Representing Long Documents with Contextualized Passage Embeddings

Anonymous authors

Abstract

In this study we investigated a method for processing a large document collection with many long documents. The goal was to improve the processing runtime and memory requirements for document level tasks. Our hypothesis was that when a document collection with many long documents is often processed for many tasks, then the processing cost can be dramatically reduced. We propose to represent the document collection by a database of passage embeddings instead by the document’s tokens. Passage embeddings compress a large window of tokens spanning multiple sentences into one embedding. For our approach the passage embeddings should be task-agnostic, such they can be pretrained, precomputed and then be reused for many tasks. We propose a pretraining method for passage embeddings with (i) a passage encoder (PE) coupled with (ii) a bidirectional document encoder (BDE) over the passage embeddings. BDE can be finetuned for different downstream tasks to quickly learn a new model for a new task. In experiments, we found that PE+BDE is competitive with token-level or sentence-level models and sometimes even better. For plagiarism detection, for example, we improve over a Longformer-based model by +14 accuracy points. For passage classification on the contract understanding task PE+BDE reaches an AUPR 60.3 while a token-level information extraction approach using RoBERTa-large obtained an AUPR of 48.2 .

1. Introduction

Recently, the challenge of handling long and structured documents has started to receive attention in the NLP community. The challenge of processing many long documents is the high cost this incurs. Current state-of-the-art models —like BERT [Devlin et al., 2019]— can only efficiently process 512 tokens at a time. For a 100 page document this would yield roughly 200 document chunks which have to be processed independently, i.e. document semantics can be lost. There are recent advances like the Longformer [Beltagy et al., 2020] that are more efficient at handling long text sequences. The largest Longformer-based model can chunk a 100 page document in only 6 parts a 16K tokens but requires currently GPUs
1. Pretrain passage encoder and document encoder

2. Use in downstream tasks

The passage encoder (PE) and the bidirectional document encoder (BDE) are pre-trained on a document collection.

Use BDE to represent the document collection with precomputed passage embeddings.

Train query encoder to retrieve passages relevant to a query from the document collection.

Finetune BDE to classify a pair of documents. Each document is represented by precomputed passage embeddings.

Finetune BDE to classify each passage in a document. The document is represented by precomputed passage embeddings.

Figure 1: Overview over the investigated setting.

with 48 GB working memory. However, even with more efficient models that operate on the token level the processing cost is still bound by the number of tokens in the document.

In this study we investigate a scenario of a large document collection with many long documents like they exist for example in the scientific, technical and legal domain. We assume that the document collection will be processed for many types of tasks, like information extraction and document classification. Also, we assume that not all tasks are known a priori such that preprocessing the documents in a task-specific way is not feasible. Our hypothesis is that there is an opportunity to reduce the processing cost when parts of the computation for a task can be precomputed and cached. Therefore, we propose to represent documents with passage embeddings. Passages in our study context are document chunks of a certain token size, which are obtained in an ad-hoc fashion, i.e. chunks of 128 sub-word tokens in the following. The underlying hypothesis is that passage embeddings can encode a sufficient amount of information for some tasks. Also, for tasks that do require more fine-grained information, passage embeddings could be used for a coarse pre-classification over many passages, such that only a small subset of a document’s passages is processed on a token-level. Processing documents with passage embeddings yields a reduction in run-time and memory complexity in the order of the token window size of the passage.

To represent a passage with an embedding we use a passage encoder (PE) based on the Transformer [Vaswani et al., 2017]. To encode document-wide semantics among the passage embeddings we propose a bidirectional document encoder (BDE) also based on the Transformer. The technical novelty is the task-agnostic pretraining strategy that enables self-supervised pretraining of PE and BDE on the document collection. After pretraining of PE and BDE, PE is used to precompute embeddings for all passages in the document collection. The precomputed passage embeddings can then be used as input to the pretrained BDE which can be finetuned for various downstream tasks. This leads to two computational advantages: (i) the amount of compute to encode the document collection has to be spent
only once, e.g., with a passage size of 100 words all articles from Wikipedia yield $\approx 22M$
passages, and (ii) finetuning BDE becomes very efficient, e.g., this enables training a passage
classifier for very large documents with up to 500 passages or more. Moreover,
the pretraining objective for BDE is to contextualize the passage embeddings such that
semantics shared within the document, such as entities and topics, are not lost due to the
segmentation into passages.

Figure 1 shows an overview of the approach that we propose and the three downstream
tasks in which we evaluate it: dense passage retrieval, document pair classification and
passage classification. The main question for dense passage retrieval was to investigate,
if contextualizing the passage embeddings with BDE is helpful for retrieval. This was
motivated by the anecdotal report by [Karpukhin et al., 2020], in which they describe
that they observed it to be helpful for their proposed dense passage retrieval when the
Wikipedia page title is added to the passage text for creating the passage embedding. For
example, let’s assume in a document an entity is unambiguously mentioned in the first
passage of the document "A. K. Smith was a doctor of . . . ”; however, the information about
the entity that is searched for is in a later passage "Smith discovered the interaction of ..."). We compared the retrieval performance between contextualized and non-contextualized
passages and found an improvement when contextualized passages were used. In document
pair classification and passage classification we tested if our approach is competitive with
the token-level approaches that have been proposed so far. For plagiarism detection the
proposed approach achieved 98% accuracy and 98% F1, improving by +14% accuracy over
results from a concurrent study with a Longformer based model [Caciularu et al., 2021]. For
passage classification BDE achieved up to 60.4 AUPR on the passage-level while the best
token-level model based on RoBERTa-large achieved 48.2 AUPR.

An additional contribution is that we investigated benchmarks for long documents.
Analyzing the prospective benchmarks we found that some were not very challenging
regarding long documents or regarding the inference over the entire document. For example,
we found that in many Wikipedia-based QA benchmarks the provenance of the answer of
the question is located in the very first passage of the relevant Wikipedia article for over
90% of the questions. The document pair classification benchmark proposed by Zhou et al.
[2020] contains three citation recommendation benchmarks and one plagiarism detection
benchmark. However, only one of the benchmarks—the plagiarism detection benchmark—
covers many long documents on which BDE achieves 98% accuracy. Based on this, we found
that there is a lack of difficult document pair classification benchmarks with long documents.
For this reasons we propose WIKIPAIRENTITYMATCH in which the task is to determine if
in a pair of documents both do mention one or more common entities, i.e. cross document
coreference. On this task our best BDE model only achieved 61.9 F1, thus the benchmark is
more difficult and does foster research in more advanced models in the future.

We will release code, our newly proposed WIKIPAIRENTITYMATCH benchmark and
pretrained models to foster research in for pretraining passage embeddings and pretrained
BDE-like models.
2. Pretraining Passage Encoder and Bidirectional Document Encoder

In this section we describe the architecture of the passage encoder (PE) and the bidirectional document encoder (BDE), and more crucially the task agnostic pretraining objectives.

2.1 Architecture and Pretraining Objective

The architecture we use is a hierarchical Transformer similarly to [Pappagari et al., 2019, Zhang et al., 2019, Yang et al., 2020] where a lower BERT-style Transformer computes a dense vector representation of a token sequence. We denote this as the passage encoder (PE). The dense representations of the passages are fed into another BERT-style Transformer, i.e. the bidirectional document encoder (BDE), which contextualizes the passages. See Figure 2 for an overview. Novel in our proposed approach are the two pretraining objectives:

Passage reconstruction. The goal for the training objective for the passage encoder is to obtain passage embeddings that contain information from the passage for many different tasks. Thus we use a passage decoder (PD) — a BERT-style Transformer — to reconstruct the original text passage from the passage embedding. Instead of a full reconstruction we only want to encourage the model to encode information from the passage that is the most specific, e.g. entities, relations and events. As a proxy for this, we mask out tokens based on the token frequency, i.e. all tokens except the most frequent tokens are masked out. This provides a template for the decoder which the model has to fill out using the passage embedding. For example, PE receives the original text "The 2015 Illinois Fighting Illinois football team represented the University of Illinois ..." and creates a passage embedding. Then PD receives the passage embedding and the masked out text "The _ _ _ _ _ team _ the
University of ...” and has to reconstruct the original text passage. Thus the reconstruction objective is similar to one step of non-autoregressive decoding. The loss for this task is the cross entropy loss over the vocabulary for classifying the masked-out tokens. For training PE/PD all the vocabulary weights are shared between both encoders and decoders.

Masked document modelling. The document’s passage embeddings are fed to BDE. Here the objective is masked document modelling where masked-out passages have to be predicted, i.e. similar to BERT’s masked language modelling objective. The target vocabulary is very large, i.e. Wikipedia with passages of 100 words yields 22M passages. Thus in practice we used a surrogate loss to predict the correct passage from the in-batch passages, i.e. the cross-entropy loss for the classification over the in-batch passages for the masked-out passages.

Discussion. In contrast to [Zhang et al., 2019] we split the objective of using the document context and reconstructing the token sequence into two objectives, and we frame the reconstruction in a template-filling problem. The goal of [Zhang et al., 2019] was to pretrain their model for generation, while our goal is to pretrain the model for information extraction tasks.

3. Experiments

In the following experiments we investigated two distinct scenarios for which PE and BDE can be used in downstream tasks:

(i) *Use precomputed contextualized embeddings from BDE* (precompute-BDE) for a downstream task like passage retrieval. We are interested if the retrieval task can benefit from the document-wide semantics that are encoded in the passage embeddings.

(ii) *Use precomputed embeddings from PE and only finetune BDE* (precompute-PE+finetune-BDE) for a downstream task. This is motivated by a scenario with a large document collection. Therefore, one shared database of passage embeddings serves as representation of the document collection for downstream tasks that will be reused by many different tasks like document-pair classification and passage classification. When precompute-PE+finetune-BDE reaches competitive performance to a token-level model then the dramatic speedup of using BDE would become attractive.

In the following sections we first describe how we pretrained PE and BDE. Then we describe the setup in the downstream tasks and report experimental results.

3.1 Pretraining.

The pretraining data was a current dump of English Wikipedia with approximately 6 million documents preprocessed into text. We selected 20,000 documents for validation and testing each. The passage size is a hyperparameter and we picked a size of 128 tokens with no overlap. This did yield approximately 36 million training passages.

For pretraining we initialized PE, PD and BDE from BERT base uncased. First we trained PE with the passage reconstruction loss. We chose a vocabulary cutoff for masking out input tokens for PD such that the 300 most frequent tokens are not masked out. We trained PE for approx. one epoch on 8xV100 GPUs, which takes roughly 1 day. We kept all default hyperparameters for BERT except the learning rate which was set to $1e^{-04}$.
Table 1: Results (best, second best) for passage retrieval on TriviaQA (TRIVIA) and Natural Questions (NQ). We report the in-batch MRR on the validation data from KILT (the test data is not public). Contextualized NO is the baseline setting in which the query encoder retrieves answer passages using the non contextualized PE embeddings. Our proposed approach is using the contextualized embeddings from BDE, i.e. Contextualized YES. The setting in which PE is not finetuned simulates a fixed document representation for which a new QA task is learned.

<table>
<thead>
<tr>
<th>Contextualized</th>
<th>Finetune PE</th>
<th>TRIVIA MRR</th>
<th>NQ MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>NO</td>
<td>0.087</td>
<td>0.182</td>
</tr>
<tr>
<td>NO</td>
<td>YES</td>
<td>0.101</td>
<td>0.217</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>0.118</td>
<td>0.210</td>
</tr>
<tr>
<td>YES</td>
<td>YES</td>
<td>0.104</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Then we jointly trained PE/PD with BDE with the additional masked document modelling task. For this task a large batch size is crucial such that a large amount of in-batch passages are available for the classification task. We jointly trained BDE/PE/PD for 2 weeks on 8xV100 GPUs with a batch size of 2 documents per GPU with a maximum of 24 passages per document. As the documents are mostly in a range from 2 passages up to 50 passages we only mask out one passage per document. Additionally, we added a loss to predict the correct passage also for each non-masked position with a scaler $\gamma = 0.01$, i.e. downweighted such that the masked document modelling loss has more influence.

3.2 Passage retrieval task

With this task we want to investigate if it is beneficial for retrieval when the passage embeddings are contextualized with BDE. In the retrieval task the goal is given a natural language query to retrieve relevant passages from a knowledge source.

Data. We based our experiments on KILT [Petroni et al., 2020] which is a benchmark based on Wikipedia as a knowledge source for knowledge intensive tasks that consists of eleven datasets spanning five tasks, including open domain question answering (QA). We analyzed the QA datasets in KILT w.r.t. how important it is to understand the whole document for a question. As a proxy for this we computed statistics about the location of the answer in the document, with the notion that passages later in the document tend to be more dependent on information in passages prior to them. The three relevant QA datasets were Natural Questions [Kwiatkowski et al., 2019], HotpotQA [Yang et al., 2018], TriviaQA [Joshi et al., 2017] as well as two slot filling datasets TREx [Elsahar et al., 2018] and Zero Shot RE [Levy et al., 2017]. We computed statistics over the location of the provenance of the query’s answer which is one of the meta-data available in KILT and found that — except for Natural Questions and Trivia QA — over 90% of the questions in most datasets can be answered from the first passage in the document. Thus, HotpotQA, TREx and Zero Shot RE would not benefit from a contextualization of the passages. However, the
Document Pair Task

<table>
<thead>
<tr>
<th>Document Pair Task</th>
<th>Avg. #Pass.</th>
<th>#Train</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAN</td>
<td>1.72</td>
<td>100K</td>
</tr>
<tr>
<td>S2ORC</td>
<td>3.08</td>
<td>150K</td>
</tr>
<tr>
<td>OC</td>
<td>2.44</td>
<td>240K</td>
</tr>
<tr>
<td>PLA</td>
<td>33.46</td>
<td>18K</td>
</tr>
<tr>
<td>WikiPairEntityMatch</td>
<td>7.00</td>
<td>380K</td>
</tr>
</tbody>
</table>

Table 2: Dataset statistics for the document pair classification task. AAN, S2ORC, OC and PLA were published by Zhou et al. [2020]. We propose WikiPairEntityMatch which adds a new task and contains many long documents.

Natural Questions and TriviaQA benchmark contain the answer’s provenance in the 7th passage or later in the Wikipedia article in 10% and 20% of the questions respectively. Thus we focussed our experiments on TriviaQA and Natural Questions.

Model. For this task an additional query encoder (QE) is trained to compute a query embedding from a natural language query. QE is initialized from the pretrained PE and is trained with a cross entropy loss for the classification objective to predict the answer passage out of all in-batch passages. This is similar to the objective used by [Karpukhin et al., 2020]. To investigate if it is benficial when the passage embeddings are contextualized with BDE we compare two settings: (i) The baseline is training and evaluating QA against the document passage embeddings obtained with PE, which are not contextualized. (ii) The Training and evaluating QA against the document passage embeddings obtained with BDE, which are contextualized.

Experimental settings. PE/BDE was initialized from our checkpoint pretrained on Wikipedia. We trained PE/BDE with a batch size of 4 documents on 4 GPUs with gradient accumulation over 30 steps, which yields a total batch size of 480 per update step. Furthermore, we restrict a document to a maximum size of 32 passages which covers 95% of the relevant Wikipiedia articles. We report the in-batch MRR, i.e. the ranking of the correct answer passage against all in-batch passages. For evaluation we choose a batch size of 32 which yields an average of roughly 700 passages per batch to rank the correct passage against.

Results See Table 1 for the results. Comparing the results for retrieving contextualized with non-contextualized passages we observed that contextualizing helped, as we can see an increase in MRR between them. Furthermore, comparing the results when PE is finetuned or not we observe that there is no consistent gain when PE is further adapted for the QA task.

3.3 Document pair classification

In this task, given a pair of documents the goal is to classify the pair w.r.t. a given task.
Table 3: Results (best, second best) for document pair classification experiments. We compare the following settings: Finetune Enc. denotes if the encoder (PE in our approach) was finetuned during training. Level denotes which level of access the model has during inference. CD-LM is a Longformer based pretrained language model for cross document classification [Caciularu et al., 2021]. BERT-AVG and BERT-HAN and GRU-HAN are the results reported by Zhou et al. [2020]. Model initializations/pretraining: BDE BERT was initialized from vanilla BERT-base-uncased; BDE WIKI was pretrained on Wikipedia; BDE TRAIN was pretrained with the PE/BDE pretraining on the joint training data of all the tasks.

<table>
<thead>
<tr>
<th>Model</th>
<th>Finetune Enc.</th>
<th>Level</th>
<th>AAN F1</th>
<th>S2ORC F1</th>
<th>OC F1</th>
<th>PAN F1</th>
<th>WIKI F1 (IID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT-AVG</td>
<td>NO</td>
<td>Sentence</td>
<td>53.9</td>
<td>85.0</td>
<td>76.9</td>
<td>76.6</td>
<td>-</td>
</tr>
<tr>
<td>GRU-HAN</td>
<td>NO</td>
<td>Sentence</td>
<td>74.8</td>
<td>89.9</td>
<td>89.0</td>
<td>78.2</td>
<td>-</td>
</tr>
<tr>
<td>GRU-HAN</td>
<td>YES</td>
<td>Token</td>
<td>75.2</td>
<td>91.6</td>
<td>89.9</td>
<td>76.7</td>
<td>-</td>
</tr>
<tr>
<td>BERT-HAN</td>
<td>NO</td>
<td>Sentence</td>
<td>69.1</td>
<td>92.1</td>
<td>87.9</td>
<td>86.2</td>
<td>-</td>
</tr>
<tr>
<td>CD-LM</td>
<td>YES</td>
<td>Token</td>
<td>88.8</td>
<td>96.5</td>
<td>95.3</td>
<td>82.9</td>
<td>-</td>
</tr>
<tr>
<td>BDE BERT</td>
<td>YES</td>
<td>Passage</td>
<td>80.5</td>
<td>93.4</td>
<td>91.8</td>
<td>98.4</td>
<td>33.2 (53.1)</td>
</tr>
<tr>
<td>BDE WIKI</td>
<td>NO</td>
<td>Passage</td>
<td>79.4</td>
<td>88.1</td>
<td>89.3</td>
<td>95.2</td>
<td>33.8 (30.4)</td>
</tr>
<tr>
<td>BDE WIKI</td>
<td>YES</td>
<td>Passage</td>
<td>80.1</td>
<td>93.4</td>
<td>92.3</td>
<td>98.0</td>
<td>52.6 (61.9)</td>
</tr>
<tr>
<td>BDE TRAIN</td>
<td>NO</td>
<td>Passage</td>
<td>81.0</td>
<td>94.8</td>
<td>92.3</td>
<td>98.7</td>
<td>33.8 (30.4)</td>
</tr>
</tbody>
</table>

Model. In document pair classification we construct a BERT-style "sentence" of two documents, i.e. [CLS] [SEQ] PE_{11} PE_{12} … [SEQ] PE_{21} PE_{22}. This sentence is the input to BDE, see also Figure 1. The document pair classification task uses then the CLS embedding to make a prediction with an additional classifier head.

Data. We use the three citation recommendation benchmarks and plagiarism detection benchmark as proposed by Zhou et al. [2020]. We propose WikiPairEntityMatch as a new benchmark to add another difficult challenge to the range of benchmarks for long documents. The benchmark was constructed by using pairs of Wikipedia articles that mention the same entity (which we can extract via the intra Wikipedia links) as positive examples. As negative examples we sample 10 pairs of Wikipedia articles that have an overlap in their name but have zero overlap w.r.t intra Wikipedia links. The validation and test data are each of size 12K and test is either sampled such that the Wikipidia pages and some entities in them are unseen or seen (IID). See Table 2 for an overview of dataset statistics.

Experimental settings. PE/BDE was either initialized from our checkpoint pretrained on Wikipedia and once pretrained on the collective training data of all tasks. We finetuned PE/BDE with a batch size of 4 documents with gradient accumulation over 80 steps. We compare against the reported F1 results of the original dataset authors and with concurrent work in comparable settings.
Table 4: Results for the passage classification experiment. The model BDE BERT was initialized from vanilla BERT-base-uncased. BDE WIKI was pretrained as described on Wikipedia. BDE TRAIN was pretrained with the BDE pretraining procedure on the training data of the task. RoBERTa are the best results reported by [Hendrycks et al., 2021]. They were obtained with a SQUAD-style QA model, therefore the metrics are not directly comparable to ours.

Results. For most tasks and most settings BDE is competitive and achieves either the second best or best result. The only setting in which our approach does not yield competitive results is when PE is initialized from pretrained Wikipedia and is not finetuned during training. In all other settings BDE outperforms the models from Zhou et al. [2020] and is competitive to the Longformer-based model by [Caciularu et al., 2021].

3.4 Passage classification.

In this task a passage has to be classified into one or more categories. Such a task is best exemplified by the dataset that we used in this experiment. The contract understanding dataset (CUAD) [Hendrycks et al., 2021], contains 500 expertly annotated documents from which more than 50% are longer than 50 passages and more than 25% are longer than 100 passages. This means that processing such a dataset on the token level for exploration and training classifiers is challenging. In fact the authors of the dataset had to resort to a sliding window approach to train models and make inference on this dataset. The annotations are also only meant to be highlights of sections that an expert should review, thus it is very reasonable to assume that such a task can be performed with a reasonable granularity on the passage level as well.

Data. The data are contract documents with span level annotations for certain slot fillers, such as “Effective Date” or “Renewal Term”. They have been annotated by lawyers and cover 500 documents with up to 100 pages.

Model. In document pair classification we construct a BERT-style “sentence” of one document, i.e. [CLS] [SEQ] PE11 PE12 …. This sentence is the input to BDE, see also Figure 1. The passage sequence classification task predicts labels for each passage with an additional classifier head. This particular dataset and task we modelled as multilabel task, because it was possible that one passage could cover multiple annotations.

Experimental settings. PE/BDE was either initialized from our checkpoint pretrained on Wikipedia, or it was pretrained with the BDE/PE pretraining objective on the respective training data and PE then kept fixed during finetuning BDE. We trained PE/BDE with a batch size of 1 document with gradient accumulation over 80 steps. We set the maximum
number of passages per document to 100. We report F1 and the Area under Precision Recall Curve (AURP). We compare against the dataset’s authors reported results.

Results. The results in Table 4 show that the proposed approach in BDE is very competitive, although as we mention also in the results table the results have been obtained very differently and our model only yields a passage level prediction.

4. Related Work

Transformer for large sequences The current state of the art NLP approaches use Transformer based bidirectional pretrained language models (BIPLM), which have quadratic complexity in the number of input tokens. Therefore, their input is usually limited to 512 tokens. [Beltagy et al., 2020, Zaheer et al., 2020] studied how to reduce the runtime complexity and effectively increased the input size for BIPLMs to 4096 tokens or more.

Passage embeddings and passage retrieval. The method to retrieve relevant passages from many long documents is usually exploiting token overlap between the query and the passages. In QA the goal is open domain question answering in which the collection of evidence documents is the whole Wikipedia from which relevant passages have to be retrieved. TF-IDF based retrieval — which exploits token overlap between the query and passages — has shown to be a bottleneck in QA, and can be improved by retrieving relevant passages with dense passage embeddings [Lee et al., 2019, Karpukhin et al., 2020, Asai et al., 2020, Logeswaran et al., 2019, Wu et al., 2020, Guu et al., 2020, Lewis et al., 2020, eli, hay], [Karpukhin et al., 2020] and Lee et al. [2019] trained a BERT based model to compute a dense passage representations, such that relevant passages are classified higher given a query than irrelevant passages. [Karpukhin et al., 2020] reported that using fixed-length passages performs better than natural paragraphs in their preliminary trials in both retrieval and final QA accuracy. Most notably, Lee et al. [2019] add the Wikipedia page title to each passage, which they found to be helpful, which is an indicator that supports our hypothesis.

Hierarchical Transformer [Pappagari et al., 2019] used BERT encoded passages fed into yet another Transformer or RNN to perform document classification, which they reported to performing better than other approaches. [Yang et al., 2020] proposed to hierarchically encode documents with stacked Transformers to encode passages and finally produce a single document vector embedding, which they successfully use for document matching. In [Zhang et al., 2019] they compute sentence embeddings over which yet another Transformer performs abstractive summarization which outperforms other approaches.

5. Conclusion

In conclusion we showed that performing tasks on a passage level seems to be a feasible and competitive approach to token level approaches. We also showed that contextualizing passages can improve results such that the document-wide semantics can be recovered. We present our approach for pretraining and then the experimental results on three downstream tasks. We will release the code, our newly proposed WikiPAIRENTITYMATCH benchmark and pretrained models to foster research for pretraining passage embeddings and pretrained and finetuning BDE-like models.
References

Anonymous authors

