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Fernando Moreno-Pino1,∗,† , Álvaro Arroyo1,∗, Harrison Waldon1,∗, Xiaowen Dong1,2, Álvaro Cartea1,3
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ABSTRACT

Time-series data in real-world medical settings typically exhibit long-range de-
pendencies and are observed at non-uniform intervals. In such contexts, tradi-
tional sequence-based recurrent models struggle. To overcome this, researchers
replace recurrent architectures with Neural ODE-based models to model irregularly
sampled data and use Transformer-based architectures to account for long-range
dependencies. Despite the success of these two approaches, both incur very high
computational costs for input sequences of moderate lengths and greater. To mit-
igate this, we introduce the Rough Transformer, a variation of the Transformer
model which operates on continuous-time representations of input sequences and
incurs significantly reduced computational costs, critical for addressing long-range
dependencies common in medical contexts. In particular, we propose multi-view
signature attention, which uses path signatures to augment vanilla attention and to
capture both local and global dependencies in input data, while remaining robust to
changes in the sequence length and sampling frequency. We find that Rough Trans-
formers consistently outperform their vanilla attention counterparts while obtaining
the benefits of Neural ODE-based models using a fraction of the computational
time and memory resources on synthetic and real-world time-series tasks.

1 INTRODUCTION

Real-world sequential medical data in areas such as Human Activity Recognition (Chen et al.,
2021), suicide risk monitoring (Porras-Segovia et al., 2022), or activity detection in atrial fibrillation
electrograms (Rı́os-Muñoz et al., 2020) often are irregularly sampled, of variable length, and exhibit
long-range dependencies. Furthermore, these data, which may be drawn from EEG readings (Vahid
et al., 2020) or wearable devices (Moreno-Pino et al., 2022), are often sampled at high frequency
for long periods of time, yielding long sequences of data. Hence, many popular machine learning
models struggle to model real-world medical sequential data, due to input dimension inflexibility,
memory constraints, and computational bottlenecks. Rather than treating these data as discrete
sequences, effective theoretical models often assume data are generated from some underlying
continuous-time process (Morariu-Patrichi & Pakkanen, 2022; Ratcliff et al., 2016). Hence, there is
an increased interest in developing machine learning methods which analyze sequential medical data
using continuous-time representations.

One recent approach to modeling continuous-time data involves the development of continuous-
time analogues of standard deep learning models, such as Neural ODEs (Chen et al., 2018) and
Neural CDEs (Kidger et al., 2020), which extend ResNets (He et al., 2016) and RNNs (Funahashi &
Nakamura, 1993), respectively, to continuous-time settings.

Instead of processing discrete data directly, these models operate on a latent continuous-time rep-
resentation of input sequences. This approach is successful in continuous-time modeling tasks
where standard deep recurrent models fail. In particular, extensions of vanilla Neural ODEs to the
time-series setting (Rubanova et al., 2019; Kidger et al., 2020) succeed in various domains such as
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adaptive uncertainty quantification (Norcliffe et al., 2021), counterfactual inference (Seedat et al.,
2022), or generative modeling (Calvo-Ordonez et al., 2023).

In many practical medical settings, such as human behaviour changes detection (Berrouiguet et al.,
2018), sleep activity recognition (Martı́nez-Garcı́a et al., 2023), or heart rate fluctuations (Hausdorff
& Peng, 1996), continuous-time data also exhibit long-range dependencies. That is, data from the
distant past may impact the system’s current behavior. Deep recurrent models struggle in this setting
due to vanishing gradients. Several recent works (Melnychuk et al., 2022; Nguyen & Grover, 2022;
Moreno-Pino et al., 2023) successfully extract long-range dependencies from sequential data with
Transformers (Vaswani et al., 2017), which learn temporal dependencies of a tokenized representation
of input sequences. As the attention mechanism is permutation invariant, extracting such temporal
dependencies requires a positional embedding of input data which projects data into some latent space.
The parallelizable nature of the Transformer allows for rapid training and evaluation on sequences
of moderate length and has contributed to its success in fields such as natural language processing
(NLP).

While the above approaches succeed in certain settings, several limitations hinder their wider applica-
tions. On the one hand, Neural ODEs and their analogues (Rubanova et al., 2019; Kidger et al., 2020)
bear substantial computational costs when modeling long sequences of high dimension (see Morrill
et al., 2021). On the other hand, Transformers operate on discrete-time representations of input
sequences, whose relative ordering is represented by the positional embedding. This representation
may inhibit their expressivity in continuous-time data modeling tasks (Zeng et al., 2023). Moreover,
Transformer-based models suffer from a number of difficulties, including (i) input sequences must
be sampled at the same times, (ii) the sequence length must be fixed, and (iii) the computational
cost scales quadratically in the length of the input sequence. These difficulties severely limit the
application of Transformers to continuous-time data modeling.

2 METHODS

Rough Transformer. We propose the Rough Transformer, a Transformer-based architecture that
operates on a continuous-time representation of sequential data. We make use of the the path signature
from rough path theory. For a smooth function f : R+ → Rd, the signature S(f)s,t is defined as the
infinite sequence of iterated integrals

S(f)s,t :=

(
1,

∫ t

s

f ′(u) du,

∫∫
s<u1<u2<t

f ′(u1)⊗ f ′(u2) du1 du2, ...

)
, (1)

for any s, t ∈ R+, where ⊗ denotes the tensor product; see Appendix A for details on the path
signature.

Let D be a dataset of irregularly sampled time-series. To project a time-series X ∈ D to a continuous-
time object, we first let X̃ denote its piecewise-linear interpolation. Fixing a set of times T =
{t1, ..., tL}, we define the multi-view signature for any tk ∈ T

M(X)k :=
(
S(X̃)0,tk , S(X̃)tk−1,tk

)
. (2)

In what follows, we refer to the components of
(
S(X̃)0,tk , S(X̃)tk−1,tk

)
as global and local,

respectively. Intuitively, one can interpret the global component as an efficient representation of
long-term information (see Theorem A.2 in Appendix A), and the local component as a type of
convolutional filter that is invariant to the sampling rate of the signal. Now, define the multi-view
signature transform

M(X) = (M(X)1, ...,M(X)L̄) . (3)

For a truncation level n, we define M(X)≤n by truncating each signature component to contain
terms consisting of at most n integration operations. Next, define the multi-view attention mechanism,
which uses the multi-view signature transform to extend the standard attention mechanism to the
space of continuous functions Lyons et al. (2007). First, fix a truncation level n ∈ N, and let d̄ ∈ N
be such that M(X)≤n

k ∈ Rd̄. For h = 1, ...,H let W Q̃,K̃,Ṽ
h ∈ Rd̄×d̄′

for some d̄′ ∈ N. Then, let

Q̃h = M(X)≤nW Q̃
h , K̃h = M(X)≤nW K̃

h , Ṽh = M(X)≤nW Ṽ
h . (4)
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Figure 1: Test accuracy per epoch for the frequency classification task across three random seeds.
Left: Performance for the full time-series. Right: Performance when randomly dropping half of the
datapoints every epoch.

Then, the attention calculation is given by softmax
(

Q̃hK̃
⊺
h√

d̄′

)
Ṽh. Notice that the attention calculation

is similar to vanilla attention, however, we stress that the multi-view attention is built on continuous-
time objects, the signatures, while the standard attention mechanism acts on discrete objects.

Advantages of Rough Transformers. The Rough Transformer (i) is independent of the sequence
length of input data, because one projects input data to its continuous-time interpolation and samples
this interpolation at a fixed number of points (ii) is robust to irregular sampling, because the the
iterated integrals in equation 1 are invariant to time-reparameterization; see Appendix A (iii) decreases
the memory and computational bottleneck inherent to the vanilla Transformer, because we fix the
signature sequence length to be L << L. Furthermore, note that the multi-view attention mechanism
does not require backpropagation through the signature calculation and can be computed in parallel.
This is significantly more computationally efficient when compared to computing signatures batch-
wise in every training step.

3 EXPERIMENTS

Frequency Classification. Our first experiment is based on a set of synthetically generated time-
series from continuous-paths of the form X̂(t) = g(t) sin(ω t+ν)+η(t) , where g(x) is a non-linear
trend component, ν and η are two noise terms, and ω is the frequency. Here, the task of the model is
to classify the time-series according to its frequency ω. We consider 1000 samples in 100 classes with
ω evenly distributed from 10 to 500. Each time-series is regularly sampled with 2000 times-steps
on the interval [0, 6]. This synthetic experiment is similar to others in recent work on time-series
modeling (Li et al., 2019; Yoon et al., 2019; Moreno-Pino et al., 2023). To check the ability of the
model to infer the true continuous-time function from irregular observations we drop 50% of the data
points at every epoch and report results for both the full and reduced time-series.

Figure 1 shows that the Rough Transformer, hereafter denoted RFormer, improves the performance
of the Transformer in two ways. First, the inclusion of both local and global information through
the multi-view signature enhances the sample efficiency of the model, even though the attention
mechanism is now operating on a much shorter sequence. Second, the model is robust to changes
in the sampling frequency at inference time, despite operating with half of the context. Therefore,
in this task, unlike the vanilla Transformer, RFormer adapts to changes in both the length and the
sampling frequency of the input stream.1

When compared with other models, we see that GRU and ODE-RNN fail to capture the information in
the signal, and are not able to obtain any meaningful performance improvement throughout the training
period. This highlights the shortcomings of most RNN-based models when processing sequences

1We highlight that the drop in performance is likely due to aliasing, i.e., the sampling rate is below the
Nyquist rate, meaning that higher frequency signals cannot be appropriately represented with the number of data
points available.
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Table 1: Test RMSE (mean ± std), computed across five seeds on the Heart Rate (HR) dataset. The
results correspond to both our reproduction and those presented in (Morrill et al., 2021).

Model Test RMSE

Full 50% Drop

ODE-RNN⋄ 13.06 ± 0.00 -
Neural CDE⋄ 9.82 ± 0.34 -
Neural RDE⋄ 2.97 ± 0.45 -

GRU† 13.06 ± 0.00 13.06 ± 0.00
ODE-RNN† 13.06 ± 0.00 13.06 ± 0.00

Neural RDE† 4.04 ± 0.11 4.67 ± 0.40
Transformer 8.24 ± 2.24 21.01 ± 3.81

RFormer 3.04 ± 0.03 3.31 ± 0.05

of moderate length, which are very common in real-world applications. In turn, Neural-CDE and
Neural-RDE (Morrill et al., 2021), which is tailor-made for long-range time series modeling, can
capture some useful dependencies in the time series but falls short when compared with both vanilla
Transformer and RFormer. When data are irregularly sampled, we see a very sharp drop in
performance for the Transformer model. Both Neural-CDE and Neural-RDE also exhibit a
significant drop in performance despite being continuous-time.2

HR dataset. Next, we consider the Heart Rate dataset from the TSR archive (Tan et al., 2020),
originally sourced from Beth Israel Deaconess Medical Center (BIDMC). This dataset consists
of time-series sampled from patient ECG readings, and each model is tasked with forecasting the
patient’s heart rate (HR) at the sample’s conclusion. The data, sampled at 125Hz, consists of three-
channel time-series (including time), each spanning 4000 time steps. We used the L2 loss metric to
assess the performance. Table 1 shows the results.

The sequences in the HR dataset are sufficiently short to remain within memory when running the
Transformer model. The baseline Transformer model improves over GRU and ODE-RNN,
however it is less competitive when compared with Neural-RDE, suggesting that the Transformer
is not particularly well-suited for this type of task. However, the RFormer model improves over
the baseline Transformer by 171% and yields the best performance overall, experiencing a very
small fall in test loss when it comes to the random drop, similar to other continuous-time models.

Training Efficiency. Attention-based architectures are highly parallelizable on modern GPUs, as
opposed to traditional RNN models which require sequential updating. However, vanilla attention
experiences a bottleneck in memory and time complexity as the sequence length L grows. As covered
above in Section 2, variations of the signature transform allow the model to operate on a reduced
sequence length L̄ without increasing the dimensionality in a way that would become problematic
for the model. This allows us to bypass the quadratic complexity of the model without resorting
to sparsity techniques commonly used in the literature (Li et al., 2019; Feng et al., 2023). The
previous experiment demonstrates empirically that operating on this continuous-time representation
does not hinder (and in fact improves) model performance, with the added benefit of robustness to
irregularly-sampled time-series. Table 2 shows the empirical running times for the optimal signature
hyperparameters (which can be found in Appendix B), with all models run on the same machine and
using the same batch size. We also report the speedup of the RFormer model when compared to the
vanilla Transformer.

The computational efficiency gains of RFormer are attained due to the multi-view signature trans-
form reducing the length of the time-series with minimal information loss. This contrasts with
NRDEs, which augment NCDEs with local signatures of input data, and find that smaller windows
often perform better. Hence, NRDEs do not experience the same computational gains as RFormer,
as they must perform many costly ODE integration steps.

2In the case of NRDEs, this phenomenon was observed consistently for both shorter and longer windows.
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Table 2: Seconds per epoch for all models considered. See Appendices C and B for experimental
details.

Model Running Time (seconds / epoch)

Sine HR

GRU 0.12 1.07
ODE-RNN 5.39 50.71
Neural CDE 9.83 -
Neural RDE 0.85 9.52
Transformer 0.77 11.71

RFormer 0.55 0.45
Speedup 1.4× 26.11×

4 CONCLUSION

In this paper, we introduced the Rough Transformer, a variant of the original Transformer that allows
the processing of discrete-time series as continuous-time signals through the use of multi-view
signature attention. Empirical comparisons showed that Rough Transformers outperform vanilla
Transformers and continuous-time models on a variety of time-series tasks and are robust to the sam-
pling rate of the signal. Finally, we show that RFormer provides significant speedups in training time
compared to regular attention and ODE-based methods, without the need for major architectural mod-
ifications or sparsity constraints. In future work, it would be interesting to see if Rough Transformers
also provide good performance in other application domains such as finance (Scalzo et al., 2021;
Moreno-Pino & Zohren, 2022; Arroyo et al., 2022; 2024) or weather forecasting (Nguyen et al., 2023).
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A PROPERTIES OF PATH SIGNATURES

First, we recall that smooth paths are uniquely determined by their signatures, which motivates its
use as a feature map.

Proposition A.1. Given a smooth path X̂ : [0, T ] → Rd, then the map PX̂ : [0, T ] → R1+d where
PX̂(t) = (t, X̂(t)) is uniquely determined by it’s signature S(PX̂)0,T .

The proof of this fact in (Hambly & Lyons, 2010).

For Rough Transformers, several features of path signatures are important. First, linear functionals
on path signatures possess universal approximation properties for continuous functionals.

Theorem A.2. Fix T > 0, and let K ⊂ C1
b ([0, T ];Rd). Let f : C1

b ([0, T ];Rd+1) → R be continuous
with respect to the sup-norm topology on C1

b ([0, T ];Rd+1). Then for any ϵ > 0, there exists a linear
functional ℓ such that

|f(PX̂)− ⟨ℓ, S(PX̂)0,T ⟩| ≤ ϵ , (5)

for any X̂ ∈ K.

For a proof of A.2, see (Arribas, 2018). Even though Theorem equation A.2 guarantees that linear
functionals are sufficient for universal approximation, linear models are not always sufficient in
practice. This motivates the development of nonlinear models built upon the path signature which
efficiently extract path behavior.

The second feature is that the terms of the path signature decay factorially, as described by the
following proposition.

Proposition A.3. Given X̂ ∈ C1
b ([0, T ];Rd), for any s, t ∈ [0, T ], we have that for any I ∈ Ind

|S(X̂)I0,T | = O (1/n!) . (6)

For a proof of Proposition A.3, see (Lyons et al., 2007). Hence, the number of terms in signature
grows exponentially in the level of the signature, but the tail of the signature is well-behaved, so only
a few levels in a truncated signature are necessary to adequately approximate continuous functionals.

A.1 SIGNATURES OF PIECEWISE LINEAR PATHS.

In the Rough Transformer, we use linear interpolation of input time-series to get a continuous-time
representation of the data. As mentioned in Section 2, the signature computation in this case is
particularly simple.

Suppose X̂k : [tk, tk+1] → Rd is a linear interpolation between two points Xk, Xk+1 ∈ Rd. That is,

X̂k(t) = Xk +
t− tk

tk+1 − tk
(Xk+1 −Xk) . (7)

Then the signature of X̂k is given explicitly:

S(X̂k)tk,tk+1
=

(
1, Xk+1 −Xk,

1

2
(Xk+1 −Xk)

⊗2,
1

3!
(Xk+1 −Xk)

⊗3, ...,
1

n!
(Xk+1 −Xk)

⊗n, ...

)
,

(8)

where ⊗ denotes the tensor product. Let X̂k ∗ X̂k+1 denote the concatenation of X̂k and X̂k+1. That
is, X̂k ∗ X̂k+1 : [tk, tk+2] → Rd is defined

X̂k ∗ X̂k+1(t) =

{
X̂k(t) t ∈ [tk, tk+1]

X̂k+1(t) t ∈ (t2, tk+2] .
(9)

The signature of the concatenation X̂k ∗ X̂k+1 is given by Chen’s relation.
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Proposition A.4 (Chen’s Relation). The following identity holds:

S(X̂k ∗ X̂k+1)tk,tk+2
= S(X̂k)tk,tk+1

⊗ S(X̂k+1)tk+1,tk+2
, (10)

where for elements A,B ∈ T ((Rd)) with A = (A0, A1, A2, ...) and B = (B0, B1, B2, ...) the tensor
product ⊗ is defined

A⊗B =

 k∑
j=0

Aj ⊗Bk−j


k≥0

. (11)

Let X = (X0, ..., XL) be a time-series. Then the linear interpolation X̃ : [0, T ] → Rd can be
represented as the concatenation of a finite number of linear paths:

X̃ = X̂0 ∗ · · · ∗ X̂L−1 . (12)

Hence, the signature can be computed:

S(X̃)0,T = S(X̂0)0,t1 ⊗ · · · ⊗ S(X̂L−1)tL−1,T . (13)

9
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B EXPERIMENTAL DETAILS

All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU with 24,564 MiB of
memory, utilizing CUDA version 12.3. The timings presented in Table 2 were obtained by executing
each model independently for each dataset and averaging the resulting times across 100 epochs. We
take down the hyperparameters used in the RFormer model for each of the datasets in the paper,
which were chosen in accordance with the performance of the model in the validation set.

Table 3: Validation accuracy on the sinusoidal dataset.

Dataset Learning Rate Number of Windows Sig. Depth Sig. Type
Sinusoidal 1× 10−3 75 2 Multi-View

HR 1× 10−3 75 4 Local

10
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C MODELS VALIDATION

This section collects the validation of Step and Depth for the neural RDE model in each of the
evaluated datasets. Optimal values are selected for evaluation on test-set. Early-stopping was used
with same criteria than Morrill et al., 2021.

Table 4: Validation accuracy on the sinusoidal dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)
17.26 2 2 778.9 6912.7
12.21 2 3 770.3 1194.43
16.35 4 2 382.2 2702.48
19.27 4 3 386.16 574.97
20.99 8 2 193 1321.36
24.02 8 3 194.17 332.17
17.15 16 2 97.13 136.43
21.59 16 3 98.17 156.93
17.46 24 2 65.96 105.94
20.59 24 3 66.68 98.97

Table 5: Validation loss on the HR dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)
2.44 2 2 5044.44 56492.33
3.03 2 3 5059.28 39855.19
3.67 4 2 2515.40 10765.58

16.04 4 3 2531.44 7157.20
5.35 8 2 1259.30 3723.94
2.70 8 3 1268.60 18682.82
3.58 16 2 632.08 3518.96
3.64 16 3 636.64 7922.96
3.86 24 2 422.74 3710.95
3.55 24 3 426.83 6567.02
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