

{
Jbk(θi)

}
, k ∈ Sb.

Proof. Based on Assumption 2, we can obtain

Jfj (θi+1)− Jfj (θi) ≥ ∇Jfj (θi)
⊤

(θi+1 − θi)− Lf
2 ∥θ

i+1 − θi∥2. (36)

On the other hand, the update rule (17) gives:

θi+1 = θi + µi
[
∇Ĵ f(θi,ϕi),∇Ĵb(θi,ψi)

]
βiact = θi + µi∇Ĵ fb(θi,ϕi,ψi)βiact. (37)

By plugging Equation (37) into Equation (36), we then obtain:

Jfj (θi+1)− Jfj (θi) ≥ µi∇Jfj (θi)⊤∇Ĵ fb(θi,ϕi,ψi)βiact −
µ2
iLf
2 βiact

⊤∇Ĵ fb(θi,ϕi,ψi)⊤∇Ĵ fb(θi,ϕi,ψi)βiact.

Taking the expectation on both sides of the recent equation then gives:

E
{

Jfj (θi+1)− Jfj (θi)
}

(a)
≥ µiE

{
∇Jfj (θi)⊤∇Ĵ fb(θi,ϕi,ψi)βiact

}
−

µ2
iLf
2 βiact

⊤(
B +∇J fb(θi)⊤∇J fb(θi)

)
βiact

(b)= µiE
{(
ej −

µiLf
2 βiact

)⊤
∇J fb(θi)⊤∇J fb(θi)βiact

}
−

µ2
iLf
2 βiact

⊤
Bβiact

(c)
≥ µiE

{(
ej −

µiLf
2 βiact

)⊤
∇J fb(θi)⊤∇J fb(θi)βiact

}
−

µ2
iLf
2 ∥B∥, (38)

where for (a) we used Assumption 3, for (b) we leveraged ∇Jfj = e⊤
j ∇J fb

j and the fact that

E
{
βiact

⊤∇Jf (θi)⊤∇Ĵ fb(θi,ϕi,ψi)βiact
∣∣ θi} = βiact

⊤∇Jf (θi)⊤E
{
∇Ĵ fb(θi,ϕi,ψi)

∣∣ θi}βiact

= βiact
⊤∇Jf (θi)⊤∇J fb(θi)βiact

according to Corollary (B.2), and for (c) we exploited βiact
⊤
Bβiact ≤ ∥B∥ ∥βiact∥2 ≤ ∥B∥. On the other hand,

from Equation (18), for all βiact,j ≥ 0, we can obtain:

βiact =
(

1⊤
(
∇J fb(θi)⊤∇J fb(θi)

)−1
1
)−1(

∇J fb(θi)⊤∇J fb(θi)
)−1

1. (39)
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By substituting this into Equation (38), we finally get:

E
{

Jfj (θi+1)− Jfj (θi)
}
≥µi

(
1− µiLf

2

)
E

{
1

1⊤
(
∇J fb(θi)⊤∇J fb(θi)

)−1
1

}
− µ2

iLf
2 ∥B∥

a
≥µi

2 E

{
1

1⊤
(
∇J fb(θi)⊤∇J fb(θi)

)−1
1

}
− µ2

iLf
2 ∥B∥ ≥ 0,

where we used µi max{Lf , Lb} ≤ 1 for (a). Considering that the denominator of RHS of the recent equation is
positive due to the positive-definiteness of

(
∇J fb(θi)⊤∇J fb(θi)

)−1, the statement follows. The same analysis
can be applied to infer E

{
Jbj (θi+1)− Jbj (θi)

}
≥ 0

Remark B.4. Theorem B.3 guarantees all the forward and backward expected rewards
{
E Jfj (θ)

}
j∈Sf

and{
E Jbj (θ)

}
j∈Sb

continually increase as the algorithm iteration increases. It thus enables us to jointly improve
all of the cumulative rewards, either forward or backward, with each iteration, on average.
Corollary B.5. Consider the framework of Lemma B.3, we then get:

E
{
βiact

⊤∇J fb(θi)⊤∇J fb(θi)βiact

}
≤ 2

µi
E

 ∑
j∈Sf ∪Sb

βiact,j
(
J fb
j (θi+1)− J fb

j (θi)
)+ µi max{Lf , Lb}∥B∥.

Proof. Based on Equation (38) and µi max{Lf , Lb} ≤ 1, the statement follows.

B.2 Analysis for Lipschitz-smooth Rewards

We perform a convergence analysis focusing on the Lipschitz-smoothness condition detailed in Assumption 2.
However, we first need to present a definition for the convergence to locally Pareto-optimal solutions:
Definition B.6. The parameter sequence {θi}Ii=1 is said to converges to locally Pareto-optimal solutions
(Zhou et al., 2022) if

lim
i→∞

E

{
min

βj ≥ 0∑
j

βj = 1

∥∥∥ ∑
j∈|Sf ∪Sb|

∇θJ fb
j (θi)βj

∥∥∥2
}
→ 0,

where ∇J fb
j (θ) is the j-th element of ∇J fb(θ) with ∇J fb(θ) =

[[
∇θJfj (θ)

]
j∈Sf

,
[
∇θJbj (θ)

]
j∈Sb

]
We thus have the following theorem.
Theorem B.7. Assume forward / backward state-value estimations, i.e., {V f

j,ϕ(·)}j∈Sf
and {V b

j,ψ(·)}j∈Sb
,

following Assumption 1. Moreover, consider forward / backward expected rewards, i.e., {Jfj (·)}j∈Sf
and

{Jbj (·)}j∈Sb
, and forward / backward stochastic rewards, i.e., {Ĵfj (·, ·)}j∈Sf

and {Ĵbj (·, ·)}j∈Sb
, complying with

Assumptions 2 and 3, and βact being the solution of Equation (18). Moreover, consider SGDs in Equations (14)
and (17) characterized by iteration number i and actor learning rate {µi}i∈I with

µi ≤ min
{

1
max{Lf , Lb}

,
1

max{Lf , Lb}∥B∥

(
1⊤ (∇J fb(θi)⊤∇J fb(θi)

)−1 1
)−1

}
,

and 0 < µI ≤ . . . ≤ µi ≤ . . . ≤ µ1, which generate sequences {ϕi}Ii=1, {ψi}Ii=1 and {θi}i∈I . Then, we get:

1
I

I∑
i=1

E
{
∥∇J fb(θi)βiact∥2

}
≤max{Lf , Lb} ∥B∥

I

I∑
i=1

µi
2− µi max{Lf , Lb}

+ 2
I µI |Sf ∪ Sb|

∑
j∈Sf ∪Sb

E
{

J fb
j (θI)− J fb

j (θ1)
}

. (40)
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Proof. Based on Equation (38) an its counterpart for {Jbj (θ)}j∈Sb
, we have:

E
{ ∑

j∈Sf ∪Sb

Jf
j (θi+1)− Jf

j (θi)
}
≥ µiE

{(
1− µiL

max

2 βi
act|Sf ∪ Sb|

)⊤
∇J fb(θi)⊤∇J fb(θi)βi

act

}
− µ2

i Lmax

2 ∥B∥|Sf ∪ Sb|

(a)
≥ |Sf ∪ Sb|µi

(
E
{(

1− µiL
max

2

)
βi

act
⊤∇J fb(θi)⊤∇J fb(θi)βi

act

}
− µiL

max

2 ∥B∥
)

where Lmax := max{Lf , Lb}, and for (a) we used the identity 1⊤∇J fb⊤∇J fbβact =
∣∣Sf ∪

Sb
∣∣βact

⊤∇J fb⊤∇J fbβact based on Equation (39). Since µiL
max ≤ 1, we can get:

E
{
∥∇J fb(θi)βiact∥2

}
≤ 1
|Sf ∪ Sb|µi(1− µi

2 Lmax) E
{ ∑
j∈Sf ∪Sb

(
J fb
j (θi+1)− J fb

j (θi)
)}

+ µiL
max

2− µiLmax ∥B∥

(a)
≤ 2

µI |Sf ∪ Sb|
E
{ ∑
j∈Sf ∪Sb

(
J fb
j (θi+1)− J fb

j (θi)
)}

+ µiL
max

2− µiLmax ∥B∥, (41)

where (a) follows from µiL
max ≤ 1. We then take the summation on both side of Equation (41), and apply

telescopic cancellation. The statement then proves by considering that βact is the solution of Equation (18)
for θ = θi.

Remark B.8. Under the learning-rate scheduling µi = O(1/
√

i), both terms 2
IµI

and 1
I

∑
i∈I µi/(2 −

µi max{Lf , Lb}) in Equation (40) decay at the rate of O(1/
√

I). Consequently, theorem B.7 guarantees
convergence to a locally Pareto-optimal solution (Zhou et al., 2022) with a convergence rate of O(1/

√
I). This

rate is notably consistent with that of single-time-scale actor-critic methods for forward-MDPs, which are
known to exhibit convergence rates of O(1/K), where K denotes the number of iterations (Fu et al., 2021).
Remark B.9. In contrast, if the learning rate is chosen as µi = O(1/i), the term 2

I µI
in Equation (40) does

not vanish as iteration becomes large. This prevents a general convergence guarantee in this setting.

C Additional Details on the Edge Caching Use Case

The environment of this experiment is a cellular network with cache-equipped Base-Stations (BSs) similar
to that in (Amidzadeh et al., 2023). The BSs are spatially distributed across the network with intensities
λbs. The environment also includes a library containing N different contents as well as fixed mobile users
requesting them from the cellular network. The network operates over time slots with index t ∈ {1, . . . , T},
where T is the total duration of the operation. The network thus addresses that user requests in the beginning
of each time slot. Contents have different popularity {ppop

n (t)}Nn=1, where ppop
n (t) is the probability that

content n is requested by a randomly selected user at time t. The goal is to satisfy as many users as possible
during the network operation. At the beginning of each time-slot, the BSs cache the most popular contents
with probability {pcach

n (t)}Nn=1 and simultaneously multicast them toward users by consuming content-specific
radio resources {wn(t)}Nn=1. We denote the system action parameters by the vector a(t), which depends on
the content-specific bandwidth allocation and cache placement of BSs, i.e., a(t) = [{pcach

n (t)}Nn=1, {wn(t)}Nn=1].
A multicast outage may occur with probability {On(a(t), t)}Nn=1:

On(a(t), t) = erfc
(

π2λbsp
cach
n (t)

4
√

ηn(t)

)
, ηn(t) = 21/wn(t) − 1, (42)

where obtained by averaging over users. As a result, certain users fail to receive the requested content
in the current timeslot and their request is deferred to the subsequent one. Hence, each time-slot sees a
distribution of users accounting for the repeated requests and a distribution describing the new preferences
toward contents. This leads to a time-varying model for the request probability of content n, preq

n (t):

preq
n (t) = preq

n (t− 1)On

(
a(t− 1), t− 1

)︸ ︷︷ ︸
repeated request

+ ppop
n (t)

N∑
m=1

(
1−Om

(
a(t− 1), t− 1

))
preq
m (t− 1)︸ ︷︷ ︸

new request based on the popularity

. (43)
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Note that preq
n (t) indicates the request probability of content n averaged over all users. Then, it can be simply

verified that
∑N
n=1 preq

n (t) = 1, considering
∑N
n=1 ppop

n (t) = 1. Equation (43) therefore represents a forward
dynamics, with the forward state vector s(t) = preq(t) and the action vector a(t).

A request for a content is repeated across several time-slots until successfully fulfilled, resulting in an expected
latency Ln(t) for successful delivery of content n. For this quantity, a time-varying dynamics can be derived
by the law of total expectation as follows:

Ln(a(t), t) = E{latency | outage}P{outage}+ E{latency| no outage}P{no outage}

=
(

d(t) + Ln(t + 1)
)

On(a(t), t) + d(t)
2
(
1−On(a(t), t)

)
, (44)

where d(t) is the duration of time-slot t in seconds, and Ln(a(T ), T ) = 0 since system operations finish
and the users do not need to wait any longer. Equation (44) represents a backward dynamics, with
the backward state vector y(t) = L(t) and the action vector a(t). Note that this model fully captures the
trade-offs involved in the delay dynamics and differs from the conventional formalism that does not provide a
continuum model when accounting for successive slots; for the delivery without outage, the expected latency
simply becomes Ln(t) = d(t)

2 , as its realizations follow a uniform distribution with values between 0 and d(t).
Notice that the backward dynamics (44) based on Theorem 3.6 cannot be expressed as a standard MDP.
Thus, Equations (43) and (44) together model a FB-MDP and are coupled through the action a(t). Hence,
they should be jointly considered to obtain an optimal cache policy.

D Case Study: Computation Offloading

We now present an additional use case in the domain of computation offloading (Zabihi et al., 2023).

D.1 System Model

There are Ndev mobile devices and N computational intensive tasks with diverse sizes {sn}Nn=1. A typical
mobile device prefers task n with probability pprf

n (t), and it offloads the preferred tasks with probability
p

off|prf
n (t) to an edge server. The server operates in time slots with duration τ indexed by t and leverages

a task-specific parallelism mechanism to process the offloaded tasks. Specifically, it employs N buffers
and N computational resources with Bedg

n (t) denoting the buffer capacity and Cedg
n (t) ≥ Cedg

min denoting
the computational resource allocated to file n. Cedg

min is the minimum extent of allocated resource, while∑N
n=1 Bedg

n (t) = Bedg and
∑N
n=1 Cedg

n (t) = Cedg represent the total buffer limit Bedg and computational
capacity Cedg, respectively. The control parameters for this problem are thus {(poff|prf

n (·), Bedg
n (·), Cedg

n (·))}Nn=1.
A typical device offloading task n encounters with a failure if the corresponding buffer overflows, and as
such it needs to re-offload the task. The queue length for n-th buffer Sn thus complies with the following
expression:

Ln(t + 1) = max
{

Ln(t) + Snpoff
n (t + 1)αn(t + 1)︸ ︷︷ ︸
new data buffered

− Cedg
n (t + 1)︸ ︷︷ ︸

computed data de-buffered

, 0
}

, (45)

for n ∈ {1, . . . , N}, where Sn = sn Ndev, poff
n (t) is the offloading probability for file n, Snpoff

n (t) shows the
total amount of data offloaded for the n-th buffer, and

αn(t + 1) = min
{Bedg

n (t + 1)− Ln(t)
Snpoff

n (t + 1) , 1
}

,

denotes the fraction of data that can be buffered due to the buffer capacity Bedg
n . Therefore, it can be

simply verified that Ln(t + 1) ≤ Bedg
n (t + 1). The overflow probability On for n-th buffer is thus obtained by

On(t) = 1− αn(t). This equation exhibits a controlled forward dynamics, based on which we constitute the
forward state [pprf(t), L(t)] for this dynamics.

We now compute the average computation time needed for a typical device preferring task n, i.e., tprf
n (t). If

the task is preferred and locally computed, tprf
n (t) depends on the computation capacity of the device itself,
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whereas if it is offloaded, tprf
n (t) depends on the computation offloading time toff

n (t), i.e., average computation
time needed for a device to offload task n. By the law of total expectation we thus get:

tprf
n (t) =E{computation time

∣∣ task preferred} = poff|prf
n (t) toff

n (t) + (1− poff|prf
n (t)) sn

Cdev . (46)

We thus need to compute toff
n (t). If the task being offloaded faces with an overflow, it will be re-offloaded in

the next time-slot. However, if no overflow happens the computation time depends on the queue length and
the computation resource allocated to the task. Therefore, toff

n (t) is found by the total expectation law as
follows:

toff
n (t) =E{computation time

∣∣ task offloaded } = On(t + 1)(τ + tprf
n (t + 1)) + (1−On(t + 1)) tn, (47)

for n ∈ {1, . . . , N}, where tn stands for the needed time to compute task n with size sn if it is successfully
buffered. We thus have:

tn =
Ln(t) + 1

2 αn(t + 1)poff
n (t + 1)Sn + sn

Cedg
n (t + 1)

τ,

where obtained considering that n-th buffer has already a queue with length Ln(t) and additionally buffer
Sn with probability 1

2 αn(t + 1)poff
n (t + 1). Equations (46) and (47) together provide a continuum model for

the average time required to successfully compute task n within different slots. Additionally, they represent
a controlled backward dynamics with the backward state tprf(t) = [tprf

1 , . . . , tprf
n ](t). We now consider two

action-coupled conflicting rewards. The forward reward is related to the overall overflow probability as:

rOP(t) = −
N∑
n=1

pprf
n (t)On(t),

and the backward reward is related to the expected computation time:

rCT(t) = −
N∑
n=1

pprf
n (t)tprf

n (t),

This problem thus represents a FB-MDP environment with action
[
{Cedg

n }n, {Bedg
n }n, {poff|prf

n }n
]
, and action

space [0, 1]N × [0, 1]N × [0, 1]N .

D.2 Experiment Setup and Hyper-parameters

We set the number of devices to Ndev = 100, number of tasks N = 20, file size sn = 10 + n Kbits, devices
computational capacity Cdev = 10 Kbits/slot, minimum extent of allocated resource Cedg

min = 10−5, edge
computational capacity Cedg = 100 Kbits/slot edge buffer capacity B = 100 Kbits and slot duration τ = 60
seconds. The hyper-parameters of FB-MOAC are the same as the previous experiment excluding the learning
rates of actors and critics, which are set to 3× 10−3.

D.3 Performance Evaluation

We consider a learning-based strategy to evaluate FB-MOAC on this experiment. For this strategy, we utilize
this fact that optimizing the overflow probability decreases the expected latency according to Equation (47).
Consequently, we apply the baseline RL algorithms PPO (Schulman et al., 2017a) and A2C (Grondman et al.,
2012) to obtain an offloading policy. We call the resulting policies of these approaches F-PPO and F-A2C, as
these algorithms manage the backward reward using a forward mechanism.

Figure 6 reports the histograms (i.e., the empirical probability density function) for the performance of
FB-MOAC, F-PPO and F-A2C algorithms (respectively) in terms of rCT and rOP . Clearly, both the forward
and backward rewards of FB-MOAC are higher than those of F-PPO and F-A2C approaches. Consequently,
FB-MOAC outperforms F-PPO and F-A2C from the perspectives of both expected computation time rCT
and overflow probability rOP. In other words, the resulting policy of FB-MOAC Pareto-dominates the
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Figure 6: Histograms depicting the empirical distribution function of the computation time rCT and the overflow
probability rOP for: (a) FB-MOAC, (b) F-PPO, and (c) F-2AC.

strategies of F-A2C and F-PPO on average. As expected, FB-MOAC shows a more significant improvement
in the computation time compared to the other two algorithms. Nonetheless, FB-MOAC even gives a better
overflow probability performance than that of F-A2C and F-PPO due to developing a more favorable learning
mechanism even for the forward dynamics. These results indicate the importance of explicitly incorporating
the backward MDP rather than eliminating it through adjustments to the backward rewards. They also
demonstrate the effectiveness of the proposed FB-MOAC algorithm in addressing the corresponding FB-MDP
problem.

E Deriving Pareto-optimal Solutions

Here, we employ the mechanism explained in Section 4.3 to obtain the Pareto-optimal solutions of the use
case considered in Section 5.2, namely, edge caching in wireless networks. Figure 7 illustrates the collection of
Pareto-optimal solutions with diverse preference parameters ϵfi ∈ [0.1, 1] and ϵbi ∈ [0.1, 1]. Note that most of
the solutions cannot be dominated by others, therefore, FB-MOAC can provide most of the Pareto-optimal
solutions with the proposed preference policy.

F Transforming a FB-SDE into a FB-MDP

This section shows the wider applicability of FB-MDPs and FB-MOAC to problems described by FB-SDEs.
Specifically, it explains a general method to transform a FB-SDE into a FB-MDP, which can then be solved
with FB-MOAC (as described in Section 5.1). In particular, the Euler-Maruyama method (Kloeden & Platen,
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Figure 7: The collection of Pareto-optimal solutions for the use case of edge caching, obtained by applying a discrete
policy over different preference settings ϵf

i ∈ [0.1, 1] and ϵb
i ∈ [0.1, 1]. The radius of the points denotes the probability

of occurrence. Given that many of these solutions cannot be dominated by others, the FB-MOAC algorithm can
efficiently provide the Pareto-front solutions.

1992) can be used to discretize the space of control problems. More specifically, the forward and backward
SDEs can be transformed to forward and backward MDPs, respectively.

Consider the following controlled FB-SDE:
dx(t) = f(x(t), u(t), t) dt +

∑l
i=1 σ

i(x(t), u(t), t) dwi(t),
dy(t) = g(y(t), u(t), {zi(t)}i, t) dt +

∑l
i=1 zi(t) dwi(t),

x(0) = x0, y(T ) = yT ,

(48)

where w(t) = {wi(t)}li=1 is an l-dimensional Wiener process, x(t) ∈ Rn is the forward process, f(·, ·, ·) :
Rn × U × [0, T ]→ Rn is the drift function which describes the dynamics of the forward SDE and is governed
by an optimization control process u(t) ∈ U ⊂ Rk, and σi(·, ·, ·) : Rn × U × [0, T ] → Rn is the diffusion
coefficient determining the extent of noise added to the forward dynamics. Conversely, y(t) ∈ Rm is the
backward process, g(·, ·, ·, ·) : Rm × U × Rm×n × [0, T ]→ Rm is the generator function and zi(t) ∈ Rm is the
dynamics control process.

35



Under review as submission to TMLR

Note that the solution of the backward SDE is determined by the pair (y(·), {zi(·)}i) where {zi(·)}i should
be found to guarantee that the backward process y(t) is properly adapted. The solution of FB-SDE (48) is
thus denoted by the tuple (x(·), y(·), {zi(·)}i).

In this section, we resort to Euler-type numerical approaches, which discretizes the evolution of dynamics,
to numerically solve the considered FB-SDE. In this regard, we partition the time interval [0, T ] into N
sub-intervals [tk−1, tk) for k ∈ {1, . . . , N}, each sub-interval with length ∆t = T

N , where t0 = 0 and tN = T .
By applying the Euler–Maruyama method (Kloeden & Platen, 1992), we then obtain:

x(tk + ∆t) ≈ x(tk) + f(x(tk), u(tk), tk)∆t +
l∑
i=1

σi(x(tk), u(tk), tk)∆wi(tk), for k ∈ {0, . . . , N − 1} (49)

where ∆wi(tk) = wi(tk+∆t)−wi(tk) is a Gaussian random variable with variance ∆t. (49) can be interpreted
as a forward MDP with action u(·) and forward state x(·).

For the backward SDE, we exploit a semi-stochastic approach (Archibald & Yong, 2020). Although, this
might lead to more iterations for the algorithm to converge to an accurate solution, it is considerably more
efficient from the complexity perspective. This can be compared with the stochastic gradient descent that
alleviates the extreme complexity of gradient descent by estimating the expectation with a single sample.
Accordingly, we can get:

y(tk) ≈ y(tk + ∆t)− g
(

y(tk + ∆t), u(tk + ∆t), Z(tk + ∆t), tk + ∆t
)

∆t. (50)

where Z(·) = {zi(·)}li=1, and zi(t) is obtained by

zi(tk) ≈ 1
∆t

y(tk + ∆t) ∆wi(t), for i ∈ {1, . . . , l}. (51)

Equation (50), accompanied with Equation (51), represents a backward MDP with action (u(·), Z(·)) and
backward state y(·).
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