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ABSTRACT

Early-stage pandemic forecasting is fundamentally constrained by a lack of data.
When a new pathogen emerges, there is insufficient historical context to calibrate
standard epidemiological models. We introduce the History-Guided Deep Com-
partmental Model (HG-DCM), a framework designed to overcome this scarcity
by systematically transferring knowledge from historical pandemics to the current
outbreak. Rather than relying solely on the sparse data of an unfolding crisis, HG-
DCM leverages a deep learning backbone to extract universal temporal patterns and
parameter dynamics from a comprehensive dataset of past global outbreaks. By in-
tegrating these historical insights with epidemiological and demographic metadata,
our approach infers robust, interpretable parameters for compartmental forecasting
even when current data is minimal. Experimental results on early-stage COVID-19
tasks demonstrate that leveraging historical guidance significantly reduces over-
fitting and improves stability compared to standard compartmental models and
data-isolated deep learning approaches. HG-DCM establishes a new paradigm for
pandemic modeling that moves beyond the limitations of single-outbreak data by
integrating the collective history of global epidemiology.

1 INTRODUCTION

Pandemics represent one of the most devastating threats to global health and economic stability,
causing catastrophic losses throughout human history—from the Bubonic Plague in the 14th century
McEvedy|and the smallpox outbreaks of the 18th century [Eyler, to the recent COVID-19 pandemic
Holshue et al.l A consensus exists that early intervention is the most effective strategy for mitigating
these crises. Studies have estimated that timely governmental actions, such as restrictions on mass
gatherings and mandatory mask-wearing, could have reduced the total mortality from COVID-19 by
as much as 90% |Piovani et al.} L1 et al.|

However, these crucial public health measures are inherently costly, imposing significant social and
economic burdens. Consequently, interventions must be reserved for situations presenting a serious
risk of a major pandemic. This requirement creates a fundamental conundrum: the optimal window
for decision-making occurs in the initial, exponential phase of an outbreak. It is precisely during this
critical period that data is extremely scarce, with very little reliable information to accurately forecast
the future trajectory and severity of the pandemic Shea et al.; [Lipsitch et al.

Standard forecasting approaches, particularly compartmental models (e.g., SIR, SEIR variants),
struggle severely in this data-poor environment|Roda et al.. Because these models fit incidence curves
separately for each location using only data that is available for the current pandemic, they are highly
prone to overfitting initial noise rather than capturing stable underlying transmission trends.

This limitation highlights a key difference between mathematical models and human epidemiological
intuition. An experienced epidemiologist can filter out early noise by drawing upon a mental library
of historical curves and outbreak dynamics—they possess the memory of how past outbreaks evolved.
In contrast, standard computational models treat each new pandemic as an isolated, de novo event.
While every pandemic is biologically unique, the macroscopic dynamics of spread—driven by human
social behavior, response to interventions, and mobility patterns—often follow universal, discernible
patterns observed in past outbreaks [Viboud et al., By failing to leverage this wealth of historical
knowledge, current models miss a critical opportunity to stabilize early-stage predictions.
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The core innovation of HG-DCM is a method to operationalize historical data from biologically
distinct pandemics through a knowledge-transfer mechanism. We utilize a neural network backbone
that learns to map early-stage signals and associated metadata (e.g., demographics, healthcare
capacity) to the underlying parameters of a standard compartmental model (e.g., DELPHI[Li et al.).
This allows the model to "fill in the gaps" of missing current data with learned priors regarding
parameter evolution derived from history.

A natural question arises regarding why training on biologically distinct diseases assists in forecasting
a novel pathogen. We argue that while the biological specifics differ, the macroscopic dynamics of
spread are universally constrained by human social behavior and public health responses. HG-DCM
does not treat historical data as a ground truth for specific parameter values, but rather as a guide for
the dynamics of how these parameters evolve. For example, it learns how transmission rates typically
decay over time in response to interventions, a pattern that holds true regardless of the specific virus.

Our approach preserves the epidemiological interpretability of compartmental models while solving
their primary weakness: the reliance on sparse initial data.

To our knowledge, this is the first study to develop a forecasting framework that systematically
leverages data from multiple prior pandemics to predict the trajectory of a newly emerging one. While
previous work has borrowed parameter priors from earlier outbreaks [Tindale et al.| or transferred
models between related epidemics |Roster et al., no prior research has integrated information across a
wide range of different pandemics.

As part of this effort, we constructed a new, comprehensive pandemic dataset including time-series
case and death data, along with associated pandemic- and country-level meta-data, from major global
outbreaks since 1990 (e.g., COVID-19|U.S. Department of Health & Human Services|(2023); The
New York Times| (2021); |World Health Organization| (2023), Ebola |Centers for Disease Control
and Prevention| (2016), SARS [World Health Organization| (2003)); [imdevskp| (2020), Dengue Nic
(2020), and seasonal influenza |Centers for Disease Control and Prevention|(2023); |(Our World in Data
(2023)).

We applied HG-DCM to the challenging task of early COVID-19 forecasting across 258 global loca-
tions, finding that our history-guided approach consistently and significantly outperforms state-of-the-
art methods—including the original DELPHI model and advanced deep learning-only models—that
rely solely on current data. This study provides strong evidence that integrating historical data into
compartmental models through neural network guidance can significantly enhance the accuracy and
stability of early pandemic forecasting, yielding a robust tool for public health decision-makers.

1.1 RELATED WORK

Our work sits at the intersection of epidemiological modeling and deep learning. While the literature
on COVID-19 forecasting is vast, we focus here on methods relevant to the "cold-start" problem:
forecasting when data for the target disease is scarce.

Compartmental and Mechanistic Models Standard epidemiological forecasting relies on com-
partmental models, such as SIR and SEIR, which describe disease spread using differential equations
(Ross}; [Schlickeiser & Kroger; KERR). Advanced variants like the DELPHI model (Li et al.) in-
corporate realistic factors such as under-detection and government interventions. While highly
interpretable, these models depend heavily on accurate parameter initialization. In the early weeks of
a new pandemic, determining these parameters is often impossible due to the lack of calibration data,
leading to significant overfitting and instability.

Hybrid Deep Learning Frameworks To overcome the rigidity of pure mechanistic models, recent
works have proposed hybrid frameworks that fuse neural networks with epidemiological priors.
DeepCOVID (Rodriguez et al.) and EiNNs (Rodriguez et al.) demonstrate how deep learning can
operationalize real-time signals for robust forecasting. Similarly, DeepGLEAM (Wu et al) and
Neural ODEs (Kosma et al.) successfully integrate mechanical constraints into learning processes
to ensure physically consistent predictions. In terms of uncertainty quantification, methods like
EpiFNP (Kamarthi et al.) and DSA-BEATS (Motavali et al.) have made significant strides in
estimating confidence intervals and handling complex temporal dependencies. While some of these
architectures have combined compartmental models with deep learning, they only consider data
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from the current pandemic in prediction, and require a sufficient stream of data to learn effective
representations. Consequently, they are less applicable to the "cold-start" phase—specifically the
first 2 to 8 weeks—where the training signal from the current outbreak is too sparse to train complex
backbones like ResNets or Transformers without overfitting.

Transfer Learning and Agent-Based Approaches To address data scarcity, transfer learning has
been explored in various forms, though often with different goals than ours. Some approaches focus
on spatial transfer, moving knowledge from regions with advanced outbreaks, such as Italy, to those in
early stages like the US (Panagopoulos et al.). Other strategies include Agent-Based Models (ABMs),
such as Differentiable ABMs (Chopra et al.} 2023)), which offer granular simulation capabilities but
operate on a fundamentally different paradigm requiring detailed mobility and interaction data that is
unavailable globally in many less developed countries in early stages.

Our Contribution: Cross-Disease Temporal Transfer Our work addresses the gap left by the
methods above. Unlike current models that primarily rely on data from the current pandemic, the
HG-DCM framework introduces cross-disease temporal transfer. We operate on the premise that
while pathogens differ biologically, the human-driven dynamics of spread share universal patterns
across history. By treating historical pandemics, such as Dengue or seasonal Influenza, as a source
domain, we can initialize robust forecasting models for a novel pathogen before sufficient single-
disease data exists. This allows us to regularize deep compartmental models effectively during the
critical "cold-start" window, providing a distinct advantage over single-disease architectures.

2 METHODS

We introduce the History-Guided Deep Compartmental Model (HG-DCM), a novel framework
designed to enhance early pandemic forecasting by combining the interpretability of traditional
epidemiological models with the expressive power of deep learning over historical data. The overall
architecture is illustrated in Figure ]
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Figure 1: Model Architecture of HG-DCM HG-DCM consists of two parts: a deep learning
parameter predictor f(-) and a compartmental model i(-). The deep learning parameter predictor
predicts the compartmental model parameters, and the compartmental model uses the predicted
parameters to construct the predicted cumulative case curve for the pandemic.

HG-DCM operates as a two-stage pipeline: a deep learning component for parameter prediction, and
a compartmental modeling component for incidence curve generation. The framework is defined by
the following mapping:
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0= f(T,M) (1)
= h(0). )

Here, the deep learning component, f(-), takes the observed time-series data (") and epidemiological

metadata (M) as input to predict the time-varying parameters (0) of the underlying compartmental
model. The subsequent component, h(-), maps these predicted parameters to the final forecast (§)
for the cumulative incidence curve by solving an Initial Value Problem (IVP). The key conceptual
insight is that different pandemics share a common underlying mapping, f, between the observable
early-stage dynamics (7', M) and the fundamental transmission parameters (6).

Deep Learning Modeling f(-) The function f(-) has two components: A Residual Network
(ResNet) to extract embeddings from the historical pandemic time-series, and a fully connected
component that concatenates the embeddings with epidemiological metadata to produce the final
parameter prediction

The first ResNet component takes an input tensor of size [L, N, D], where L is the length of the
time window, N is the batch size, and D (set to 1 for daily cases only) is the number of input
features. Crucially, we made a structural modification to the standard ResNet: Batch Normalization
(BN) layers were removed. Since the model is trained across historically distinct pandemics, the
differences in batch statistics between past and current outbreaks introduce instability and prediction
bias. Removing BN layers ensures the network relies solely on the learned weight distributions for
generalization, improving robustness when generating embeddings.

Then, the generated embeddings are combined with epidemiological and demographic metadata
(e.g., transmission pathways, healthcare expenditure). A full table of metadata is provided in Section
m The metadata are normalized using min-max scaling to the range [0, 1], passed through two
fully connected layers, and then concatenated with the time-series embeddings. The concatenated
embedding is processed by final fully connected layers to produce the 12 parameters for the DELPHI
model. To ensure the predicted parameters lie within their physical bounds (e.g., transmission rates
are non-negative), we apply a sigmoid ranging function to normalize the output values.

Compartmental Modeling h(-) To generate the final forecast from the parameters, we utilize
DELPHI (L1 et al.), which is a highly ranked forecasting model on the COVID-19 Forecast Hub
ensemble (Cramer et al, [2022) during COVID, as the compartmental model in this framework.
DELPHI is a compartmental epidemiological model that extends the widely used SEIR model to
account for under-detection, societal response, and epidemiological trends including changes in
mortality rates. The model is governed by a system of ordinary differential equations (ODEs) across
11 states: susceptible (S), exposed (F), infectious (1), undetected cases who will recover (U)
or die (UP), hospitalized cases who will recover (H %) or die (H?), quarantined cases who will
recover (Q*?) or die (QP), recovered (R) and dead (D). The transition rates between the 11 states are
defined with 12 parameters, which we predict as 6 using the previous deep learning pipeline f(-). To
generate the final incidence curve, the estimated parameters are passed through torchODE(Lienen
& Glinnemann), a parallel Initial Value Problem (IVP) Solver, to output the predicted cumulative
case curve. We used Tsit5 with a;o; = 1 x 1078, 7,y = 1 x 10~* as the ODE solver. We refer the
readers to (Li et al.) for details on the DELPHI model and its performance.

2.2 DATA PROCESSING AND AUGMENTATION

Given the data scarcity of historical outbreaks and the critical need for a model robust to noisy,
early-stage data, we restrict training to daily cases and employ augmentation strategies.

Data Preparation Before augmentation, we perform essential data cleaning:

* Log Transformation: Due to widely different case numbers across regions, we log-
transform the case numbers for stability.

¢ Exclusion: Locations with fewer than 12 consecutive weeks of data where the cumulative
case count was above 100 are excluded.
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* Missing Data and Noise: Time series with weekly reporting or missing data are filled
using linear interpolation for training only. Negative daily case counts are set to zero. No
interpolation is used during model evaluation.

Window-shift augmentation (past pandemics) To increase the sample diversity for past pan-
demics, we apply a window-shift augmentation technique. For each historical trajectory, we generate
additional training samples by shifting the start of the input time series forward one day at a time. The
augmentation stops when the input window’s start date reaches the Last Day of Augmentation (LDoA),
defined as the peak of the first epidemic wave. The LDoA is identified retrospectively in the historical
data by: 1) computing and smoothing daily incidence (7-day centered rolling average), 2) detecting
the first prominent peak (exceeding 25% of the global maximum using scipy.signal.find_peaks), and 3)
defining the LDoA as the day of maximum incidence within that initial wave interval. Crucially, this
retrospectively calculated LDoA is never used during inference on the current pandemic, preventing
look-ahead bias and information leakage. Locations without a detectable first wave are excluded to
ensure reliability. A graphical illustration of these three steps is shown in Figure[2]

Masking augmentation (current pandemic) Because future observations are unavailable for an
unfolding pandemic, we apply a masking strategy instead. Specifically, we apply a block-masking
technique where a starting index is randomly selected within the input sequence, and the subsequent
7-day segment is replaced with zeros. This forces the model to learn robust temporal patterns even
when contiguous data are missing.
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Figure 2: Data Augmentation Methods Window shift data augmentation method for past pandemic
time series data

Objective Function The objective function of HG-DCM is to minimize the loss between the
predicted incidence curve and the actual incidence curve of past and current pandemics. The loss of
past pandemics includes both the loss of the length-¢ training window and the length-v forecasting
window (Eqn. [3). The current pandemic loss contains only the training window due to the lack of a
forecasting window for an unknown future (Eqn. [4). Both losses of the past and current pandemics
are calculated through a sum of mean absolute error (MAE) and mean absolute percentage error
(MAPE) weighted by « to balance the effect of the population. The overall loss is calculated by a
mean weighted by S to balance between past pandemic losses and the current pandemic loss (Eqn. [3).
The weight determines the amount of information inherited from past pandemics in predicting the
current pandemic. Concretely, the formula for the loss function can be written as:
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where np/n. is the number of samples in the past/current pandemic data, and C;;/ @j is the ac-
tual/predicted cumulative cases of the ith pandemic at the jth time point.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP
3.1.1 DATA

We were unable to find a publicly available database that contained pandemic data from the past.
Therefore, we constructed a pandemic dataset, which contains case and death (if available) time
series data, pandemic meta-data, and country meta-data for major pandemic outbreaks and seasonal
pandemics that have occurred worldwide since 1990. Only pandemics with significant (more than 100)
and frequent (daily or weekly) reported incidences are included in the dataset. The dataset includes
country-level and domain-level data on the following outbreaks: the 2020 COVID-19 pandemic, the
2014 Ebola pandemic, the 2003 SARS pandemic, the Peru (2000 - 2010) and Puerto Rico (1990 -
2008) Dengue Fever outbreak, and world-wide seasonal influenza outbreaks (2009-2023).

The time series dataset contains daily or weekly reported cases for each pandemic. The start date
of pandemics differs for each location and is set by the first day when the cumulative case number
exceeds 100. Epidemiological meta-data with uncertainties that were available at the early stage
of the pandemic for each location are collected. The geological meta-data includes 13 country
development indicators from the World Bank data (WorldBank) for each location in the dataset. The
list of meta-data is available in

3.1.2 COMPARISON METHODS

We evaluate the model performances on early-stage forecasting tasks, where HG-DCM is used to
forecast the cumulative case curve of 12 weeks based on 2/4/6/8 weeks of daily case data. To enable
history-guided learning, HG-DCM is trained on a composite dataset of past pandemics, specifically
Ebola, SARS, Dengue, and Seasonal Influenza, alongside the available early-stage data (2—-8 weeks)
from the current pandemic (COVID-19). Due to the lack of death data in pandemics prior to COVID-
19, only case numbers are used to fit and evaluate the models in the experiments. Locations with no
new daily cases reported during the training window are removed from the dataset.

For evaluation, we calculate the mean and median Mean Absolute Error (MAE) between the predicted
and true cumulative incidence over the 12-week forecasting window. We compare HG-DCM against
two advanced single-disease prediction models: GradABM (Chopra et al.| 2023)) and EiNNs (Ro-
driguez et al.). GradABM represents a differentiable agent-based modeling approach that leverages
granular mobility and interaction data to simulate disease spread, offering high-fidelity simulations
that differ fundamentally from compartmental approaches. EiNNs is a hybrid framework that fuses
neural networks with epidemiological priors, designed to operationalize real-time signals for robust
forecasting. Comparing HG-DCM against these distinct architectures—one agent-based and one
hybrid—allows us to assess its effectiveness relative to the most capable current forecasting method-
ologies. The detailed setup of the baselines could be found in the appendix [A.2] We attempted
to benchmark HG-DCM against other models used for COVID-19 forecasting, specifically those
included in the COVID-19 Forecast Hub (Cramer et al., 2022). However, most of these models
lack publicly available, reproducible code bases, and the shared forecasting outputs do not include
early-stage results (training windows < 8 weeks), thereby limiting direct comparison. Moreover, the
majority of models in the Forecast Hub are compartmental models.

To further understand the usefulness of each component of HG-DCM, we compare HG-DCM to its
individual components, including DELPHI (Li et al.), and the Residual Convolution Neural Network
(CNN) (Chung et al.). Through these ablation experiments, we aim to demonstrate that the HG-DCM
architecture outperforms both stand-alone compartmental models and its component neural network.

3.2 RESULTS

3.2.1 EARLY-STAGE FORECASTING BENCHMARKING

We first compare the forecasting accuracy of HG-DCM against Grad ABM and EiNNs across varying
training window lengths (2, 4, 6, and 8 weeks) in Massachusetts and the United States. These locations
were selected because they were the only locations in which there was available data and code for the
comparison methods. As shown in Table 1, HG-DCM consistently achieves lower Mean Absolute
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Table 1: Model Performance on Covid-19 Early Forecasting tasks in United States and Massachusetts.
Locations are selected due to the limited data accessibility to run the comparison models. Dash
indicates forecasting is not available in the specific location due to data constraints, see Appendix
Bold indicates the best-performing models for each task.

United States
2-Weeks  4-Weeks  6-Weeks 8-Weeks

Massachusetts
2-Weeks 4-Weeks 6-Weeks 8-Weeks

HG-DCM | 462,651 2,548,004 145,063 180,610 | 53,791 39,194 39,887 5,370
GradABM - - - - 245,682 231,213 188,082 142,934
EiNNs 801,152 729,091 496,680 295,222 - 46,097 25,669 10,874

Error (MAE) in most tasks compared to both baselines. Even though GradABM utilizes detailed
mobility data to generate granular predictions, HG-DCM outperforms it by effectively leveraging
priors from different pandemics to stabilize the trajectory, particularly in the 2-week and 4-week
"cold-start" scenarios where data scarcity most severely impacts complex agent-based simulations.
Similarly, while EiNNs superficially resembled our model by deep learning with epidemiological
constraints, it is still limited to only considering the data from the current pandemic. HG-DCM’s
cross-disease transfer learning provides a more robust initialization, leading to significant error
reductions in early-stage forecasts.

3.2.2 ABLATION STUDY

To isolate the contributions of specific components within our framework, specifically the roles of
historical guidance, physics-based constraints, and deep learning architectures, we compare HG-DCM
against three targeted variants: DELPHI, CNN, and T-DCM. The detailed model setups are available

in Appendix[A.7]

Table 2: Model Performance on Covid-19 Early Forecasting. Bold indicates the best-performing
models for each training window.

2 Weeks 4 Weeks 6 weeks 8 Weeks

Mean MAE
CNN 15600.4 11238.1 11012.5 10211.2
DELPHI 342686.3 813807.8 29745.6 45140.7
T-DCM 15049.2 17691.2 20571.1 243222
HG-DCM | 18602.6 1104524 7112.5 4643.1
Median MAE

CNN 2963.4 2301.7 1187.8  871.8
DELPHI | 3609.1 2619.7 12492 537.7
T-DCM 2745.8 2799.1 3101.0 43352
HG-DCM | 2231.1 1770.9 1275.6  796.0

HG-DCM Outperforms DELPHI  Generally, both HG-DCM and DELPHI achieve higher accuracy
as the length of training data increases. However, HG-DCM consistently outperforms DELPHI across
forecasting horizons, particularly in the crucial early stages when only limited data are available.
With 2 weeks of training data, HG-DCM reduces median MAE by 38.2% relative to DELPHI; with 4
weeks, the reduction is 32.4%. When 6 weeks of data are available, HG-DCM and DELPHI achieve
comparable accuracy in terms of median error, but HG-DCM forecasts remain more stable across
locations (Table 2] Figure[3). HG-DCM addresses a central limitation of compartmental models such
as DELPHI, which is the tendency to overshoot case counts when trained on limited data. Overshoot
arises from overfitting to the limited training data available, leading to forecasts that substantially
deviate from observed trajectories. To formally quantify overshooting, we define it as occurring
when the predicted cumulative case count in the final week of the forecasting window exceeds the
corresponding observed value by more than fivefold. Across evaluation settings, HG-DCM exhibited
markedly fewer overshooting events than DELPHI (Figure ). For example, in the case of the United
States with an 8-week training window, DELPHI forecasts substantially overshoot true case numbers,
whereas HG-DCM, by leveraging historical pandemic information, reduced overfitting and produced
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predictions that were more consistent with real-world epidemic dynamics (Figure @p). These results
demonstrate the value of incorporating prior pandemic information to enhance early-stage forecasts
when outbreak-specific data are scarce.
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Figure 3: Forecasting Window MAE Distribution Forecasting window mean absolute error distri-
bution for DELPHI and HG-DCM on COVID-19 12 Weeks Early Forecasting Tasks using 2 weeks, 4
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Figure 4: Forecasting Example (a) Number of overshooting predictions in different training window
length for DELPHI, HGDCM, and CNN. (b) United States 8-week-training-window example where
DELPHI suffers from overshooting caused by overfitting, while HG-DCM mitigates the overshooting
by leveraging historical pandemic data.

HG-DCM Outperforms End-to-end CNN Model We next compare HG-DCM to a purely end-to-
end CNN model. Unlike HG-DCM, which uses CNN to predict parameters of an epidemiologically
grounded model, the CNN baseline bypasses mechanistic structure and directly predicts case tra-
jectories from data. Despite its greater expressiveness, CNN generally underperforms HG-DCM
across all training horizons. The performance gap is largest in the early stage (2—4 weeks of training
data), where HG-DCM'’s integration of historical knowledge and compartmental dynamics yields
markedly lower forecasting error (Table[Z). These findings indicate that epidemiological inductive
bias provides critical structure for learning, enabling HG-DCM to achieve both stronger predictive
performance and greater interpretability than a black-box end-to-end model.

HG-DCM OQOutperforms T-DCM We further conducted an ablation study by training a Truncated
Deep Compartmental Model (T-DCM) that excluded historical pandemic data and meta-data. The
T-DCM was trained on datasets with 2, 4, 6, or 8 weeks of observations and evaluated on a 12-
week forecasting task. Table 2] shows that T-DCM consistently underperformed HG-DCM across
all training window lengths with respect to median MAE. Notably, HG-DCM achieved significant
improvements in median MAE, with the gap widening as training data length increased. This result
underscores the importance of incorporating historical context and structured meta-data for reliable
forecasting in the early stages of pandemics.

Taken together, these results establish that HG-DCM effectively leverages historical pandemic data to
guide compartmental modeling, producing more accurate and stable forecasts than both a leading
compartmental model (DELPHI) and a purely data-driven end-to-end model (CNN). By combining
mechanistic interpretability with neural network flexibility, HG-DCM represents a significant step
forward in reliable early-stage pandemic forecasting.
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3.2.3 PARAMETER INFERENCE

One of the key advantages of employing HG-DCM over traditional deep neural networks for pandemic
forecasting is its interpretable parameterization. Unlike pure black-box models, the epidemiologically
meaningful parameters predicted by HG-DCM can be extracted before being passed to the Initial
Value Problem (IVP) solver for the compartmental model, which offers actionable insights.

To illustrate this advantage, we analyzed the parameters inferred by HG-DCM compared to the
traditional DELPHI model in an early-stage COVID-19 forecasting task using four weeks of data
(Figure[5). The DELPHI model’s parameters exhibited a wide distribution, often leading to unstable
forecasts and an overshooting problem. This instability arises because DELPHI fits models indepen-
dently for each location, amplifying sensitivity to minor noise in the data. In contrast, HG-DCM
leverages historical pandemic data and geospatial meta-data, ensuring more robust and consistent
parameter estimation.

Statistical analysis using the Wilcoxon Signed-rank Test (Woolson) confirmed significant differences
in all parameters, including the infection rate (o), median day of action (¢;,eq), and rate of action (),
with p-values < 0.05. Specifically, HG-DCM predicted a lower infection rate, median day of action,
and death rate, while exhibiting a higher rate of action. These findings suggest that, by adapting
knowledge from past pandemics, HG-DCM avoids overfitting to the initial boost in case numbers
and produces more conservative and realistic estimates, reducing biases that may otherwise arise
from noise introduced by heterogeneous factors, including a lack of standardized case identification
criteria in the early stage of data collection. The complete parameter analyses for all 12 DELPHI
parameters can be found in Appendix [A.4]

* * * *

2.0 10 20

15 100 E 15 . g
2 " S 04
o I T
s ~'10 N
s 10 50 3
05 &I 5 02
0

0.0
DELPHI HG-DCM DELPHI HG-DCM DELPHI HG-DCM DELPHI HG-DCM

days

F.lIID [ele X o)

Figure 5: Comparison of fitted parameters in DELPHI and HG-DCM models. Box plots show the
distribution of selected predicted parameters for DELPHI and HG-DCM. The central line represents
the median, the box bounds the interquartile range, and whiskers extend to 1.5x IQR. Outliers are
shown as points. Asterisks indicate statistically significant differences between methods (Wilcoxon
signed-rank test, p < 0.05).

3.3 DISCUSSION

Our results demonstrate that HG-DCM consistently outperforms both standard compartmental models,
such as DELPHI, and pure deep learning baselines during the early stages of a pandemic. The primary
driver of this success is not the complexity of the neural network, but the strategic integration of
historical data. In the "cold-start" phase, current data is often too sparse and noisy to effectively
constrain the parameters of a differential equation. By introducing historical outbreaks as a source
domain, we effectively increase the sample size from a few weeks at one location to months at
hundreds of locations. This allows the model to learn robust priors—such as realistic ranges for
infection rates and the typical shape of saturation curves, which stabilizes predictions when the
current signal is weak.

Ultimately, these findings suggest a necessary shift in perspective for early-stage modeling: moving
away from purely architectural complexity and toward data-centric generalization. While recent
trends in deep learning favor increasingly large "black-box" models, our work indicates that in
data-scarce environments, the diversity of the training signal is more critical than the depth of the
network. By anchoring the flexible learning power of a neural network with the rigid, interpretable
bounds of a compartmental model and the wisdom of historical data, we create a system that is robust
against the overfitting that typically plagues standard approaches during the onset of a crisis.
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4 LIMITATION

While HG-DCM demonstrates strong performance in early-stage pandemic forecasting, it is not
without limitations. Our reliance on historical data also introduces granularity challenges. Unlike
the high-resolution daily data available for COVID-19, older datasets such as Ebola and SARS were
often reported in weekly aggregates. This necessitated the use of linear interpolation to align with our
daily prediction framework. This approximation inevitably introduces errors, particularly during the
volatile early stages of an outbreak where precise trend estimation is most critical.

Finally, HG-DCM is currently trained exclusively on confirmed case data, omitting mortality metrics.
This decision was necessitated by the inconsistency and frequent unreliability of historical death
records in past pandemics. While excluding this data allows us to maximize the volume of usable
historical training samples, it limits the model’s ability to jointly learn from case and death patterns.

5 CONCLUSION

In this study, we addressed the critical challenge of forecasting a new pandemic during its earliest
stages, a time when data is scarce and standard models often fail. We introduced the History-Guided
Deep Compartmental Model (HG-DCM), a framework that shifts the focus from building more
complex architectures to making better use of available data. By treating historical pandemics such
as seasonal Influenza, SARS, and Dengue as a source of knowledge, we demonstrated that deep
learning models can learn universal patterns of disease spread and transfer them to a novel outbreak
like COVID-19.

Our experiments on early COVID-19 data confirm that this history-guided approach significantly
stabilizes predictions compared to methods that rely solely on the noisy, limited data of the current
outbreak. We found that the inclusion of historical data acts as a powerful regularizer, preventing
the model from overfitting to early fluctuations and guiding it toward more realistic epidemiological
parameters.

Future work could focus on integrating additional data sources, such as mobility patterns, policy
interventions, or other metadata, to further improve forecasting accuracy. Moreover, adapting HG-
DCM for real-time applications represents an exciting avenue for research. We believe this work
establishes a foundation for leveraging past pandemics through deep learning to inform future
forecasting efforts.
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