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ABSTRACT

While molecular pre-training has shown great potential in enhancing drug discov-
ery, the lack of a solid physical interpretation in current methods raises concerns
about whether the learned representation truly captures the underlying explanatory
factors in observed data, ultimately resulting in limited generalization and robust-
ness. Although denoising methods offer a physical interpretation, their accuracy
is often compromised by ad-hoc noise design, leading to inaccurate learned force
fields. To address this limitation, this paper proposes a new method for molecular
pre-training, called sliced denoising (SliDe), which is based on the classical me-
chanical intramolecular potential theory. SliDe utilizes a novel noise strategy that
perturbs bond lengths, angles, and torsion angles to achieve better sampling over
conformations. Additionally, it introduces a random slicing approach that circum-
vents the computationally expensive calculation of the Jacobian matrix, which is
otherwise essential for estimating the force field. By aligning with physical prin-
ciples, SliDe shows a 42% improvement in the accuracy of estimated force fields
compared to current state-of-the-art denoising methods, and thus outperforms tra-
ditional baselines on various molecular property prediction tasks.1

1 INTRODUCTION

Molecular representation learning plays a crucial role in a variety of drug discovery tasks, includ-
ing molecular property prediction (Schütt et al., 2018; 2021; Thölke & Fabritiis, 2022), molecular
generation (Bilodeau et al., 2022; Jing et al., 2022), and protein-ligand binding (Gao et al., 2023;
Zheng et al., 2019). To overcome the challenge of insufficient labeled data, various molecular pre-
training methods have been proposed to obtain a universal molecular representation, including the
contrastive approaches (Fang et al., 2022; Wang et al., 2022; Stärk et al., 2022; Li et al., 2022) and
the predictive approaches (Rong et al., 2020; Fang et al., 2021; Zhu et al., 2022; Liu et al., 2023a).

According to Bengio et al. (2013), a good representation is often one that captures the posterior
distribution of the underlying explanatory factors for the observed input data. Regarding molec-
ular representation, we posit that an ideal representation must adhere to the underlying physical
principles that can accurately and universally illustrate molecular patterns. However, the majority
of existing pre-training methods draw inspiration from pre-training tasks in computer vision and
natural language processing and thus overlook the underlying physical principles.

Nevertheless, designing self-supervised tasks that align with physical principles remains challeng-
ing. To the best of our knowledge, only one kind of the unsupervised molecular pre-training method
has an explicit physical interpretation, i.e. the 3D denoising approach (Zaidi et al., 2023; Feng et al.,
2023), which aims to learn an approximate force field for molecules. However, we have found that
this approximate force field largely deviates from the true force field, due to inappropriate assump-
tions such as assuming a molecular force field is isotropic in coordinate denoising (Zaidi et al.,
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2023) or treating certain parts being isotropically in fractional denoising (Feng et al., 2023). Con-
sequently, existing denoising methods still harbor a significant bias from physical laws, which can
hinder downstream results, as depicted by the experiments conducted in Feng et al. (2023) and our
own experiments in Appendix B.5. Therefore, it remains an essential issue to design a denoising
method that better aligns with physical principles.

It should be noted that energy function is a pivotal factor in determining the quality of represen-
tation learning in denoising methods. Firstly, the Boltzmann distribution used for noise sampling,
which determines the conformations on which the network learns its force field, is derived from
the energy function. Secondly, the learned force field, which aims to align regression targets with
the true molecular force field, is designated by the gradient of the energy function. As a result, a
precise energy function facilitates the network to acquire accurate force fields for typical molecules,
consequently enhancing the physical consistency of the representation.

Following the aforementioned analysis, we suggest utilizing the classical mechanical intramolecular
potential energy function and approximating it in the quadratic form using relative coordinates,
i.e. bond lengths, angles, and torsion angles, with certain parameters. Inspired by the previous
theoretical findings that associate the quadratic energy function with a Gaussian distribution through
the Boltzmann distribution, we then propose a novel noise strategy, called BAT noise. Specifically,
BAT noise introduces Gaussian noise to bond lengths, angles, and torsion angles, and their respective
variances are predetermined by parameters within the energy function. This approach allows BAT
noise to better approximate the true molecular distribution when compared to other existing methods.
The resulting conformations from our strategy are closer to common low-energy structures than
previous approaches, providing an advantage for effective representation learning.

The objective of the denoising target is to regress the molecular force field, i.e. the gradient of the
energy function w.r.t. Cartesian coordinates. However, the energy function is defined in relative
coordinates, thus requiring a change of variables in the differential. Specifically, the gradient of the
energy function in relation to relative coordinates is readily acquirable in the form of the by-term
product of the BAT noise and the parameter. Applying a variable change requires estimation of the
Jacobian matrix of the coordinate transformation function, which is nevertheless computationally
expensive. To address this issue, we introduce a random slicing technique that converts the Jacobian
estimation into simple operations of coordinate noise additions and BAT noise acquisitions.

Thus we have developed a novel and efficient method, known as sliced denoising (SliDe), which is
equivalent to learning the force field of the utilized energy function. Consequently, SliDe possesses
the ability to align better with physical principles by estimating a more precise force field. To
facilitate the learning process, we introduce a Transformer-based network architecture that explicitly
encodes relative coordinate information and generates equivariant atom-wise features tailored for the
sliced denoising task. Our contributions are summarized as follows:

1) Methodologically, we suggest the use of physical consistency as a guiding principle for molecular
representation learning, and under this principle, we develop a novel sliced denoising method and
corresponding network architecture.

2) Theoretically, we derive BAT noise from the classical mechanical energy function and establish
the equivalence between learning the force field and our sliced denoising method.

3) Experimentally, we demonstrate that SliDe outperforms existing pre-training methods in terms of
physical consistency and downstream performance on QM9, MD17 and ANI-1x datasets.

2 BACKGROUND

Denoising is a kind of self-supervised learning task in molecular representation learning and has
achieved outstanding results in many downstream tasks (Zhou et al., 2023; Feng et al., 2023; Zaidi
et al., 2023; Luo et al., 2023; Liu et al., 2023b; Jiao et al., 2023). It refers to corrupting original
molecules by specific noise and training the neural networks to predict the noise, thus reconstructing
the molecules. Significant benefit of denoising over other pre-training methods is that it has been
proven to be equivalent to learning a molecular force field, which is physically interpretable.

Coordinate denoising (Coord) (Zaidi et al., 2023) involves the addition of Gaussian noise to atomic
coordinates of equilibrium structures, with subsequent training of the model to predict the noise
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Figure 1: a. Illustrations of bond stretching, bond angle bending, and bond torsion interactions.
b. Comparison of the three denoising methods in terms of energy functions. Coordinate denoising
learns an isotropic energy in Cartesian coordinates that does not discriminate different atom types
and bond types. Based on coordinate denoising, fractional denoising treats the rotatable bonds in
special. In contrast, sliced denoising performs fine-grained treatment for different atom types and
bond types, enabling the most physically consistent description of the molecule.

from the noisy input. They establish the equivalence between coordinate denoising and force field
learning, under the assumption of isotropic Gaussian noise. For a given sampled molecule M,
perturb the equilibrium structure x0 by p(x|x0) ∼ N (x0, τ

2
c I3N ), where x denotes the noisy con-

formation, N denotes the number of atoms in the molecule, and I3N is the identity matrix of size
3N , the subscript c stands for the coordinate denoising approach. Assume the molecular distribution
satisfies the energy-based Boltzmann distribution w.r.t the energy function ECoord, then

LCoord(M) = Ep(x|x0)p(x0)||GNNθ(x)− (x− x0)||2 (1)

≃ Ep(x)||GNNθ(x)− (−∇xECoord(x))||2, (2)

where GNNθ(x) refers to a graph neural network with parameters θ that takes the conformation
x as input and returns node-level predictions. The notation ≃ indicates the equivalence between
different optimization objectives for the GNN. The proof is supplemented in the appendix A.

To account for the anisotropic molecular distribution, fractional denoising (Frad) (Feng et al., 2023)
proposes introducing a hybrid noise on the dihedral angles of rotatable bonds and atomic coordinates
and fractionally denoising the coordinate noise. This specially designed denoising task allows for
a physical interpretation of learning force field. For a given sampled molecule M, the equilibrium
structure x0 is perturbed by p(ψa|ψ0) ∼ N (ψ0, σ

2
fIm) and p(x|xa) ∼ N (xa, τ

2
f I3N ), where ψa

andψ0 correpond to the dihedral angles of rotatable bonds in structures xa and x0 respectively, with
m representing the number of rotatable bonds, and the subscript f standing for Frad. Assume the
molecular distribution satisfies the energy-based Boltzmann distribution w.r.t the energy function
EFrad, we have

LFrad(M) = Ep(x|xa)p(xa|x0)p(x0)||GNNθ(x)− (x− xa)||2 (3)

≃ Ep(x)||GNNθ(x)− (−∇xEFrad(x))||2. (4)

The proof is also supplemented in the appendix A. A summary of denoising pre-training methods is
provided in Appendix D.1.

The aforementioned work has made efforts to learn physically interpretable molecular representa-
tions by designing noise distributions and their corresponding energy functions based on certain
chemical priors. However, their energy function is coarse-grained as shown in Figure 1b., lack-
ing the capability to capture highly complex interaction information, such as bond stretching, angle
bending, and bond torsion composed of different bond types and atom types. In contrast, our noise
distributions and force fields are derived from a classical mechanical energy function, which is more
consistent with the characteristics of true molecules.

3 OUR APPROACH

Inspired by the aforementioned deduction, we can conclude that in pursuit of designing an effective
and interpretable denoising pre-training task, physical consistency can be achieved by developing
an energy function that accurately approximates the true molecular energy. This, in turn, leads to a
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better noise distribution capable of sampling low-energy molecules, and a correspondingly improved
force field learned through denoising. Following this guiding principle, we first establish a physical
informed energy function in section 3.1, followed by the design of a noise distribution in section 3.2.
In section 3.3, we present a denoising task aimed at learning the force field of the aforementioned
energy function. Finally, in section 3.4, we introduce the network architecture developed for our
denoising method.

3.1 ENERGY FUNCTION

According to classical molecular potential energy theory (Mol, 2020; Zhou & Liu, 2022), the total
intramolecular potential energy can be attributed to five types of interactions: bond stretching, bond
angle bending, bond torsion, electrostatic, and van der Waals interactions. Figure 1a. depicts the
first three interactions. The energy function, in its general form, can be expressed as follows:

E(r,θ,ϕ) =
1

2

∑
i∈B

kBi (ri − ri,0)
2 +

1

2

∑
i∈A

kAi (θi − θi,0)
2

+
∑
i∈T

kTi (1− cos(ωi(ϕi − ϕi,0))) + Eelec + EvdW ,
(5)

where r, θ, and ϕ represent vectors of the bond lengths, bond angles, and bond torsion angles of
the molecule, respectively. The index i corresponds to the element in the vector. r0, θ0, and ϕ0

correspond to the respective equilibrium values. The parameter vectors kB , kA, and kT determine
the interaction strength, while the parameter vectors ω determine the torsion periodicity. The index
set B, A, T correspond to the bonds, angles, and torsion angles in the molecule, respectively.

In order to approximate it as a quadratic form, which is often required to enable the equivalence
based on previous proof, we put forward two approximation operations. Firstly, when ϕ → ϕ0, a
Taylor expansion is utilized to express the bond torsion interaction in the quadratic form:

1− cos(ωi(ϕi − ϕi,0)) = 1− [1− 1

2
(ωi(ϕi − ϕi,0))

2 + o((ϕi − ϕi,0)
2)] ≈ 1

2
ω2
i (ϕi − ϕi,0)

2.

The approximation is reasonable since the noise scale in denoising methods is usually small. Sec-
ondly, we drop the last two terms in order to get a quadratic form of energy function in equation 6.
Despite these long-range electrostatic and van der Waals interactions are important in classical sim-
ulations, we find the accuracy of the approximated energy function is much higher than existing
self-supervised pre-training methods in section 4.1.

EBAT (r,θ,ϕ) =
1

2

∑
i∈B

kBi (ri − ri,0)
2 +

1

2

∑
i∈A

kAi (θi − θi,0)
2 +

1

2

∑
i∈T

kTi ω
2
i (ϕi − ϕi,0)

2. (6)

In Figure 1b., we compare our energy function with that of Coord and Frad. Their formulations
provide a general outline of the energy function in an averaged manner using only one or two pa-
rameters. Unfortunately, they fail to capture the nuanced energetic characteristics of molecules. In
contrast, our energy function carefully describes the impact of different atomic types and bond types
on energy using specific parameters. Therefore, our approach is more closely aligned with the true
physical properties of molecules.

3.2 NOISE DESIGN

With the common assumption that the conformation distribution of a molecule follows the Boltz-
mann distribution (Boltzmann, 1868), i.e. p ∝ exp(−E), we can derive the conformation distribu-
tion corresponding to our quadratic energy function.

p(r,θ,ϕ) =
1

Z
exp(−EBAT (r,θ,ϕ)) (7)

=
∏
i∈B

1

ZB
i

exp(−kBi
(ri − ri,0)

2

2
)
∏
i∈A

1

ZA
i

exp(−kAi
(θi − θi,0)

2

2
)
∏
i∈T

1

ZT
i

exp(−kTi ω
2
i

(ϕi − ϕi,0)
2

2
),

(8)

where Z, ZB
i , ZA

i , ZT
i are normalization factors. According to equation 8, the conformation dis-

tribution can be expressed as a joint distribution of independent Gaussian on bond lengths, bond
angles, and torsion angles. Therefore we can outline the following noise strategy.
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Definition 3.1 (BAT noise). The BAT noise strategy refers to perturbing the equilibrium structure
by adding independent Gaussian noise on every bond length, angle and torsion angle:

r ∼ N (r0, diag(
1

kB
)),θ ∼ N (θ0, diag(

1

kA
)),ϕ ∼ N (ϕ0, diag(

1

kT ⊙ ω2
)), (9)

where ⊙ means multiply item by item, diag(·) represents a diagonal matrix whose diagonal elements
are the elements of the vector. The variances are determined by the parameters that can be obtained
in prior, such as from the parameter files of molecular simulation tools.

Detail implementations of the BAT noise can be found in Appendix C.1. Since EBAT approxi-
mates the true molecular energy function, the sampling distribution of BAT noise resembles the
true molecular distribution. This guarantees realistic sampled conformations that are beneficial for
learning effective representations.

3.3 SLICED DENOISING

Since the energy function is based on bond lengths, angles, and torsion angles, the gradient of the
energy function can be represented as a simple form with respect to the relative coordinate:

∇dEBAT (d) = [kB ⊙ (r − r0),kA ⊙ (θ − θ0),kT ⊙ ω2 ⊙ (ϕ− ϕ0)]
⊤, (10)

where d = (r,θ,ϕ). However, we need to derive a simple expression for the gradient of our energy
function with respect to Cartesian coordinates and ensure the learning of the force field of EBAT by
minimizing

Ep(x|x0)||GNNθ(x)−∇xEBAT (d(x))||2. (11)
For this purpose, we propose expanding the gradient using the chain rule and expressing the force
field target as the gradient of the energy function with respect to the relative coordinates and a
Jacobian matrix of the coordinate transformation. A rigorous formulation is presented as follows.

Firstly, we define a coordinate transformation function for a molecule M that maps from Cartesian
coordinates to relative coordinates:

fM : R3N −→ (R≥0)
m1 × ([0, 2π))m2 × ([0, 2π))m3 (12)

x 7−→ d = (r,θ,ϕ),

where m1, m2, and m3 are numbers of bonds, angles, and torsion angles respectively. The
mapping is well-defined, as these values can be uniquely determined by the Cartesian coordi-
nates. Although θ, ϕ are defined on a torus, we can establish a homeomorphism between the
Euclidean space Rm2+m3 and ([0, 2π)\{pi})m2 × ([0, 2π)\{pj})m3 , where pi, pj are any points in
[0, 2π), i = 1 · · ·m2, j = 1 · · ·m3 (Zorich, 2016). As the denoising method only involves confor-
mations in a small neighborhood V around the equilibrium conformation d0, we can select pi, pj
such that V ∈ ([0, 2π)\{pi})m2 × ([0, 2π)\{pj})m3 . Consequently, the coordinate transformation
function defined on a neighborhood can be regarded as a mapping between the Euclidean spaces
R3N −→ RM , where M ≜ m1 +m2 +m3.

Assume that the coordinate transformation function fM is continuously differentiable with contin-
uous partial derivatives. Then the force field can be expressed by

∇xEBAT (f(x))
⊤ = ∇dEBAT (d)

⊤ · J(x), (13)

where J(x) =


∂fM

1 (x)

∂x1
· · · ∂fM

1 (x)

∂x3N

...
...

∂fM
M (x)

∂x1
· · · ∂fM

M (x)

∂x3N

 ∈ RM×3N is the Jacobian matrix. Then the target in

equation 11 can be written as

Ep(x|x0)||GNNθ(x)−∇dEBAT (d)
⊤ · J(x)||2. (14)

For each noisy conformation, the Jacobian matrix can be estimated via numerical differentiation,
which is time-consuming. To efficiently learn the force field, we devise a cleverly designed asymp-
totically unbiased estimator that does not require the computation of the Jacobian matrix, by utilizing
two computational techniques.

Firstly, a random slicing technique is introduced to estimate the target regression loss through the
projection of the GNN and force field onto random vectors, as illustrated by lemma 3.2.
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Lemma 3.2 (Random Slicing). ∀a, b,v ∈ R3N , σ > 0, v ∼ N (0, σ2I3N ), then

||a− b||2 =
1

σ2
Ev[(a− b)⊤ · v]2. (15)

An intuitive illustration of lemma 3.2 is that the L2 norm of the vector a−b equals the expectations
of the vector projected onto Gaussian random vectors. Our random slicing technique, which can be
seen as a more general approach, has been inspired by the idea of Sliced Wasserstein distance(Rabin
et al., 2012).

After that, the dot product of the Jacobian matrix and the random vector can be efficiently calculated
with the assistance of lemma 3.3.
Lemma 3.3 (Differential of Coordinate Transformation Function). ∀x,v ∈ R3N are a molecular
conformation and Cartesian coordinate noise respectively, then

J(x) · v = fM(x+ v)− fM(x) + α(x;v), (16)

where α(x;v) = o(v) as ||v|| → 0.

Therefore, the ultimate loss function can be defined as follows.

LSliDe(M) = Ep(x|x0)
1

Nv

Nv∑
i=1

[
GNNθ(x)

⊤ · vi −
1

σ
∇dEBAT (d)

⊤ ·
(
fM(x+ σvi)− fM(x)

)]2

,

(17)
where vi ∼ N (0, I3N ), σ is a parameter. x and d are the Cartesian coordinates and relative
coordinates of the structure after adding the BAT noise to the equilibrium structure, respectively.
∇dEBAT (d) is given in equation 10, and GNNθ(x) ∈ R3N denotes the prediction output of GNN
for each atomic Cartesian coordinate.

The computation of the scalar target can be performed rapidly by leveraging the relative coordinate
obtained after adding the Cartesian noise v through the utilization of RDKit (Landrum et al., 2013),
a readily available cheminformatics tool.

Consequently, the total loss is averaged on every sample in the 3D equilibrium molecular dataset M:

Ltotal
SliDe =

1

|M|
∑
M∈M

LSliDe(M). (18)

In practise, we utilize stochastic gradient descent and approximate the total loss by batch loss. For
reference, the pseudo-code outlining the approach for performing SliDe denoising pre-training is
presented in Appendix C.2.

Furthermore, we have proven its equivalence to learning the force field of EBAT as shown in the
following theorem, with the proof provided in appendix A.
Theorem 3.4 (Interpretation of Sliced Denoising). Given equilibrium structures, when σ ap-
proaches 0 and Nv approaches ∞, minimizing LSliDe(M) is equivalent to learning the force field
of EBAT in Cartesian coordinate in equation 11.

3.4 NETWORK ARCHITECTURE

Compared to previous denoising methods, our approach defines energy and noise w.r.t. relative coor-
dinates. Relative coordinates provide a complete representation of molecular structure and conform
the molecular symmetry, thereby offering advantages for molecular modeling. Further details about
related work on 3D molecular modeling in relative coordinates can be found in Appendix D.2.

While TorchMD-NET (Thölke & Fabritiis, 2022) has achieved competitive results when applied in
denoising tasks, as shown in (Zaidi et al., 2023; Feng et al., 2023), it employs Cartesian coordinates
to inject geometry information and does not explicitly model the angles and torsion angles. Since
our method explicitly utilizes relative coordinates to model energy and noise, we believe angular
information is important for learning our force field target. Therefore, in addition to the vertex
update in TorchMD-NET, we also incorporate edge update and introduce angular information in the
edge embeddings. These edge embeddings are then utilized in the attention layer, which impacts
the vertex update. Our network is denoted as the Geometric Equivariant Transformer (GET), and
further details are outlined in Appendix C.3.

6



Published as a conference paper at ICLR 2024

4 EXPERIMENTS

Our first experiment in section 4.1 is concerned with whether our approach achieves better physical
consistency, specifically in terms of force field accuracy, as compared to coordinate denoising and
fractional denoising methods. Then in section 4.2, we evaluate the performance of SliDe in com-
parison to state-of-the-art 3D pre-training methods on the benchmark datasets QM9 and MD17, in
order to assess our model’s ability for molecular property prediction. Furthermore, in section 4.3, we
conduct ablation studies concerning fine-tuning regularization and network architecture. Additional
experiments on the benchmark datasets ANI-1x, the impact of physical consistency on downstream
tasks, and ablation studies related to the hyperparameters in SliDe loss, robustness to noisy pre-
training data and effect of pre-training data scale can be found in the Appendix B. Implementation
details of the experiments can be found in the Appendix C.

4.1 EVALUATIONS ON PHYSICAL CONSISTENCY

To estimate the learned force field in SliDe, we calculate the Cartesian force field for each molecule
M by solving a least square estimation problemAxf = b, whereA = [v1, · · · , vNv

]⊤ ∈ RNv×3N ,
bi =

1
σ∇dEBAT (d)

⊤ (
fM(x+ σvi)− fM(x)

)
, ∀i = 1 · · ·Nv , b = [b1, · · · , bNv

]⊤ ∈ RNv×3N .
We can prove that the regression loss Ep(M|M) [GNNθ(M)− xf ]

2 is asymptotically an equivalent
optimization problem to SliDe. Therefore xf can be viewed as the learned force field target in SliDe.
Details can be found in appendix proposition A.1.

To verify the accuracy of the learned force field in various denoising methods, we compare the corre-
lation coefficient between the learned force field and the ground-truth force field calculated by den-
sity functional theory (DFT). Since obtaining the true force field label can be time-consuming, the
experiment is carried out on 1000 molecules randomly selected from dataset PCQM4Mv2 (Nakata
& Shimazaki, 2017). The noisy conformations are generated according to each denoising method
and the learned force fields of Frad and Coord are estimated as the approach in Feng et al. (2023).

Table 1: Correlation coefficient between the learned force field and the ground-truth force field of
the three methods. The standard deviation is shown in parentheses. The top results are in bold.

Denoising method Coord Frad SliDe

Correlation coefficient 0.616(0.047) 0.631 (0.046) 0.895 (0.071)

The experimental results in Table 1 indicate that SliDe increases the correlation coefficient of the
estimated force field by 42%, compared to Frad and Coord. This confirms that the design of our
energy function and sliced denoising can help the model learn a more accurate force field than other
denoising methods, which is consistent with our theoretical analysis. In addition, our result on Frad
and Coord is in line with the experimental results in Feng et al. (2023), although the experiments
are carried out on different datasets. It has been verified in Feng et al. (2023) that learning an
accurate force field in denoising can improve downstream tasks. We also conduct a supplementary
experiment in Appendix B.5 to confirm the conclusion. As a result, SliDe greatly improves the
physical consistency of the denoising method, enabling the learned representations to have better
performance on downstream tasks.

The validation of force field accuracy can also help us choose hyperparameters without training
neural networks. Details are in Appendix B.2.

4.2 EVALUATIONS ON DOWNSTREAM TASKS

Our model is pre-trained on PCQM4Mv2 dataset (Nakata & Shimazaki, 2017), which contains 3.4
million organic molecules and provides one equilibrium conformation for each molecule. Follow-
ing previous denoising methods, we apply the widely-used Noisy Nodes technique (Godwin et al.,
2021), which incorporates coordinate denoising as an auxiliary task in addition to the original prop-
erty prediction objective in the fine-tuning phase. Nevertheless, we observe the hard optimization of
Noisy Nodes in SliDe. To get the most out of the fine-tuning technique, we add a regularization term
in pre-training loss, i.e. [GNNθ(x+ τv)− τv]

2. An ablation study on the regularization term is
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Table 2: Performance (MAE ↓) on QM9. The best results are in bold.

µ α homo lumo gap R2 ZPVE U0 U H G Cv

(D) (a3
0) (meV) (meV) (meV) (a2

0) (meV) (meV) (meV) (meV) (meV) ( cal
mol·K )

SchNet 0.033 0.235 41.0 34.0 63.0 0.07 1.70 14.00 19.00 14.00 14.00 0.033
E(n)-GNN 0.029 0.071 29.0 25.0 48.0 0.11 1.55 11.00 12.00 12.00 12.00 0.031
DimeNet++ 0.030 0.044 24.6 19.5 32.6 0.33 1.21 6.32 6.28 6.53 7.56 0.023
PaiNN 0.012 0.045 27.6 20.4 45.7 0.07 1.28 5.85 5.83 5.98 7.35 0.024
SphereNet 0.025 0.045 22.8 18.9 31.1 0.27 1.120 6.26 6.36 6.33 7.78 0.022
ET 0.011 0.059 20.3 17.5 36.1 0.033 1.840 6.15 6.38 6.16 7.62 0.026

TM 0.037 0.041 17.5 16.2 27.4 0.075 1.18 9.37 9.41 9.39 9.63 0.022
SE(3)-DDM 0.015 0.046 23.5 19.5 40.2 0.122 1.31 6.92 6.99 7.09 7.65 0.024
3D-EMGP 0.020 0.057 21.3 18.2 37.1 0.092 1.38 8.60 8.60 8.70 9.30 0.026
Coord 0.012 0.0517 17.7 14.3 31.8 0.4496 1.71 6.57 6.11 6.45 6.91 0.020
Frad 0.010 0.0374 15.3 13.7 27.8 0.3419 1.418 5.33 5.62 5.55 6.19 0.020
SliDe 0.0087 0.0366 13.6 12.3 26.2 0.3405 1.521 4.28 4.29 4.26 5.37 0.019

provided in section 4.3.1. Hyperparameter settings for pre-training and finetuning are summarized
in Appendix C.4.

Our baselines include both 3D pre-training approaches, such as fractional denoising (Frad), coordi-
nate denoising (Coord), 3D-EMGP (Jiao et al., 2023), SE(3)-DDM (Liu et al., 2023b), Transformer-
M (TM) (Luo et al., 2023), as well as supervised models such as TorchMD-NET (ET) (Thölke &
Fabritiis, 2022), SphereNet (Liu et al., 2022), PaiNN (Schütt et al., 2021), E(n)-GNN(Satorras et al.,
2021), DimeNet (Gasteiger et al., 2020b), DimeNet++ (Gasteiger et al., 2020a), SchNet (Schütt
et al., 2018). The results for these baselines are directly taken from the referred papers, except for
Coord on MD17, which is produced by us due to its absence in their paper.

4.2.1 QM9

QM9 (Ramakrishnan et al., 2014) is a quantum chemistry dataset providing one equilibrium con-
formation and 12 labels of geometric, energetic, electronic, and thermodynamic properties for 134k
stable small organic molecules made up of CHONF atoms. The data splitting follows standard set-
tings which have a training set with 110,000 samples, a validation set with 10,000 samples, and a
test set with the remaining 10,831 samples. The performance on 12 properties is measured by mean
absolute error (MAE, lower is better) and the results are summarized in Table 2.

First of all, our model achieves new state-of-the-art performance on 10 out of 12 tasks in QM9,
reducing the mean absolute error (MAE) by 12.4% compared to the existing state-of-the-art. Among
them, SliDe performs particularly well on challenging energetic and thermodynamic tasks. We
speculate that this is because these two tasks are more closely related to molecular potential energy
and force fields that we focus on during pre-training, for instance, the potential energy is related
to thermodynamic quantities as illustrated in (Saggion et al., 2019). It is worth noting that the
downstream performance of the three interpretable methods, SliDe, Frad, and Coord, is in agreement
with the result of learned force field accuracy in section 4.1, i.e. SliDe demonstrates the strongest
performance while Frad outperforms Coord. These experimental findings once again confirm the
importance of physical consistency to molecular representations.

4.2.2 MD17

MD17 (Chmiela et al., 2017) is a dataset of molecular dynamics trajectories of 8 small organic
molecules. For each molecule, 150k to nearly 1M conformations, corresponding total energy and
force labels are provided. We choose the challenging force prediction as our downstream task.
The data splitting follows a standard limited data setting, where the model is trained on only 1000
samples, from which 50 are used for validation and the remaining data is used for testing. The
performance is also measured by mean absolute error and the results are summarized in Table 3.

Despite the fact that the downstream task is closely related to our pre-training task, the input con-
formations in MD17 are far from equilibrium and the limited training data setting makes it even
more challenging. In this case, we still outperform or achieve comparable results as compared with
recent baselines, indicating that the force field knowledge learned in SliDe pre-training is effectively
transferred to the downstream force field task.
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Table 3: Performance (MAE ↓) on MD17 force prediction (kcal/mol/ Å). The best results are in
bold. *: PaiNN does not provide the result for Benzene, and SE(3)-DDM utilizes the dataset for
Benzene from Chmiela et al. (2018), which is a different version from ours (Chmiela et al., 2017).

Aspirin Benzene Ethanol Malonal
-dehyde

Naphtha
-lene

Salicy
-lic Acid Toluene Uracil

SphereNet 0.430 0.178 0.208 0.340 0.178 0.360 0.155 0.267
SchNet 1.35 0.31 0.39 0.66 0.58 0.85 0.57 0.56
DimeNet 0.499 0.187 0.230 0.383 0.215 0.374 0.216 0.301
PaiNN* 0.338 - 0.224 0.319 0.077 0.195 0.094 0.139
ET 0.2450 0.2187 0.1067 0.1667 0.0593 0.1284 0.0644 0.0887

SE(3)-DDM* 0.453 - 0.166 0.288 0.129 0.266 0.122 0.183
Coord 0.2108 0.1692 0.0959 0.1392 0.0529 0.1087 0.0582 0.0742
Frad 0.2087 0.1994 0.0910 0.1415 0.0530 0.1081 0.0540 0.0760
SliDe 0.1740 0.1691 0.0882 0.1538 0.0483 0.1006 0.0540 0.0825

4.3 ABLATION STUDY

We conduct an ablation study to examine the impact of the regularization term introduced for better
fine-tuning and to evaluate the performance of our modified network architectures.

4.3.1 REGULARIZATION TERM

To assess the effectiveness of the regularization term proposed for pre-training SliDe, we conduct
pre-training with and without regularization and subsequently fine-tuned the models on three QM9
tasks. The network architecture remains consistent across all three setups, and the Noisy Nodes are
implemented with the same configuration. The result is shown in the bottom three rows of Table
4. Our findings indicate that the regularization term can effectively improve the performance of
downstream tasks. Notably, SliDe without regularization still outperforms training from scratch and
yields similar performance to Frad. Moreover, we observe in experiment that the regularization
reduces the downstream Noisy Nodes loss, suggesting that the regularization term contributes to
optimizing Noisy Nodes.

Table 4: Ablation study for regularization term.

QM9 homo lumo gap

Train from scratch 17.6 16.7 31.3
SliDe w/o regularization 15.0 14.8 27.7
SliDe w/ regularization 13.6 12.3 26.2

Table 5: Ablation study for network design.

MD17 force prediction Aspirin Benzene

SliDe (ET) 0.2045 0.1810
SliDe (GET) 0.1740 0.1691

4.3.2 NETWORK DESIGN

To show the advantage of the improved network to our SliDe, we pre-train the geometric equivariant
Transformer (GET) and TorchMD-NET (ET) by sliced denoising and fine-tune them on MD17. As
shown in Table 5, our network further improves the performance, indicating the excellence of our
novel network in depicting more intricate geometric features, such as angles and torsional angles.

5 CONCLUSION

This paper proposes a novel pre-training method, called sliced denoising, for molecular represen-
tation learning. Theoretically, it harbors a solid physical interpretation of learning force fields on
molecular samples. The sampling distribution and regression targets are derived from classical me-
chanical molecular potential, ensuring more realistic input conformations and precise force field
estimation than other denoising methods. Empirically, SliDe has shown significant improvements
in force field estimation accuracy and various downstream tasks, including QM9 and MD17, as
compared with previous supervised learning and pre-training methods.
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A PROOF OF THEORETICAL RESULTS

Proof of Lemma 3.3. Since fM is differentiable at the point x, equation 16 is the definition of the
differential of a function of several variables(Zorich, 2015).

Proof of Lemma 3.2.

Ev[(a− b)⊤ · v]2 = Ev[(a− b)⊤vv⊤(a− b)] = (a− b)⊤Ev[vv
⊤](a− b)

= (a− b)⊤σ2I3N (a− b) = σ2||a− b||2
(19)

Divide both sides by σ2, then the proof is completed.

Proof of Theorem 3.4. Let v(σ) ≜ σv, v ∼ N(0, I3N ).

LSliDe(M) ≈ Ep(x|x0)Ev

[
GNNθ(x)

⊤ · v − 1

σ
∇dEBAT (d)

⊤ ·
(
fM(x+ σv)− fM(x)

)]2
(20)

= Ep(x|x0)Ev(σ)

1

σ2

[
GNNθ(x)

⊤ · v(σ) −∇dEBAT (d)
⊤ ·

(
fM(x+ v(σ))− fM(x)

)]2
(21)

≈ Ep(x|x0)Ev(σ)

1

σ2

[
GNNθ(x)

⊤ · v(σ) −∇dEBAT (d)
⊤ ·

(
J(x)v(σ)

)]2
(22)

= Ep(x|x0)Ev(σ)

1

σ2

[(
GNNθ(x)− J(x)⊤ · ∇dEBAT (d)

)⊤ · v(σ))
]2

(23)

= Ep(x|x0)||GNNθ(x)−∇xEBAT (d(x))||2 (24)

The first step of approximation holds in the sense that limNv→∞ LSliDe = equation 20. The
second step holds by substituting σv with v(σ) ∼ N(0, σ2I3N ). The third step holds because of
Lemma 3.3 and approximation holds in the sense that limσ→0 α(x;v

(σ)) → 0. The fourth step
of the equation is the associative and distributive law of vector multiplication. The last step uses
Lemma 3.2.

Proposition A.1. When Nv → ∞ and the least square estimation referred in section 4.1 gives
the ground-truth force field, i.e. Axf = b for any sampled v, the following regression loss is an
equivalent optimization problem to SliDe.

L(reg)
SliDe(M) = Ep(M|M) [GNNθ(M)− xf ]

2
, (25)

Proof. When Nv → ∞, by the law of large numbers,

lim
Nv→∞

LSliDe(M) = lim
Nv→∞

Ep(x|x0)
1

Nv

Nv∑
i=1

[A ·GNNθ(x)− b]2 (26)

= Ep(x|x0)Ev [A ·GNNθ(x)− b]2 ≜ L(asymp)
SliDe (M) (27)

∇L(reg)
SliDe(M) = Ep(x|x0)2 (GNNθ(x)− xf )

⊤ ∇GNNθ(x) (28)

∇L(asymp)
SliDe (M) = Ep(x|x0)Ev2 (A ·GNNθ(x)− b)⊤A∇GNNθ(x) (29)

By assumption,Axf = b for any sampled v, then equation 29

= Ep(x|x0)Ev2 (GNNθ(x)− xf )
⊤
A⊤A∇GNNθ(x) (30)

= Ep(x|x0)2 (GNNθ(x)− xf )
⊤
Ev

[
A⊤A

]
∇GNNθ(x) (31)

Since vi ∼ N(0, I3N ), every element in A = [v1, · · · , vNv
] is i.i.d standard normal distribution.

Therefore Ev

[
A⊤A

]
= Nv · I3N , i.e. equation 31

= Ep(x|x0)2Nv (GNNθ(x)− xf )
⊤ ∇GNNθ(x) (32)

= Nv∇L(reg)
SliDe(M) (33)
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Consequently, ∇L(asymp)
SliDe = Nv∇L(reg)

SliDe, Nv is a constant, then the two optimization target share
the same minima.

Theorem A.2 (Interpretation of Coordinate Denoising (Zaidi et al., 2023)). Assume the conforma-
tion distribution is a mixture of Gaussian distribution centered at the equilibriums:

p(x) =

∫
p(x|x0)p(x0), p(x|x0) ∼ N (x0, τ

2
c I3N ) (34)

x0, x ∈ R3N are equilibrium conformations and noisy conformation respectively, N is the num-
ber of atoms in the molecule. It relates to molecular energy by Boltzmann distribution p(x) ∝
exp(−ECoord(x)).

Then given a sampled molecule M, the coordinate denoising loss is an equivalent optimization
target to force field regression:

LCoord(M) = Ep(x|x0)p(x0)||GNNθ(x)− (x− x0)||2 (35)

≃ Ep(x)||GNNθ(x)− (−∇xECoord(x))||2, (36)

where GNNθ(x) denotes a graph neural network with parameters θ which takes conformation x
as an input and returns node-level noise predictions, ≃ denotes equivalent optimization objectives
for GNN.

Proof. According to Boltzmann distribution, equation 36= Ep(x)||GNNθ(x) − ∇x log p(x)||2.
By using a conditional score matching lemma (Vincent, 2011), the equation above =
Ep(x|x0)p(x0)||GNNθ(x) −∇x log p(x|x0)||2 + T1, where T1 is constant independent of θ. Then
with the Gaussian assumption, it becomes Ep(x|x0)p(x0)||GNNθ(x)− x0−x

τ2
c

||2 +T1. Finally, since
coefficients − 1

τ2 do not rely on the input x, it can be absorbed into GNNθ, thus obtaining equa-
tion 35.

Theorem A.3 (Interpretation of Fractional Denoising (Feng et al., 2023)). Assume the conformation
distribution is a mixture distribution centered at the equilibriums:

p(x) =

∫
p(x|xa)p(xa|x0)p(x0), p(ψa|ψ0) ∼ N (ψ0, σ

2
fIm), p(x|xa) ∼ N (xa, τ

2
f I3N ), (37)

where x0, xa, x ∈ R3N are equilibrium conformation and noisy conformations respectively, ψ
andψ0 are the dihedral angles of rotatable bonds in conformation x and x0, m is the number of the
rotatable bonds. It relates to molecular energy by Boltzmann distribution p(x) ∝ exp(−EFrad(x)).

Then given a sampled molecule M, the fractional denoising loss is an equivalent optimization target
to force field regression:

LFrad(M) = Ep(x|xa)p(xa|x0)p(x0)||GNNθ(x)− (x− xa)||2 (38)

≃ Ep(x)||GNNθ(x)− (−∇xEFrad(x))||2, (39)

Proof. According to Boltzmann distribution, equation 39= Ep(x)||GNNθ(x) − ∇x log p(x)||2.
By using a conditional score matching lemma (Vincent, 2011), the equation above =
Ep(x,xa)||GNNθ(x)−∇x log p(x|xa)||2+T2, where T2 is constant independent of θ. Since the part
in the expectation does not containx0, it equals to Ep(x,xa,x0)||GNNθ(x)−∇x log p(x|xa)||2+T2.
Finally, − 1

τ2 can be absorbed into GNN and obtain equation 38.

B SUPPLEMENTARY EXPERIMENTS

B.1 MORE DOWNSTREAM RESULTS

We evaluate SliDe on ANI-1x that provides large numbers of molecules with multiple equilibrium
and nonequilibrium conformations. A summary of datasets is shown in table 6. The result is
compared with baseline nonequilibrium denoising (Noneq) Wang et al. (2023b) that performs coor-
dinate denoising as Coord Zaidi et al. (2023), while Noneq is pre-trained on ANI-1 and ANI-1x that
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Table 6: Summary of datasets.

Dataset Molecule size Number of molecules Number of conformations

PCQM4Mv2 ∼ 30 3,378,606 3,378,606(one equilibrium for each molecule)
QM9 ∼ 18 (3-29) 133,885 133,885(one equilibrium for each molecule)
MD17 ∼ 13 (9-21) 8 3,611,115(including nonequilibriums)
ANI-1x ∼ 15 (4-63) 63,865 5,496,771(including nonequilibriums)

contain nonequilibrium structures. Noneq also adopts TorchMD-NET as the backbone model. The
result of experiment on ANI-1x energy prediction is shown in table 7. SliDe performs better in both
pre-train improvement and without pre-train setting, indicating the superiority of SliDe pre-training
method over nonequilibrim coordiante denoising as well as the improved backbone model GET over
TorchMD-NET.

Table 7: Performance (MAE ↓) on ANI-1x energy prediction (kcal/mol). The best results are in
bold.

Noneq SliDe

w/o pre-train 1.50 1.362
pre-train 1.01 0.786
pre-train improvement 32.7% 42.3%

B.2 HYPERPARAMETER ANALYSIS OF THE SLIDE LOSS FUNCTION

Table 8: Force field accuracy in different settings of Nv and σ. The top results are in bold.

Settings ρ MSE Scale

Nv = 32, σ = 0.001 0.536(0.067) 2.3e-4(1e-4) 0.73(0.13)
Nv = 64, σ = 0.001 0.753(0.079) 1.5e-4(8e-5) 0.98 (0.14)
Nv = 128, σ = 0.001 0.895 (0.071) 7.5e-5(2e-4) 1.05(0.14)
Nv = 512, σ = 0.001 0.896 (0.067) 7.6e-5(7e-5) 1.06(0.15)
Nv = 512, σ = 0.01 0.893(0.072) 0.53(0.20) 41.97(5.70)

Since an accurate force field target contributes to learning effective representations, we can choose
hyperparameters by utilizing the least square estimation of learned force field accuracy introduced in
section 4.1. This parameter selection strategy obviates the need for training neural networks, thereby
rendering the process efficient and principled. Accordingly, we validated the accuracy of the learned
force field for several combinations of hyperparameters Nv and σ. The results are shown in Table 8.
The accuracy is measured by Pearson correlation coefficient (ρ, the larger the better), mean squared
error (MSE, the smaller the better), and ”scale”, which is the quotient of the mean absolute values
between learned force fields and DFT force fields, and the best value is 1. The value in the bracket
is the standard deviation.

In Theorem 3.4, the best hyperparameter in theory is Nv → ∞ and σ → 0. However, a large
sampling size Nv leads to slow pre-training, and a small sampling standard deviation σ results in
higher numerical accuracy required. In experimental results, larger Nv leads to better force field
accuracy but the trend tends to saturate when Nv > 512. This is mainly because in the pre-training
dataset, the atomic numbers of the molecules are generally distributed between 20 and 40, i.e. Nv =
128 > 3N for most molecules and the least square error is small in this case. As for the standard
deviation σ, it has a small impact on the correlation coefficient, but significantly affects the MSE
and scale. After considering both accuracy and efficiency, we choose Nv = 128 and σ = 0.001.
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B.3 ROBUSTNESS TO NOISY PRE-TRAINING DATA

In practical applications, the data quality can vary significantly. Most of the existing methods rely
on equilibrium structures, limiting their effectiveness in scenarios where such structures are not
readily available or accurate. To investigate the robustness of SliDe to noisy conformation, we
pre-train on RDKit generated conformations, which can be generated at a large scale. We extract
subsets of 10W and 50W molecules from PCQM4Mv2 dataset and generate cheap conformations
by RDKit. We pre-train on the dataset we construct and test them on homo(QM9), as shown in
table 9. When compared with training from scratch MAE=17.6 meV, pre-training with RDKit data

Table 9: Performance (MAE ↓) on homo (meV) from QM9 with SliDe pre-trained on accurate and
noisy conformations.

Training size PCQ(DFT) PCQ(RDKit)

10W 16.05 16.13
50W 14.53 15.39

is notably effective. When compared with pre-training with accurate conformations, less accurate
conformations compromise the performance. Overall, SliDe is robust to inaccurate conformations,
revealing the potential of SliDe in larger scale of pre-training.

B.4 EFFECT OF PRE-TRAINING DATA SCALE ON DOWNSTREAM TASKS

To investigate how the scale of the pre-training data affects performance, we randomly extract
10W, 50W, 100W data from PCQM4Mv2 dataset. We pre-train on these subsets and finetune on
homo(QM9). The results is provided in table 10. We find more pre-train data contributes to better
downstream performance, whereas SliDe is able to achieve competitive results when data is scarce,
such as 50W.

Table 10: Performance (MAE ↓) on homo (meV) from QM9 with SliDe pre-trained on different data
scales.

Number of pre-training data w/o pretrain 10W 50W 100W 300W(whole)

homo(meV) 17.6 16.05 14.53 14.21 13.6

B.5 EFFECT OF PRE-TRAINING PHYSICAL CONSISTENCY ON DOWNSTREAM TASKS

Table 11: Performance (MAE ↓) on MD17 force prediction (kcal/mol/ Å). The models are pre-
trained on a subset of PCQM4Mv2 dataset.

Train from Scratch Coord pre-training Frad pre-training DFT label
supervised pre-training

Aspirin (Force) 0.253 0.250 0.248 0.236

To verify whether learning an accurate force field in denoising can improve downstream tasks, we
compare the existing denoising method with supervised pre-training on precise force field labels by
DFT. Since DFT calculation can be time-consuming, we randomly select 10,000 molecules with
fewer than 30 atoms from the PCQM4Mv2 dataset and calculate their precise force field label using
DFT. We pre-train the model by learning the DFT force labels. We also pre-train the same backbone
model by Coord and Frad methods respectively. Then the pre-trained models are finetuned on MD17
datasets. The results are shown in Table 11. The comparison between the pre-training methods
indicates that as the accuracy of the force field in pre-training tasks increases, the performance on
downstream tasks improves. Note that there is a large gap from Frad to ”DFT label supervised”
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compared to the improvement from training from Scratch to Coord and Coord to Frad, indicating
that there is still a large room for downstream improvement along the idea of learning force fields.
These findings motivate us to design a denoising pre-training task to learn accurate force fields.

C DETAIL IMPLEMENTATIONS

C.1 NOISE DESIGN

The BAT noise strategy refers to perturbing the equilibrium structure by adding independent Gaus-
sian noise on every bond length, angle and torsion angle, as shown in equation 9. The variances
are determined by the parameters that can be obtained from the parameter files of molecular sim-
ulation tools. Our parameters are obtained from the parameter files of Open Force Field v.2.0.0
(Sage) (Boothroyd et al., 2023). Examples of BAT noise on acetaldehyde and 2-methylpyridine are
provided in figure 2 to illustrate the noise scales.

In some cases, the independence is unable to be achieved. We make special treatments for these
situations. Firstly, when an atom is connected to more than two atoms, the angles centered on this
atom are dependent. In this case, we randomly select one edge and add noise to the angles involving
this edge. For example, when adding angle noise on the methyl group “-CH3” in figure 2b, the bond
”C-C” is selected to be fixed and add noise on three angles of ”C-C-H”. Secondly, when there are
ring structures in the molecule, the bond lengths, bond angles, and dihedral angles formed by the
atoms in the ring are dependent. As a solution, we do not add noise to the bonds, angles, and torsion
angles that are inside the ring. For example, in figure 2c, no noise is added on the pyridine backbone.
One reason is that RDkit does not support modifying bond lengths, bond angles, and dihedral angles
inside rings. The other reason is that we attempt to add low-level independent Gaussian Cartesian
coordinate noise to the atoms inside the ring to perturb them sufficiently. However, we find that
its force field accuracy on certain molecules is much lower than without adding noise inside the
ring. We speculate that this is because perturbing the atomic coordinates in the ring affects the
surrounding angles and torsion angles.

C.2 PSEUDOCODE FOR ALGORITHMS AND COMPLEXITY ANALYSIS

In this section, we present pseudocode to illustrate the pre-training algorithm of SliDe in Algorithm
1. Besides, to show the ability to apply to large molecules, we discuss the time complexity of SliDe
algorithm and provide a comparison between Frad and SliDe.

First of all, please note that all the terms in equation 17 except for GNNθ(x), are calculated in data
preprocessing. As the deep learning package (specifically PyTorch in this case) generates multiple
workers in the DataLoader through parallel processes, each responsible for loading and processing
individual data samples before adding the processed batches to a queue, this approach ensures that
the time-consuming training process remains unimpeded, as long as the queue is consistently filled
with batches. Therefore, it will not become the bottleneck of the training process, as GNNθ(x) is
what takes most of the time.

Figure 2: Some examples of BAT noise on molecules. The scale of noise can distinguish different
bond types and atom types, resulting in better molecular modeling. (a)(b) Standard deviations of
BAT noise for acetaldehyde. (c) Standard deviations of BAT noise for 2-methylpyridine.
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Algorithm 1 Sliced Denoising Pre-training Algorithm
Require:

GNN : Graph Neural Network
M: Unlabeled 3D molecular pre-training dataset
T : Training steps
BS: Batch size
σ: Standard deviation of the sampled coordinate noise
Nv: Sample number of coordinate noise
N : Gaussian distribution

1: while T ̸= 0 do
2: Randomly sample a batch of molecules from the dataset M.
3: for each molecule M with equilibrium structure x0 in the batch do
4: Get the bond lengths, angles, torsion angles of M, denoted as (r0,θ0,ϕ0).
5: Get the parameters of M, denoted as (kB ,kA,kT ,ω).
6: Add BAT noise on the structure according to equation 9 and get the perturbed structure
x and d

7: Calculate ∇dEBAT (d) according to equation 10.
8: for i = 1, ..., Nv do
9: Sample coordinate noise vi ∼ N (0, I3N )

10: Calculate its corresponding relative coordinate changes fM(x+ σvi)− fM(x)

11: LossMi =
[
GNNθ(x)

⊤ · vi − 1
σ∇dEBAT (d)

⊤ ·
(
fM(x+ σvi)− fM(x)

)]2
+

[GNNθ(x+ τvi)− τvi]
2

12: end for
13: end for
14: Optimise Loss = 1

Nv×BS

∑
M∈batch

∑Nv

i=1 Loss
M
i and update GNN

15: T = T − 1
16: end while

In theory, the computational complexity of the regression target for one molecule is O(Nv ×
max{N,M,F}) for SliDe, where N is the number of atoms, M is the dimension of relative co-
ordinates (total number of bond lengths, bond angles, and bond torsions), F is the complexity of
coordinate transformation between Cartesian coordinates and relative coordinates.

Two factors affecting the complexity is Nv and F . As for coordinate transformation, the complexity
F = O(maxN,Mt) Choi (2006), which is executed efficiently by RDKit. As for the Nv times
sampling procedure, in fact, for every i ∈ {1, · · · , Nv}, the regression target can be calculated in
parallel. Therefore the time complexity above can be further reduced to O(maxN,M,F ). This
makes pre-training on large molecular datasets possible.

As for comparison to existing method, SliDe and Frad are theoretically in the same scale. The
computational complexity of the regression target for one molecule is O(max{Mrb, N, Frb}) for
Frad, where Mrb is the number of rotatable bonds and Frb is the coordinate transformation be-
tween Cartesian coordiantes and diheral angles of rotatable bonds. It is in the same scale to SliDe’s
O(max{N,M,F}).
In practise, although we do not process all Nv targets in parallel and incorporate edge update in
network architecture, the training time of Frad and SliDe does not vary significantly. Frad pre-
training takes 1d1h14m on 8 NVIDIA A100 GPU, and SliDe pre-training takes 1d17h1m on 8 Tesla
V100 GPU.

C.3 ARCHITECTURE DETAILS

Our network is an equivariant graph neural network that recursively updates vertex and edge
features. An illustration of the network architecture is shown in Figure 3. The vertex feature
V ∈ R3×FV and S ∈ RFV are respectively vector and scalar features for each vertex, FV is the
vertex feature dimension. E ∈ RFE denotes the edge feature of each edge, FE is the edge feature
dimension. The edge vector xi−xj is denoted by R. Z is the atomic type. r,θ,ϕ are bond lengths,
bond angles and torsion angles.
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Figure 3: Overview of the network architecture. (a) The whole architecture includes initialization,
several update layers and an output network. (b) The update layer consists of edge and vertex
updates. The updated edge feature will be used in vertex updates.

For the edge update, the invariant edge feature E is updated by the embeddings of the bond length
r, the neighbor edge features and the embeddings of their angles θ,ϕ. Specifically, it incorporates
Bessel functions to embed bond length and spherical harmonics to embed angle and torsion angles,
which are shown to be effective geometry embeddings for molecular representation (Liu et al., 2022;
Klicpera et al., 2021; Gasteiger et al., 2020b). For the vertex update, the invariant S and equivariant
V are updated by an attention layer, whose architecture is based on TorchMD-NET. The updated
edge features are projected into two filters and are later used to calculate attention weights in vertex
update.

C.4 HYPERPARAMETER SETTINGS

Table 12: Hyperparameters for pre-training.

Parameter Value or description

Train Dataset PCQM4MV2
Batch size 128

Optimizer AdamW
Warm up steps 10000
Max Learning rate 0.0004
Learning rate decay policy Cosine
Learning rate factor 0.8
Cosine cycle length 240000

Network structure Keep aligned with downstream settings
respectively on QM9 and MD17

Nv 128
σ 0.001
Regression target Least square results*
Regularization† yes
τ 0.04

Hyperparameters for pre-training are listed in Table 12. Details about Learning rate decay policy can
be refered in https://hasty.ai/docs/mp-wiki/scheduler/reducelronplateau#strong-reducelronplateau-
explained-strong.

*: In previous denoising methods, normalizing the regression target, such as noise in Coord, is a
widely applied technique to stabilize the training process. However, in SliDe loss equation 17, the
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normalization is hard to implement. Instead, we chose to utilize L(reg)
SliDe and normalize the regression

target xf . We find the least squares estimation does not incur significant additional computational
costs on the current dataset of molecular sizes.
†: In order to align with the downstream Noisy Node task that involves coordinate denoising, we
add a regularization term in pre-training. So the total pre-training loss is given by

Ep(x|x0)
1

Nv

Nv∑
i=1

{
[GNNθ(x+ τvi)− τvi]

2

+

[
GNNθ(x)

⊤ · vi −
1

σ
∇dEBAT (d)

⊤ ·
(
fM(x+ σvi)− fM(x)

)]2
} (40)

Table 13: Hyperparameters for fine-tuning on MD17.

Parameter Value or description

Train/Val/Test Splitting 950/50/remaining data
Batch size 8

Optimizer AdamW
Warm up steps 1000
Max Learning rate 0.0005
Learning rate decay policy ReduceLROnPlateau (Reduce Learning Rate on Plateau) scheduler
Learning rate factor 0.8
Patience 30
Min learning rate 1.00E-07

Network structure Geometric Equivariant Transformer
Head number 8
Layer number 6
RBF number 32
Activation function SiLU
Embedding dimension 128

Force weight 0.8
Energy weight 0.2
Noisy Nodes(NN) denoise weight 0.1
Dihedral angle noise scale in NN 20
Coordinate noise scale in NN 0.005

Hyperparameters for fine-tuning on MD17 are listed in Table 13.

Hyperparameters for fine-tuning on QM9 are listed in Table 14. The cosine cycle length is set to
be 500000 for α, ZPV E, U0, U , H , G and 300000 for other tasks for fully converge. Following
previous literature (Liu et al., 2023b; Feng et al., 2023; Liu et al., 2022), we fix seed= 1 on QM9
and MD17, as the performance is quite stable for random seeds (Schütt et al., 2018; 2021; Liu et al.,
2022). To further validate the issue, we finetune with seed= 0, 1, 2 on homo(QM9), lumo(QM9)
and Aspirin(MD17). The results is quite stable, as shown in Table 15

For experiment in section 4.1, the force field calculated by DFT method is implemented by PySCF
tool (Sun et al., 2020), with basis = ’6-31g’, xc = ’b3lyp’.

Noisy Nodes is implemented following (Godwin et al., 2021; Feng et al., 2023).

D RELATED WORK

D.1 DENOISING FOR MOLECULAR PRE-TRAINING

Denoising as a self-supervised learning task originates from denoising generative models in com-
puter vision (Vincent et al., 2008). In molecular pre-training, it refers to corrupting and recon-
structing the 3D structure of the molecule. Denoising is a self-supervised learning task designed
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Table 14: Hyperparameters for fine-tuning on QM9.

Parameter Value or description

Train/Val/Test Splitting 110000/10000/remaining data
Batch size 128

Optimizer AdamW
Warm up steps 10000
Max Learning rate 0.0004
Learning rate decay policy Cosine
Learning rate factor 0.8
Cosine cycle length* 300000 (500000)

Network structure Geometric Equivariant Transformer
Head number 8
Layer number 8
RBF number 64
Activation function SiLU
Embedding dimension 256
Head

Applied according to (Thölke & Fabritiis, 2022)Standardize
AtomRef

Label weight 1
Noisy Nodes denoise weight 0.1(0.2)
Coordinate noise scale 0.005

Table 15: Random seeds have little effect on the finetuning of QM9 and MD17.

homo(QM9) lumo(QM9) Aspirin(MD17)

seed=0 14.0 12.3 0.1714
seed=1 13.6 12.3 0.1740
seed=2 13.3 12.2 0.1744
Mean(Standard deviation) 13.63(0.35) 12.27(0.06) 0.1733(0.0016)

specifically for 3D geometry data and achieves outstanding results in many downstream tasks for
3D molecules (Zhou et al., 2023; Feng et al., 2023).

The existing denoising methods mainly differ in the noise distribution and denoise tasks. Uni-
Mol (Zhou et al., 2023) adds uniform noises of [−1Å, 1Å] to the random 15% atom coordinates.
The model is trained to recover the correct atom coordinates and pair distance. They combine
denoising with atom-type masking to make the masking task more challenging.

Coordinate denoising (Coord) (Zaidi et al., 2023) adds Gaussian noise to atomic coordinates of
equilibrium structures and trains the model to predict the noise from the noisy input. They establish
the equivalence between coordinate denoising and force field learning. Transformer-M (Luo et al.,
2023) utilizes Coord to train the 3D model they proposed.

To capture the anisotropic molecular probability, fractional denoising (Frad) (Feng et al., 2023)
proposes to add a hybrid noise on the dihedral angles of rotatable bonds and atomic coordinates,
and fractionally denoise the coordinate noise. In this specially designed denoising task, the physical
interpretation of learning force field also holds.

Compared to the aforementioned methods, our work most closely aligns with physical principles
because our energy function better describes the true molecular energy landscape. This leads to a
more realistic molecular force field and sampling distribution that is beneficial for representation
learning.

On the other hand, to make the molecular energy invariant to rotation and translation, 3D-
EMGP (Liu et al., 2023b) denoises the Gaussian noise on the pairwise atomic distances and SE(3)-
DDM (Jiao et al., 2023) exploits the Riemann-Gaussian distribution for coordinate denoising. Our
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method naturally satisfies the symmetric prior because our energy function is defined on bond length,
bond angle and dihedral angle, which are invariant to rotation and translation.

D.2 3D MOLECULAR MODELING IN RELATIVE COORDINATES

The geometric information contained in 3D conformers is crucial for molecular representation learn-
ing. Though most 3D structures are represented in Cartesian coordinates, recently many works have
focused on utilizing 3D information in relative coordinates i.e. bond length, bond angle, torsion
angle, also called as internal coordinates or local coordinates. The relative coordinates capture the
complete geometry of atomic structures and are widely used because they are invariant to rotation
and translation, making them convenient for molecular description in many scenarios (Li et al.,
2023).

For one thing, relative coordinates are used to enhance the expressiveness of graph neural networks.
For molecular property prediction, SphereNet (Liu et al., 2022) and GemNet (Klicpera et al., 2021)
encode bond length, bond angle and dihedral angle information by spherical Bessel functions and
spherical harmonics functions. ALIGNN-d (Hsu et al., 2022) encode relative coordinates informa-
tion by Radial Bessel basis and Gaussian basis and learn representations for optical spectroscopy
prediction.

For the other thing, the prediction of relative 3D information is found effective in pre-training task
design. ChemRL-GEM(Fang et al., 2021) propose to predict bond lengths and bond angles to de-
scribe the local spatial structures. 3D PGT (Wang et al., 2023a) and GearNet (Zhang et al., 2023)
also incorporate the prediction of bond length, bond angle and dihedral angle. They differ signifi-
cantly from BAT-denoising in that their input structures remain unperturbed.

E SUPPLEMENTARY BACKGROUND KNOWLEDGE

E.1 BOLTZMANN DISTRIBUTION

In statistical physics, the distribution of a collection of identical but distinguishable particles con-
forms to the Boltzmann distribution Boltzmann (1868). We assume the distribution of the confor-
mations of a molecule satisfies the Boltzmann distribution:

p(x) =
1

Z
e
−E(x)

kBT , (41)

where E(x) is the (potential) energy function, x ∈ R3N is the position of the atoms, i.e. conforma-
tion, N is the number of atoms in the molecule, T is the temperature, kB is the Boltzmann constant
and Z is the normalization factor. When employing neural networks to fit the energy function or its
gradient, the constant kBT can be absorbed in the energy function, i.e. p(x) ∝ exp(−E(x)).

E.2 CLASSICAL INTRAMOLECULAR POTENTIAL ENERGY FUNCTIONS

Here we provide more information on the classical intramolecular potential according to (Mol,
2020). The classical intramolecular potentials consider N(N − 1)/2 interactions between pairs of
atoms in a molecule with N atoms. According to the pair distance, the interactions fall into four
categories: 1-2, 1-3, 1-4 and farther interactions. Specifically, 1-2 interactions denote interactions
between covalently bonded atoms. 1-3 interactions denote interactions between atoms i and k, where
i-j and j-k are covalently bonded but i-k is not. Similarly, 1-4 interactions denote interaction where
the two atoms are separated by a chain of three covalent bonds. Farther interactions refer to 1–5,
1–6, etc. interactions.

E(r,θ,ϕ) =
1

2

∑
i∈B

kBi (ri − ri,0)
2

︸ ︷︷ ︸
1-2 interactions

+
1

2

∑
i∈A

kAi (θi − θi,0)
2

︸ ︷︷ ︸
1-3 interactions

+
∑
i∈T

kTi (1− cos(ωi(ϕi − ϕi,0)))︸ ︷︷ ︸
1-4 interactions

+
∑

(j,k)∈F

E
(j,k)
elec +

∑
(j,k)∈F

E
(j,k)
vdW︸ ︷︷ ︸

1-4 and farther interactions

.
(42)
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In equation 5, as is rewritten in detail in equation 42 above, the 1-2 interactions are described by
bond stretch potentials and the 1-3 interactions are modeled by the angle bend potentials. As for
1-4 interactions, it is modeled by bond torsion potentials, 1–4 electrostatic (elec) and 1–4 van der
Waals (vdW) interactions. Farther interactions are described by electrostatic and van der Waals
interactions only. (j, k) ∈ F denotes atom j and atom k are separated by three covalent bonds or
more. The potential energy function in the form of equation 42 together with its modification are
widely adopted in molecular simulations. The parameters are obtained through fitting experimental
data or quantum chemical calculations.
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