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ABSTRACT

We introduce the History-Guided Deep Compartmental Model (HG-DCM), a novel
framework for early-stage pandemic forecasting that synergizes deep learning with
compartmental modeling to harness the strengths of both interpretability and predic-
tive capacity. HG-DCM employs a Residual Convolutional Neural Network (CNN)
to learn temporal patterns from historical and current pandemic data while incorpo-
rating epidemiological and demographic metadata to infer interpretable parameters
for a compartmental model to forecast future pandemic growth. Experimental
results on early-stage COVID-19 forecasting tasks demonstrate that HG-DCM
outperforms both standard compartmental models (e.g., DELPHI) and standalone
deep neural networks (e.g., CNN) in predictive accuracy and stability, particularly
with limited data. By effectively integrating historical pandemic insights, HG-DCM
offers a scalable approach for interpretable and accurate forecasting, laying the
groundwork for future real-time pandemic modeling applications.

1 INTRODUCTION

Pandemics have historically caused catastrophic losses, from the Bubonic Plague in the 14th century
(McEvedy) to the smallpox outbreak in the 18th century (Eyler), and most recently, the COVID-19
pandemic in 2020 (Holshue et al.). Despite significant advances in medical science, technology,
and epidemiology, COVID-19 alone resulted in millions of deaths worldwide from 2020 to 2023.
Accurate early-stage estimation of pandemic severity remains a crucial topic - Studies suggest that
with improved forecasting and prompt interventions, early pandemic mortality could be reduced by
as much as 90% (Piovani et al.; |Li et al.). Yet accurate early-warning prediction is fundamentally
challenging, with the lack of high-quality data being a major challenge. Mispredictions of pandemic
severity lead to significant consequences: underestimating an outbreak risks overwhelming healthcare
systems and delaying crucial interventions, thereby increasing mortality and transmission rates.
Conversely, overestimations can lead to inefficient use of resources and societal disruptions, including
panic buying (Islam et al.; |(Chua et al.) and social unrest (Barnard et al.; Reicher & Stott).

A significant number of current pandemic forecasting models are compartmental models, in which
the incidence of each location is fit separately and completely relies on data specific to the current
outbreak. The limited data source of compartmental models leads to unsatisfactory performance
on early pandemic forecasting tasks. Past pandemics can provide significant information on the
likely severity of the current pandemic at the early stage, but compartmental models lack the
ability to integrate past pandemic information into forecasting. The wealth of historical pandemic
data, which, though costly in terms of human lives, remains underutilized and represents a missed
opportunity to enhance predictive accuracy. Therefore, in this study, we present the History-Guided
Deep Compartmental Model (HG-DCM), which leverages historical data and meta-data to enhance
forecasting accuracy by incorporating insights from previous pandemics and early-stage pandemic
meta-data.

HG-DCM combines a residual convolutional neural network (He et al.)) with a novel compartmental
model DELPHI (Li et al.) to create a powerful tool for early pandemic warning. The neural
network within HG-DCM allows cross-learning among different pandemics and different locations
when fitting the DELPHI model, incorporating data from prior pandemics and metadata to improve
incidence curve fitting. This approach preserves the interpretability and epidemiological grounding
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of the DELPHI model while leveraging historical data through neural network guidance to improve
early-stage pandemic forecasting accuracy.

We applied HG-DCM to early COVID-19 forecasting across 258 locations globally, demonstrating
that it consistently outperforms the original DELPHI model in early-stage COVID-19 forecasting.
This study provides strong evidence that integrating historical data into compartmental models through
neural networks can significantly enhance the accuracy and stability of early pandemic forecasting.
Furthermore, our comparative analysis reveals that HG-DCM surpasses both state-of-the-art deep
learning-based models and compartmental models in early-case forecasting tasks.

To our knowledge, this is the first study to develop a forecasting framework that leverages data from
multiple prior pandemics to predict the trajectory of a newly emerging pandemic. While previous
work has borrowed parameter priors from earlier outbreaks (Tindale et al.) or transferred models
between related epidemics (Roster et al.), no prior research has systematically integrated information
across different pandemics to improve forecasting during the emergence of a new one. As part of
this effort, we constructed a new pandemic dataset including time-series case and death data, along
with associated pandemic- and country-level meta-data, from major global outbreaks since 1990,
including COVID-19, Ebola, SARS, dengue, monkeypox, and seasonal influenza.

1.1 LITERATURE REVIEW

Compartmental models have been used to forecast the trend of pandemics since the early 20th
century. Starting with the simplest SIR (Susceptible, Infectious, Removed) model (Ross), various
compartmental models with different states have shown satisfactory performance in forecasting
seasonal pandemics (Schlickeiser & Kroger; KERR). One of the core strengths of compartmental
models is their high interpretability - each parameter in a compartmental model usually corresponds
to a physical quantity, which provides valuable insights into the pandemic. However, compartmental
models also have limitations. Given the inevitable noisiness of the data, compartmental models
can significantly overfit during the earliest stage of the pandemic when limited data is available.
Furthermore, since compartmental models are inherently modeled for a pandemic in a certain area, it
is also not obvious how to incorporate information from other pandemics to augment a compartmental
model.

From another direction, machine learning is widely used in time-series forecasting fields such as stock
prediction, weather forecasting, tourism (Law et al.), etc. However, most machine learning time-series
models are not designed for early-stage pandemic prediction. There are attempts to use advanced
deep learning models for pandemic forecasting (Rodriguez et al.; [Tariq & Ismail; [Devaraj et al.), but
these models have been limited to modeling a single pandemic within a single region. Furthermore,
these models suffer from the lack of interpretability, which makes the resulting predictions difficult to
understand, especially during the early phase of a pandemic.

Overall, there have been few attempts to combine compartmental and deep learning models (Janssen
et al.)). Recently, there has been some research that integrates mobility data into the compartmental
model through deep learning (Deng & Wang) or utilizes deep learning to estimate the time-varying
parameter for the compartmental model (Ning et al.). However, these models assume that a significant
amount of training data is available for the current pandemic, which makes it unsuitable for early-stage
pandemic forecasting.

2 METHODS

2.1 MODEL CONSTRUCTION

We introduce the History Guided Deep Compartmental Model (HG-DCM), which integrates a deep
neural network with a compartmental model to combine the expressivity of a deep learning model
and the interpretability of a compartmental model. The model architecture is defined as:

6 = f(T, M) (1)
j = h(h). @
Here T" and M are the time-series and the metadata for the pandemic, which is combined through
a deep learning model f(-) to create predictions 6 for the parameters for the compartmental model.
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Figure 1: Model Architecture of HG-DCM HG-DCM consists of two parts: deep learning modeling
and compartmental modeling. The deep learning modeling part predicts the compartmental model
parameters, and the compartmental modeling section uses the predicted parameters to construct the
predicted cumulative case curve for the pandemic.

The final predictions ¢ are then calculated by solving an Initial Value Problem (IVP) to map the
predicted parameters to a cumulative incidence curve. The key idea is that different pandemics
could share a mapping between how the pandemic behaves (7', M) and the underlying parameters 6,
which is captured by the deep learning model f. A graphical illustration of the model architecture is
showcased in Figure[T] In the following paragraphs, we detail each of the specific structures.

Residual Convolutional Neural Network (CNN) We use a ResNet architecture to predict pan-
demic parameters from time-series data across past and current pandemics. Because the number of
available pandemics is limited, relying on raw historical data is insufficient for training. To address
this, we design two complementary data augmentation strategies: window-shift augmentation for
past pandemics and masking augmentation for the current pandemic.

WINDOW-SHIFT AUGMENTATION (PAST PANDEMICS) For each historical pandemic, we generate
additional training samples by shifting the start of the input time series forward one day at a time. The
shifting stops when the start date reaches the peak of the first epidemic wave, which we identify as
follows: Compute daily incidence from cumulative counts and smooth with a centered 7-day rolling
average. Detect the first prominent peak that exceeds 25% of the global maximum using find_peaks
(Scipy v1.12.0) and mark the subsequent local minimum as the end of the first wave. Define the last
day of augmentation (LFoA) as the day of maximum daily incidence within this interval. Locations
without a detectable first wave are excluded to ensure reliability. A graphical illustration of these
three steps is shown in Figure 2]

MASKING AUGMENTATION (CURRENT PANDEMIC) Because future observations are unavailable
for an unfolding pandemic, we apply a masking strategy instead. Specifically, we randomly replace
consecutive 7-day segments of the observed input sequence with zeros, forcing the model to learn
robust temporal patterns even when data are partially missing.

To account for variations in case numbers across locations, daily case numbers are log-transformed to
enhance model stability. For time series with weekly reporting frequencies or missing data, linear
interpolation is used for input data during training. We did not apply interpolation when evaluating
model performance. Since the collected pandemic case data occasionally contained noisy entries with
negative daily case counts, we set these values to zero to prevent spurious effects on the model. In
addition, we excluded locations with fewer than 12 consecutive weeks of data where the cumulative
number of cases was above 100. The ResNet input dimension is [L, N, D], where L represents the
lengths of training windows, NN is the batch size, and D is the number of input features (e.g., daily
cases, daily deaths). Due to limited data availability, only case numbers are used in this study. We
also modify the ResNet implementation by removing batch normalization, as differences in batch
statistics between past and current pandemics can lead to unstable predictions.
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Figure 2: Data Augmentation Methods Window shift data augmentation method for past pandemic
time series data

Fully Connected Layers The learned embeddings of the time-series data are concatenated with
epidemiological metadata (e.g., transmission pathways) and demographic metadata (e.g., healthcare
expenditure). A full table of the metadata is provided in Meta-data are normalized using
min-max normalization to the range [0, 1], and passed through two fully connected layers before
concatenating with the time series embeddings output from the CNN. The concatenated embeddings
are passed through fully connected layers to produce parameters for the DELPHI model. To ensure
that the produced parameters lie within physical bounds, we utilize a sigmoid ranging function to
normalize the predicted parameters between 0 and 1.

Compartmental Modeling We utilize DELPHI (Li et al.) as the compartmental model for pre-
diction in this framework. DELPHI is a compartmental epidemiological model that extends the
widely used SEIR model to account for under-detection, societal response, and epidemiological trends
including changes in mortality rates. The model is governed by a system of ordinary differential
equations (ODEs) across 11 states: susceptible (.S), exposed (F), infectious (I), undetected cases who
will recover (UF) or die (UP), hospitalized cases who will recover (H Ry or die (HP), quarantined
cases who will recover (Q%) or die (QP), recovered (R) and dead (D). The transition rates between
the 11 states are defined with 12 parameters, which we predict as 6 in the HG-DCM framework. To
generate the final incidence curve, the estimated parameters are passed through torchODE(Lienen
& Giinnemann)), a parallel Initial Value Problem (IVP) Solver, to output the predicted cumulative
case curve. We used TsitS with a;o; = 1 x 1078, 7,y = 1 x 10~* as the ODE solver. We refer the
readers to (Li et al.) for details on the DELPHI model and its performance.

Objective Function The objective function of HG-DCM is to minimize the loss between the
predicted incidence curve and the actual incidence curve of past and current pandemics. The
loss of past pandemics includes both the loss of the length-t training window and the length-v
forecasting window (Eqn. [3). The current pandemic loss contains only the training window due to
the inaccessibility of the forecasting window in practice (Eqn. ). Both losses of the past and current
pandemics are calculated through a sum of mean absolute error (MAE) and mean absolute percentage
error (MAPE) weighted by « to balance the effect of the population. The overall loss is calculated by
a mean weighted by [ to balance between past pandemic losses and the current pandemic loss (Eqn.
[3). The weight determines the amount of information inherited from past pandemics in predicting the
current pandemic. Concretely, the formula for the loss function can be written as:

np t+v $

1 . C:i —C:
P nP(t+U) ;;ﬂ / ]| +OZ| CL] |) ( )
1 nc t R Cfd
c nct;jgo“cj Cij| + o o b )
L=Lp+pLc )

where np/n. is the number of samples in the past/current pandemic data, and C;;/ @j is the ac-
tual/predicted cumulative cases of the ith pandemic at the jth time point.



Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

3.1.1 DATA

We were unable to find a publicly available database that contained pandemic data from the past.
Therefore, we constructed a pandemic dataset, which contains case and death (if available) time
series data, pandemic meta-data, and country meta-data for major pandemic outbreaks and seasonal
pandemics that have occurred worldwide since 1990. Only pandemics with significant (more than 100)
and frequent (daily or weekly) reported incidences are included in the dataset. The dataset includes
country-level and domain-level data on the following outbreaks: the 2020 COVID-19 pandemic, the
2014 Ebola pandemic, the 2003 SARS pandemic, the Peru (2000 - 2010) and Puerto Rico (1990 -
2008) Dengue Fever outbreak, the 2022 Worldwide Monkeypox outbreak, and world-wide seasonal
influenza outbreaks (2009-2023).

The time series dataset contains daily or weekly reported cases for each pandemic. The start date
of pandemics differs for each location and is set by the first day when the cumulative case number
exceeds 100. Epidemiological meta-data with uncertainties that were available at the early stage
of the pandemic for each location are collected. The geological meta-data includes 13 country
development indicators from the World Bank data (WorldBank) for each location in the dataset. The
list of meta-data is available in[AT]

3.1.2 SETUP AND COMPARISON METHODS

Comparison Methods We evaluate the model performances on early-stage forecasting tasks, where
HG-DCM is used to forecast the cumulative case curve of 12 weeks based on 2/4/6/8 weeks of daily
case data. Due to the lack of death data in pandemics prior to COVID-19, only case numbers are
used to fit and evaluate the models in the experiments. Locations with no new daily cases reported
during the training window are removed from the dataset. The mean and median MAE of the
forecasting window between the predicted incidence and the true incidence are used to evaluate model
performance. HG-DCM is compared to state-of-the-art compartmental models DELPHI (Li et al.) and
its component deep neural network models, Residual Convolution Neural Network (CNN) (Chung
et al.), on the early-stage pandemic forecasting tasks. We attempted to benchmark HG-DCM against
other models used for COVID-19 forecasting, specifically those included in the COVID-19 Forecast
Hub (Cramer et al.| 2022). However, most of these models lack publicly available, reproducible code
bases, and the shared forecasting outputs do not include early-stage results (training windows < 8
weeks), thereby limiting direct comparison. Moreover, the majority of models in the Forecast Hub
are compartmental models. In contrast, the present study aims to demonstrate that the HG-DCM
architecture outperforms both stand-alone compartmental models and its component neural network.
We do not aim to compare the performance of different compartmental models, as such performance
is highly contingent on pathogen-specific biological characteristics across different pandemics.

HG-DCM Setup Four HG-DCM models are trained using the 2/4/6/8-week training window
respectively and predict for 12 weeks. Each HG-DCM is trained separately using the Adam optimizer
with a stable learning rate of 1 x 10~°. Given the large variation of case numbers among different
locations, we use a customized geographic-pandemic sampler, where in each batch, one sample from
each geographic-pandemic pair in the training data was sampled among all the augmentations. This
approach accelerates the convergence by avoiding the turbulent loss curve caused by large variations
in incidence numbers among different locations. Dropout or weight decay is not used when training
the model. The models are trained for 100 epochs, and the checkpoint with the lowest mean MAE for
the training window of the current pandemic for each model is used in the comparison.

Residual-CNN Setup We also train a ResNet-50 model for each training window using the same
set of past pandemic data as the HG-DCM to prove that HG-DCM outperforms its component Neural
Network. We utilize a learning rate of 1 x 10~° as optimized through a grid search. No dropout or
weight decay is used.
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DELPHI Setup For fitting DELPHI models, the cumulative case curves are fitted separately for
each location and each training window. Dual annealing (DA) (Xiang et al.) is used as the optimizer
for parameter search. The same default parameter ranges as training HG-DCM are used to fit the
DELPHI curve.

3.2 RESULTS

Table 1: Model Performance on Covid-19 Early Forecasting. Bold indicates the best-performing
models for each training window.

2 Weeks 4 Weeks 6 weeks 8 Weeks

Mean MAE
CNN 15600.4 11238.1 11012.5 10211.2
DELPHI 342686.3 813807.8 29745.6 45140.7
T-DCM 15049.2 17691.2 20571.1 243222
HG-DCM | 18602.6 110452.4 7112.5 4643.1
Median MAE

CNN 2963.4 2301.7 1187.8 8718
DELPHI | 3609.1 2619.7 1249.2  537.7
T-DCM 2745.8 2799.1 3101.0 43352
HG-DCM | 2231.1 1770.9 12756  796.0

To assess the effectiveness of integrating prior pandemic results into compartmental models, we
benchmark HG-DCM against three strong baselines: (i) DELPHI (Li et al.), a state-of-the-art
compartmental model that has demonstrated strong performance in early-stage COVID-19 prediction,
(i1) CNN, a purely end-to-end deep learning model that forecasts case counts directly from historical
pandemic data without using the DELPHI architecture, and (iii) T-DCM, a Deep Compartmental
Model (T-DCM) with the same architecture as HG-DCM but excluded the historical pandemic data
and meta-data. The aim of the three comparisons is to independently show the value of (i) deep
learning, (2) physics-driven modeling, and (ii) past pandemic data.

HG-DCM Outperforms DELPHI  Generally, both HG-DCM and DELPHI achieve higher accuracy
as the length of training data increases. However, HG-DCM consistently outperforms DELPHI across
forecasting horizons, particularly in the crucial early stages when only limited data are available.
With 2 weeks of training data, HG-DCM reduces median MAE by 38.2% relative to DELPHI; with 4
weeks, the reduction is 32.4%. When 6 weeks of data are available, HG-DCM and DELPHI achieve
comparable accuracy in terms of median error, but HG-DCM forecasts remain more stable across
locations (Table|[I] Figure[3). HG-DCM addresses a central limitation of compartmental models such
as DELPHI, which is the tendency to overshoot case counts when trained on limited data. Overshoot
arises from overfitting to the limited training data available, leading to forecasts that substantially
deviate from observed trajectories. To formally quantify overshooting, we define it as occurring
when the predicted cumulative case count in the final week of the forecasting window exceeds the
corresponding observed value by more than fivefold. Across evaluation settings, HG-DCM exhibited
markedly fewer overshooting events than DELPHI (Figure ). For example, in the case of the United
States with an 8-week training window, DELPHI forecasts substantially overshoot true case numbers,
whereas HG-DCM, by leveraging historical pandemic information, reduced overfitting and produced
predictions that were more consistent with real-world epidemic dynamics (Figure dp). These results
demonstrate the value of incorporating prior pandemic information to enhance early-stage forecasts
when outbreak-specific data are scarce.

HG-DCM Outperforms End-to-end CNN Model We next compare HG-DCM to a purely end-to-
end CNN model. Unlike HG-DCM, which uses CNN to predict parameters of an epidemiologically
grounded model, the CNN baseline bypasses mechanistic structure and directly predicts case tra-
jectories from data. Despite its greater expressiveness, CNN generally underperforms HG-DCM
across all training horizons. The performance gap is largest in the early stage (2—4 weeks of training
data), where HG-DCM'’s integration of historical knowledge and compartmental dynamics yields
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Figure 3: Forecasting Window MAE Distribution Forecasting window mean absolute error distri-
bution for DELPHI and HG-DCM on COVID-19 12 Weeks Early Forecasting Tasks using 2 weeks, 4
weeks, 6 weeks, and 8 weeks of available data.
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Figure 4: Forecasting Example (a) Number of overshooting predictions in different training window
length for DELPHI, HGDCM, and CNN. (b) United States 8-week-training-window example where
DELPHI suffers from overshooting caused by overfitting, while HG-DCM mitigates the overshooting
by leveraging historical pandemic data.

markedly lower forecasting error (Table[T). These findings indicate that epidemiological inductive
bias provides critical structure for learning, enabling HG-DCM to achieve both stronger predictive
performance and greater interpretability than a black-box end-to-end model.

HG-DCM OQOutperforms T-DCM We further conducted an ablation study by training a Truncated
Deep Compartmental Model (T-DCM) that excluded historical pandemic data and meta-data. The
T-DCM was trained on datasets with 2, 4, 6, or 8 weeks of observations and evaluated on a 12-week
forecasting task.

Table [T] shows that T-DCM consistently underperformed HG-DCM across all training window lengths
with respect to median MAE. Notably, HG-DCM achieved significant improvements in median MAE,
with the gap widening as training data length increased. This result underscores the importance of
incorporating historical context and structured meta-data for reliable forecasting in the early stages of
pandemics.

Taken together, these results establish that HG-DCM effectively leverages historical pandemic data to
guide compartmental modeling, producing more accurate and stable forecasts than both a leading
compartmental model (DELPHI) and a purely data-driven end-to-end model (CNN). By combining
mechanistic interpretability with neural network flexibility, HG-DCM represents a significant step
forward in reliable early-stage pandemic forecasting.

Parameter Inference One of the key advantages of employing HG-DCM over traditional deep
neural networks for pandemic forecasting is its interpretable parameterization. Unlike black-box
models, the epidemiologically meaningful parameters predicted by HG-DCM can be extracted before
being passed to the Initial Value Problem (IVP) solver, which offers actionable insights.

To illustrate this advantage, we analyzed the parameters inferred by HG-DCM compared to the
traditional DELPHI model in an early-stage COVID-19 forecasting task using four weeks of data
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(Figure 5. The DELPHI model’s parameters exhibited a wide distribution, often leading to unstable
forecasts and an overshooting problem. This instability arises because DELPHI fits models indepen-
dently for each location, amplifying sensitivity to minor noise in the data. In contrast, HG-DCM
leverages historical pandemic data and geospatial meta-data, ensuring more robust and consistent
parameter estimation.

Statistical analysis using the Wilcoxon Signed-rank Test (Woolson) confirmed significant differences
in all parameters, including the infection rate (a), median day of action (¢yeq), and rate of action (r;),
with p-values < 0.05. Specifically, HG-DCM predicted a lower infection rate, median day of action,
and death rate, while exhibiting a higher rate of action. These findings suggest that, by adapting
knowledge from past pandemics, HG-DCM avoids overfitting to the initial boost in case numbers
and produces more conservative and realistic estimates, reducing biases that may otherwise arise
from noise introduced by heterogeneous factors, including a lack of standardized case identification
criteria in the early stage of data collection. The complete parameter analyses for all 12 DELPHI
parameters can be found in Appendix
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Figure 5: Comparison of fitted parameters in DELPHI and HG-DCM models. Box plots show the
distribution of selected predicted parameters for DELPHI and HG-DCM. The central line represents
the median, the box bounds the interquartile range, and whiskers extend to 1.5x IQR. Outliers are
shown as points. Asterisks indicate statistically significant differences between methods (Wilcoxon
signed-rank test, p < 0.05).

3.3 DISCUSSION

In this work, we proposed HG-DCM, a hybrid architecture that bridges compartmental models
with deep neural networks for early-stage pandemic forecasting. This framework synergizes the
interpretability and domain-grounded rigor of compartmental models with the representational
power of deep learning. Specifically, HG-DCM leverages the structured epidemiological insights of
compartmental models to ensure plausible predictions while harnessing neural networks to integrate
auxiliary information from historical, geographical, and meta-pandemic data. This integration
effectively mitigates the pitfalls of overfitting and instability, which often plague individual modeling
approaches, particularly during the early phases of a pandemic when data is sparse and noisy.

Our results demonstrate that HG-DCM outperforms both standalone compartmental models and
purely deep learning-based models on early forecasting tasks. By offering a more robust and accurate
early-stage estimation of pandemic trends, HG-DCM addresses critical challenges in public health
response, such as resource allocation and policy planning. In particular, its ability to produce
stable, noise-robust predictions reduces erratic shifts in trend forecasts, enabling more confident
decision-making and minimizing the risks of resource misallocation caused by extreme over- or
underestimation.

A key strength of HG-DCM is its interpretability, which remains a cornerstone for pandemic fore-
casting applications. While deep learning methods often function as opaque black boxes, HG-DCM
retains the parameter-driven transparency of traditional compartmental models, with fitted parameters
offering actionable epidemiological insights. For instance, in our implementation with the DELPHI
compartmental model, the extracted parameters maintain clinical relevance, providing healthcare
providers with early and interpretable guidance on the potential trajectory of a pandemic. This
interpretability is invaluable for building trust with stakeholders and ensuring actionable insights.

Beyond its strong predictive performance and interpretability, HG-DCM exhibits significant architec-
tural flexibility. In our experiments, we employed a ResNet-based module for temporal representation
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learning and the DELPHI model for cumulative case curve estimation, selected based on empirical
evaluations. However, the modular design of HG-DCM allows for seamless integration of more
advanced compartmental models or neural network architectures as they emerge. This adaptability
positions HG-DCM as a forward-compatible framework capable of evolving alongside advances in
epidemiology and machine learning.

In summary, HG-DCM provides a practical, interpretable, and extensible solution for early-stage
pandemic forecasting. By demonstrating the utility of combining epidemiological and deep learning
methodologies, our work highlights the potential of hybrid approaches to address complex forecasting
challenges in the face of limited data and high uncertainty. Future research may explore augmenting
HG-DCM with additional data modalities, enhancing its generalizability to a broader spectrum of
infectious diseases, and extending its application to real-time adaptive forecasting.

4 LIMITATION

While HG-DCM demonstrates strong performance in early-stage pandemic forecasting, it is not
without limitations. One notable challenge lies in handling the high variability of incidence rates
across different geographical regions. This variability renders conventional normalization techniques,
such as batch normalization, unsuitable for the stable estimation of model parameters. Empirical
experiments revealed that incorporating batch normalization resulted in unstable predictions, while
layer normalization caused critical information loss, impeding model convergence. As a result, no
normalization technique was employed in HG-DCM, which, while stabilizing predictions, increased
the overall training time due to slower convergence.

Another limitation relates to the availability and quality of historical pandemic data. The COVID-
19 pandemic provided the first instance of high-resolution, daily time series data, which proved
instrumental in enabling robust model training and evaluation. In contrast, earlier pandemics, such
as Ebola, SARS, and Dengue Fever, often lack comparable data granularity. These datasets are
frequently reported in weekly aggregates, requiring interpolation to align with HG-DCM’s daily
prediction framework. Linear interpolation, while a practical workaround, introduces approximation
errors, particularly during the critical early stages of a pandemic when precise trend estimation is
most needed. This limitation highlights the dependency of HG-DCM on the quality and resolution of
input data, which directly impacts its forecasting accuracy.

Furthermore, while the COVID-19 pandemic raised awareness of the importance of robust pandemic
data collection, the availability of high-quality, real-time data remains inconsistent across regions
and diseases. Recent outbreaks, such as Monkeypox in 2022, demonstrate progress in this area, with
improved public access to daily incidence and mortality data. However, disparities in data quality
and completeness persist globally, posing ongoing challenges for comprehensive model training.

Despite these constraints, HG-DCM’s modular and flexible design ensures its applicability to evolving
data landscapes. As the availability and fidelity of historical pandemic datasets improve, future
iterations of HG-DCM can leverage these advancements to further enhance its capabilities. Addressing
the aforementioned limitations will be critical for developing more generalizable and efficient
forecasting frameworks for infectious disease outbreaks.

5 CONCLUSION

In this work, we introduced HG-DCM, a novel deep compartmental architecture designed to enhance
early-stage pandemic forecasting. Our approach integrates historical pandemic data and metadata
through a deep learning framework coupled with a compartmental modeling component that generates
interpretable forecasts. We demonstrated that HG-DCM outperforms both traditional compartmental
models and standalone deep learning models in early-stage forecasting tasks.

These results highlight the promise of deep compartmental models for pandemic forecasting and
underscore the value of incorporating historical pandemic data. Future work could focus on integrating
additional data sources, such as mobility patterns, policy interventions, or other metadata, to further
improve forecasting accuracy. Moreover, adapting HG-DCM for real-time applications represents
an exciting avenue for research. We believe this work establishes a foundation for leveraging past
pandemics through deep learning to inform future forecasting efforts.
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