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Abstract

The practical applications of Wasserstein distances (WDs) are constrained by their sample
and computational complexities. Sliced-Wasserstein distances (SWDs) provide a workaround
by projecting distributions onto one-dimensional subspaces, leveraging the more efficient,
closed-form WDs for 1D distributions. However, in high dimensions, most random projections
become uninformative due to the concentration of measure phenomenon. Although several
SWD variants have been proposed to focus on informative slices, they often introduce
additional complexity, numerical instability, and compromise desirable theoretical (metric)
properties of SWD. Amid the growing literature that focuses on directly modifying the slicing
distribution, which often face challenges, we revisit the standard, “vanilla” Sliced-Wasserstein
and propose instead to rescale the 1D Wasserstein to make all slices equally informative.
Importantly, we show that with an appropriate notion of slice informativeness, rescaling for
all individual slices simplifies to a single global scaling factor on the SWD. This, in turn,
translates to the standard learning rate search for gradient-based learning in common ML
workflows. We perform extensive experiments across various machine learning tasks showing
that vanilla SWD, when properly configured, can often match or surpass the performance of
more complex variants.

1 Introduction

Optimal transport (OT) theory ( , ; , ) provides a principled way to compare
data distributions by finding an optimal transportation plan that minimizes the expected cost of moving
mass between them, leading to the popular Wasserstein distance (WD) central to many learning applications

, ). However, the computational complexity of OT solvers poses a significant bottleneck
when calculating the WD. In cases of discrete measures or sample-based scenarios, which are common in
machine learning, the problem typically reduces to linear programming with time complexity O(N?log N),
space complexity O(N?), and sample complexity O(N _5), where N is the number of support points and d the
data dimensionality. These unfavorable scaling properties, particularly the curse of dimensionality in sample
complexity, make WD impractical for many real-world applications. To address these challenges, several
approaches have been proposed, including entropic regularized OT ( , ), smooth OT ( ,

; , )), and sliced OT ( ,

In particular, the Sliced-Wasserstein distance (SWD) ( , ; , ) projects
high-dimensional distributions onto 1D subspaces and aggregates the Closed form OT solutions in these
subspaces. This method is particularly attractive because 1D Wasserstein distances can be computed efficiently
with a time complexity of O(N log N) and a space complexity of O(N) for discrete measures. Additionally,
SWD provides a metric between probability distributions that retains many desirable properties of the
Wasserstein distance (WD), such as being statistically and topologically equivalent to WD, while being
more computationally tractable ( , ). Notably, with a dimension-free sample complexity
of O(N _%), SWD avoids the curse of dimensionality. However, a key drawback of SWD is its projection
complexity, which requires exponentially more slices as the data dimensionality increases.
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The projection complexity of SWD has motivated several lines of work that aim to enhance the effectiveness
of the slicing approach, especially in addressing variance reduction ( , ), approximation
error reduction ( , ), and slicing complexity ( ; ;

; , ). ThlS is partlcularly relevant in hlgh—
dimensional machlne learnlng settings, Where data often has supports in low-dimensional subspaces. These
SWD variants are data-driven, focusing on identifying the most informative slices for capturing distributional
differences in the data. For instance, Max-SW ( ) ) and DSW ( ) )
seek to find slices/projections that maximize the differences between the data distributions. GSW (

, ), ASW ( , ), and TSW ( , ) extend SWD by allowing ‘non-linear’
projections to capture complex data structures. EBSW ( , ) designs an energy-based slicing
distribution that is parameter-free and has the density proportional to an energy function of the projected 1D
distance. MSW ( , ) imposes a first-order Markov structure to avoid redundant, independent
projections. More recently, RPSW ( , ) proposes using the normalized differences between
random samples from the two distributions to ensure that the projections are sampled from the subspace in
which the data resides. BOSW ( , ) uses Bayesian optimization to select informative
slices in a sample-efficient manner. These methods improve the performance of SW in various downstream
tasks and have significantly expanded the tools at our disposal for both researchers and practitioners alike.
Nonetheless, these elegant extensions also come with increased computational cost, numerical instability,
complicated design choices, and often lose the metricity of the SWD.

In this paper, we argue that the standard SWD, with proper hyperparameters, can often match or surpass the
performance of more complex variants in many learning tasks while retaining its simplicity and theoretical
guarantees. Our key insight is that when d-dimensional data have k-dimensional supports, where k < d,
almost all random slices § ~ U(S%~1) can be decomposed into an informative component 6p € R* within
the data subspace and its orthogonal complement 67 € R¢~*. This implies most slices still carry relevant
information for distinguishing distributions, proportional to ||#p||. By appropriately scaling the distance
per slice, we obtain better gradients for learning. In expectation, we show that, with our defined notion of
informativeness, scaling for all slices (based on their informativeness) simplifies to scaling the SWD by a
single scalar factor. In practice, for gradient-based learning, we show empirically that finding an appropriate
learning rate is equivalent to getting informative slices for free. This allows the classical SWD to adapt
to the data’s intrinsic dimensionality without explicitly limiting the computation to the subspace. We
provide theoretical justification and empirical evidence, offering a fresh perspective on SWD, particularly in
high-dimensional settings. Our insights uncover why the standard SWD has remarkably robust performance in
distribution-based learning tasks and open up interesting research vectors for investigating other task-specific
data assumptions and associated notion of informative slices.

By revisiting the standard SWD with these insights, we elucidate the “performance gap” between the original
formulation and recent variants in the existing literature. We emphasize that our work does not diminish the
valuable contributions of these variants, which have greatly advanced our understanding of SWD. Rather,
we offer a complementary perspective that highlights the potential of the standard SWD when properly
integrated into learning tasks. Along that line, we remark that the related body of specmhzed methods that
respects the data geometry ( , ;

; , ; ) remains valuable When the rnanifold constraint on the data is
readily known.

In common ML settings where data is (nearly) supported on a k-dimensional subspace embedded in a
d-dimensional space, our findings can be summarized as follows:

e We introduce the ¢-weighting formulation, unifying various SWD variants. In this framework,
we propose reweighting all one-dimensional Wasserstein distances based on slice informativeness
instead of directly modifying the slicing distribution, as commonly done in the literature. We show
that with an appropriate notion of slice informativeness, in expectation, this leads to a Subspace
Sliced-Wasserstein variant that differs from the standard SWD by a scalar factor.
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e Our findings reduce solving the problem of non-informative slices to the learning-rate search for the
classic SWD, a process that is already standard in ML workflows. In other words, we get informative
slices for free.

e We perform a comprehensive learning-rate sweep across a range of experiments, including gradient
flow (on 3 classic toy datasets, MNIST images, CelebA images), color transfer (3 sets of images), and
deep generative modeling on the FFHQ dataset (unconditional generation and unpaired translation
with SW). We show that the classic SWD, with appropriate hyperparameters, performs competitively
with more advanced methods in these settings.

Notations. Throughout the paper, we let R? denote a d-dimensional inner product space, and we denote the
unit hypersphere in this space by S¢~1 = {# € R?: ||0||2 = 1}. Additionally, we denote by P(R%) the set of
probability measures on R¢ endowed with the o-algebra of Borel sets, and by Pp(Rd) C P(R?) the subset of
those measures with finite p-th moments. For a measurable function f : R¢ — R defined by f(x) = 6Tz such
that 6 € ST, we denote the pushforward of a measure p € P(R?) through f as fyu. More generally, for
any w € R, we write wypu for the pushforward of p under the map # + w'x. In particular, when w € S?~1
this coincides with the standard 1D projection onto a unit direction.

2 Background: The Sliced-Wasserstein Distance

Let p € Pp(RY) and v € P,(R?) be two probability measures of interest.
Wasserstein distance (WD). The p-WD between p and v is:

WP(u,v) = inf —y||? dr(x,y), 1
2= nt [ e ylpaney) 1)

with II(u,v) = {m € Pp(R? x RY) : m(A x RY) = p(A4), n(R?x A) =wv(A)} for all measurable sets A C R%.
In one dimension (d = 1), the p-WD admits the following closed-form solution:

Wer) = [ IR @) - B, @

where F),, F,, are the cumulative distribution functions (CDF) of  and v, respectively, and F},'(z) := inf{t €
R : F,(t) > 2z} (and similarly for ;). For empirical measures, Equation 2 becomes a Monte Carlo sum that
can be calculated by averaging |z(;) — y(;)|? between sorted samples. In general, this translates to a highly
favorable time complexity of O(N log N) and gives rise to the following Sliced-Wasserstein distance.

Sliced-Wasserstein distance (SWD). The SWD between p and v is defined as:

SWy(11,v50) 1= (Egm [WE (011, 040)]) (3)

where o € P(S%71) is the reference measure for slicing vector 6. In the default setting, o is the uniform
distribution, denoted as o = U(S%!), and we use SW,(i,v) to denote SW,(u,v;0) for simplicity. The
intractable expectation in Equation 3 admits a Monte Carlo estimator:

1
P

L L
SWy(,v5 > 700) = (i S W (O m (0 v)) , (@
=1 =1

where {6, }F, "I 5. The Monte Carlo estimator’s error decreases as %, where L is the number of slices. The
main issue becomes how much one can simulate (for large d), which proves to be challenging since most slices
are known to be non-informative for data supported in low dimensions. As a result, SW,(u, v; Zlel +60,)
often underestimates the distance between p and v in practice. Moreover, L should be sufficiently large

compared to d, which is undesirable since the time complexity of SW scales linearly with L.
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Figure 1: An illustration for rescaling the 1D Wasserstein based on slice informativeness. Here, the notion of
informativeness can be defined as the slice alignment with the (principal) data subspace.

3 Motivating Related Work

Given this context of SWD, we pause to highlight two sets of works that particularly motivate the present
manuscript:

Subspace-constrained OT. Recent works propose computing OT in lower-dimensional subspaces (
, ) to 1mprove both efficiency and robustness for

high- dlmenmonal data. 1) Subspace Detours ( , ) constrain
transport plans to be optimal when projected onto a Subspace ThlS allows efficient extension of low-
dimensional transport solutions to the full space. 2) Subspace Robust ( , ) considers

the worst-case transport cost over all low-dimensional projections. This can be computed by minimizing
SZ(p,v) = mingen(u,) Zle N (Vi) where V, := [(2z — y)(z — y)Tdnr(z,y) is the 2"? order displacement
matrix for a coupling 7, and A\;(V;) its [-th largest eigenvalue.

Gaussian Sliced-Wasserstein. Earlier works (( , ; ; , )
establish several central limit theorems showing that under mlld conditions, low—dlmensmnal projections
of high-dimensional data converge to Gaussians. ( ) leverages this concentration of

measure phenomenon and shows that the sliced-Wasserstein distance with Gaussian projection vectors,
defined by SWﬁ(,u, V) = [pa WP(Oup, 04v) dyq(0) with vq = N'(0, 21,), is proportional to the classical SWD:

p— iy
SWZ(/L,I/) =Caqp SWg’(u, v;U(S? 1)), where Cap= (d)p/2 (1‘ %)
of the SWD without simulation.

, and propose an efficient approximation

/‘\
\_/

5

4 A Subspace Perspective on Sliced-Wasserstein Distances

Many machine learning problems involve high-dimensional data that has a low-dimensional structure. Formally,
this phenomenon, known as the manifold hypothesis, states that for a dataset X C RY, there exists a k-

dimensional manifold M where k < d such that X approximately lies on M ( , ). For
instance, rigorous dimensionality estimation methods applied to common datasets like MS-COCO ( ,
) and ImageNet ( , ) suggest k < 50 ( , ), despite their ambient dimension

d being orders of magnitude larger. While these manifolds are generally nonlinear, they admit local linear
approximations via their tangent spaces. Moreover, in practice, data features typically have strong linear
correlations, allowing techniques like Principal Component Analysis (PCA) to identify a principal subspace
that captures most of the data variance.

Motivating challenge. This subspace approximation is particularly relevant in the context of SWD. It is
known from ( ) that when slices § are sampled uniformly from S?~!, the probability that a
random slice is nearly orthogonal to any fixed direction increases exponentially with dimension. Specifically,
for a unit vector x( representing a principal direction in the data subspace,

Pr(|(6,20)| <€) >1—e %, 0 ~uUSo). (5)
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This concentration of measure phenomenon implies that as dimensionality d grows, most random slices
become nearly orthogonal to the principal directions of the data subspace. Consequently, the corresponding
1D Wasserstein distances contribute minimally to the SWD. This effect, which we refer to as slice non-
informativeness, limits the effectiveness of SWD in high-dimensional spaces.

Current approaches: Designing the slicing distribution. Sampling-based methods seek to define a
non-uniform slicing distribution that focuses on discriminative directions. Optimization-free methods (

, ; , ) are objectively faster but do not yield true metrics. Other methods (

, ; ) yield proper metrics but are more computationally expensive due to the optimization
involved. In the limit, the Max variants use discrete slicing distributions that require global optimality to
be metrics, which is generally intractable in practice. Empirically, without careful hyperparameter tuning,
the different variants face numerical instability in the larger learning rate regimes, likely because of the
overemphasis on directions with large projected distances.

A novel perspective: Rescaling 1D Wasserstein distances. These challenges in directly redefining the
slicing distribution motivate us to take a second look at the conventional wisdom of sampling informative slices.
We propose an alternative formulation that reweights each 1D Wasserstein based on the informativeness
of the corresponding slice/projecting direction (see Figure 1 for illustration). By defining the notion of an
informative slice based on its alignment with the effective data subspace, we demonstrate that it is possible to
reweight all slices by a global constant on the SWD. This maintains the efficiency and theoretical properties
of the classical Sliced-Wasserstein distance; in other words, by simply rescaling by a global constant, one can
make SWD often perform comparably to the aforementioned variants of SWD that go to great lengths to
design slicing distributions to accelerate SWD estimation'. The implications of this finding for using SWD in
gradient-based learning will be discussed in subsequent sections.

To formalize this approach, we introduce the following assumption and definitions:

Assumption 4.1 (Effective Subspace Structure). Let u?,v? € P,(RY) be probability measures. We say
(ud,v?) has k-dimensional effective structure if:

1. There exists a semi-orthogonal matriz U € Rk (i.e., UTU = Iy ) such that
supp(u), supp(v?) C Vi, := col-span(U).
2. k is minimal, meaning that there does not exist any U’ € RY>* with k' < k s.t (1) holds.

We refer to Vi as the effective subspace (ES) of u,v?, and k as their effective dimensionality (ED).

Note: In Appendix A.9, we also discuss results when this assumption does not hold.

All results below remain valid if supp(u¢) and supp(v?) lie in a common affine subspace m + V;, for some
m € R?, since both W, and SW,, are invariant under a common translation of u? and v¢. For simplicity we
state Assumption 4.1 in the linear case.

Informative slices. To unify the diverse slicing strategies in the literature, we introduce the concept of a
slice informativeness function ¢ : S~! — R, that quantifies the relevance of a projection direction § € S4—1
(e.g., by assigning a non-negative value) for distinguishing distributions. Existing variants typically define ¢
as a functional of the input measure p and v. For instance, Max-SW ( , ), Markovian

SW ( ), and EBSW ( ) ) implicitly use
(bu,u(e) = W;g)(e#/% 9#1/)7 (6)
to measure the informativeness of §. On the other hand, RPSW ( , ) implicitly uses
¢u,u(9§ oy Vs 'Yn) = E(X,Y)~;L><u['7m (93 Psa— (X - Y))]7 (7)
1We remark that in the world of Bayesian optimization (BO), an analogous discovery has recently been made.
( ) found that a simple global rescaling of the Gaussian prior lengthscale in vanilla BO allows that algorithm to perform well

in high dimensions, despite the conventional wisdom that specialized variants of BO for higher dimensions are needed.
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where 7, is a location-scale distribution (e.g., vMF ( , ; , )) and Psa-1 is the
projection onto S%1.

While these data-dependent definitions are expressive, they inherently require evaluating 1D distances or
expectations for slices that may effectively be discarded, incurring unnecessary computational overhead

( , ). Furthermore, coupling the slicing distribution to the input measures introduces
complex dependencies that complicate the verification of metric properties, such as the triangle inequality
( , ). To address this limitation, we propose a notion of informativeness grounded in

Assumption 4.1 that decouples slice selection from transport cost.
Definition 4.2. Let Vi = col(U), where U € R™* has orthonormal columns (i.e., UTU = I}.). We define
the effective subspace (ES)-aligned informativeness function ¢y : ST=1 — [0, 1] by

¢u(0) = U 0)l2. (8)

Geometrically, ¢y (f) measures the magnitude of the projection of 6 onto the effective data subspace V.
A value of ¢y () = 1 indicates that the slice captures maximum variation within the data support while
v (0) ~ 0 implies orthogonality to the data. Formally:

Lemma 4.3. Let U € R¥>* satisfy UTU = I, and define ¢y(0) = U 0|2 for 6 € ST=L. Then: (a)
0<op(0) <1 forall €S¥1; (b) py(0) =1 iff € span(U) NS and ¢y (0) = 0 iff 0 L span(U); and
(c) for any orthogonal matriz Q € R¥** | ¢r;0(0) = ¢u(0).

4.1 The ¢-weighting formulation

Starting from Equation 3, we propose a general formulation for reweighting slice contributions:

)W O 04) o)) )

Reweighted contribution

SWp(u,v;0,p) = (/l

Sd—

where p : [0,1] — Ry is a ¢-weighting function that rescales the contribution of each slice based on a general
informativeness function ¢. This formulation preserves metricity under mild conditions (See Proposition A.5
in the Appendix).

Example 4.4. If the goal were to reweight all slices to be treated as informative?, an appropriate choice for
p could be the multiplicative inverse of ¢(0) (more informative slices are scaled to be smaller, and vice versa).
That is,

1 .
p(6(0)) = { () #9(0)>0, (10)
0, if p(0) = 0.

Remark 4.5. Equation 9 notably does not rely on Assumption 4.1. By defining the appropriate pg(-) and
@(+), the p-weighting formulation can be seen as a unifying formulation that recovers different SW variants.

e We set p =1 and obtain the classical Sliced- Wasserstein distance.

o We set ¢,,(0) = WE(Oyp,04v) and p =1, and take o = dp~ where 6* € argmaxgega—1 ¢ (0), and

recover Maz-SW ( , ) (when a mazimizer exists).

. _ _ f(r) _ d—1 .
We st 6300) = W Bin 050 (1) = T o = U(S) where £+ [0.00) -
(0,00) is an increasing energy function (e.g., f(x) = €*), and recover EBSW ( , ).

2Conceptually, we reiterate that SWD often underestimates the distance between two distributions because when slices are
not aligned with the data subspace, they are implicitly underweighted based on their misalignment (as will be introduced in
Section 4.2), even though those slices are in general informative (they contain some component aligned with the data subspace,
when they are not totally orthogonal to it; see Figure 1). To rectify this inherent trait of vanilla SWD, one could consider a
desirable reweighting to be one that treats all slices as equally informative. Subsequent sections will further motivate this choice.



Under review as submission to TMLR

o We set ¢u,(0) = Ex v )mpxu[Vx(0; Psa-1 (X = Y))], p(r) = m, o =U(SYY), where v,
cd—1 Prv
is a location-scale distribution with parameter k, and recover RPSW ( , ).

4.2 Misaligned random projections are implicitly downweighted by a scalar

Under Assumption 4.1, we will show that the 1D Wasserstein corresponding to each random projection is
weighted by a scalar related to the (ES-aligned) informativeness of that projection.

The case for 1D effective subspaces. Let Vi = span(u) where v € S¥~!, and suppose supp(u?), supp(v?)
V1. Given 6 € S9!, we can decompose it uniquely as § = 6y, + QVIL, where 6y, = (u'0)u and GVIL 1 Vp. For
any = € Vi, we have = (2 Tu)u, and #T 2 can thus be decomposed as:

0Tz = (0y, + 0V1L)Tx = Gq/—lx =(u'6) (u'z). (11)

This implies that for any slice 6, the projected distributions f4u? and 4v? are equivalent (up to scaling) to
the distributions obtained by projecting u¢ and v onto w. Specifically:

W2 (On?, 040%) = |u"OFPWE (ugn?, uyr?). (12)
Thus, misaligned slices (projections) 6, with |u”60| < 1, implicitly are downweighted: WF(04p?,040%) <
WP (upp®, ugpr?).
Generalizing to higher-dimensional effective subspaces. We extend the idea from one dimension to a

k-dimensional subspace Vj and investigate how the reweighting function pg(¢u(0)) = |[U 70| 7P adjusts the
contributions of slices in higher dimensions.

Proposition 4.6. Under Assumption j.1, let u* = (UT)xpd and v* = (UT)xv? be the pushforward
measures in R¥. Then, for any 0% € S*=1, we have that:

WE(O%u, 05") = WE(UT 0%t (U7 0%) %) = [UT 07 [P0 ¥, 0", (13)

where OF = % with convention 6% = 0y if |[UT6Y|| = 0.

Furthermore, we have that:

L L
1 —~—0p 1
SW§ (/lk, v i3 259{“> =SwW, (Hd7 v i3 250;1»/?) (14)
1=1 1=1
P _
SWP (u,v%) = SW, (u?, viu(s*™), p) (15)
We adopt the convention & -0 =0 in Equation 14 if |UT 6| = 0.
The proof is in Appendix A.4.
Implicit downweighting. Under the conditions of Proposition 4.6, each slice contribution is implicitly
downweighted by |[UT64||P. That is, for any ¢ € S, we have that Wg(@i&ud,ﬂd#yd) < WE(u, vk).
Moreover, the downweighting is maximal if #¢ | span(U) and vanishes if §¢ € span(U) NS4,
Rescaling to equalize informativeness. Assumption 4.1 gives rise to the fact that each one-dimensional
Wasserstein distance W2 (0% u?, 0% %) is implicitly downweighted by [[UT64|[?. This observation naturally
fits into the proposed ¢-weighting formulation, as there is an implicit scaling factor associated with each slice.

To counteract it and make all slices equally (ES-aligned) informative, we use the reciprocal weighting function
(Equation 10) to compensate for the implicit downweighting of misaligned slices. Then, we have that

WP (O ik, 050%), if ¢u(64) > 0,

0, if o7 (09) = 0. (16)

WP (0% p,0407) = {

k_ U'e?
where 6% = AKGIE
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4.3 Subspace Sliced-Wasserstein is rescaled Sliced-Wasserstein

In this section, we will show that the generalized notion of informative slices (as defined in Section 4.2)
becomes particularly advantageous for equalizing slice informativeness.

Starting from Equation 13, we integrate both sides over ¢ € S9~! with respect to the uniform measure ()
and obtain

SWE(ut, v / W20 u?, 0% )da(@d):/gd |UT0Y[PWP (04", 05,07 do(69). (17)

Note that 6% depends on 6%, and the distribution of #* induced by 8¢ ~ ¢ is uniform over S¥=1. We introduce
the change of variables from ¢ to 6% and express the integral in terms of f*:

SW;(ud’yd):/Sk_ldT#a(gk) x WP (9 , 9 )>< o _uTes HUTQdHPda(edwk) 7 (18)
AL

where o(-|6%) is the conditional distribution of 8¢, and T : 6 is the mapping from 67 to 6*.

IUTGH

The inner integral over ¢ can be evaluated as a scaling factor Cy ; dependent on o, 0%, U. When o = U(S471),
Ca x is invariant for all ok,

Substituting back into Equation 18, and letting oy, = Ty = U(S¥~!) denote the distribution of #*, we obtain
SWE(u?,v?) = Cap /Ski WP (051", 05,07 do(6%). (19)

Since o,(6%) integrates to 1 over S¥=1, and wp (9’;;/“, 9;1/’“) is integrated over all 8%, we can express the
right-hand side as Cy 1, - SW;,’(;/“, v*: oy,). Intuitively speaking, this means the loss of information® is due to
an implicit constant factor on SWp (u?,v4), which we denote as the Effective Subspace Scaling Factor
(ESSF). Thus, rescaling the one-dimensional Wasserstein for all slices via Equation 16 is mathematically
equivalent to simply multiplying the SWD by the reciprocal of the ESSF. We proceed further to make this
connection explicit by the following theorem.
Theorem 4.7 (Effective Subspace Scaling Factor). Let u?,v? € P(R?) satisfy Assumption 4.1, and define
pk = (U") g put and v* = (U )y ve. Then we have that
C
d dy _
SW;LZ))(M v ) -

k k k
FdSW;zZ))(M v )7 (20)

dyp
where Cy = 217/2% and Cy is defined analogously, with I' denoting the Gamma function.

2

When k < d, assuming ||UT6¢|| # 0 is reasonable since (S~ 1)({6 € S¥~1 : UT9 =0}) = 0.
The proof is in Appendix A.4.

While Theorem 4.7 establishes the exact scaling law in expectation, we now define an empirical estimator
ESSF(L) and bound its convergence to show the property holds for the Monte Carlo estimates used in
practical settings (finite numbers of slices).

Proposition 4.8. Let u¢,v? € P(R?) satisfy Assumption j.1. Consider the empirical estimator E/S’EV(L)
defined as:

L
ESSF(L Z luTed|, (21)

3By loss of information, we mean the fact that vanilla SWD reduces the weight of a slice that is not aligned with the data
subspace; aggregating over all the slices, this leads to the conclusion computing the SWD in the ambient dimension d gives a
value that is in general less than computing the SWD in the subspace dimension k (note that Cy , < 1).
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where {08}E S U(STY). We have that:

1. E[ESSF(L)] = & and Var(ESSF(L)) = O(%).

2. Let

€, =

1 & _— S
SW? (,ﬂ, vl < ; 597) — ESSF(L) - SW? (M, v ; 635)

Then er, =250 as L — oo.

3. There exists a constant K > 0 depending only on p® and v® such that for any § > 0, we have

Pler, <6) > 1 — exp(—‘sj(rf).

The proof of this proposition is in Appendix A.6.

In Section 5.1, we provide empirical results showing how the variance of ESSF (L) changes with L.

4.4 Informative slicing via learning rate search in first-order optimization

While Assumption 4.1 is reasonable as an effective model for real-world data, in gradient-based learning, the
SWD objective is evaluated on empirical measures supported on finite minibatches. At each iteration, the
source and target supports contain at most 2B points and therefore lie in a low-dimensional affine span.

Remark 4.9. Let {z;}?5, C R? be a minibatch of 2B samples (B from source, B from target). Let
X = [z1,...,728) € R¥*2B be the corresponding data matriz. Then the samples lie in an affine subspace of
dimension at most k < min{2B — 1,d}; after centering, they lic in a linear subspace with the same dimension
bound.

The relevance of this observation is that, in first-order optimization such as stochastic gradient descent
(SGD), an SWD objective is differentiated with respect to the locations of these empirical support points.
Consequently, the gradients driving SGD depend on how the projected one-dimensional Wasserstein distances
vary along directions contained in the effective span of the current empirical measures. Under Assumption 4.1,
this induces a systematic scaling of per-slice gradients by the alignment factor ||UT6||P, which we make
explicit below.

Proposition 4.10. For discrete distributions lqg = > ;| ¢} 6z, and Dq = Z;”:l qf-éyj satisfying Assump-
tion 4.1, let fu, = (U ") gfia and Dy, = (UT)40q.

Then for any 6 € S~ we have:

Ve WP (Osfia, 040a) = |UT 0PV WP (0% fir, 0501), (22)

where 0 = UT0/||[UT0||. Furthermore, define the empirical gradient error for each x; as

L L
o1 —— o1
er(z;) == H%SWE (um Pas ¢ > 59ld> — ESSF(L) -V, SW? (uk, i 7 2595> H . (23)
1=1 1=1
Then the following statements hold:

1. er(x;) 50 as L — .

2. P(|lep(z:)]| <€) > 1 —2e < L/0ai ) yhere K = maxg, ., ||z — y;[|P 1 < oo.
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We refer readers to the Appendix A.7 for the detailed discussion and proofs.

In particular, note that Equation 22 looks like a scalar times the gradient of the objective function (when
using SWD as an objective). In SGD, one updates an iterate by the negative of a scalar—the learning
rate—times the gradient of the objective. We can fold the scaling factor ||[U||P into the learning rate. Note
that as in Equation 23, aggregating all the slices, this looks folding the global constant effective subspace
scaling factor, once, into the learning rate. Thus, it is mathematically equivalent to rescale the slices by the
ESSF or to search for an optimal learning rate; i.e., standard learning-rate search is sufficient to recover
effective optimization behavior.

We emphasize that we do not propose a new learning-rate selection strategy. The choice of how to search over
learning rates (e.g., grid or random search ( , ), Bayesian optimization ( ,

), bandit-based methods ( , ), or standard schedules ( , ; ,

)) is orthogonal to our contribution and follows standard practice in machine learning. Our (novel) claim
and observation is simply that, once learning rate is accounted for, the apparent performance gap between
classical SWD algorithms and more complex variants largely disappears across a broad range of SWD-based
learning tasks. Moreover, since hyperparameter search is already standard in practical workflows, users of
SWD in gradient-based optimization pipelines often effectively get informative slices for free.

5 Experiments

Our theoretical analysis (particularly Theorem 4.7 and Proposition 4.10) predicts that the primary consequence
of high ambient dimensionality is an (approximately) scalar shrinkage of SWD gradient magnitude, up to a
residual term that vanishes in probability as L — oo. Since (S)GD-style first-order updates take the form
x < x —ng where nn > 0 is the learning rate, multiplying g by a scalar is operationally equivalent to rescaling
the learning rate 7. Consequently, benchmarks that compare methods at fixed or narrowly tuned learning
rates may be insufficient. We therefore design our experiments to reveal the one-dimensional performance
basin along 7, i.e., the range of learning rates yielding stable effective convergence. If the degradation of
standard SWD is primarily a scaling issue rather than a loss of information, we hypothesize that its good
basins persist but shift toward larger learning rates as d/k increases. We test this hypothesis in two stages:
first on synthetic data where the effective dimension k is controlled, and second on real-world generative
tasks where k is unknown and dynamic.

We sweep learning rates for all methods using the same grid; for non-learning-rate hyperparameters we
use the default settings from the official implementations. Unless stated otherwise, we fix L = 50 slices in
learning experiments to match standard SWD practice and to ensure a consistent computational budget
across methods. While increasing L reduces Monte Carlo variability in the sliced estimator and its gradient
(Propositions 4.8 and 4.10), the population-level scaling effect identified in Theorem 4.7 persists independently

of L. As shown in Figure 3, the concentration of ETS@(L) is already visible in our tested (d, k) regimes, and
larger L primarily smooths the curves without altering the basin-shift behavior. We evaluate on representative
SW-based learning tasks that are standard in the sliced-OT literature and are commonly used to claim gains
over classical SW. We do not claim that SWD is sufficient for every OT application; settings with known
geometric constraints or tasks that depend on a small set of discriminative directions may still benefit from
specialized slicing schemes.

Further detailed numerical results and additional visualizations are in the Appendix.

5.1 Numerical Validation of Main Results

We first validate the two quantitative predictions that drive the rest of the paper: (i) under Assumption 4.1,
increasing the ambient dimension d primarily rescales SWJ by a constant factor depending only on (d,k,p)
(Theorem 4.7); and (ii) in the finite-slice regime, this factor is well-approximated by the empirical estimator
E/SS\F(L) with concentration as L increases (Proposition 4.8). These two checks isolate the “scalar shrinkage”
effect from unrelated modeling choices and from downstream optimization dynamics.

10
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Figure 2: Left: Illustration of two embedded Gaussians. Top row: Empirical C for varying d with k£ = 2 and
p=1,2. Bottom row: Empirical C for varying k£ at d = 1000 with p =1, 2.

Verifying Theorem 4.7 for p = 1,2. We consider two k-dimensional isotropic Gaussians embedded
in R? (d > k), so the effective subspace dimension is controlled by construction. Theorem 4.7 predicts

—~ Swle,d d
SWE(ut,v?) = g—’; SWPE(uu*,v*), hence the ratio C' = %
g—’; (up to Monte Carlo error). In particular, for fixed & the ratio should decrease as d increases, and for fixed
d it should increase with k. We generate 500 samples from each distribution and fix the number of slices to
L = 1000 to make Monte Carlo error negligible relative to the predicted scaling. We vary d and k as follows:
a) fix k =2, vary p € {1,2} and d € {10, 30, 50, 80, 100, 300, 500, 800, 1000}; b) fix d = 1000, vary p € {1,2}
and k € {10, 30, 50, 80, 100, 300, 500, 800, 1000} (averaged over 10 runs). Figure 2 shows that C closely tracks
the theoretical g—: in both regimes, supporting the interpretation that the high-d degradation of classical
SWD is captured by a constant downweighting of random slices rather than a change in the underlying 1D
transport along the effective subspace.

should depend only on (d, k, p) and match

Verifying Proposition 4.8. Proposition 4.8 states that ETS@(L) = %ZzL:1 [UT6|P is an unbiased
estimator of g—’; with Var(ﬁS\F(L)) = O(1/L) and exponential concentration. We evaluate E/Sﬁ(L) over
1000 trials for L € {10,50, 100,500, 1000, 5000, 10000}, using d € {100, 500, 1000} and k € {2,10,50} (with
p = 1). Figure 3 confirms both aspects: the empirical mean matches the theoretical constant and the
dispersion shrinks as L increases. This supports treating the loss of informativeness in finite-slice SWD as a
stable scalar effect that can be compensated for in optimization (Section 5.2 and Figure 4).

5.2 Gradient Flow

Classic synthetic datasets under ambient embeddings. We generate 300 target particles from three
classic 2D datasets (Swiss roll, 8 Gaussians, Knot) and initialize 300 source particles from a 2D isotropic
Gaussian. To isolate the effect predicted by Theorem 4.7 and Proposition 4.10, we embed both source and
target into R? for d € {2,50,100} by padding with zeros and applying a random d-dimensional rotation. This
procedure increases the ambient dimension while preserving the intrinsic geometry (k = 2), so any change in
optimization behavior is attributable to the ambient-dimension scaling of the SWD gradient magnitude. We
run 10,000 iterations of vanilla gradient descent, reporting results over 3 runs. Learning rates are swept over
{1,3,5,8} x 101-6:-5,-4,-3,-2,-1,0.1.2} * Consistent with a scalar shrinkage effect, the set of learning rates
yielding stable progress for classical SWD does not disappear as d increases; instead it translates toward
larger 7, as expected from maintaining an approximately constant effective step size 7 - ESSF (L).

MNIST and CelebA particle flows. We further examine this behavior on image-derived empirical
measures where the effective dimension k is unknown and may evolve over optimization. For MNIST, we
sample 50 images from digit 0 (source) and 50 from digit 1 (target), running gradient flow for 200,000

11
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Figure 3: Empirical E/Sﬁ*“(L) for varying d, k over 1000 runs and with p = 1. The dotted line depicts the theoretical
value.
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Figure 5: Color transfer visualization. Appropriate learning rates are chosen for each method; performing that
hyperparameter calibration, all methods are able to perform similarly on the color transfer task.
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SwW
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EBRPSW

Figure 6: Deep generative modeling example, where samples generated using different SWD variants. The left four
columns show male-to-female (M2F) examples, while the right four columns show adult-to-child (A2C) examples.
We use appropriate learning rates for each method (guided by the results shown in Figure 4). Because of this, all
methods perform similarly, demonstrating that tuning learning rates and using classical SWD can be effective as using
customized slicing distributions and more complex variants of SWD.
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iterations with learning rates in {1,5} x 10{=3=2=1.0:1.23} For CelebA, we initialize particles from Gaussian

noise and optimize toward 50 target face images for 200,000 iterations, sweeping learning rates up to 3200.
Figure 4(a,b) shows the same qualitative signature: classical SWD exhibits a nontrivial basin of effective
learning rates, but its basin is centered at substantially larger n than many subspace-aware variants. This
matches the interpretation that the dominant gap at default hyperparameters is step-size calibration (through
gradient scaling), rather than an absence of informative directions.

5.3 Color Transfer

We follow a similar setup as in ( , ; : , ) with
different hyperparameters. Our experiments are performed over 3 image sets (see Figure 5). The optimization
uses 50,000 iterations. To reduce computational complexity, we optionally apply K-means clustering with
3,000 clusters, reducing the colorspace into an empirical measure with N = 3,000 particles. Learning
rates: {1,3,5,8} x 10{-%=3=2-10.1} 100, Figure 4(c,d,e) makes the role of 7 explicit: classical SWD attains
competitive final objectives, but its effective basin is shifted relative to several variants, and some variants
exhibit narrower stability ranges at larger 7. Selecting 1 from the basin therefore separates optimization
effects (step-size and stability) from the slicing mechanism itself; with this calibration, the qualitative transfers
in Figure 5 are consistent across methods.

5.4 Deep Generative Modeling

There exist various generative modehng setups with Sliced-Wasserstein distances ( , ;

; , ; , ) We restrict our setup
to the latent space (d = 512) of an autoencoder ( ) pretrained on the 1024 x 1024
FFHQ dataset ( , ). Learning rates: {1,3,5,8} x 10{’ =5=4-3,-2,=1} 1 TIn this high-
dimensional latent setting, Proposition 4.10 predicts that classical SWD gradients can be substantlally smaller
in magnitude (via ESSF (L)), so recovering comparable optimization dynamics requires larger 7.

We evaluate SWD variants on both unconditional generation and unpaired image-to-image translation tasks.

For generation, we follow ( )’s SWG setup using a generator G4(-) to transform z € R®
to latents X € R®'2, For translation, we modify this to use a residual generator transforming source domain
X to target domain Y latents. Following ( ); ( ), we operate in an

autoencoder’s latent space to sidestep the known dimensionality challenges of pixel-space SWG (

, ; , ). We train for 10,000 iterations using vanilla gradient descent with batch
size 2048. Figure 4(f,g,h) supports the scaling interpretation directly: classical SWD has a clear basin of
effective learning rates, but its basin is shifted toward larger n in the d = 512 regime. When 7 is chosen
within this basin, classical SWD attains objectives comparable to the variants, and the corresponding samples
in Figure 6 are qualitatively similar, which is consistent with the view that much of the apparent advantage
of specialized slicing shows up as an implicit step-size change.

Summary. Our experiments show that random slicing does not lack informative directions but instead induces
an approximately scalar attenuation of the SWD value and its first-order signal, through factors of the form
[UTO||P that aggregate into ET?ET'(L) (with a residual that vanishes as L grows). The Gaussian embedding
study validates the implied scaling law at the level of distances and shows that ESSF (L) concentrates around
its theoretical limit as L increases. The learning experiments then show that the set of learning rates yielding
stable effective optimization for classical SWD persists across tasks, but it shifts toward larger 7 as d/k
increases, which is exactly what one expects if the dominant failure mode is step-size miscalibration via
gradient shrinkage. Once 7 is chosen within this basin, classical SWD attains comparable objectives and
comparable qualitative outputs to methods that explicitly bias slices toward the data subspace, supporting
our hypothesis that much of the apparent high-dimensional gap is primarily a rescaling effect rather than a
loss of information.
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6 Conclusion

In this paper, we revisit the classical, “vanilla” Sliced-Wasserstein distance and rethink the dominant approach
of modifying the slicing distribution to target informative directions. We instead view informativeness through
a ¢-weighting formulation that rescales the one-dimensional Wasserstein contributions. Under an effective
subspace model, defining informativeness via alignment with the data subspace yields a Subspace SWD
variant that is equivalent to standard SWD up to a single scalar factor. In first-order optimization, the
same phenomenon appears at the gradient level: the loss of slice informativeness manifests primarily as an
approximately scalar shrinkage of gradient magnitude (up to a finite-slice residual), which is operationally
equivalent to a learning-rate rescaling. This provides a direct explanation for why vanilla SWD can match or
surpass more complex slicing schemes once standard learning-rate calibration is performed, without additional
implementation or loss of metric structure. Our experiments across representative SWD-based learning tasks
support this view by showing that the “performance gap” is often a shift in the learning-rate basin rather
than a disappearance of good solutions. While SWD is not expected to be sufficient for every OT application,
especially in settings with known geometric constraints or tasks that rely on a small set of discriminative
directions, our results clarify when and why vanilla SWD remains a strong baseline. Future work can use
the same framework to study alternative assumptions on data structure and corresponding choices of the
rescaling function p and informativeness ¢.
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A Proofs and Additional Theoretical Results

A.1 Notation

R?: d-dimensional Euclidean space, where d is a positive integer.
S?1:= {2z € R%: ||lz|| = 1}: unit sphere defined in RY.
P(RY): set of all probability measures defined on RY.
Pp(Rd): set of probability measures whose p-th moment is finite, where p > 1.
Vi,a: set of all d x k orthogonal matrices, i.e.
Via = {U e R>* . UTU = I,,}.
Note, S4=1 =V, 4.

U=[U[;,1],U[,2],...U[:,k]] € Vi.q4: an orthogonal matrix. For each i € [1: k], U[:,i] € R? is the
i-th column of U.

Note that U induces a linear function from R? to R¥, i.e. = — UTx. With abuse of notation, we do
not distinguish the matrix U and the corresponding linear mapping.

Span(U): The linear subspace spanned by U, i.e.
k
Span(U) := Span({U[:,1], U[:,2],...U[:, k]}) = {Z o;Ul:yd) oy € R} .
i=1

Vi C R%: a k-dimensional subspace, where k is a positive integer with & < d. Note, by classical linear
algebra theory, we have
Vi = Span(U)

for some U € V4. Note, given V;, U is not uniquely determined.

Vkl: perpendicular complement of Vj, which is a subspace of dimension d — k.
pd, u, v v € P(RY): probability measures in d-dimensional space.

L%: Lebesgue measure in R,

Co(R9): set of all continuous functions defined on R? which vanish at infinity.

fu= %: density of j, that is, for all test functions ¢ € Co(R?):

T de = xT xr)ax.
[ oadi@) = [ o

X ~ p: A random variable/vector X following distribution u. We say X is a realization of .

E[X] := E[g], where X ~ p: expected value of X, i.e.
E.[X]= / xdu(x).
Rd

my(p): k-th moment of measure p. That is, given realization X ~ pu, my(p) is defined by
me(p) = E[X*]

Var(X) :=E[(X —E(X)) (X —E(X))]: the covariance matrix of X (or the measure j).
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o Tyup, where T : R? — R? is a function: push-forward measure ; under mapping 7. That is, for all
Borel sets A € R%, we have

Typu(A) = u(T7H(A)).
Equivalently speaking, suppose X ~ p is a realization of y; then, T'(X) ~ Ty pu.

e N(e,X): Gaussian distribution, where e € R? is the expected value, ¥ € R?*9 is the covariance
matrix.

e 04: d x 1 vector where each entry is 0. Similarly, we define 14.
e I4: d x d identity matrix.
o U(S?1): Uniform distribution defined on S¢1.
o 07 ~U(S¥1): a d-dimensional random vector. We say 6¢ is a realization of U(S?~1).
e 0,0% 09: a d-dimensional vector.
« 0%: a k-dimensional vector.
e Py, := Py, where Vi, = Span(U): the projection mapping from R? into subspace V4, i.e.
Py, (z) := Py(z) = UU "z, Vo € R%.
Note, in this case: the mapping U : R? — R* with x ~ Uz is the corresponding parameterization
function of projection Py .

o I'(u,v): set of joint measures whose marginals are pu, v respectively:

L(,v) = {y € P(RN?) : (m1) gy =, (m2) ey = v},

where 1 : (z,y) — x,m : (x,y) — y are canonical projection mappings.

o WP(u,v): Wasserstein problem between y and v:

W)= inf / e - ylPdr(z,y)
~yED (p,v) (Rd)2

o SW(u,v;0), where ¢ € P(S¥1): Sliced Wasserstein problem between p and v with respect to
reference measure o:

SWeuio) = [ Wy0pm.04)de(0)

e ¢y : S¥! — R,: ES-informative aligned mapping. A measurable mapping which describes the
information of the projected 6 on the space spanned by U.

. SW (1, v; 0, p): rescaled sliced Wasserstein distance:

SW (p,v;0,p) = /Sdil r(ou (0))WE Oy, 04v)do(0)

where p : Ry — R is a rescaling function. In this paper, we set p as the following decreasing
function:

When z = 0, we adopt the convention p(z) = 0.
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Remark A.1. In this paper, we adopt the following convention.

We do not distinguish the scalar/vector/matriz and the corresponding induced linear mapping. For example,
0 € R?, induces the mapping

R'>z+— 0"z eR.

e When 0 is a random vector, we refer to it as a “random projection mapping” in both the main text
and the appendiz. We adopt the same convention for the scalar notation o and the matrix notation
U.

o We use 04 to denote the push-forward measure induced by mapping x — 0T x. Similarly, (6 x 0)uy
denotes the push-forward measure of joint measure v € P((R?)?) induced by mapping (x,z')
(0T z,072"). The same convention is adopted for o, U.

Remark A.2. For simplicity, in notation SW (u,v; o), we may relax the restriction that o is a probability
measure. We allow o to be a finite positive measure in the main text and appendiz.

A.2 Wasserstein distances in R? and R*

In the present manuscript, we assume the probability measures pu?, % € Pp(Rd) are supported in a lower
dimensional subspace. We refer to Assumption 4.1 for details.

Let Py denote the projection mapping from R? to Vj:
Py(z) = UU "2, Vx € RY, (24)
Then, the corresponding lower-dimensional parameterization mapping is defined as:

z— Uz, Ve e RY, (25)

By classical linear algebra theory, it is straightforward to verify the following:

Proposition A.3. [Basic properties of linear projection] Let Py,U be defined above, then we have:

(1) For each § € R%, 6 can be uniquely decomposed into Vi, Vi-, i.e. 6 = Oy, +0VkL, where By, = Py(0) €
VkverJ- S VkL.

(2) For all x € Vi, Py(z) = .

(8) If we restrict U to the subspace Vi, denoted as U |y, , then U |y, : Vi, — R¥ is a bijection. The inverse
is given by

U v,) ' (y) =Uy, VyeR:

In addition, ||[U T z|| = ||z|| for all z € V.
Proof. Tt follows directly from the definitions of Py, U. O

Let p* = (UT) g pd, vk = (UT)4 v4, the above proposition directly induces the following relation between

the Wasserstein distance between 9, v? and the Wasserstein distance between ¥, v*.

Proposition A.4. Under Assumption 4.1, we have the following:
(1) p? can be recovered by the inverse of U |y, i.e.
ud = Us 3
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(2) The mapping

T(ph v?) 398 4% = (UTx U )y e T(u",vF), (26)

is a well-defined bijection, where UT x U is defined as

RY xR 5 (z,2') — (U'z, UT2') € R x R¥. (27)
(8) The Wasserstein distance is preserved via the lower-dimensional parameterization:
WE(u?,v?) = WE(Po)gn, (Pu)gr?) = WE (", ") (28)
Proof. Let X ~ u? be a realization.

(1) We have UT X ~ p* since u* = (U )4 pd. In addition, by Assumption 4.1, we have X = UU " X,
thus UU " X ~ p?. That is Uy p* = pd.

(2) Pick v¢ € T'(u?,v?), we have
(m)#(UTx Uy’ = U p((m)py®) = U ) g p? =

Similarly, (m2)x(UT x UT)x~y? = v*. Thus the mapping defined in Equation 26 is well-defined.
Moreover, from statement (1), we have

D(* vF) 595 = (UT x U )py® e T(ud,v?) (29)

is well-defined.
Next, we will show the above mapping is the inverse of Equation 26.
Let (X,Y) ~ 79 be a realization. Then

(X,Y)=UUTX,UUTY) ~ (UT x U u(U x U)yr.

Thus (UT x UT)4(U x U)y~y = . Thus, the mapping in Equation 29 is the inverse of the mapping
in Equation 26. Thus, Equation 26 is invertible (a bijection).

(3) By Proposition A.3 (2), for each x € supp(u) C Vi, we have Py(z) = =, thus (Py)gp? = pd.
Similarly, (Py)gv? = v, Thus we obtain the first equality:

WP (ud,v?) = WE((Po)yp?, (Pu)gv?).

For the second equality, we first pick v¢ € T'(u, v?) and let v* = (U x U)x~?. By statement (2), we
have v* € T'(uk, V%),

/(W e — ylPdr(z,y)

— /(W)Q Uz — UTy||P dy*(, y)

B /<> Jo! =y I dUT x UT)r(a o)
B /<> o’ — o/ [Pdr (o ')

where the first equality follows from Proposition A.3 (3), the second equality follows from the
definition of push-forward measure, the third equality holds from statement (2).

23



Under review as submission to TMLR

Combining the above equality with statement (2), we obtain

WP(ut v =  inf / — y|[Pdy(x,
() e L [z = yllPdy*(x, y)

_ inf I /pdk /7 /
it =Pty

_ k _k
= WE(F, )
O

Proposition A.5. Let 0 =U(S?!) and let ¢ : ST™1 — Ry and p: Ry — Rxq be measurable and define m
on ST by

dm(6) = (00 )(0)do (). (30)
If 0 < m(S4 1) < 0o and p(¢(0) > 0 for o-a.e. 0, then gﬁ/p(-, 5 0,p) s a metric on Pp(R?).

Proof. Non-negativity and symmetry are immediate. For the triangle inequality, we note that for each
6 eS¢t

Wi (O, 03:8) < Wp(Op i, O1) + Wi (040, 04), (31)
and applying Minkowski’s inequality to @ +— W, (04 u,04v) in LP(SY=1 m) yields the result.

For the identity of indiscernibles, we have that SW »(1, v) = 0 implies

WO, 04v) =0 (32)

for m-a.e. 6.

Since p(¢(6)) > 0 for o a.e. 6 and dm = (p o ¢)do, we have m ~ ¢ and hence above holds ¢ a.e. 6. By
Cramer-Wold this implies p = v.

O

Remark A.6. For the ES-aligned choice ¢yr(0) = ||[UT 0|2 and p(x) = 7P (with p(0) = 0), the condition
m(S?1) < oo requires p < k. Indeed, for 6 ~ o we have |[UT0||3 ~ Beta(k/2, (d — k)/2), and the negative
moment exists iff § < g This does not affect Theorem 4.7 or Proposition 4.10, which relies only on the
scaling relationship in expectation.

A.3 Background: Relationship between the Gaussian and Spherical Uniform Distribution
In this section, we introduce basic properties of multivariate Gaussian and the relation between Gaussian and
spherical uniform distribution.

First we consider 1D space R, choose e € R and o > 0, the Gaussian distribution, denoted as N(e, 0?), is the
probability measure whose density is defined by

1 _(z—e)?

f(il?) = \/We 207,

are the expected value and variance of X respectively.

where e, o2

When e = 0,02 = 1, the induced measure is called standard (1D) Gaussian distribution, whose density is
given by

F@) = e (33)
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In space R%, the above density function can be generalized as:

1 _l=1?
f(z) = W@ 2 (34)

and the induced distribution is called d-dimensional Standard Gaussian distribution.

Given e € R? and positive definite d x d matrix, ¥ = AAT where A € R*** the Gaussian distribution is
denoted as N (e, X), can be defined by the following well-known proposition:

Proposition A.7 (Definition of Gaussian distribution). Let X ~ N'(e, X) be a realization, then the following
are equivalent:

o N(e,X) is Gaussian distribution, with expected value e and covariance matriz 3.
o X = AG + ¢, where G ~ N(0,1;), whose density is defined by Equation 34.
o« Y9 eR?, 07X is a 1D Gaussian variable:
0TX ~N(@Te,(0TA)T (07 A)).
From the proposition, it is straightforward to verify the following:
Proposition A.8 (Basic properties of Gaussian distribution). Suppose X ~ N (e,X), then we have:

(1) If rank(X) = d, then N(e,X) admits the density function:

1 O R D)
2

1) = Gy aesy 2

(2) Choose B € R¥** 3 e RF and let Tp e 5(x) := B(z — e) + 3, then we have

B(X —e)+ B ~ (Tp.ep)s#N(e,X) =N(8, B'EB).
(8) Suppose Z ~ N(0,14), then the absolute p-th power of Z is given by

L(759)

I'(d/2)’

E[||Z||F] = 2¢/2

(4) Suppose Z ~ N(0,14), thenr = ||Z],0 = ﬁ are independent.

At the end of this section, we introduce the following relation between the Gaussian distribution and the
spherical uniform distribution.

Proposition A.9. We define the following function f with

Rd\{O}Bfo(z):ﬁ.

Suppose . = AAT is a full rank positive-semi-definite matriz, then we have

FaN(04,%) =UST).

Proof. Let X ~ N(04,X) be a realization of the d-dimensional Gaussian, © = f(X) = Hﬁ—” Note that © is
well defined N'(04, X)-a.s.

Step 1. Suppose X = Iy, it is equivalent to the following:
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Suppose X1,... Xq " £y N(0,1) and © = . Xa___ |7 then © ~ Unif(S?!). It is a standard

@1 R RO v

result in probability theory. In particular, choose test function ¢ € Co(S?~!), we have:

/¢ T (e

1 llel? n2
= @mie / ¢ <|x||> e

1
/ / GG *12pd=1 g0y r, 8 are spherical coordinates
(27T )d/ 2 Jsa— ]R+

_ . —r /2 d—1
_/qu »(0)do (ﬂ')d/2 /]R+e dr

/]84

Thus, © ~ Unif(S91).
Step 2. Suppose ¥ = diag(o1,...04) where o1,...04 > 0, we have

X »-izx

@ = = B
X1 ==X

where ~1/2X ~ N(0, ;). Thus, by step 1, we have © ~ U(S?1).

Step 3. We consider the general positive definite . We have ¥ = UAU " where U € Vg4,q is orthonormal
matrix.

We have

UTX U'X

U'e = =
X1 Jurx|

Since UT X ~ N(0,A) and A is a positive diagonal matrix, then from step 2, we have U 0O ~ U(S?~!). Thus,
O=UUTO) ~UESI ).

O

Remark A.10. Note that the above statement (especially the statement in Step 1) is a well-known result, and
that is why isotropic Gaussian distribution is called a “rotationally invariant distritbution.” We do not claim
this proposition or its proof as contributions of this article; we present the proof merely for completeness.

A.4 Relationship between the SWD in R? and R¥

In this section, we discuss the proof of Theorem 4.7. We first introduce some intermediate results in the
following subsection.

A.4.1 Relationship between SWP(u?, v*;U(S* 1)) and SWE(u?, v N (0, 14))

The main result in this section is the following proposition
Proposition A.11. Choose u,v € P(RY), we have

2p/2 F( £td )
(d/ 2)
Remark A.12. If we replace N'(0, 1) by N(0, é]d), the corresponding conclusion has been proved by (

, , Proposition 1). Thus, we do not claim the above statement and related proof as part of the
contribution in this paper. We present this statement and the related proof for the readers’ convenience.

SWE (u,v;UST)) = SWE (1, ;N (0, 1)) (35)
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To prove the above statement, first it is straightforward to verify the following:

Lemma A.13. Given o € R, with abuse of notations, we let ayp denote the pushforward measure of
under mapping x — ax, then we have

laPWE (,v) = Wh(ayu, ayv) (36)

Proof. If a = 0, then both sides are zero, and we’ve done.

If a # 0, it is straightforward to verify the following is a well-defined bijection:
L(p,v) 37 = (ax a)py € Nagp, ayr) (37)

where (a X «) denotes the mapping
R? 3 (z,2') = (az,az’) € R%

Pick v € I'(u, v), we have

mw/\x—mwwaw
RQ

= /}R2 |z — ay|Pdy

B / |z — y|Pd(a x a)py(z,y)
RQ

Take the infimum for both sides over I'(u, v), combine it with the fact that Equation 37 is a bijection. We
obtain Equation 36. O

Now we introduce the proof of Proposition A.11.

Proof. Suppose 69 ~ N (0,1;) and let § = HZZH’ we have 6 ~ U(S%!) by Proposition A.9. Then we have:

SWE(p, v; N(0, 1))
= Egoon0,1) (W (0% 12, 05)]

= Egonr(0,1) [[1071PW) (0411, 0.1)] by Lemma A.13
= Egarn0,10) [[10711] - Eggg(sa—1) [Wy (04, 04v)] by Proposition A.8 (4)
= 2p/21‘(%d) - SWP(p, v;U(STL)) by Proposition A.8 (3)

I'(d/2) P o

A.5 Proof of Proposition A.4

We adapt notations Vi, U in previous subsection.
Lemma A.14. Suppose p?,v? satisfy Assumption /.1, pick 64 € R and let 6k = UT 6% then we have:
Ouapt® = B 0" = 5,
Proof. For each x € Span(U) = Vj, we have
0"z =Py(0) z+ (06— Py)
=Py(0) 'z +0 Since 6 — Py () € Vi-
=UUT)
=U"'e)" (U x)
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Thus,
0%t = (UT0%) yu* = 0% "
Similarly, we have Hiyd = é@yk and we complete the proof. O

Lemma A.15. Suppose 6%,...0% vrd USYY) and let OF = HngH Vi€ [L: L], then 67, ...0F g USHH).

Proof. First, since k < d, we have
UBt e st U9 =0,) = 0.
Thus, with probability 1, 9lk is well-defined.
By Proposition A.9, with probability 1, we can redefine 6¢,...6% by the following way:

Suppose Xi,... X, & N(0,14), 67 Iéj\l

Then
o= VIO _ UTX/IX _ UTX
1076~ U X /I 107X
Since U X; ~ N (0, I,), we have 0{“ ~ U(SFY).
Furthermore, since Xi,... Xy are independent, we have 0, ...0% are independent. Thus, 61, ...60% b
U(Sk1). .

Now we discuss the proof of Proposition 4.6.
Proof of Proposition . Pick ¢ € S1.
We have

W(Gd#pdﬁiz/d) =W{UT0) gk, (UT0)41*) By Lemma A.14
= ||UT0deW(0iuk,9;’£1/k) By Lemma A.13

Thus we prove Equation 13.

Now, we pick 0{,...0% € S¢~1 and thus we have:

SW2(u Z )

L
1 .
= LS W 04 0k = 0, i U6 = 0
=1
1 1 1
=7 Z ||UT0dH wy (U O gu®, (UT 01 40F) By convention 0 - 0= 0
1 ;v 1
= Z ||UT9de z]:((eld)#ﬂda (eld)#yd) by Equation 13

N

o -~ P d d. 1

_SWp (,U‘ yV 7N250217p>
i=1

And we prove Equation 14.

Similarly, we obtain the last equation,
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., B 1

SWp(Md,Vdéu(Sd 1)’h) =E0d~u(sd71) WWE((ed)#Mda(ed)#Vd)
= Egapy(se-1) [W;’((Gk)#uk, (Ok)#yk)] By Equation 13
= Egk qsh—1) [Wg((@k)#uk, (0%) 5% By Lemma A.15

k Kk
:SW;))(M )

A.5.1 Proof of Theorem 4.7

In this section, we first discuss the relation between SWE(u?, % N (0, I4)) and SWE(u*,v*; N'(0, 1)) under
Assumption 4.1. Next, we present the proof of Theorem 4.7.

Based on the above lemma, we can derive the following relation between SWZ(u?,v% N (0,14)) and
SWE(E, N (0. 1)),

Lemma A.16. Under Assumption /j.1, we have

SWE (!, v N(0,1a)) = SWE(1*, V¥ N0, I1,)) (38)

Proof. Suppose 8¢ ~ N(0, I;) and let ¥ = U T9%. Then by Proposition A.8 (1), we have 6% ~ N (0,U T I,U) =
N (0, I,). Therefore,

SWZ’,’(ud, v N(0,14))

= Eganr(0,1) [WE (0% 1%, 0507

— EOdNN(O,Id)[Wg(ef%Mk7egﬁyk)] By Lemma A.14, where ¥ = U T9¢
= Egt 0,10 (W5 (04", 050")]

= SWE (", 5 N (0, I1,))

and we complete the proof. O
Combining the above lemma and Proposition A.11, we can prove Theorem 4.7.

Proof of Theorem 4.7. For the first equality, we have

SWE (i, v U(s7))

1

= O—SWg(ud, v N (04, 1,)) By Proposition A.11 (39)
d
1

= C—SW;’(uk,Vk;N(Ok,Ik)) By Lemma A.16
d

= %SW;)(;/“, R U sk ) By Proposition A.11 (40)
d

i p
where Cy = 2P/2 F(rz(it;) and CY is defined similarly.
b
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A.6 Proof of Proposition 4.8
We first introduce the following lemma:

Lemma A.17. Let Igx; denote the matriz {0 T }, and suppose ¢ ~ U(S¥Y), then |UT0| and
(d—k)xk

1], 0% have the same distribution.

Proof. Since U has orthonormal columns, there exist orthogonal matrices V; € R4¥¢ and V5 € R¥** such
that U = VlIdxk‘/Q.

Then we have
IUT0%| = [Va Lisx Vi 071 = [ 15, Vi 0]l
Since 89 ~ U(S41), then V;" 04 ~ U(S?71).

Thus, 1), 0% 1], V"0 have the same distribution. Thus ||I ], 0], 1), Vi" 04| = ||U " 69| have the same

distribution. O
Based on this, we can prove the statement (1) in Proposition 4.8.

Proof of Proposition 4.8 (1). By the above lemma, it is sufficient to consider U = Ijxy.

i.i.d
~

Let 649 ~ N(0,1,), and let §%9[i],i € [1 : d] denote each component of §%9. Thus §49[1],...0%9[d]
N(0,1). We can redefine §¢ as ¢ = %, thus,

Tpd2 _ ||UT9d’g||2
HU 0 H - Hgd’gH2
_ S Ok d =k
=S4 paae eta(g, 5 )
2 i 0091

Thus, we have

Bl 641P) = EI(U 6] = [ T

Note, |UT64],...||UT#¢| are i.i.d. random variables, thus, we have

L
— 1 C
E[ESSF(L) = zE[Y_ |UT6{|1”) = 5;“.
=1

Similarly,

——

1
Var[ESSF(L)] = ZVar[HUTGfH”]

where Var[||U T6¢||P] > 0, is the variance of the p/2—th power of a Beta(k/2, (d — k)/2) variable, which is a
constant only depends on (d, k, p).

O

Proof of Proposition 4.8(2)—(3). Write Z, := |[UT63||P € [0,1] and Z := %ZILZI Z), = @’(L) From
Proposition 4.6 and the discrete gradient formula, each per-sample gradient satisfies

Vo, WE(Oup,040%) = Z Vo WP(0L fir, 050r),

30



Under review as submission to TMLR

with HVziW;’(Q;’;ﬂk, 9§El9k)|| < K for some K < oo depending only on the (compact) supports. Hence

1 L L

bg; = R . 1 _

lew (ol < 937120 21 |[Va W3 O a6 400 | < pal B £ D2 170 21
=1 =1

Using |Z; — Z| < |Z; — BZ| + |Z — EZ| and averaging, we obtain
ler (@)l < 2pgi K |Z —EZ|.
Since Z; € [0, 1] are i.i.d., Hoeffding’s inequality gives for any ¢ > 0,

IP’(|Z—EZ| 25) < 2exp(—20°L).

This yields (2) by the strong law of large numbers (a.s. convergence), and (3) by setting § + 6/(2pqi K)
above.

O

A.6.1 Proof of Proposition 4.8

A.7 Special case: Learning rate bound for the SWD Gradient Flow problem

In this section, we consider the following sliced gradient flow problem ( ):

1
«—arg min —SW2(u, + F
puyr < arg min o 5 (s i) + F (1)

S.t. o = uk

where F(u) := SWi(u, v*), for some v*,7 > 0

In the discrete setting, p* = Y7 ¢f 6, v* = 37" 70, Furthermore, we assume that the pmf of p; is
fixed. Then the above problem can be transferred to the following:

X Xt — hy © VxSWE (s, V"), where p; = Zq}éxz,Xt =[z1,...,2n] (41)
i=1

where ©® denote the element-wise product operator, and h; € RY.

We will discuss how to select the appropriate learning rate h;.

Gradient and Hessian of Sliced Wasserstein distance. First, we discuss the gradient and Hessian
matrix of the function X — SW2(u,v*):

Pick 6 € ST~ and suppose that vy is an optimal transportation plan for W2 (6.4 pu, 641"%).

Then by ( ), we have:

V11W22(0#:u7 H#Vk) =200" (qzlxl - Z Z/ﬂzj),vﬂ

Jj=1

Note, when WZ(0xu, 0x1") is induced by a Monge mapping, the above formulation can be simplified to
00" (z; — T(x;)).

Thus the Hessian matrix is
82W22 (Q#ILL, H#I/k)

Oz [1)0;[U'] :|l,l’e[1:d]

=2¢1007.
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Therefore, the gradient for mapping X + SW2(u, v*) with respect to each z; is given by:

o(21) = V. SW2(u, ) = 2 /
§d—1

L m
2 j{: (7
1=1 i=1

00 (g} wi — Y y;ve;)dU(ST)(0)
=1

where the second line is the Monte carlo approximation.

Similarly, the Hession matrix and the Monte carlo approximation are given by

1
H(z) = Ha, (SW (M) = 20! [ 067 au(s)(6) = 241 11

By classical machine learning theory, the optimal learning rate for xz;, is given by

_g@)Te(@) ko
()= o) THytwr) ~ 2g0 " €10 e

Remark A.18. We consider a simplified case to intuitively understand the above learning rate. Suppose
uF = qtd,, and vk = qiléy]. (relazing the assumption that u* and v* are probability measures). Then, we have:

SW3 (u?,v?)
= ¢/ Egpisa-1)[(0 "z — 0" y;)?]
= Q}]EGNU(SMI)[H%T% - ‘99Tllj||2}
= q} (z; — y;) "E[60"](2; — y;)
1
= qullxz - y]”%

1
= Z;L@Q;([L,V).
Thus the gradient with respect to x; becomes

1

glas) = 25 (vi — ).

Letting t = 0, we plug the learning rate from Equation /2 and the gradient into Equation 41, obtaining:

et e al = (y - ) =y

Intuitively, the learning rate (hy); for x; is chosen such that the (negative) gradient becomes the displacement
given by the classical OT transportation plan, i.e.,

—g(z;) = yj — ;.

That is, when 0 is sufficiently large (i.e., %Zle 007 ~ %Ik), u¥ will converge to v* in one step.
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A.8 Proof of Proposition 4.10

Pick z; from {x1,...,2,}. Note, based on Assumption 4.1, x; = UU "az; = UxF, Vi € [1

Y

=1

Vo, SWE(f

h \

=UV, kSWp

h \

rEm

L 1
V) T Z @I 6(0F) " (F — *yfwfg))
]

=1
1 & 1
US> IUTl(0F)T (x) *fyfvf',ﬂ) -
l:1

Similarly,

where 7% is the optimal transportation plan for 1D problem WE((01)f1, (01)40) =

Thus,

L

L
er (@) = Vo, SWE(, 5% Y 0ga) — ESSF(L) - Vo, SWE (fir 55 Y 0 )
=1 =1

pqz
UZ \UT@ZHP“ZHU%H ) 6F (61 (o 12
I=1 4

I'=1

: n]. Thus, we have

WE((OF ) fi*, (0F)#0%).

A0F)

where A(6F) is a vector function from S¥~! to R*. By Cauchy—Schwarz inequality, and the fact ||0F|| = 1, we

have

[AGF)] < max ||} — y§ [P~ = max [[a; — y;||P~"
Zi,Yj ZTi,Yj

Then we have:

L L
1
ler (i)l = E (IIUT‘)ZHP -2 :lUT91/||p> IUA@)|

U'=1

By,
= pa; || A(O) ||| B
< pq; K|By|.

By law of large number, with probability 1, By, — 0, thus ||(er)|| — 0, that is e, — 0g.

It remains to bound the convergence rate of ||er||.
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By Hoeffding inequality and the fact ||UT6;]|? € [0, 1], we have
P(|BL| > €) < 2e L.
Replacing € by ¢/(pg} K ), we obtain:
P(ller(@:)]| < €) > 1 = 2¢7 E/ (e )
and we complete the proof.

A.9 Discussion when Assumption 4.1 is not satisfied

In this section, we briefly discuss the context when Assumption 4.1 is not satisfied. In particular, we aim to

show the following;:

Proposition A.19. Let U, V}, be defined in Assumption 4.1, choose u®, v € Pp(Rd), and let ;¥ V¥ be defined

by (UT)upnd, (UT)gv?, we claim the following:
W3 (%, o) < W3 (ud, vy < W3k v) 4+ 2(ma(Ugg p®) + ma(Ugv?))

where mz(U#ud) denotes the second moment of the measure U#ud.

Proof. For each pair (z,y) € (R%)2, we have

1P (2) - Poy)P

<z —yl? By definition of projection
= ||Py(x) — Puy(y)||* + |Py.(z) — Py (y)|? Pythagorean theorem
< 1Pu(@) = Pu()I? + 20U o + 20 Ty

From Equation 45, we have
W3 ((Po)gpt, (Py)gr®) < Wi(ud,v?).

Combining it with Proposition A.4, we have:
Wi (1", %) = W3 (Po)gnd, (Pr)gv?) < W3 (p,v?),

and we prove the first inequality in Equation 44.

(44)

Similarly, let v € T'(u1, ) be the optimal transportation plan for W3 ((Py)4xpu?, (Py)4v®). From Equation 46,

we have:
W3 (u?, v%)
<Ex vy~ [IX = Y%
2 INT v 12 ANT v 2 .
< Exy)[Po(X) = Pu(Y)7+2((U7) X7 +2((U7) Y] By Equation 46

= W3 ((Py) g, (Po)v) + 2(ma(UH)u?) + ma((US)41?))
Thus, we prove the second inequality of Equation 44.

Proposition A.20. Based on the same notations of Proposition A.19, we have:

k

k d—k
SSWE (P, vh) < SWE (!, v) < ZSWE (R, vh) + 27— (ma(Ug ) + ma(Ugv))
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Proof. Pick 6 € S%~! and z,y € RY. We have:

167 Pur(x) = 0" Pu(y)®
<67z~ 0Ty

(48)
=[Py (0) " Py(x) — Py(0) " Pu(y)|]” + | Prs(0) " Pys(z) — Pya(0)" Pya(y)l?

<[0T Py(x) = 0T Pu()l® + 1T OPI(U) T — (U) Tylf?

Cauchy—Schwarz inequality
<107 Pu(x) = 6" Pu(y)|> + 2l (U)TOIPIO0) T ]* + 1(T) Ty)1?)

(49)
Choose 6 € S%~1. From Proposition A.19, we have
W3 (04 (Pu)gn?, 04(Pu)gv?) < Wi (0gn?, 0407)
Take expected value with respect to 6, we have
SW3((Po)gn, (Po)gr?) < SW3(ut, v9)
Combining this with Theorem 4.7, we prove the first inequality in Equation 47.
Similarly, from Equation 49, we have
W3 (O, 0407) < W3 (04 (Pu) g, 04 (Po)gr®) + 2] (UH) 16> (ma(Ug p?) +ma(Ugv?)).
Take expected value with respect to 6, we obtain:
SW3 (p,v?)
< SW3((Pu) g, (Pu)gv?) + 2B U 0]%)(m2 (Ug 1) + ma(Ugv?))
- gswg(u’“, VR + Qd%dk(mQ(U;ud) +ma(Ugv?)

there the last equality holds from Theorem 4.7 and the fact |[UL6||? ~ Beta(45%, £).
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B Additional Details for the Numerical Experiments

B.1 Gradient Flow
B.1.1 Background Overview

Let P(R?) denote the space of probability measures on RY. For u,v € P(R?), the gradient flow of the SWD
distance in the space of probability measures evolves according to the continuity equation

0
e G () =0 (50
t
where pu; is a time-dependent probability measure and v; the velocity field v; = —V%}W. This describes

the transport of measure z; in the Wasserstein space P2 (R?), commonly referred to as Wasserstein Gradient
Flows (WGF, ( )

For numerical simulation in practice, one discretizes this dynamic using a particle approximation. We let
{21} | denote a system of N particles evolving according to the following system of ODEs:

dxt
dt = *vmiSWQQ(NtJEVv v),

(51)

t

i

where Y % Zf:l 5I§ is the empirical measure based on the particle positions x

These WGF particle-based approaches preserve key features of continuous systems and have been widely
adopted, especially machine learning applications ( ( ).

B.1.2 Experiments

On classic synthetic datasets

Swiss Roll 8 Gaussians Knot
l:DDQ:'“:’\:\Q% &
S &
B ®
® @
S

Figure 7: Classic synthetic 2D datasets (shown) embedded in spaces of different target dimensions.

Table 1: Quantitative comparison of the best final converged W>(]) and runtime () between different variants for
Gradient Flow with (embedded) classic synthetic datasets.

RT(s)l

Mot Swiss 8 Gauss. Knot
et.

d=2 d =50 d =100 d=2 d =150 d =100 d=2 d =150 d =100
SWD 0.0001£0-0000 ¢ 504£0.0000 ¢ 5504£0-0000 ¢ 550a£0-0000  50r2E0-0001 o 00oeE0-0001 ( 0002E0-0000 o 0004E0-0000 o o004E0.0000
MaxSW  0.0000£0-0000 o 0919%0.0051 o (345%£0.0022 o (005+0.0000 ¢ o171+0.0004 ¢ 1355+0.0006 ¢ 5005£0.0000 ¢ 5946£0.0009 ¢ 5303+£0.0009
DSW 0.0002%£0-0001 §,0004£0-0000 ¢ 5904£0.0000 g 0002£0-0001 ¢ 5op4E£0.0001 g 09gE0-0001 ¢ ggo3£0.0000 g 0gE0-0001 ¢ ggo4+0.0000

MaxKSW 0.0002+0.0000
0.0001£0.0000

iMSW

viMSW  0.0002+0-0001
oMSW  0.0001%0.0000
rMSW  0.0002+0.0000
EBSW  0.0002%0.0001
RPSW  0.0001+0.0000

EBRPSW 0.0007+0.0002

0.0124%0.0082
0.0021£0.0001
0.0003%£0.0000
0.0002£0.0000
0.0003%0.0000
0.0002%£0.0000
0.0001%0.0000
0.0002£0.0001

0.0122%0.0010
0.0050%0.0001
0.0005%0.0000
0.0005%0.0000
0.0005%0-0000
0.0005%0.0000
0.0004%0.0000
0.0003%E0.0000

0.0002E0.0000
0.0001£0.0000
0.0003+0.0001
0.0002%£0.0001
0.0003£0.0001
0.0001%0.0000
0.0002£0.0000
0.0002£0.0001

0.0154%0.0001
0.0021£0.0001
0.0003+0.0001
0.0002£0.0000
0.0003£0.0000
0.0002%£0.0000
0.0001%0.0000
0.0002E0.0001

0.0216%0.0007
0.0059%0.0001
0.0008%£0-0000
0.0006E0-0000
0.0008%=0-0000
0.0006E0-0000
0.0010%0.0000
0.0006E0-0000

0.0002%0-0000
0.0002£0.0001
0.0003£0.0001
0.0002%0-0001
0.0003+£0.0001
0.0003£0.0001
0.0002%0-0000
0.0002+0-0001

0.0165%0.0048
0.0034£0.0001
0.0005+0-0000
0.0004£0-0000
0.0006£0.0000
0.00040.0000
0.0001£0-0000
0.0004%+0-0000

0.0171£0.0048
0.0054£0.0001
0.0005+0-0000
0.0004£0-0000
0.0005+0.0000
0.0002£0.0000
0.0004£0-0000
0.0002%+0-0000

8.6210.04
74021161
162.25%0.20
125.23£0.54
74.4510.03
255.7610.28
16.5510.01
179.70+1.08
0.6611.15
19.47%0.03
20.30+0.05
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On the MNIST and CelebA images

EBRPSW

OMSW

iMSW rMSW

ViMSW

Method MNIST (s) | CelebA (s)]
DSW 12500.00%%%°  126054.85%745-89
EBSW 686.18%45-31 6694.50%148:08
RPSW 800.36%°-07 6038.05586-32
EBRPSW 699.33%9-70 3171.90%582:31
oMSW 482.29+8-46 3808.34£475.66
iMSW 1359.97+10:19 3601.99%11:01
rMSW 1115.98%15049  100358.26+1002-95
viIMSW 4161.11%1695  96007.74F937-50
MaxSW 72319757028 9780.51 48571
MaxKSW  6891.43%%%52  §5560.25%332:10
SWD 441.41%36.85 3335.51%76-52

Table 2: Runtime comparison for all methods in the MNIST/CelebA setups

B.2 Color Transfer

MaxSW

Table 3: Quantitative comparison of the best final converged W5 | and
runtime | between different variants for Color Transfer.

Best W7 | (LR)

Method Runtime(s) |
Set 1 Set 2 Set 3
SWD 0.01%0-00 (1e-1) 0.01%0-00 (8e-1) 0.00%0-00 (1e0) 8.62%0-04
MaxSW  0.03%0-90 (1¢-3) 0.03%0-00 (3¢-4) 0.03%0-00 (3e-4) 74.02%1.61
DSW 0.03%9-00 (1e-3) 0.03%0-00 (1e-3) 0.03%0-00 (8e-4) 162.25%0-20
MaxKSW 0.03%0-90 (5¢-4) 0.03%0:00 (5¢-4) 0.03%0-90 (5¢-4) 125.23+0.54
iMSW 0.03%9-00 (1e-3) 0.03%0-00 (1e-4) 0.03%0-90 (1¢-3) 74.45%0.03
viMSW  0.03%0-90 (1e-3) 0.03%0-00 (1e-4) 0.03%0-90 (1¢-3) 255.76+0-28
oMSW  0.03%0-90 (1e-3) 0.03%0-00 (1e-3) 0.03%0-00 (1¢-3) 16.55+0-01
rMSW 0.03%900 (1e-3) 0.03%0-00 (1e-3) 0.03%0-90 (1¢-3) 179.70%1.08
EBSW 0.03%0-00 (1e-3) 0.03%0:00 (1e-3) 0.03£0:00 (1e-3) 9.66+1-15
RPSW  0.10%9:90 (3e-3) 0.10F090 (1e-2) 0.10%0-99 (1e-3) 19.47%0.03
EBRPSW 0.03%0:00 (8e-4) 0.03%9-00 (5e-4) 0.03+0-90 (5¢-4) 20.30+0-05
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Figure 8: Gradient Flow visualization for images from the MNIST dataset (left) and the CelebA dataset (right).
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Source

EBSW (W, = 0.04) RPSW (W, = 0.11) EBRPSW (W, = 0.04) Target

Figure 9: Additional color transfer visualization

Source SW (W, = 0.00)

MaxSW (W, = 0.03) DSW (W, = 0.027) IMSW (W, = 0.03)

oMSW (W, = 0.03) IMSW (W, = 0.03) VIMSW (W, = 0.03) MaxKSW (W, = 0.03)

EBSW (W, = 0.03) RPSW (W, = 0.06) EBRPSW (W, = 0.03) Target

Figure 10: Additional color transfer visualization
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B.3 Deep Generative Modeling

In this section, we provide additional details on the model architecture and numerical results for the deep
generative modeling tasks. We present both qualitative and quantitative results, including the W5 metric, to
evaluate the model’s performance across different SWD variants. The experiments were conducted using the

FFHQ dataset.

Model architecture:

For unconditional generation:

G(2)

For unpaired translation:

Table 4: Quantitative comparison between different variants for Deep Generative Modeling 5.4.

= FCg4 o LeakyReLU, 5 o BN 0 FCy24
o LeakyReLU, 5 o BN 0 FCs12
o LeakyReLU, 5 o BN 0 FCas6(2),

T(z) = z + FC,4 o LeakyReLU , o BN 0 FCjga4

o LeakyReLU, 5 0 BN 0 FCyg24(%),

z € R® G(z2) € R%*2

= R512

Unconditional Gen.

Unpaired Translation

Method
W2l (LR) RT(s)) M2F:W>] (LR) RT(s)l A2C:Wa| (LR) RT(s)}

SWD 14.67F01 (1e0)  26.69F23  14.15%:02 (5e-1)  25.47F09  14.58+03 (1e0)  27.94F14
MaxSW  13.38%17 (1e-2)  95.83%24  14.01%02 (5¢-3) 102.68%03  14.52%02 (3e-3) 103.29+2.98
DSW 14.35%:00 (8¢-3)  197.70F 14  14.11%:02 (5¢-3) 198.42%38  14.60%:04 (5e-3)  198.08+32
MaxKSW 15.22%03 (1e-2) 53.38%3:16  14.20%01 (5¢-2)  45.90%04  14.65502 (5e-2)  45.73+:08
iMSW 1427501 (1e-3)  90.27%23  14.06%:01 (3e-3)  92.70F12  14.59%01 (1e-3)  92.65+17
ViIMSW 151603 (1e-3)  49.26%05  14.09F01 (3¢-3) 271.10%42  14.57F:01 (3e-3)  271.09%84
oMSW 14.81%04 (5¢-2)  29.34F18  14,12%01 (8¢-2)  31.39F05  14.58%:03 (1e-2)  31.23+04
rMSW 14.80%07 (5¢-2) 193.77%:63  14.16F0! (8¢-2) 195.07%12  14.60%:02 (8e-3)  195.81%+-27
EBSW 16.68%19 (3e-3)  22.16T07 1471502 (1e-2)  26.67F00  15.09%:04 (8e-4)  26.68%02
RPSW 14.46%:00 (3e-2)  33.35F07  14.14%F:00 (1e-1)  37.11F10  14.60%F01 (1e-2)  36.99%12
EBRPSW 16.90%22 (3e-3)  34.40%97  14.69%:02 (1e-2) 38.15%05  1510%05 (1e-3)  38.14%11
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PCA Gender Age

1.0 B - Male B < Adult
Female 3

4
©

Variance Explained
o
o

I
IS

0.2

0 100 200 300 400 500
Components

(a) Left: Cumulative Explaning Variance plot for the FFHQ latents. Middle/Right: UMAP visualization of the Gender and
Age splits.

FFHQ Subset Train size Test size

Adults (> 18) 48786 8104
Children (< 10) 8345 1405
Male 26732 4351
Female 32816 5572

(b) Subset size.

Figure 11: FFHQ dataset (I<arras et al. (2019))

B.4 Detailed numerical results
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Figure 12: Visualization for the A2C translation task (using the model with the lowest W> for each method).
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Figure 13: Visualization for the M2F translation task (using the model with the lowest W3 for each method).
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