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ABSTRACT

The ability to learn different tasks sequentially is essential to the development of
artificial intelligence. In general, neural networks lack this capability, the major
obstacle being catastrophic forgetting. It occurs when the incrementally available
information from non-stationary data distributions is continually acquired, dis-
rupting what the model has already learned. Our approach remembers old tasks
by projecting the representations of new tasks close to that of old tasks while
keeping the decision boundaries unchanged. We employ the center loss as a regu-
larization penalty that enforces new tasks’ features to have the same class centers
as old tasks and makes the features highly discriminative. This, in turn, leads to
the least forgetting of already learned information. This method is easy to im-
plement, requires minimal computational and memory overhead, and allows the
neural network to maintain high performance across many sequentially encoun-
tered tasks. We also demonstrate that using the center loss in conjunction with the
memory replay outperforms other replay-based strategies. Along with standard
MNIST variants for continual learning, we apply our method to continual domain
adaptation scenarios with the Digits and PACS datasets. We demonstrate that our
approach is scalable, effective, and gives competitive performance compared to
state-of-the-art continual learning methods.

1 INTRODUCTION

Humans have the ability to continuously evolve, accumulate and transfer acquired knowledge to
learn new skills throughout their lifetime. In contrast, in the classical machine learning paradigm,
typically referred to as isolated learning (Chen & Liu, 2018), systems are capable of achieving
high performance in learning isolated tasks or narrow domains without using previously learned
knowledge. This makes them different from real-world settings where systems are expected to learn
consecutive tasks with changing data distributions and unknown task boundaries. In this scenario,
the intelligent agent should learn continually without forgetting the already acquired knowledge.
Thus, continual learning, or traditionally called lifelong learning (Chen & Liu, 2018; Thrun, 1995;
1996; 1998; Thrun & Pratt, 2012), becomes necessary for artificial general intelligence.

A significant problem in continual learning is catastrophic forgetting in neural networks, also known
as catastrophic interference (McCloskey & Cohen, 1989). The newly learned information may inter-
fere and disrupt the already learned knowledge, leading to a performance loss on old tasks (Ratcliff,
1990). The extent to which the system should be prone to refine and integrate new knowledge and
retain previous information was termed as a stability-plasticity dilemma and is well-studied in many
previous works. (Grossberg, 1982; 2013; Mermillod et al., 2013). This issue of catastrophic forget-
ting is known to exist in many different types of neural networks, from standard backpropagation
networks to unsupervised networks like self-organizing maps (Richardson & Thomas, 2008; Mer-
millod et al., 2013). There have been several attempts to overcome catastrophic forgetting in neural
networks, and the various approaches are discussed in the next section.

1.1 CONTINUAL LEARNING APPROACHES

In general, current continual learning methods can be broadly categorized into three different types
of strategies based on how they attempt to solve the problem of catastrophic forgetting.
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Architectural approaches mitigate catastrophic forgetting by modifying the architectural proper-
ties of the networks, e.g., adding more neurons or layers or incorporating weight freezing strategies.
One of the earliest strategies in this category was Progressive Neural Networks (PNN) proposed by
Rusu et al. (2016) that retains a pool of pre-trained models as knowledge and learns lateral connec-
tions among them to learn the task at hand. Another simpler strategy, Copy Weights with Re-init
(CWR), was proposed (Lomonaco & Maltoni, 2017) where consolidated knowledge is maintained
by isolating the subsets of weights for each class and learning rest task-specific parameters. Scal-
ability remains an issue in this category of approaches as the network parameters explode as the
number of tasks increases.

Replay or rehearsal-based approaches maintain a memory buffer with samples from previous
tasks to replay with the examples from the current task to strengthen the old memories. (Rolnick
et al., 2018). Lopez-Paz & Ranzato (2017) proposed Gradient Episodic Memory (GEM) that favors
positive backward transfer and hence mitigating forgetting by using episodic memory of samples
from previous tasks. Later, Chaudhry et al. (2019) proposed a more efficient and faster version,
called Averaged GEM (A-GEM). Inspired by the suggestion that the hippocampus is better paral-
leled with a generative model than a replay buffer (Ramirez et al., 2013; Stickgold & Walker, 2007),
the replay approach was improved further by replacing the memory buffer with a generative model
which could generate unlimited pseudo data from past tasks (Shin et al., 2017; Van de Ven & To-
lias, 2018). Instead of using stored input samples, the replay of latent representations to mitigate
forgetting is also explored in many recent works (Pellegrini et al., 2020; van de Ven et al., 2020).

Regularization-based approaches attenuate catastrophic forgetting by imposing constraints on the
update of the network weights (Parisi et al., 2019). It is generally formulated via additional reg-
ularization terms that penalize changes in the weights or predictions of neural network. Learning
Without Forgetting (LwF) (Li & Hoiem, 2017) distills knowledge with the network’s previous ver-
sion to enforce the predictions of current and previous tasks to be similar. Many recent regulariza-
tion based methods apply penalty on network parameters and estimate the importance of different
network parameters. Kirkpatrick et al. (2017) proposed the Elastic Weight Consolidation (EWC),
which imposes a quadratic penalty on the difference between the old and new task parameters to
slow down the learning on certain weights based on their importance for previous tasks (Parisi et al.,
2019). In Synaptic Intelligence (SI) (Zenke et al., 2017), individual synapses are allowed to esti-
mate their importance by computing the path integral of the gradient vector field along the parameter
trajectory. Whereas Memory Aware Synapses (MAS) (Aljundi et al., 2018) computes importance
based on the sensitivity of predicted output function to each parameter. On the other hand, instead
of imposing penalty directly on weights, Less-Forgetful Learning (LFL) (Jung et al., 2018) regu-
larizes the L2 distance between the new and old feature representations to preserve the previously
learned input-output mappings by computing auxiliary activations with the old task parameters. Re-
cent regularization works also build upon the traditional Bayesian online learning framework with
variational inference (Nguyen et al., 2017; Ahn et al., 2019; Adel et al., 2020).

1.2 MOTIVATION

The architectural approaches suffer from scalability issues as the number of parameters increases
with the number of tasks (Parisi et al., 2019). On the other hand, rehearsal-based strategies generally
require large memory buffers to store old task data for high performance. Moreover, in real-world
scenarios, it is not always possible to have access to old task data. The generative replay-based
methods attempt to solve this issue but are often difficult to train and computationally expensive. On
the contrary, the regularization-based strategies assume that all the information essential about the
old task is contained in the network weights (Kirkpatrick et al., 2017). The over-parameterization in
neural networks makes it possible for the solution to a new task to be found close to the solution for
the old task (Hecht-Nielsen, 1992; Sussmann, 1992; Kirkpatrick et al., 2017). Thus, the regulariza-
tion strategies are generally memory efficient and computationally less expensive than the other two
approaches. Our approach belongs to this category as it focuses on alleviating the catastrophic for-
getting problem by regularizing the network to project the new task representations close to the old
task representations while keeping the decision boundaries unchanged. We achieve this using the
center loss (Wen et al., 2016) as a regularization penalty to minimize forgetting. We show that our
approach successfully prevents catastrophic forgetting in a computationally efficient manner without
accessing the data from old tasks.
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1.3 CONTRIBUTIONS

The contributions of this paper are as follows:

1. We propose a novel regularization-based continual learning strategy which we refer to as
center loss regularization (CLR).

2. We compare our approach to different continual learning strategies in domain incremental
scenarios and show that our approach is scalable, computationally efficient while storing
minimal additional parameters.

3. We show that our approach gives a competitive performance with the state-of-the-art tech-
niques when applied in continual domain adaptation scenarios.

2 CENTER LOSS REGULARIZATION (CLR)

Deep neural networks excel at learning the hierarchical internal representations from raw input data
by stacking multiple layers, which allows the system to learn complex function mappings from in-
put to output (Farabet et al., 2013). These representations become increasingly invariant to small
changes in the input as we go up the layers towards the output layer by preserving the vital infor-
mation about the input related to the task (Guest & Love, 2019). The portion till the last hidden
layer is considered the feature extractor, and the last fully connected layer is regarded as a linear
classifier as the features extracted from the feature extractor are usually linearly separable due to the
softmax activation in the top layer (Wen et al., 2016). The Less-Forgetful Learning (LFL) approach
(Jung et al., 2016) demonstrated that catastrophic forgetting can be prevented if the representations
of the new task are projected close to the learned representations of the old task keeping the decision
boundaries unchanged. Ramasesh et al. (2020) empirically demonstrated that if the higher layers are
stabilized while learning subsequent tasks, the forgetting can be mitigated significantly.

In our approach, we freeze the weights of the last fully connected classification layer to keep the
decision boundaries unchanged similar to LFL. However, it is non-trivial to make the learned fea-
tures for new tasks localize nearby corresponding old task features in the latent space. The LFL
solves it by using the L2 distance between the current model’s features and the computed features
using the old task model as a regularization penalty to preserve the previously learned input-output
mappings. However, this approach is highly memory-intensive and computationally expensive since
it requires storing the entire model trained on the old task and does forward pass on it to compute
representations for each novel task. Wen et al. (2016) introduced the center loss and demonstrated
that the joint supervision of softmax loss and center loss helps to increase the inter-class dispersion
and intra-class compactness of deeply learned features. During the training process, the model also
learns the centers for each class features around which the deeply learned features are typically clus-
tered (Wen et al., 2016). We exploit these properties of center loss in building our continual learning
strategy. More details on the center loss are provided in the Appendix D.

We use the center loss as a regularization penalty along with softmax loss. To enforce the model
to learn the features for the new task in the proximity of corresponding old task features, we utilize
the already learned class feature centers of the old task instead of storing the old model weights like
LFL. While learning the new task, we enforce the new task features to be close to the already learned
feature centers using the center loss, making the model project the features of all tasks in the same
localized region, clustered around corresponding class feature centers. For the new task, we freeze
the class centers and reduce the learning rate of feature extractor parameters to prevent significant
changes in it while training with the new task. We also provide the findings of our ablation study
in the Section 3.3 to analyze the effects of letting the centers and decision boundaries change while
learning new tasks. As our method needs to store only the feature centers for each class throughout
the lifetime, the memory requirement is significantly lower than other approaches where the agent
needs to store the model weights or maintain the replay buffer. The extra memory requirements are
discussed in detail in Section 3.3.1

Lt = Ls + λLc (1)
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The equation 1 represents the joint loss, a combination of the softmax loss Ls and the center loss
Lc, which is minimized during training. Minimizing Ls helps solve the current/new task, whereas
the term Lc helps retain already learned knowledge and avoid catastrophic forgetting. A scalar λ is
used for balancing the two loss functions. The equation 2 defines the modified center loss Lc, where
c(o) denotes the learned values of feature centers from old task. The centers are kept frozen during
the subsequent tasks. This enforces the new task representations to have the same feature centers as
the old task, leading the old task and new task representations to stay within proximity in the feature
space, reducing the catastrophic forgetting. We obtain the equation 3 as final objective function
where R(·) denotes a general regularization term, such as weight decay. Finally, we propose the
center loss regularization algorithm, as shown in Algorithm 1. N denotes the number of training
iterations, D(n) denotes the new task data, θ(o) and θ(n) denote the network parameters for the
old and new task, respectively. Note that we use a single-headed model in our experiments as we
primarily target domain-incremental scenario of continual learning where task identity need not be
inferred at test time (Van de Ven & Tolias, 2019). The system learns to adapt to changing input
distributions, but the task structure remains the same.

Algorithm 1 Center Loss Regularization (CLR)

Input: θ(o), c(o), N,D(n)

Output: θ̂(n)

1: θ(n) ← θ(o) . initialize weights
2: Freeze the weights of the softmax classification layer.
3: for i← 1, N do . training iteration
4: for each minibatch B ∈ D(n) do
5: Backpropagate and update θ(n) for mini-batch B to minimize loss Lt +R(θ(n))
6: end for
7: end for
8: θ̂(n) ← θ(n)

9: return θ̂(n)

3 EXPERIMENTS

In this section, we first detail the experimental protocols for evaluating lifelong learning algorithms
(Section 3.1). We have compared our proposed method against different continual learning methods,
which are specified in Section 3.2. Finally, we report our results in Section 3.3.

3.1 EXPERIMENTAL PROTOCOLS

Permuted & Rotated MNIST (Kirkpatrick et al., 2017) are variants of the original MNIST
dataset (LeCun, 1998). In Permuted MNIST, a fixed permutation of the image pixels is applied
to each task’s training and test set. In Rotated MNIST, each task consists of images rotated by a
fixed angle between 0 and 180 degrees. We chose 10000 training and 5000 testing samples for both
these variants. Each task has a test set with the same rotation transformation as the training set for
that task. In these experiments, the model encounters 10 tasks in sequence, each with a unique ro-
tation angle. We evaluate the model on the test sets of the respective datasets after training on each
task. We use the fully connected neural network (MLP) with two hidden layers of 100 units, each
with ReLU activation for our experiments. We train the network using Adam optimizer (Kingma &
Ba, 2014) on mini-batches of 64 samples for 1 epoch over training set per task with a learning rate
of 3 · 10−3 for the first task and 3 · 10−4 for subsequent tasks.
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Our method can also be applied in the supervised continual domain adaptation settings where the
model needs to adapt to the new domains without degrading the performance on the previously seen
domains (Jung et al., 2018; Volpi et al., 2021).

Digit Recognition We consider four widely used datasets for digit recognition in continual do-
main adaptation setting: MNIST (LeCun, 1998), SVHN (Netzer et al., 2011), MNIST-M (Ganin &
Lempitsky, 2015) and SYN (Ganin & Lempitsky, 2015). To assess the performance of our approach,
we train our network on these datasets, one by one in the sequence MNIST → MNIST-M → SYN
→ SVHN, considering each dataset as one task. This way, the network adapts to harder domains
continually. For this protocol, 10000 training and 5000 testing samples are chosen for each dataset,
and all images are resized to 28 x 28 pixels. We convert the MNIST dataset to 3-channel images
by repeating the original channel 3 times for compatibility with the remaining datasets. We use the
ResNet18 (He et al., 2016) architecture and train the network on each domain for 20 epochs, with
a batch size of 64. We use Adam optimizer (Kingma & Ba, 2014) with a learning rate of 3 · 10−4,
which is reduced to 3 · 10−5 after the first domain.

PACS dataset (Li et al., 2017) is typically used to assess the domain generalization scenarios. It
consists of four domains, namely Photo (1,670 images), Art Painting (2,048 images), Cartoon (2,344
images), and Sketch (3,929 images). Each domain contains seven categories. We use this dataset to
evaluate our approach in a continual domain adaptation setting. We trained the network in sequence
Sketches → Cartoons → Paintings → Photos where images become more realistic with the new
domain. For each domain, the dataset is split into 70% training and the remaining 30% as testing
samples. All images are resized to 224 x 224 pixels and standardized with the mean and standard
deviation of the ImageNet (Deng et al., 2009) dataset. This is due to the fact that this protocol uses
ResNet18 (He et al., 2016) network trained on ImageNet dataset. We train the network on each
domain for 5 epochs, with a batch size of 64. We use Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 3 · 10−4, which is reduced to 3 · 10−5 after the first domain.

3.2 METHODS

We compare the performance of the proposed approach with that of the state-of-the-art
regularization-based strategies. First, we test the fine-tuning approach in which a single model is
trained across all tasks, which is the naive approach. Second, we test the LwF (Li & Hoiem, 2017)
method, which uses only new task data to train the network while preserving the original capabil-
ities. Further, we compare the performance with EWC (Kirkpatrick et al., 2017), SI (Zenke et al.,
2017) and MAS (Aljundi et al., 2018) methods which try to estimate synaptic importance of dif-
ferent network parameters and use that information to regularize the weights. We also test the LFL
(Jung et al., 2018) method, which tries to position the features extracted by the new network, close
to the features extracted by the old network. Moreover, we explore frameworks like Uncertainty-
regularized Continual Learning (UCL) (Ahn et al., 2019) and Variational Continual Learning (VCL)
(Nguyen et al., 2017) based on variational inference. VCL employs a projection operator through
KL divergence minimization. UCL solves the drawbacks of VCL by proposing the concept of node-
wise uncertainty. Then, we consider two oracle methods: If we assume access to every domain at
every point in time, we can either train on samples from the joint distribution from the beginning or-
acle (all), or grow the distribution over iterations oracle (cumulative). With access to samples from
all domains, oracles are not generally exposed to catastrophic forgetting; yet, their performance is
not necessarily an upper bound (Lomonaco & Maltoni, 2017).

We also compare our approach with several replay-based strategies. We use the basic experience-
replay method as a baseline and examine if using CLR as surrogate loss along with experience
replay can enhance the performance. Further, we compare its performance with state-of-the-art
memory-based methods like average gradient episodic memory (A-GEM) (Chaudhry et al., 2019)
and GDumb (Prabhu et al., 2020) methods. We also compare CLR with recent continual domain
adaptation technique called domain randomization and meta-learning (Meta-DR) (Volpi et al., 2021)
for continual domain adaptation experiments. For Permuted and Rotated MNIST tasks, we exper-
iment with four different memory sizes of 10, 20, 50, and 100 examples per task. For the Digits
dataset, we experiment with 100, 200, 300 replay examples per task. For the PACS dataset, we
experiment with 10, 20, 30 replay examples per task.
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The metrics used in our experiments to evaluate all considered methods are the average accuracy
(ACC) and backward transfer (BWT). ACC is the average of the accuracy of the model across all
encountered tasks, and BWT represents the amount of forgetting at the end of training on all tasks
(Lopez-Paz & Ranzato, 2017). The formulae for the metrics are presented in detail in Appendix B.
Each experiment in the paper is carried out for 5 trials, and the final values are reported as mean and
standard deviation of results.

3.3 RESULTS

Table 1 compares the performances of different regularization-based approaches on the Rotated and
Permuted MNIST datasets. From this table, we can observe that our approach CLR outperforms
all other methods. VCL shows competitive performance for Permuted MNIST, but the amount of
forgetting (BWT) is worse than CLR. Whereas, LwF shows competitive performance in terms of
forgetting but less adaptability to new information. Figure 1 presents the evolution of the average
accuracy (ACC) and the first-task accuracy throughout all the tasks for the MNIST variants. This
shows that the center loss regularization helps to mitigate the problem of catastrophic forgetting on
earlier tasks while maintaining high performance on all the tasks.

In Table 2, we report the results of replaying samples from episodic memory along with our proposed
approach for both MNIST variants. We can observe that using center loss regularization significantly
improves the performance over the plain experience replay strategy. Such improvement is consistent
as we increase the memory size. It also outperforms the state-of-the-art memory-based methods like
A-GEM and GDumb. This shows that our approach can also be used as surrogate loss along with
replay-based strategies to enhance performance and reduce forgetting.

We provide the ablation study of our approach in Table 3. We demonstrate how the performance
changes if we do not freeze the centers and classifier weights after the training on the first task is
completed. The first row in the table represents the approach proposed in Section 2. We try out
multiple values of hyperparameter λ for each experiment and put the best performing results for
each row. These results show that the best performance is generally achieved when we freeze the
centers and the decision boundaries after the first task. Moreover, we also demonstrate how the
hyperparameter λ affects the overall performance of CLR in Appendix Figure 3.

We report in Table 4 and Table 5 the performance of our proposed method compared with differ-
ent methods in continual domain adaptation setting on Digits and PACS datasets respectively. We
note that our approach outperforms the naive, EWC, and SI strategies with a significant margin for
both benchmarks. Our method demonstrates competitive performance compared to LwF and LFL
strategies. Having access to the samples from older tasks for replay can help reduce catastrophic for-
getting significantly compared to regularization methods which do not have access to the data of old
domains. Thus, we also examine if using CLR along with Experience Replay (ER) can help boost
the performance. For both the benchmarks, we observe that using CLR with ER can significantly
improve the overall performance, and it is consistent with the increase in the memory size. The
memory size column denotes the number of replay samples per task. These results suggest that the
center loss regularization helps the model successfully adapt to new domains without considerable
performance degradation on old domains.

3.3.1 COMPARISON OF ADDITIONAL MEMORY REQUIREMENT

Generally, the regularization-based methods store the old network parameters for regularization
or knowledge distillation. In Table 6, we compare the extra memory requirement of different
regularization-based methods in terms of the number of additional parameters other than the base
network parameters. Further, we explain why CLR is the cheapest option from an additional mem-
ory requirement perspective compared to other regularization techniques.

In order to quantify the importance of weights to previous tasks, EWC needs to compute and store
the diagonal of the Fisher matrix for each task, which has the same number of elements as the
network parameters. Additionally, optimal parameters from previous tasks are also stored in or-
der to compute the knowledge distillation loss. Moreover, a few samples from previous tasks are
maintained in our experiments to compute the Fisher matrix after each task is completed. Thus,
given that k is the number of encountered tasks and p is the number of network parameters, the
space complexity for additional memory usage in EWC becomes O(k ∗ p). In contrast to EWC,
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Table 1: Average test accuracy (in %) (mean and std) after training on all tasks for each method

Method Rotated MNIST Permuted MNIST

ACC BWT ACC BWT

Naive 57.4 ± 1.2 -30.2 ± 1.5 49.0 ± 1.9 -47.3 ± 2.2

LwF 74.4 ± 0.9 -12.1 ± 1.3 63.7 ± 0.8 -12.7 ± 1.1

EWC 73.6 ± 0.7 -16.5 ± 0.8 68.2 ± 0.4 -19.5 ± 0.3

SI 74.4 ± 0.3 -15.6 ± 0.4 67.5 ± 1.0 -20.0 ± 1.2

LFL 75.5 ± 0.5 -16.2 ± 1.4 71.9 ± 0.8 -14.4 ± 1.4

MAS 67.5 ± 1.3 -12.1 ± 1.5 71.8 ± 1.2 -13.9 ± 1.6

UCL 68.2 ± 1.6 -23.6 ± 1.2 66.5 ± 1.4 -26.6 ± 1.5

VCL 63.6 ± 1.9 -28.9 ± 1.3 74.6 ± 0.7 -14.8 ± 1.7

CLR (Ours) 76.4 ± 1.2 -11.9 ± 0.6 75.6 ± 1.3 -12.2 ± 0.9
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Figure 1: Left: Average accuracy (ACC) on tasks encountered so far for each method. Right:
Progression of the test accuracy for the first task for each method, as more tasks are learned.

SI computes parameter-specific importance online. So, it does not require storing extra parameters
for each task but maintains only the previous task model parameters and regularization strength for
each network parameter to compute the surrogate loss. Thus, the space complexity for additional
memory becomes O(p) in the case of SI. MAS also requires storing synaptic importances for each
model parameter, needing a similar amount of memory as SI. VCL stores variance term for each
weight parameter for current and previous models; hence, it requires thrice the number of additional
parameters than the original model. UCL solves this drawback of VCL by computing uncertainty
(importance) at node-level, reducing the total required parameters to almost half compared to VCL
(Ahn et al., 2019). However, CLR outdoes both of them with lesser parameters.

Moreover, both LwF and LFL require storing the old network in the memory to compute the knowl-
edge distillation loss for the previous task. Like SI, these two methods LFL and LwF, have the space
complexity for additional memory as O(p). CLR attempts to achieve a similar objective as the LFL
projecting old and new task features in close proximity. However, the CLR is computationally and
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Table 2: Replay Experiments Study: Average test accuracy (mean % and std) with varying memory size (Mem
size) i.e number of replay examples stored for each task

Method Rotated MNIST Permuted MNIST

Mem size 10 20 50 100 10 20 50 100

ER 78.6 ± 1.4 81.0 ± 0.5 83.3 ± 0.4 85.1 ± 0.4 68.9 ± 1.4 71.7 ± 1.7 80.6 ± 0.4 83.5 ± 0.6

A-GEM 77.6 ± 0.4 78.5 ± 0.5 79.3 ± 0.4 79.7 ± 0.6 76.8 ± 0.4 77.7 ± 0.5 84.3 ± 0.7 83.9 ± 0.4

GDumb 78.5 ± 0.3 81.1 ± 0.8 84.5 ± 0.4 85.2 ± 0.5 76.7 ± 0.8 78.5 ± 0.9 84.3 ± 1.0 85.3 ± 0.7

ER + CLR 81.0 ± 0.4 83.3 ± 0.2 85.0 ± 0.2 86.6 ± 0.1 78.9 ± 0.5 80.0 ± 0.9 83.7 ± 0.2 86.0 ± 0.4

Table 3: Ablation Study: Average test accuracy (mean % and std)

Frozen Rotated MNIST Permuted MNIST

Centers Classifier ACC BWT ACC BWT

3 3 76.4 ± 1.2 -11.9 ± 0.6 75.6 ± 1.3 -12.2 ± 0.9

3 7 76.3 ± 1.2 -15.0 ± 1.0 73.2 ± 0.7 -15.7 ± 0.8

7 3 75.7 ± 0.7 -15.7 ± 0.9 74.3 ± 1.2 -14.0 ± 1.6

7 7 76.4 ± 0.9 -12.5 ± 0.4 73.4 ± 2.4 -15.4 ± 2.5

memory-wise more efficient than the LFL and LwF because the CLR does not need to store the old
model and forward pass it, significantly reducing the memory usage and training time.

Hence, all these methods require a large amount of extra memory, which further increases with
the number of tasks or the network size. On the other hand, CLR only stores the feature centers of
each class, which significantly reduces the additional memory requirement compared to the previous
methods. Thus, the space complexity of extra memory usage in CLR comes down toO(n∗d), where
n is the number of classes in each task, and each feature center is d-dimensional.

4 LIMITATIONS AND FUTURE DIRECTIONS

There are several exciting research directions to extend our work for continual learning. Our method
requires the knowledge of task boundaries which may not always be available. CLR does not lever-
age the task descriptors, which may be exploited to obtain a positive forward transfer. Further,
novel approaches can also be developed to exploit our approach for supporting task-incremental and
class-incremental learning, where task-IDs need to be inferred. In this paper, we applied CLR to
solve the supervised classification problem in continual learning. It would be an interesting research
direction to exploit the properties of CLR to solve other problems like regression and dimensional-
ity reduction in the continual learning setting. Moreover, the effects of using other discriminative
representation learning approaches (Hadsell et al., 2006; Sun, 2015; Deng et al., 2017; Zhang et al.,
2017; Liu et al., 2017; Chen et al., 2017; Wan et al., 2018; Qi & Zhang, 2018; Wang et al., 2018a;b)
can be studied for continual learning.

5 CONCLUSION

In this paper, we proposed a new regularization-based strategy for continual learning, referred to as
center loss regularization (CLR). It utilizes the power of center loss to learn discriminative features
and use the learned feature centers to project new task features in the proximity of old task features
to transfer knowledge and avoid catastrophic forgetting. Our method was effective in overcoming
catastrophic forgetting when applied to the standard continual learning benchmarks as well as con-
tinual domain adaptation benchmarks. Our method is scalable and computationally effective, and it
does not store previous data and requires minimal additional network parameters. Our extensive ex-
periments consistently demonstrate the competitive performance of CLR against the state-of-the-art
regularization strategies for continual learning.
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Table 4: Continual Domain Adaptation (Digits): Test accuracy on individual datasets, average test accuracy
(ACC) and BWT (mean % and std) after training on all domains with Digits protocol

Method M.Size MNIST (1) MNIST-M (2) SYN (3) SVHN (4) ACC BWT

Naive - 83.4 ± 6.4 65.8 ± 3.4 71.3 ± 0.4 92.6 ± 0.1 78.2 ± 0.4 -12.8 ± 0.7

LwF - 96.1 ± 1.2 72.7 ± 0.9 76.6 ± 0.7 91.1 ± 1.0 84.1 ± 1.3 -3.6 ± 1.7

EWC - 93.7 ± 0.8 67.9 ± 0.6 75.1 ± 0.3 92.5 ± 0.2 82.3 ± 0.9 -7.8 ± 0.8

SI - 91.8 ± 0.5 69.2 ± 1.2 72.5 ± 0.5 91.9 ± 1.1 81.3 ± 0.6 -8.9 ± 0.4

LFL - 95.5 ± 0.9 67.3 ± 0.4 77.7 ± 1.3 93.2 ± 0.9 83.4 ± 0.4 -7.5 ± 0.3

Meta-DR - 85.7 ± 1.8 75.4 ± 0.7 82.0 ± 1.9 98.5 ± 0.3 85.4 ± 1.1 -8.4 ± 1.0

CLR - 95.8 ± 0.6 71.9 ± 0.5 77.2 ± 0.2 93.5 ± 0.2 84.6 ± 0.9 -5.7 ± 0.6

100 96.2 ± 0.4 75.0 ± 1.1 79.3 ± 0.3 93.3 ± 0.9 86.2 ± 0.7 -4.8 ± 0.7
ER 200 96.7 ± 0.6 77.5 ± 1.5 80.8 ± 0.7 93.7 ± 0.2 87.1 ± 0.4 -3.7 ± 0.8

300 97.3 ± 1.3 78.8 ± 1.2 78.6 ± 0.2 92.7 ± 0.5 86.9 ± 0.5 -3.6 ± 0.5

100 95.2 ± 0.3 77.1 ± 1.3 78.6 ± 0.5 94.0 ± 0.8 85.9 ± 0.5 -5.0 ± 1.0
A-GEM 200 95.8 ± 1.0 77.9 ± 0.8 79.1 ± 0.4 94.2 ± 0.3 86.7 ± 0.6 -3.9 ± 0.3

300 96.9 ± 0.8 78.7 ± 0.9 80.0 ± 1.2 93.8 ± 0.6 87.3 ± 0.8 -3.5 ± 0.9

100 95.4 ± 0.8 79.6 ± 0.4 80.8 ± 0.3 92.7 ± 0.1 87.1 ± 0.4 -3.7 ± 0.3
ER + Meta-DR 200 96.1 ± 0.7 80.1 ± 0.9 81.2 ± 0.5 93.0 ± 0.4 87.5 ± 0.6 -3.4 ± 0.4

300 97.2 ± 0.4 80.3 ± 0.5 82.3 ± 0.1 93.4 ± 0.3 88.3 ± 0.4 -2.8 ± 0.4

100 97.1 ± 0.2 79.0 ± 0.5 81.8 ± 1.4 94.3 ± 0.8 88.1 ± 0.6 -2.7 ± 0.3
ER + CLR 200 97.4 ± 0.5 80.8 ± 1.0 81.8 ± 0.3 94.1 ± 0.9 88.7 ± 1.2 -2.1 ± 0.5

300 97.9 ± 0.8 81.3 ± 1.0 82.6 ± 0.3 94.4 ± 0.6 89.1 ± 0.8 -1.7 ± 0.9

Oracle (all) - 98.6 ± 0.3 90.7 ± 0.4 87.0 ± 0.5 94.7 ± 0.2 92.8 ± 0.8 -

Oracle (cumul.) - 98.6 ± 0.7 86.6 ± 1.1 82.2 ± 0.3 92.1 ± 0.1 89.9 ± 0.3 +1.7 ± 0.4

Table 5: Continual Domain Adaptation (PACS): Test accuracy on individual datasets, average test accuracy
(ACC) and BWT (mean % and std) after training on all domains for continual domain adaptation with PACS

Method M.Size Sketches (1) Cartoons (2) Paintings (3) Photos (4) ACC BWT

Naive - 74.7 ± 2.1 65.6 ± 1.6 86.7 ± 1.4 90.4 ± 0.9 77.4 ± 0.5 -15.0 ± 1.2

LwF - 79.3 ± 0.8 68.4 ± 1.6 95.8 ± 1.1 88.6 ± 0.5 81.4 ± 0.8 -11.9 ± 1.3

EWC - 81.1 ± 1.6 71.8 ± 0.7 96.2 ± 0.4 89.1 ± 0.2 83.1 ± 0.9 -8.8 ± 0.8

SI - 82.6 ± 1.1 70.0 ± 1.4 92.2 ± 1.6 90.5 ± 0.7 83.7 ± 1.2 -10.2 ± 0.8

LFL - 86.6 ± 0.7 73.5 ± 0.9 95.2 ± 1.2 90.4 ± 1.4 85.7 ± 1.1 -7.5 ± 1.0

Meta-DR - 86.8 ± 1.2 75.4 ± 0.7 95.3 ± 0.9 88.5 ± 0.3 85.9 ± 0.9 -7.2 ± 0.8

CLR - 86.7 ± 1.4 74.0 ± 0.8 97.0 ± 1.2 89.9 ± 0.7 86.1 ± 1.3 -7.9 ± 0.4

10 89.2 ± 1.2 84.3 ± 0.3 96.8 ± 0.9 91.8 ± 1.9 89.9 ± 1.5 -3.4 ± 0.6
ER 20 92.3 ± 0.8 83.1 ± 1.2 96.4 ± 2.1 90.7 ± 0.7 90.1 ± 1.7 -2.0 ± 1.3

30 91.7 ± 0.5 84.8 ± 1.6 97.6 ± 2.4 91.5 ± 0.4 91.0 ± 1.2 -2.2 ± 1.1

10 87.2 ± 1.1 85.0 ± 0.8 97.1 ± 0.9 90.2 ± 1.9 89.8 ± 0.9 -4.1 ± 0.8
A-GEM 20 91.8 ± 0.7 84.1 ± 0.8 95.4 ± 1.7 91.1 ± 0.7 90.6 ± 1.4 -2.7 ± 1.2

30 91.2 ± 1.2 84.5 ± 0.9 97.1 ± 1.4 90.3 ± 2.2 90.7 ± 1.2 -2.4 ± 1.4

10 90.2 ± 0.4 84.3 ± 1.7 95.1 ± 1.5 90.3 ± 1.9 90.0 ± 1.5 -3.5 ± 1.9
ER + Meta-DR 20 92.5 ± 1.8 82.9 ± 2.2 95.6 ± 1.2 91.2 ± 1.7 90.5 ± 0.6 -2.1 ± 1.1

30 90.7 ± 1.6 84.9 ± 0.8 97.8 ± 2.1 89.4 ± 1.4 90.7 ± 1.2 -2.6 ± 1.3

10 90.7 ± 0.5 84.1 ± 0.7 97.4 ± 1.4 91.5 ± 0.6 90.4 ± 1.1 -3.6 ± 0.7
ER + CLR 20 91.5 ± 0.6 85.4 ± 1.6 96.6 ± 1.4 91.4 ± 0.8 90.9 ± 1.3 -2.8 ± 0.5

30 91.3 ± 1.0 87.1 ± 0.9 96.8 ± 0.4 92.4 ± 0.6 91.4 ± 0.8 -2.9 ± 1.0

Oracle (all) - 93.5 ± 1.5 91.3 ± 1.8 95.0 ± 0.7 85.6 ± 1.2 91.6 ± 0.8 -

Oracle (cumul.) - 94.3 ± 2.3 92.3 ± 1.9 96.2 ± 1.4 91.0 ± 0.9 93.5 ± 1.6 +0.8 ± 0.5

Table 6: Comparison of additional memory requirement for all methods

Protocol/Method LwF EWC SI LFL MAS UCL VCL CLR

MNIST (MLP) 89.6K 1.79M 179K 89.6K 179K 89.8K 269K 1000

Digits, PACS (ResNet18) 11M 88M 22M 11M 22M 11M 33M 5120, 3584

9



Under review as a conference paper at ICLR 2022

REFERENCES

Tameem Adel, Han Zhao, and Richard E. Turner. Continual learning with adaptive weights (claw).
In International Conference on Learning Representations, 2020.

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual learn-
ing with adaptive regularization. In Advances in Neural Information Processing Systems, pp.
4394–4404, 2019.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 139–154, 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In ICLR, 2019.

B. Chen, W. Deng, and J. Du. Noisy softmax: Improving the generalization ability of dcnn via
postponing the early softmax saturation. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4021–4030, 2017.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3):1–207, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jiankang Deng, Yuxiang Zhou, and Stefanos Zafeiriou. Marginal loss for deep face recognition. In
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.
2006–2014, 2017.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4685–4694, 2019.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hierarchical fea-
tures for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):
1915–1929, 2013.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Stephen Grossberg. How does a brain build a cognitive code? Studies of mind and brain, pp. 1–52,
1982.

Stephen Grossberg. Adaptive resonance theory: How a brain learns to consciously attend, learn, and
recognize a changing world. Neural networks, 37:1–47, 2013.

Olivia Guest and Bradley C. Love. Levels of representation in a deep learning model of categoriza-
tion. bioRxiv, 2019. doi: 10.1101/626374.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural networks for
perception, pp. 65–93. Elsevier, 1992.

Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep neural
networks. ArXiv, abs/1607.00122, 2016.

10



Under review as a conference paper at ICLR 2022

Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetful learning for domain
expansion in deep neural networks. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolu-
tional neural networks. In ICML, volume 2, pp. 7, 2016.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In 2017 IEEE conference on computer vision and
pattern recognition, pp. 212–220, 2017.

Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous
object recognition. In Conference on Robot Learning, pp. 17–26. PMLR, 2017.

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L.
Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido M. van de Ven, Martin Mundt,
Qi She, Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, German I. Parisi,
Fabio Cuzzolin, Andreas S. Tolias, Simone Scardapane, Luca Antiga, Subutai Ahmad, Adrian
Popescu, Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, and Davide
Maltoni. Avalanche: an end-to-end library for continual learning. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3595–3605, 2021.

David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30, 2017.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.
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A TRAINING DETAILS

We used one NVIDIA GeForce TITAN X GPU for training the models in all our experiments with
the CUDA version 10.1 on a Linux machine. We built our models and implemented different meth-
ods using PyTorch deep learning framework and Avalanche library (Lomonaco et al., 2021) for
Continual Learning. Hyperparameter search was done using the grid-search. Next, we provide the
best hyperparameter values, specific to the methods for our experiments. The λ denotes the im-
portance of the regularization penalty for EWC, LwF, SI, LFL and MAS. Whereas β controls the
speed of standard deviation (σ) for the weight parameter in UCL. VCL does not need any additional
hyperparameters. In CLR, λ denotes the importance of the center loss and α denotes the rate with
which the centers are allowed to change in the first task.

Table 7: Hyperparameters specific to methods in all experiments

Method Rotated MNIST Permuted MNIST Digits PACS

EWC (λ) 0.001 0.001 0.001 1.0

LwF (λ) 1.0 1.0 0.1 0.1

SI (λ) 0.001 0.001 0.1 1.0

LFL (λ) 1.0 0.001 0.1 1.0

MAS (λ) 10.0 1.0 - -

UCL (β) 0.9 1.0 - -

CLR (λ, α) (0.001, 0.03) (0.04, 0.03) (0.01, 0.01) (0.001, 0.5)
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B EVALUATION METRICS

Lopez-Paz & Ranzato (2017) introduced Average Accuracy (ACC) and Backward Transfer (BWT)
evaluation metrics for continual learning, which we use in our experiments to evaluate our approach.
For evaluation, we maintain a test set for each of the T tasks. After learning on the new task ti, we
evaluate the model’s test performance on all T tasks. The formulas for calculating ACC and BWT
are as follows. Ai,j is the test classification accuracy of the model on task ti after observing the last
data sample from task tj .

Average Accuracy (ACC) =
1

T

T∑
i=1

Ai,T (4)

Backward Transfer (BWT) =
1

T − 1

T−1∑
i=1

Ai,T −Ai,i (5)

The larger the value of ACC, the better is the model. Whereas, if the values of ACC of two models
are similar, then the model with higher BWT is usually considered.

C ADDITIONAL PLOTS

Figure 2 shows the plots of average accuracy (over 10 tasks) at the end of training on each task.
This is different from the plots presented in Figure 1 where we take the average over encountered
tasks only. In Figure 3, we show the performance of CLR for various values of hyperparameter λ
for various protocols. The value of λ at the highest/peak point of each protocol’s graph was chosen
for the corresponding experiment.
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Figure 2: Average test accuracy on all T tasks after training on each task for all methods on Rotated
and Permuted MNIST

D DISCRIMINATIVE FEATURE LEARNING WITH CENTER LOSS

Typical deep neural network architecture comprises an input layer, followed by several hidden layers
with non-linear activation functions and the output layer. The output layer generally has a softmax
activation function for multi-class classification. This last fully connected layer acts as a linear
classifier that separates the deeply learned features produced by the last hidden layer. The softmax
loss forces the deep features of different classes to stay apart. The discriminative power of learned
features is enhanced if the intra-class compactness and inter-class separability are maximized simul-
taneously. Though the features learned using the softmax loss are separable, they are not discrim-
inative enough for open-set supervised problems and often exhibit high intra-class variance. This
adversely affects the generalization capabilities of neural networks.

Several works (Wen et al., 2016; Deng et al., 2017; Zhang et al., 2017; Liu et al., 2017; Wang et al.,
2018b;a; Chen et al., 2017; Wan et al., 2018; Qi & Zhang, 2018) have proposed variants of softmax
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Figure 3: Average test accuracy (ACC) for various values of CLR’s hyperparameter λ for different
protocols

300 200 100 0 100 200

300

200

100

0

100

200

Softmax Loss
0
1
2
3
4
5
6
7
8
9

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Softmax Loss + Center Loss
0
1
2
3
4
5
6
7
8
9

Figure 4: Left: Visualization of features in 2D from a CNN model trained on MNIST dataset LeCun
(1998) with Softmax Loss. Right: Visualization of features in 2D from a CNN trained on MNIST
dataset with joint supervision of Softmax Loss and Center Loss with λ = 1

loss to enhance the discriminative power. The siamese network Koch et al. (2015) based approaches
which use contrastive loss Sun (2015); Hadsell et al. (2006) and triplet loss Schroff et al. (2015),
learn the embeddings directly. These approaches face the problem of semi-hard sample mining and
combinatorial explosion in the number of pairs or triplets, which significantly affect the effective
model training Deng et al. (2019). There are also angular margin penalty-based approaches that have
shown significant improvements over softmax loss and have been explored in various directions,
especially for large-scale face recognition Liu et al. (2017); Wang et al. (2018b;a); Liu et al. (2016);
Deng et al. (2019).

Wen et al. (2016) introduced the center loss for discriminative feature learning to solve deep face
recognition. The joint supervision of softmax loss and center loss is used to obtain the inter-class
dispersion and intra-class compactness by simultaneously learning the centers and minimizing the
distances between the deep features and their corresponding class centers. The center loss has the
same requirement as the softmax loss and needs no complex recombination of the training samples
like contrastive loss and triplet loss which suffer from dramatic data expansion. The center loss is
defined as follows:

Lc(x; θ, c) =
1

2

m∑
i=1

‖fL−1(xi; θ)− cyi‖22 (6)
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In Equation 6, the xi denotes the ith sample, belonging to the yith class, cyi ∈ Rd denotes the yi th
class center of deep features. The size of mini-batch and size of the feature dimension is m and d,
respectively. L is the total number of layers, and fL−1 is the feature vector of layer L− 1, which is
just before the softmax classifier layer, and the θ denotes the network parameters.

The formulation effectively characterizes the intra-class variations. In each iteration, the centers
are computed by averaging the features of the corresponding classes. The deep features learned
using the center loss are highly discriminative, clustered around the corresponding class centers,
and linearly separable by the final fully connected layer, which acts as a linear classifier. Figure
4 presents the visualizations of features obtained using softmax loss on the left and using joint
supervision of softmax and center loss on the right. Wen et al. (2016) provides detailed analysis and
extensive experiments on center loss and its application in discriminative feature learning.
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