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Abstract: This paper presents a novel telepresence system for advancing aerial manipulation in
dynamic and unstructured environments. The proposed system not only features a haptic device, but
also a virtual reality (VR) interface that provides real-time 3D displays of the robot’s workspace as
well as a haptic guidance to its remotely located operator. To realize this, multiple sensors, namely, a
LiDAR, cameras, and IMUs are utilized. For processing of the acquired sensory data, pose estimation
pipelines are devised for industrial objects of both known and unknown geometries. We further pro-
pose an active learning pipeline in order to increase the sample efficiency of a pipeline component that
relies on a Deep Neural Network (DNN) based object detector. All these algorithms jointly address
various challenges encountered during the execution of perception tasks in industrial scenarios. In the
experiments, exhaustive ablation studies are provided to validate the proposed pipelines. Method-
ologically, these results commonly suggest how an awareness of the algorithms’ own failures and
uncertainty (“introspection”) can be used to tackle the encountered problems. Moreover, outdoor
experiments are conducted to evaluate the effectiveness of the overall system in enhancing aerial
manipulation capabilities. In particular, with flight campaigns over days and nights, from spring to
winter, and with different users and locations, we demonstrate over 70 robust executions of pick-and-
place, force application and peg-in-hole tasks with the DLR cable-Suspended Aerial Manipulator
(SAM). As a result, we show the viability of the proposed system in future industrial applications.*

Keywords: pose estimation, active learning, virtual reality, telepresence, aerial manipulation

L A video material accompanying this paper can be found at https://www.youtube.com/watch?v=JRnPTARWS8xY
Received: 7 May 2022; revised: 30 January 2023; accepted: 6 February 2023; published: 1 March 2023.

Correspondence: Jongseok Lee, Institute of Robotics and Mechatronics, German Aerospace Center (DLR); Institute for
Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT), Email: jongseok.lee@dIr.de

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2023 Lee, Balachandran, Kondak, Coelho, De Stefano, Humt, Feng, Asfour and Triebel
DOI: https://doi.org/10.55417 /fr.2023010

http://fieldrobotics.net


https://orcid.org/0000-0002-0960-0809
https://orcid.org/0000-0002-7560-471X
https://orcid.org/0000-0002-1463-7227
https://orcid.org/0000-0002-0917-5574
https://orcid.org/0000-0003-3777-9487
https://orcid.org/0000-0002-1523-9335
https://orcid.org/0000-0003-2492-4358
https://orcid.org/0000-0003-4879-7680
https://orcid.org/0000-0002-7975-036X
https://www.youtube.com/watch?v=JRnPIARW8xY
mailto:jongseok.lee@dlr.de
https://doi.org/10.55417/fr.2023010
http://fieldrobotics.net

324 - Lee et al.

Figure 1. Left: the cable-Suspended Aerial Manipulator, dubbed SAM (Sarkisov et al., 2019) during field
experiments. Right: a ground station where an operator remotely controls the robotic arm through a haptic
interface. In real world applications of bilateral teleoperation, the operator is often remotely located without
visual contact to the robot.

1. Introduction

The global market for robotic inspection and maintenance is growing fast with an expected
annual turnover of up to 4.37 billion dollars by 2025.2 Recently, international corporations and
organizations, such as General Electric, Sprint Robotics, Baker Hughes, and Boston Dynamics,
have started initiatives to generate and evaluate robotic technologies for inspection and maintenance
applications. One of the most prominent directions for these real world industrial applications is
aerial manipulation (Ollero et al., 2022). An aerial manipulation system is composed of robotic
manipulators and a controlled flying platform (Fishman et al., 2021; Bodie et al., 2020; Kondak
et al., 2014; Kim et al., 2013). The platform enables coarse positioning while the manipulator enables
dexterous grasping and manipulation for complex tasks. Hence, these aerial platforms extend the
mobility of robotic manipulators, which can be deployed at high altitudes above ground, increasing
safety for human workers while reducing costs. Examples of aerial manipulation applications range
from load transportation (Bernard and Kondak, 2009), contact based inspection and maintenance in
chemical plants (Trujillo et al., 2019), bridges (Sanchez-Cuevas et al., 2019), power-line maintenance
(Cacace et al., 2021), to sensor installations in forests for fire prevention (Hamaza et al., 2019).

In this paper, the real world applications of aerial manipulators are envisioned for several
industrial scenarios in dynamic and unstructured environments. For these industrial applications
of aerial manipulators, our current interests are in the bilateral teleoperation concepts, i.e., a
human operator remotely controls the robotic manipulator from a safe area on ground and receives
visual and haptic feedback from the robot. This increases human operator safety while the robots
execute their tasks in dangerous environments (Hulin et al., 2021; Hirzinger et al., 2003). Such a
concept is motivated by having a robotic system with a human-in-the-loop, where the system can
leverage human intelligence to reliably accomplish its missions. To realize this, existing works have
focused on relevant components of the system, namely, force feedback teleoperation under time
delays (Balachandran et al., 2021b; Artigas et al., 2016), shared autonomy (Masone et al., 2018),
human-machine interfaces (Kim and Oh, 2021; Yashin et al., 2019; Wu et al., 2018), and robotic
perception for aerial manipulators (Karrer et al., 2016; Pumarola et al., 2019).

Building upon the aforementioned developments, we propose a novel virtual reality (VR)-based
telepresence system for an aerial manipulator operating in industrial scenarios. Figures 1 and 2

2BIS Research, Global Inspection and Maintenance Robot Market: Focus on Type, Component, and End User -
Analysis and Forecast, 2020-2025; March 2020
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Figure 2. The proposed telepresence system with VR from robot perception and active learning. In the proposed
system, the robot creates VR of its workspaces as a 3D visual feedback to the human operator, and further provides
a haptic guidance. The main novelty of this work is the realization of such a system for real world scenarios.

illustrate the main idea. The proposed system is intended for real world scenarios, where the remotely
located robot performs aerial manipulation tasks, while its human operator is inside a ground station
without having direct visual contact with the robot (Figure 1). To this end, we propose a system
which does not only involve a haptic device to enable the sense of touch for the operator, but also
a VR to increase the sense of vision (Figure 2). While the live video streams can also provide a
certain level of situation awareness to the operator, several studies confirm that adding a virtual
environment where one can change its sight-of-view, zoom in and out, and further provide haptic
guidance, supports the operator in accomplishing the tasks (Pace et al., 2021; Whitney et al., 2020;
Huang et al., 2019). Our own field studies also confirm that augmenting live video streams with 3D
visual feedback and haptic guidance can enhance manipulation capabilities of aerial robots.

The main novelty of our VR based concept is its realization with a fully on-board perception system
for a floating-base robot, which does not rely on any external sensors like Vicon, or any pregenerated
maps in outdoor environments. Instead, multiple sensors, namely, LIDAR, a monocular camera, a
pair of stereo cameras and inertial measurements units (IMUs) are jointly utilized (Table 1). To
achieve this, we propose object pose estimation and active learning pipelines. First, in order to
virtually display industrial objects with known geometry, we provide a simple extension of a marker
tracking algorithm (Wagner and Schmalstieg, 2007) by combining with on-board Simultaneous
Localization And Mapping (SLAM). Second, if the objects of interests are geometrically unknown,
we devise a LIDAR based pose estimation pipeline that combines LIDAR Odometry And Mapping
(LOAM Zhang and Singh (2017)) with a pose graph, a point cloud registration algorithm (Besl and
McKay, 1992), and a Deep Neural Network (DNN) based object detector (Lin et al., 2017). For
both cases, the combinations are facilitated by an introspection (Grimmett et al., 2016) module
that identifies the reliability of the obtained object poses. Finally, we present a pool based active
learning pipeline, which uses an explicit representation of DNN’s uncertainty, to generate the most
informative samples for a DNN to learn from. This enhances the sample efficiency of deploying DNN
based algorithms in outdoor environments. We identify certain real world challenges and describe
in detail how these introspective approaches can mitigate these challenges.

With the DLR’s SAM platform (Sarkisov et al., 2019), the feasibility and benefits of the proposed
idea are examined. To this end, we first present ablation studies on the designed pipelines with indoor
and outdoor datasets from the robot sensors. Here, the influence of each component is examined with
regard to mitigating the identified challenges, and we show the feasibility of creating the real-time
VR, which can closely match the real workspaces of the robot. Moreover, the effectiveness of the
proposed method is shown through outdoor experiments within the considered industrial scenario.
This scenario, which was designed under the scope of EU project AEROARMS (Ollero et al.,
2018), is relevant to inspection and maintenance applications for gas and oil industry. It involves
pick-and-place and force-exertion tasks during the mission, which is to deploy a robotic crawler for
automating pipe inspection routines. Moreover, the SAM platform executing peg-in-hole tasks with
a margin of error less than 2.5 mm is further considered, which is one of the standard manipulation
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Table 1. Comparisons between the existing VR based robotic systems and the proposed system.

Outside No external Floating-base Multiple
the laboratory sensors or pre manipulation exteroceptive

settings? generated map? system? sensors?
AeroVR (Yashin et al., 2019) X X 4 X
ARMAR-6 (Pohl et al., 2020) X v X X
ModelSegmentation (Kohn et al., 2018) X 4 X X
AvatarDrone (Kim and Oh, 2021) X X 4 X
PaintCopter (Vempati et al., 2019) X X v X
AR (Liu and Shen, 2020) X 4 X X
AR (Puljiz et al., 2020) X v X X
GrasplLook (Ponomareva et al., 2021) X v X X
The proposed system v v v v

tasks in industrial settings. By executing over 70 executions of the aforementioned tasks over days
and nights, from spring to winter, and with different users and locations, the benefits of our VR
based telepresence concept are illustrated for enhancing aerial manipulation capabilities in real world
industrial applications.

In summary, the key contributions of this work are the following.

e We propose an advanced VR based telepresence system for aerial manipulation, which provides
a 3D visual feedback and a haptic guidance. The system neither requires any external sensors
nor pregenerated maps, has been evaluated outside laboratory settings, and can cope with
the challenges of a floating-base system. Moreover, multiple sensors are fused to exploit their
respective strengths for the given perception tasks.

o We devise object pose estimation and active learning pipelines to realize the proposed system
in dynamic and unstructured environments. Challenges to existing methods are reported, and
several ablation studies are provided to validate the proposed approaches. Methodologically,
this work suggests the relevance of robotic introspection in realizing VR based telepresence
robots with aerial manipulation capabilities.

o We perform exhaustive flight experiments over extended durations including 40 task executions
in outdoor environments, 27 task executions within a user validation study, and the operation
of the system at night. Thus we establish the proposed concept as a viable future option for
real world industrial applications.

The paper starts with a survey of related work (Section 2) and provide the system description
of SAM robot hardware, human-machine interfaces, sensor choices, and integration (Section 3.1).
We formulate the problem of the VR creation, and identify challenges in realizing the system
(Section 3.2). Then, the designed pipelines are presented, which are to address these challenges
(Section 4). In Section 5.1, we provide ablation studies to validate the designed framework, while
Section 5.2 contains the results of our flight experiments. We report the lessons learned in Section 5.4
and conclude the work with some future extensions in Section 6.

Relation to the previous publications. This paper extends the author’s previous publications,
namely, Lee et al. (2020a) and Lee et al. (2020b). In terms of methodology, we provide a LiDAR
based pose estimation pipeline (Section 4.2). This extension enables the creation of VR without
relying on markers, which is required in industrial scenarios. The devised active learning pipeline
for object detection (Section 4.3) extends and brings the previous theoretical framework (Lee et al.,
2020b) to practical applications. Furthermore, with respect to experimental contributions, this
article provides new ablation studies that are associated with the new methods. Most importantly,
exhaustive outdoor experiments for manipulation tasks are further performed to examine the benefits
of the proposed VR based concept over extended durations and characterize its technical readiness
for industrial applications.
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2. Related Work

The proposed VR based concept advances the area of VR interfaces for robotics. The comparison of
this work to existing works is summarized in Table 1. The current literature from different domains
of robotic research is discussed, which are, pose estimation (Section 4.1 and 4.2), and active learning
with DNNs (Section 4.3). Importantly, we stress that this work is not to advance the state-of-the-art
methods in these two areas. Rather, the aim is to apply and extend them to realize a working system
for the given industrial scenarios. For example, the provided extension of a marker tracking algorithm
with visual-inertial SLAM is not the main contribution of this paper. Lastly, we further locate our
work within the literature of aerial robotic perception in field applications.

Virtual reality interfaces. In the past, several VR interfaces have been widely utilized in robotics
including aerial systems (Wonsick and Padir, 2020). So far, the presented approaches often create
the VR either by using external sensors such as Vicon and a priori generated maps. Notably,
Vempati et al. (2019) utilizes a priori generated maps for the applications of VR in aerial painting,.
For aerial manipulation, Yashin et al. (2019) uses Vicon system to create the VR while Kim and
Oh (2021) renders the environment with a portable sensor kit (Oh et al., 2017). Recently, many
VR techniques have gained interest in the robotic manipulation community. Therein, many works
(Haidu and Beetz, 2021; Zhang et al., 2020b) let a human perform demonstration in VR and transfer
the demonstrated manipulation skills to real robots. These works greatly show the synergy between
VR and robotics. As this paper demonstrates the feasibility of creating VR with on-board sensors
only in outdoor environments, this work can facilitate the synergy between VR and robotics in field
applications.

On the contrary, many researchers aimed to provide VR of the remote scene by applying 3D
reconstruction techniques (Ni et al., 2017; Kohn et al., 2018). For example, Kohn et al. (2018)
presents an approach using RGB-D camera. As the main challenge of reconstruction based methods
is the limited bandwidth in communication, Kohn et al. (2018) proposes an object recognition
pipeline, i.e., replace the detected object with sparse virtual meshes and discard the dense sensor
data. Pohl et al. (2020) uses RGB-D sensor to construct a VR for affordance based manipulation
with a humanoid, while Liu and Shen (2020) and Puljiz et al. (2020) create augmented reality for
a drone and a manipulator, respectively. Pace et al. (2021) conducts a user study and argues that
the point clouds of RGB-D sensors are noisy and inaccurate (with artifacts), which motivates for
point cloud preprocessing methods for telepresence applications (Pace et al., 2021). In contrast, our
approach is based on scene graphs (Section 3.2) with pose estimation, which is an alternative to
3D reconstruction methods. Finally, the main novelties are illustrated in Table 1, which are the
realizations of a VR based telepresence system for outdoor environments using multiple sensors
jointly. No external sensors or pre-generated maps are used, while dealing with specific challenges of
a floating-base manipulation system, i.e., the surface that holds a robotic arm is constantly changing
over time, thereby inducing motions for the attached sensors.

Object pose estimation. One of the crucial components in the proposed framework is object pose
estimation algorithms. This is because we utilize a scene graph representation, which requires 6D
pose of the objects for creating a 3D display, as opposed to a 3D reconstruction of the remote site.
As the literature is vast, we refer to the survey (He et al., 2021) for a comprehensive review. In
this work, the main novelty is the working solutions for the considered application, which is tailored
towards realizing the proposed VR system. For this, the two scenarios are discussed below. These are
visual object pose estimation for objects of known geometry, and LiDAR based method for objects
of unknown geometry.

If the object is known and accessible a priori, one of the robust solutions is to use fidicual
marker systems. Fidicual markers, which create artificial features on the scene for pose estimation,
are widely used in robotics. The use-cases are for creating the ground truths (Wang and Olson,
2016), where environments are known (Malyuta et al., 2020), for simplifying the problem in lieu of
sophisticated perception (Laiacker et al., 2016), and also calibration and mapping (Nissler et al.,
2018). However, as the herein aim is on real-time VR creation, this use-case demands stringent
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requirements on their limitations in run-time, inherent time delays, and robustness. Therefore an
extension of ARTOOLKITPLUS is provided (Wagner and Schmalstieg, 2007) with an on-board visual-
inertial SLAM system.

For LiDAR, point cloud registration is often used for pose estimation. By finding the transfor-
mation between the current scans and a CAD model of an object, we can obtain 6D pose of an
object. Broadly, point cloud registration algorithms can be classified as local (Park et al., 2017;
Rusinkiewicz and Levoy, 2001; Besl and McKay, 1992) or global (Zhou et al., 2016), and model
based (Pomerleau et al., 2015) or learning based (Wang and Solomon, 2019; Zhang et al., 2020a).
As CAD models of objects are often not available in the given industrial scenario, a DNN based
detector and the idea of LOAM with pose graphs are combined, in order to obtain robust object
pose estimates that cope with occlusions, moving parts and view point variations in the scene.

Active learning for neural networks. The motivations are the considerations of field robotic
applications of DNN based object detectors. Here, the need for labeled data can cause overhead
in development processes, especially while considering a long-term deployment of learning systems
in outdoor environments. For example, weather conditions can change depending on seasons, and we
need to efficiently create labeled data. Active learning provides a principled way to reduce manual
annotations by explicitly picking data that are worth being labeled. One way to autonomously
generate the “worth” of an unlabeled sample is to use uncertainty of DNNs. In the past, for
robot perception, we find active learning frameworks using random forests, Gaussian processes,
etc. (Narr et al., 2016; Mund et al., 2015) while for DNNs, MacKay (1992) pioneered an active
learning approach based on Bayesian Neural Networks, i.e., a stochastic DNN (Gawlikowski et al.,
2021), which offers a principled method for uncertainty quantification. Recent works can also
be found on active learning for DNN based object detectors (Choi et al., 2021; Aghdam et al.,
2019), where the focus is on adaptations of active learning to existing object detection frameworks.
These include new acquisition functions (or selection criteria) and how uncertainty estimates are
generated.

For uncertainty quantification in DNNs, so-called Monte-Carlo dropout [MC-dropout Gal and
Ghahramani (2016)] has gained popularity recently. The main advantage of MC-dropout is that
it is relatively easy to use and scale to large dataset. However, MC-dropout requires a specific
stochastic regularization called dropout (Srivastava et al., 2014). This limits its use on already
well trained architectures, because the current DNN based object detectors are often trained
with other regularization techniques such as batch normalization (Toffe and Szegedy, 2015). Deep
ensemble (Lakshminarayanan et al., 2017) is another scalable framework with a relaxed assump-
tion on the model. Unfortunately, deep ensemble requires training of several large DNN models
to form an ensemble. This technique is popular generally, but it is difficult to be utilized in
active learning due to the inefficiency in training. In this article, a previous work (Lee et al.,
2020b) on uncertainty quantification of DNNs is instead utilized. The main motivations are
the scalability to large architectures and datasets, training-free feature that needs no changes
in network architectures and no re-training, and the ability to model every layer of DNNs as
Bayesian. These aspects can make the given framework well suited for active learning, and thus,
this work attempts to provide an extension to active learning for its real world applications in
robotics.

Aerial robotics: perception in outdoor environments. The research area on the aerial robotic
perception in outdoor environments is a fast growing field with several ground breaking results. For
example, Saska et al. (2017, 2014) pioneered the area of swarm robotics, while Loquercio et al. (2021);
Foehn et al. (2022) demonstrated impressive results in agile flights of micro aerial vehicles. Aerial
robotics, with fully on-board perception, has also been part of the recent DARPA subterranean
challenges (Roucek et al., 2022; Tranzatto et al., 2022; Agha et al., 2022; Hudson et al., 2022).
Vision based localization methods have also made tremendous progress (Ebadi et al., 2022; Weiss
et al., 2012; Scaramuzza et al., 2014; Lutz et al., 2020). We note that, on the other hand, this paper
contributes to orthogonal areas, namely, VR, telepresence robots and aerial manipulation, which
differ from tackling navigation problems for aerial robots.
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Figure 3. The concept of SAM with its integrated sensors and human-machine interfaces. Left: the concept
involves the carriers such as a manned helicopter or a crane, which transports SAM to a desired location. Middle:
SAM is equipped with a stereo camera at the end effector or the manipulator, a monocular camera as well as
a LiDAR on the cable suspended platform. Right: haptic interfaces are integrated for teleoperating the robotic
arm. Robot hardware constitutes of SAM, and the carriers (helicopter or crane), while the used haptic devices are
Force Dimension Lambda and Space Joystick. Finally, the integrated sensors are a monocular camera (dubbed
mako), a 3D LiDAR, and a stereo eye-in-hand camera (dubbed hc).

3. System Description, Problem Statement and Identified Challenges

This paper investigates how a robot can create a VR of a remote scene using on-board sensors
and computations. This is to enhance the situational awareness of the human operator in real
world applications. To set the scene for the work, we first describe the system integration that
are needed to implement the proposed VR based telepresence concept. Then, the problem of VR
creation, using on-board sensors with a scene graph approach, is formulated. The limitations of
the off-the-shelve methods are then presented, which hinder realization of the proposed system in
outdoor environments.

3.1. System Description

This section describes the used robotic systems with a focus on robot hardware, haptic device
and VR interfaces, and sensors. Main features of the system is also discussed. Figure 3 depicts an
overview of our physical hardware.

Robot hardware. DLRs” SAM (Sarkisov et al., 2019) is a novel aerial manipulation system for
inspection and maintenance applications. SAM is composed of three modules, namely, a carrier, a
cable suspended platform, and a seven degrees of freedom (DoF) industrial robotic arm - KUKA
LWR (Albu-Schéffer et al., 2007). The purpose of the carrier is to transport the manipulation system
to a desired location. We use a crane in this work which provides safety, versatility, robustness and
applicability for the considered industrial scenario.® Then, a platform attached to the carrier via

3 0On the other hand, there is no free lunch. Cranes may not be able to reach all the desired location as they require
available access routes by ground. There are also several industrial tasks where smaller robotic arms with less DoF
may be sufficient.
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a rope, autonomously damps out the disturbances induced by the carrier, the environment, and
the manipulator. This oscillation damping control is performed using eight propellers and three
winches. Another important component of our system is the seven Dof torque controlled KUKA
LWR (Albu-Schiffer et al., 2007), which features significantly more powerful versatile manipulation
capabilities than many existing smaller manipulators. The main feature of the cable-suspension
concept is that the weight of SAM is supported by the carrier. Thus the required energy to carry an
aerial robot arm can be reduced. This allowed us to scale down the overall size, from a helicopter
based system (Kondak et al., 2014) to a relatively smaller robot, which enables operation in confined
spaces. The helicopter based system had two rotors with overall diameter of 3.7 m, while SAM can fit
within 1.5m diameter. Moreover, the cables from the carrier can also be used to power SAM, which
gives theoretically unlimited operation time. In the appendix, more details are provided regarding
the platform control and different architectures. Sarkisov et al. (2019) can also be referenced for
conceiving design and control aspects of SAM in detail.

Haptic devices and virtual reality interfaces. In this work, two haptic devices, namely, a space
qualified haptic device called the Space Joystick RJo (Artigas et al., 2016) and also a six Dof
force feedback device, Lambda (Force Dimension), are integrated in order to teleoperate the LWR
on SAM. This work’s VR interface is based on Instant Player (Thomas et al., 2012), which is a
lightweight software that runs on standard laptops without GPUs (enhancing portability). Instant
Player also supports various hierarchies of a scene graph to create the required display. Facebooks’
head mounted display Oculus is also integrated as an option and use Ubiquiti Bullet for the
WiFI connection. The robot is equipped with advanced control strategies, namely, whole body
teleoperation, and adaptive shared control. The time-domain passivity approach of Artigas et al.
(2016) is employed to obtain stable teleoperation control under communication time delays, packet
loss and jitters. These control methods advance aerial manipulation capabilities. Coelho et al. (2021)
and Balachandran et al. (2021a) present these concepts in more detail. The former presents a
passivity based framework to enable time delayed teleoperation of different hierarchically sorted
tasks through the use of multiple input devices. Balachandran et al. (2021a) present a method to
stabilize on-line adaptation of control authorities for the operator and the virtual assistance system
in haptic shared control.

Sensor choices and integration. We integrate several sensors for measuring the robot’s own states
as well as to perceive the environment. More specifically, a KUKA LWR (Albu-Schiffer et al.,
2007) is equipped with torque and position sensors, which measure its joint torques and angles.
Furthermore, we integrate other sensors on SAM for the perception tasks. Firstly, a camera (the
Allied Vision: mako) is integrated on the frame of SAM to stream the overall operational space of
the robotic arm. This is because the operator prefers an eye-to-hand view, which is more natural
to a human. The camera provides color images of 1292 by 964 px at 30 Hz. Secondly, a stereo
camera is integrated near the tool-center-point (tcp) of the robotic arm. This eye-in-hand setup
avoids occlusion of the camera view by the robotic arm, and ensures proximity to the considered
objects. These are crucial for the success of our image processing algorithms, i.e., the accuracy of
visual marker tracking depends on the size of the markers and their distance to the sensors, while
the depth sensing from the stereo depends on the baseline. We use a commercial 3D vision sensor
the Roboception Revisard that provides built-in visual-inertial SLAM. The SLAM system originates
from (Schmid et al., 2014; Lutz et al., 2020) but we refer the reader to the company for more details.
Revisard streams 1280 by 960 px images at 25Hz and SLAM estimates can be acquired at 200Hz by
fusing it with an IMU. Lastly, as a step towards industrial application of SAM, we mount Velodyne
PUK-LITE LiDAR on the frame of SAM, which provides 3D point clouds of the scene at 10Hz.
We intend to use LiDAR for 3D object pose estimation as well as navigation of SAM in outdoor
environments. Note that the minimum range is set to 0.9m while the maximum range of 100m is
utilized. We designed and integrated the sensor stacks so that the close range perception is not
affected. All the perception algorithms are executed on the NVIDIA Jetson TX2.

In Appendix A, more details on platform control, telepresence systems and IT architectures are
presented.
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3.2. Problem Formulation and Identified Challenges

Assume that SAM is performing manipulation tasks far away from the human operator. So, the
operator does not have direct visual contact to the scene, and the robot has to enhance the
situational awareness of the operator. For this, SAM creates a VR of its environment and workspaces
using on-board sensing and computations, and further provides haptic guidance via virtual fixtures
(Rosenberg, 1993). Followed by the system level requirements, the problem formulation and the
challenges of realizing such VR based telepresence concept are introduced next (see Figures 4 and 5).

root node !

Forward Object Pose Sensor
Kinematics Estimator Calibrations

objects
and
scene

Ve

sensors

robot arm industrial objects

(a) scene graph with flat hierarchy

ground

(b) virtual reality (d) side view

Figure 4. lllustration of the scene graph representation for the proposed VR framework. The root node is the base
frame of the robot, while robot arm, industrial objects, scenes, and sensors are object nodes with transformation
matrices as the edges. Forward kinematic provides state of the robot arm, and the fixed transformations to the
robot sensors are obtained from extrinsic sensor calibrations. On the other hand, the 6D estimates of object poses
need to be obtained online using robot’s onboard perception system. Therefore this work focuses on the object
pose estimation for the realization of the proposed system.
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(b) nominal for icp

(c) nominal laboratory

(d) loss-of-sight

(h) view point changes

(j) shadows (k) occulusions () env 3: winter

Figure 5. Identified challenges for realizing our VR based concept. Top: (a), (d), (g), and (j) show the challenges
associated with a marker tracking algorithm. Middle: (b),(e),(h), and (k) depict the challenges associated with
directly applying point cloud registration methods for pose estimation. In particular for (e), precise geometry of
objects are not available for pipe inspection scenario as an example, and therefore, its CAD models must be
reconstructed online. Bottom: (c), (f), (i),and (I) visualize different scenes that a learning based method must
cope with, when deployed for real world applications. For example, a DNN only trained in a laboratory, may not
generalize to the scenes with (f) stair cases.

The system level requirements are highlighted as follows. Firstly, the created VR has to accurately
match the real remote site in real-time. This is because the operator needs visual feedback that
reflects reality, and the performance of haptic guidance depends on the positioning accuracy and run-
time. The latter is due to potential movements of the robot while hovering. Second, the robustness
of the created VR is crucial to give a sense of trust to the human operator and further provide
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reliable haptic guidance. This means that the abnormalities in the object pose estimators are to
be coped with, which often arises in outdoor environments. Last, the algorithms must run on-
board the robot, and only send the transformation matrices through WiFi network (apart from an
initialization phase, where surface reconstructed 3D models are sent). This is to avoid overloading of
the communication channel for stable bilateral teleoperation. For example, both the sparse LiDAR
point clouds and the dense stereo point clouds must be processed first, and only the pose of the
objects must be sent through the WiFi network. The pose information contains only six float values,
while continuous streaming of the point clouds require much more memory that grows with the
number of points.

For VR creation that addresses aforementioned requirements, this work relies on a scene graph
approach (shown in Figure 4). A scene graph is general data structure with graph or tree like
representations. It is used by the VR/AR softwares (Thomas et al., 2012), in order to produce the
real-time 3D visualizations. Mathematically, let S be a scene graph. It constitutes of sets of nodes and
edges, denoted by (V, E). The nodes V are any 3D models, while the edges E represent the spatial
relationships. The root node Voot is chosen to be the robot’s base frame, which is a fixed coordinate
of the SAM platform. Then, a flat hierarchy of the scene graph (Thomas et al., 2012) is assumed.
This means the root node is a single “parent” to all other “child” nodes. In the given scenarios,
the models to be displayed in VR are the sets of industrial objects, reconstructed external scenes,
robotic arm, and the robot sensors. For a node of robotic arm Vipg, the corresponding edges E{S5k
are readily provided by the forward kinematics. Similarly, the edge of three sensors, E}°°*, E°% and
B[99, g, are the outputs of the extrinsic camera calibration. These spatial relations or the relevant
transformation matrices are therefore fixed for the sensor nodes Vi2°, V% “and VI9sg.

On the contrary, the spatial relations of industrial objects and external scenes are constantly
changing, leading to the problem of pose estimation. Here, we divide the problem formulation into
two sub-problems. The first subproblem is when the object is known a priori with available 3D
models (VIS°*, E'°"), while the second subproblem is when the object is semantically known a
priori, but no primitives on the geometry exist (VI3 E'S°"). For the former, the corresponding
edges are to be estimated. The latter involves the estimation of both the nodes and the edges. As
articulated in Section 3.1, the available raw sensor data are RGB camera images I € R7XWx3,
where H and W are the image height and width, respectively. The images are obtained either from
the eye-in-hand stereo camera (denoted by hc), or a monocular camera at the base (denoted by
mako). A LiDAR, which is located also at the base, generates scans that are represented by the
point clouds P = (py,pa,...,pn) € R¥*N. We also have a visual-inertial SLAM system at the end
effector of the robotic arm, which outputs the rotation matrix R and translation vector ¢ between
the coordinate frames of the camera and a fixed world frame. In summary, the problem of VR
creation can be formulated as estimating ELS°*, VI9°', and EL3°" using the available sensory data
from different cameras, an IMU and a LiDAR.

For this problem, several existing approaches can be applied. However, several practical challenges
of directly applying these approaches have been identified from the field work (depicted in Figure 5).
For objects of known geometry, we can resort to marker based object pose estimation methods. For
this, we cannot assume the holistic view of the markers. Violations of this assumption are caused by
shadows, loss-of-sight or partial views of the markers. This results in failures while using off-the-shelf
marker tracking methods. Moreover, in an industrial scenario, we cannot assume the availability of
precise CAD models. Thus point cloud registration methods cannot be directly employed. Tracking
is also subject to occlusions and moving objects in front of the LiDAR, e.g., the robotic arm,
and significant view point changes also result in less accurate 6D object poses while employing
off-the-shelf methods such as iterative closest point algorithm. Finally, while deploying data-driven
approaches for field robotics, key to its success is preparation of the data. The main challenges
are the variations of scenes encountered during long-term deployment; darkness in the evenings
or snow in winter are such examples. This means data has to be repeatedly collected for varying
environment conditions, which is a laborious process. So, the question is: how to make the data
collection procedure more efficient so that DNNs can generalize. In the next section, these challenges
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are revisited after providing mathematical formulations of existing methods, which is then followed
by our extensions to resolve these challenges.

4. The Proposed Methods

The aim is to create a 3D display of the robot and the objects so that the human operator can
remote control the robotic arm from a distance. If done in real-time, the operator can see the VR
and perform the tasks. Haptic guidance via virtual fixtures can further help the human operator
during the execution of challenging manipulation tasks. So far, we have formulated the problem and
also outlined the practical challenges. As previously discussed, the scene graph creation problem
relies on the accurate, fast and reliable 6D object pose estimation algorithms for the industrial
objects of known and unknown geometries. This section describes the proposed pipeline for the
object pose estimation.

4.1. The Proposed Pipeline for Objects of Known Geometry

Once the objects to be actively manipulated are known a priori, i.e., the CAD models are available
and the objects are physically accessible, the fiducial marker systems (Wagner and Schmalstieg,
2007) can be exploited. These systems consist of a marker, which is a physical plane with black
and white squared shapes (similar to QR codes), and a detection with a decoding algorithm. The
key idea is to artificially create features on a plane that are physically attached to an object. Then,
we can compute the pose of a camera in relation to a coordinate of the plane via a homography.
Concretely, using the eye-in-hand (hc) camera, the goal is to find the transformation matrix of the
markers T¢, expressed in the coordinate system of the camera, which constitutes of the rotation
matrix R¢ and the translation vector ¢2¢. To do so, four corner points of the markers are extracted,
which are expressed in the marker coordinates py, = (Zm, Ym, 0)” (hence z,, = 0 and given the size),
and the image plane with pixels Pimage = (Um,, U, wm)T. Then, the optimizer
4

h(t) = arghmin Z p(pi,image (t)v Hirrnnage (t)pl,m (t))7 where

i=1 (1)

1) = (Rlgto + 2007

is the solution to the homography problem. Here, ¢ denotes time, Hf .. is the homography matrix
with h being its vector form, and p is a distance based cost function. Knowing the homography
matrix, the desired rotation and translations can be obtained given the parameters of the intrinsic
camera, calibration: d and n. Typically, an algebraic formulation is used with the Direct Linear
Transformation (DLT) algorithm (Andrew, 2001). We note that the fidicual marker systems are
widely adopted as ground truths in the robotics community for its accuracy (Wang and Olson,
2016).

Challenges. However, many existing fiducial markers systems (Wagner and Schmalstieg, 2007;
Wang and Olson, 2016; Malyuta et al., 2020; Laiacker et al., 2016) do not address this work’s
application scenarios, where aerial manipulation tasks in outdoor environments are considered. For
example, shadows that are created by the robot can often destroy certain shapes of the markers
and as a result, the methods would fail as the artificial visual features in the markers are occluded.
Similarly, the eye-in-hand camera can lose the view on the marker as the manipulator and the base
can move rapidly. Lastly, time delays that are inherent in these systems must be corrected in order
to create a real-time virtual display of the scene. Next, the proposed solution to these challenges
are described.

Our solution. To tackle these problems, we propose a robust marker localization pipeline (depicted
in Algorithm 1) as an extension to ArtoolKitPlus (Wagner and Schmalstieg, 2007). As an overview,
the proposed pipeline utilizes multiple markers as well as the robots’ SLAM system. To explain,
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Algorithm 1. Robust marker localization algorithm with Visual-Inertial SLAM.

1 camera images from the eye-in-hand (hc) camera.
m target marker identification.
input @ J identification numbers of additional markers i = 1,2, ..n.
ty time delay parameter, either online computed or prespecified.

T;. SLAM estimates of hc camera w.r.t a world coordinate.
output: T',’nc 6D pose of the target marker m w.r.t the hc camera.

begin
/* Initialization */
T:f(O), T?C(O) <« multiART—+(/) Vi ; // detect all the markers [Equation (1)]
T <« marker_init(Tﬁf(O),T,'.’C(O)) Vi; // save all the relative poses
/* Main Loop */
while True do
Tfnc(t), Tl’-m(t) <« mu|tiART+(l) Vi; // detect the markers [Equation (1)]
if all markers detected then
Tfnc(t), T’,'ncv,-(t) <~ trafo2m(Tfnc(t), Tf-'c(t), T'm) Vi; // transform to target
T!(t) < ransac_avg(Th(t), The.(t)) Vi ; // ransac and average
T <« init_update(Tfnc(t), T?C(t)) Vi; // update all the relative poses
else if not all marker detected then
Tfnc(t), Tfncv,-(t) <« trafo2m(Tfnc(t), T,’-'C(t), T ) Vi // transform to target
T'(t) < ransac_avg(T"(t), T',';,-(t)) Vi ; // ransac and average
else if no marker detected then
‘ T'(t) < slam_integrate( T (), T).(t — At), T (t — At)); // Equation (2)
T'(t 4 t4) < delay_integrate(T"°(t +t,;), Tr(t), T (t)) ; // Equation (3)
end
end

multiple markers are placed on an object, where there exist a predefined target marker ID m and
n additional markers with unique identifications, i.e., ¢ = 1,2, ..., n. This results in total k =n + 1
markers. At initialization, the algorithm detects all the markers, where multiA RT+ is the function
that executes a variant of marker tracking method: ArtoolKitPlus (Wagner and Schmalstieg, 2007)).
Using the eye-in-hand camera image I (either the left or the right camera of the stereo setup), we
obtain the initial 6D pose of the target marker T'¢ as well as all n additional markers T}*° at
t = 0. Then, we save the relative poses of all n markers to the target marker m (denoted T, for
i=1,2,...,n). This step is executed within the function marker_init.

Then, the 6D pose of the target marker T%¢ can be obtained in the main loop of Algorithm 1. The
first step is to execute multiA RT+. Then, if all the k markers are detected, we transform the 6D pose
of n additional markers to the target marker: T*¢ = T/*“T" (executed with a function trafo2m). As
this results in n additional 6D poses of the target marker m, we note them as T,},fi fore=1,2,...,n.
Then, RANSAC (Fischler and Bolles, 1981) is applied to these estimates to remove the outliers, and
then we perform averaging to reduce the variance (ransac__avg). Then, the relative transformations
T are updated. If at least one marker is detected, the same step is applied to estimate the target
marker without updating the relative transformations T,. We also note that RANSAC is skipped
when less than three points are available. The described steps have two advantages. First, the
accuracy and the orientation ambiguity of ARTOOLKITPLUS can be improved with RANSAC, and
second, the algorithm is robust to loss-of-sight of the target marker, i.e., detecting only one of the
markers is enough to still estimate the 6D pose of the target. Similar steps have been presented in
the past with several variants (Laiacker et al., 2016; Nissler et al., 2016; Malyuta et al., 2020).

However, the algorithm must be robust to loss-of-sight on all the markers, and further compensate
for the time delay. This is achieved by extending the algorithm with SLAM estimates. The overview
is depicted in Figure 6. As a first step, we propose to address the problem of complete loss-of-sight
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Figure 6. The proposed extension of ARTOOLKITPLUS. Left: the position and orientation estimates of camera
motion from a SLAM system infer the object when the markers are not detected. Right: linear and angular velocity
estimates of the SLAM system are used with the time delay term t4 to predict the motion of the camera in t 4 t,
seconds.

on all the markers by integrating SLAM estimates of camera motion with respect to its inertial
coordinate, i.e, utilize the estimated transformation between the hc camera to a world coordinate of
our SLAM system w: T3%.(¢). If no markers are detected in the main loop of the algorithm, one can
still estimate the target marker T.7¢(t) by integration (executed within the function slam_ integrate):

T, (t) = Tot () Tyt — A)T0(t — A). (2)

In Equation (2), Th¢(t)T"(t — At) is a relative transformation of camera motion from time t-1
to t and we assume a static object. In a similar fashion, the time delay of the system t; can be
computed (executed with a function delay_computation) and corrected with SLAM algorithm by
kinematics:

Ty (t +ta) = T°(t + ta) T (DT, (1), (3)

which is executed within a function delay integrate. Note that the time delay is present in any
perception system (e.g., rectifying an image), fiducial marker systems as well as the communication
delays. In Equation (3), T} (¢) and T}*(t) are computed using SLAM and multimarker tracking. On
the other hand, T.7¢(t + t4) can be computed using linear and angular velocity estimates of SLAM,
multiplied by the delay time t4. These two steps have several advantages. The algorithm is robust
to the found failure modes of fiducial marker systems as it copes with missing marker detection,
and time delays are incorporated by using velocity signals and computed delay time. Furthermore,
maximum run-time of the algorithm can be pushed upto 200 Hz, which is the rate of visual-inertial
SLAM estimates. The algorithm deals also with drifts of SLAM estimates by using relative motion
estimates only when the marker detection is lost. Note that the proposed method is simple but
can be an effective way of exploiting the commodity vision sensors with SLAM modules in order to
improve the robustness of the fiducial marker systems.

4.2. The Proposed Pipeline for Objects of Unknown Geometry

Whenever we cannot assume the availability of the markers, the 6D pose of the objects can be
estimated using depth sensors such as a LiDAR with the point cloud registration methods. For
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example, within the intended industrial application, the markers cannot be used for estimating the
pose of the pipe. This is because in oil and gas refineries, the pipes are often very long while their
inspection points are generally unknown a priori. Concretely, given the incoming streams of point
clouds P(t) and the point clouds of the object Q from a CAD model, the goal is to find the rotation
and translation between P(t) and Q. Here, the point clouds P(t) contain the points p;(¢)Vi with its
coordinate lying at the weighted centroid ¢,. Similarly, the point clouds @ contain the points g;(¢)Vi
with its coordinate system defined at the weighted centroid c,. Defining ¢, to be aligned with the
coordinate system of the LiDAR [, the 6D pose of an object o can be obtained by matching the two
point clouds: p; = R.q; + t.. This goal of finding R, and ¢, is often formulated as an optimization
problem:

Rl07ti) :arglnllinzp(npi*Rlo‘h7t£)||)7 (4)
o’to 7

where p is again a distance based cost function, e.g., typically a mean squared error.
Commonly, the solution is obtained by first computing the rotation, and then the translation.
Centering all the points:

pi=pi—c, and @G =¢q; —c, suchthat R. =arg llnian(Hﬁi - Rf)tji‘
R i

o

); (5)

the goal is to find the rotation matrix that aligns the centered point clouds. Defining the correlation
matrix as C =), PGl and its singular value decomposition as C = ULV, the rotation can be
estimated by the orthogonal Procrustes algorithm, while the translation can be obtained from the
weighted centroids ¢, and ¢, after rotation:

R =UV" andthen t.=c,— Rlc,. (6)

This assumes the correspondences between each points to be known. In practice, however, the
correspondences are often not known and the Iterative Closest Point (ICP) algorithm is often used
(Park et al., 2017; Rusinkiewicz and Levoy, 2001; Besl and McKay, 1992). Intuitively, the ICP
algorithm iterates the following steps: (1) finding the closest point in the transformed point cloud
for each point: min p(P, Q), (2) estimating the transformation using Equation (6), and (3) applying
the found transformation to all points and iterate all the steps until a convergence criterion is
reached. As ICP algorithm is subject to local minima, ICP is often initialized by employing the
global registration methods such as Zhou et al. (2016) or using higher level features at the first step
of the ICP algorithm.

Challenges. Unfortunately, such a strategy does not fully address the current use-case of the
point cloud registration methods. This is because of the aerial manipulation tasks for an inspection
and maintenance scenario. We outline the resulting failure modes in Figure 5. First, the strategy
assumes the availability of a precisely known object geometry @, which can be obtained through
CAD models. Unfortunately, this assumption is invalid in our industrial scenario, as the CAD model
of the objects that belong to external environments are unknown, e.g., CAD model of oil or gas pipe.
Even though the refineries may have a 3D geometry of the site, there exist erosion and other changes
to their initial model. Second, a holistic view of the object cannot be assumed. In the setup, robotic
arm and other objects can occlude the object of interest, resulting in partial and overlapping view
of the point cloud. Lastly, as we deal with a floating base system where the base of a robotic arm is
not fixed, view point challenges can occur. This challenges the out-of-box point cloud registration
methods for LiDAR systems in Equations 4-6, which contains sparse point clouds.

Our solution. To this end, we propose a 6D object pose estimator using a LiDAR. The pipeline
is depicted in Figure 7. For an overview, the proposed algorithm constitutes of an initialization step
and a multiprocess main loop. At initialization, the CAD model of the scene is reconstructed online
by exploiting an object detector. In the main loop, three parallel processes are created: a bounding
box estimator that computes the locations of the occluding and moving objects to be masked out, a
SLAM pipeline that computes the object poses in a global reference frame, and a local object pose
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Figure 7. The proposed LiDAR pose estimation pipeline. (a) Initialization. Using an object detector, the point
clouds that belong to the objects of interest can be obtained for a surface reconstruction technique. (b) Main
loop. The object poses are estimated by combining a SLAM technique with local object poses from a point cloud
registration method. An object detector computes the regions of occlusions and dynamic objects for masking out.

estimator that estimates the object poses locally. The combination of local and global methods is
to mitigate the challenges related to nonholistic view of the object. The SLAM estimates can deal
with large perspective changes by matching the scans sequentially, but suffers from drift. The local
method, whenever is reliable, can be exploited to reduce the drift of the SLAM system. Lastly, what
motivates the multiprocess architecture is the efficiency, i.e., LIDAR odometry can be executed at
a faster rate than the other processes that can be executed only at a slower rate.

First, the pipeline is initialized by creating the CAD model of the object online. This is because
one cannot always assume a known geometry of the object in the targeted application scenario, i.e.,
the target point cloud Q is not available, and consequently its CAD model O for the VR. Yet, from
the specification of the given task, e.g., pick and place an inspection robot on a pipe, what we know
a priori is the semantics of the objects of interest, e.g., a pipe. Therefore one can still create the
CAD model of the object O online by finding the point clouds that belong to the objects of interest
P,(0) € P(0) and applying a surface reconstruction technique once. For this, we train a DNN based
object detector (Redmon et al., 2016) using the eye-to-hand camera (mako). Defining this DNN as
a parametric function fg with its input as an image I, the goal of a 2D object detector is to classify
and locate the objects in an image; for the object semantics ¢, e.g., ¢ € {pipe, robotic arm, cage}, the
classification probability p. (a score between 0 and 1), and the location as a bounding box b, € R*
in the given image, the 2D object detector returns the tuples:
] (7)

Here, the bounding box is described by two points in the image with the heights (h = u. 1 and
h = uc,2) and the widths (w = v.1 and w = v, ) which are the top left and the bottom right corner
of the box that contains the object c. Further defining the target object ¢ = 0 and using the extrinsic
calibration parameter between the LiDAR and the eye-to-hand camera T to transform all the

mako

point clouds P(0) to the image plane, we can find the point clouds that belong to o:

{Cvabc}zfe(-[) with bc:[uc,l Ve,1 Ue2 Vg2

Po(o) = [pj = (xjvij z])] such that ] = {7/ ‘ Uo,1 S xi,image S Up,2, Vo,1 S yi,image é UO,ZVi} . (8)

This means that all the LiDAR scans p;(0) to the image plane are transformed, which results
in P; image = (%4 image; Yi,image). Then, we obtain the indices j of the point clouds that lie inside
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the bounding box of our target object b, and crop the original point cloud P(0) to obtain the
point clouds P,(0) that only contain the information about our target object. Applying a surface
reconstruction technique (Kazhdan et al., 2006), the CAD model of the target object O can
be created. In this way, we can still create the VR of the scenes with the objects of unknown
geometry.

Next, the main loop of our algorithm is described, where the first process is the bounding box
estimator. This process tackles the problem of occluding and moving objects ¢ = u by estimating
the bounding box of other objects u in the LIDAR coordinate system, which is for actively removing
the points that belong to the occluding and moving objects u. Concretely, similar to before, the
object detector and the extrinsic calibration can be used to obtain:

Pu(t) = [pu = (xlmylu zu)] st u= {7/ ‘ Uy, 1 < T image < Uqy,25 Vu,1 < Yi,image < 'Uu,ZVi}7 (9)

where P, (t) is the point cloud that belongs to the objects u at time ¢. Then, the bounding boxes of
the objects can be computed in xy-plane of the LIDAR coordinate system. Defining this as b!,, and
examining all the point clouds:

blu:[min(mu) min(y,) max(x,) maX(yu)]T. (10)

Note that the projection of all the point clouds to the image plane can be inefficient for embedded
CPU computations. Therefore a separate process is assigned. Also, moving averages and a margin
are also implemented. Lastly, these bounding boxes are used to mask out the occluding and moving
objects in all other modules.

Then, in the main loop, a LiDAR based SLAM system (inspired by LOAM Zhang and Singh
(2017)) is employed to address the problem of view point changes. Again, a naive strategy is to
perform point cloud registration between the reconstructed CAD model of the target object O and
the incoming point cloud scans P. However, if the initially constructed object O is significantly
different from the current point cloud P, the point cloud registration method may perform poorly
due to less overlaps between the two scans. Therefore our key idea is that a LIDAR odometry pipeline
that performs the registration between the consecutive point clouds and sets the coordinate of the
constructed object O as a global reference, do not suffer from significant view point changes. As this
approach, however, suffers from drift, i.e., accumulation of errors, two mechanisms are introduced.
The first is a posegraph optimization:

{T;} =arg min A ITP-TaQI*+> . Y p(ITiP-T;Ql), (11)

i (P,Q)EK; 1<j (P,Q)eKi;

where A determines the weight of a cost between two consecutive scans within the keyframes,
and p is a robust function, e.g., set to L2 norm in our case. Here, the framework of Choi et al.
(2015) that performs robust pose graph optimization, is applied, which is less prone to the errors
of pairwise registration. Second, we propose to combine a local object poses that are obtained
by performing point cloud registration of incoming scans with the target object O. Whenever the
confidence estimates of the local object poses are high (or above a specified threshold), we reset the
SLAM system with initialization from the local object pose estimator. In this way, we account for
the drift of the SLAM system.

4.3. The Proposed Active Learning Framework

So far, the proposed object pose estimators are described for realizing the VR based telepresence
system. Here, our pipeline relied on a DNN based object detector. This has been used for the online
creation of a CAD model, and to rule out any occlusions and moving objects. As our entire system
relies on a DNN for the VR creation, we next propose an active learning framework to obtain the
required performance in DNNs within the context of field robotics.

Challenges. The problem is on the training and the deployment of DNN based systems for various
environments including both the indoor and the outdoor conditions. The challenge lies in realizing
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a DNN based system for long-term operations in outdoor environments. This is due to the necessity
and the manual preparations of large amounts of high quality, annotated data which can cover the
variety of the operation conditions. For example, as illustrated in Figure 5, a DNN trained from
the annotated images of the laboratory environments, may not generalize to outdoor environments.
Similarly, the seasonal variations of the scene from summer to winter can cause similar effects in
deterioration of the generalization performance. Therefore each change in the scene may require an
iterative process of collecting and annotating the data. As this can be a long and tedious process,
we attempt to find a principled solution that guides the process of gathering the required data for
the field deployments of the DNN based systems.

Our solution. To this end, we now describe the proposed pool based active learning framework
(Cohn et al., 1996) (also known as “experiment design”). To explain, active learning is a class of
machine learning paradigm, where labelled data are not available for a supervised learning problem.
Instead of obtaining annotations for all available unlabelled data, active learning attempts to only
label fewer but the most informative data. Intuitively, the aim of active learning is to create a
learning system that chooses by itself what data it would like the user to label. As opposed to the
heuristic choice of the user, active learning enables a DNN to select small amounts of data, guiding
the user in the data creation process. In practical applications of robotics, this indicates that first,
a pool of unlabelled data needs to be collected by the robot. As we use visual learning methods, a
camera setup could replace the deployment of the robot for data collection. We note that upto this
stage, the procedure is similar to a standard supervised learning settings in robotics. Then, instead
of annotating all the available data manually, fewer images are then autonomously selected by the
active learning algorithm. Deep learning models are trained from these fewer images, and finally
deployed to the robot.

Figure 8 illustrates the overall idea behind active learning. In a pool based approach, a model
is trained on an initial training set, which is often small. Then, the model selects a subset of
data points from a pool of unlabeled data, and asks a human to label the selected data points. The
selection involves a decision making process, which is performed through the choice of an acquisition
function. Based on the updated training set, a new model is trained. Repeating this process, we
can reduce the amount of labeling required to train a learning system. We present such a system
for DNNs, which relies on an uncertainty quantification technique for DNNs. These are, namely,
Bayesian Neural Networks (BNNs) and probabilistic object detection. To explain, our Algorithm 2
depicts the working principle overall. Using an initial training set Dinit, we train a BNN which is
denoted as p(6|Diyit). Then, for a user specified number of query steps Q, we first select the most
informative, top K samples from the pool of unlabelled images: Dpo01. This is achieved by estimating
the uncertainty from BNNs (denoted p(y; | ), Dirain)). Then, we label the selected images, and
the BNN is updated with the new training set. For more explanation in detail, we next present each

Training Pool Human
Data Data Annotator
Training images Unlabelled Annotations
and annotations images
New images
Bayesian Probabilistic - & L
Model ) Predictions tati Extend Trainin
Neural Object ———— Label Query 2nnoEong 9
. Data
Networks Detection
I Extended training data for object detection

Figure 8. Active learning pipeline for generating labelled data more efficiently. Instead of randomly selecting the
images to be labelled, we query the most informative samples from Bayesian Neural Networks - an uncertainty-
aware Deep Neural Networks for the state-of-the-art object detection frameworks.
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Algorithm 2. Deep Active Learning using Bayesian Neural Networks.

Dinit The initial annotated training data.

. Dpoot  The unlabelled data.
input :
Q The number of query steps.
K The size of the query per step.
fo The trained DNN based object detector.
output: ..
Dirsin The annotated training data.
begin
/* Initialization */
p(8]Dii) < create_ BNN(Dinit) ; // Apply Lee et al. (2020b); Humt et al. (2020)
Dhrain < update_data(Diir) ; // Initialize the training set from D,
/* Main Loop */
for all the number of query steps Q do
p(y;‘|x;‘, Dhrrain) <—prob_detector(2)poo|) Vi; // Evaluate uncertainty on a pool set (Equations 14, 13)
Deelected < query(Z)poo|, K); // Query from the pool set [Equation (15)]
Dhew < generate_annotations(Dselected) ; // The user or human supervisor annotates the images
Dhirain < update_data(Dyen) ; // Update the training set by adding new annotated data
p(0|Dini) < create_ BNN(Djir) ; // Apply Lee et al. (2020b); Humt et al. (2020)
end
end

of these components namely, the BNNs, the uncertainty of BNN based object detector, and query
step through the acquisition function.

4.3.1. Bayesian Neural Networks for Uncertainty Quantification

One of the crucial components of the proposed active learning framework is BNNs. Intuitively,
BNNs are Bayesian reasoning applied to DNNs which allows for the uncertainty quantification in
DNN predictions. We note that our previous works on BNNs (Lee et al., 2020b; Humt et al., 2020)
are being extended to active learning framework for object detection. While we refer to Lee et al.
(2020b); Humt et al. (2020) for in-depth treatment, our description below aims to provide the basic
formulation within the context of its application to active learning.

For this, consider a supervised learning setup with input-output pairs D = {X Y } = {(a:l, yi)}z].vzl,
where x; € RP, y; € RX. Similar to previous sections, we define a DNN as a parametrized function
fo : RP — RE where @ € R is a vectorized form of all DNN weights or parameters, e.g., all the
weights of convolution kernel or the weights and biases of a multilayer perceptron. In a standard
DNN, we typically aim to minimize the loss function: ming ﬁ >@yen Lfo(x), y)+ geTe where
¢ is an Lo regularizer, and 8 C D denote minibatches. The resulting solution is a single hypothesis
of a local maximum a posteriori (MAP) solution 6. To the contrary, BNNs explicitly express DNNs
as probability distributions over DNN model parameters 6 given the data p(0|x,y), which is also
known as the posterior distribution over the DNN model parameters:

p(ylz, 0)p(6) _  ply|z,0)p(6)
p(y]0) [ p(ylz,0)p(6)d6’

As a direct application of Bayes theorem, where a prior distribution over the model parameters
p(0) is specified, along with the likelihood p(y|z,0) and the model evidence p(y|@). Once the
posterior distribution over the weights is obtained, the prediction of an output for a new input
datum «* can be obtained by marginalizing the likelihood p(y|x, @) with the posterior distribution.
This step is called Bayesian Model Averaging, which can be used for active learning:

p(flz,y) = (12)

p(yla, D) = / Py, 0)p(8]D)de. (13)
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This indicates that the uncertainty estimates for a DNN prediction y* can be obtained
through combining different hypotheses of model parameters, resulting in the predictive distribution
p(y*|x*, D). Another implication of the formulation is the reliance on posterior probabilities p(8|D)
for uncertainty quantification.

Unfortunately, estimating the weight posterior is a challenging task, and has been one of the
central topic in research of BNNs (Gawlikowski et al., 2021). While the reasons are multitude, one
of the primary reasons is the lack of a closed form solution due to the nonlinearities of DNNs
that prohibit the validity of conjugate priors (Bishop, 2006). As a result, the use of approximation
techniques of Bayesian inference such as variational inference or Monte Chain Monte Carlo (MCMC)
sampling have been researched with a focus on dealing with the high dimensionality of DNN weight
space and the scalability with respect to large amounts of data that DNNs typically assume. For the
computations of the weight posterior, the proposed pipeline relies on the approaches of Lee et al.
(2020b); Humt et al. (2020). These works are well suited for active learning in robotics, due to the
demonstrated scalability to large architectures and dataset (Lee et al., 2020b). The extension of Lee
et al. (2020b) in the automation of the hyperparameter tuning via Bayesian Optimization (Humt
et al., 2020) can also be exploited in every query steps of active learning.

4.3.2. Uncertainty Estimation for Object Detectors

Having obtained the posterior probabilities of BNNs, the uncertainty estimates can now be computed
for the underlying object detector. A key challenge is the adaption of BNNs for the object detector
that may rely on several post-processing steps (Harakeh et al., 2020). As we use an anchor based
detectors such as Retinanet (Lin et al., 2017) (as these types of object detectors can provide real-time
performance on the Jetson TX2 as oppose to regional-proposal approaches or end-to-end pipelines),
one needs to deal with miss correspondence between the anchor predictions and final outputs, and
(ii) hard cutoff behavior in nonmaximum suppression (NMS) step (Lin et al., 2017).

For these, the BayesOD framework (Harakeh et al., 2020) is employed, which infers the output
distributions from the BNNs predictive distributions. In BayesOD, the samples of the BNNs
predictive distributions are clustered in anchor level in order to derive the uncertainty estimates
of the object detection. For this, one can assume that the clusters contains M number of anchors.
We further assume the highest classification score as the center of this cluster (indexed by 1) and
other anchors of the cluster are considered as measurements to provide information for the center
(denoted as ¢&; and f)i). Then, the uncertainty estimates for classification ppe, ... &,,1(c[Z*, Dirain) and
regression p[ma)BM](b|m*, Drrain) are

p[él,...,éM] (C|:ZI*, Dtrain) X Peq (C|:ZI*, Dtrain) Hp(él|ca :13*, Dtrain)a
i (14)
p[gh___J;M] (b|£L'*, Dtrain) X pfjl (b|$*, -Z)train) HP(Bz|b, w*u Dtrain)7
1=2

where pe, (c|x*, Dirain) indicates the per-anchor predictive distribution of the cluster center and
[T, p(f)i|b, *, Diyain) is the likelihood term. We refer to more details on the BayesOD in Harakeh
et al. (2020).

4.3.3. Acquisition Functions for Query Generation

Another crucial component of active learning is the acquisition function, which relies on the
uncertainty estimates from the BNN based object detector, in order to rank the images in the
pool set. In other words, the defined acquisition function uses the uncertainty estimates to evaluate
how informative each images in the pool set are. In case of an object detector, as there could
be several object instance in an image, the information scores for each detected instances within
an image are aggregated into one final score. Once such scores are obtained for all the images in
the pool set, the top K images can be queried for the human annotation, which is then stacked
into the training set. The model is then retrained with the new and larger training set, and the
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process repeats. As the acquisition function is a selection mechanism of active learning, its design
can influence the performance of the learning framework.

Within a BNN based object detector, the uncertainty estimates can be obtained for both the
classification and the bounding box regression (Feng et al., 2022a). Hence, one of the design choices
are on how to effectively combine the two different types of uncertainty measures - one on semantic
uncertainty, and the other on spatial uncertainty (Feng et al., 2022a). Defining the combination
function comb(-) as a weighted sum or max operation (Choi et al., 2021), and also the aggregation
function agg(-) as a sum or average operation (Roy et al., 2018), it is chosen:

A(zk) = aggjen, (comb(Uj cis, Ujreg)) , (15)

where Uj .15 and Uj rep are the information score of the jth detection instance on an image, for the
classification and the regression tasks respectively. A mechanism of this acquisition function is to first
combine both the semantic and spatial uncertainty by either a weighted sum or maximum operation,
and then sum or maximize over the combined score per detection instances. What motivates the
given choice is the handling of the problem itself. The combination operation are to deal with having
to combine the two different tasks per instance of an object detector, and the aggregation operation
are to handle the multiple instances in an single image (Feng et al., 2022b). What remains is then
the design of the information scores for both classification and regression tasks: Uj s and Uj reg,
respectively. Then,

IC|
(Llj,cls = Zﬂ (p(cz|w*7 z)train)) and 7/[j,reg =H (p(b‘w*a Dtrain)) 5 (16)
i=1

which rely on the Shannon Entropy measure H (-)—an indicator of how uncertain a distribution is.
In case of classification, we assume categorical distributions over the classes ¢;, while we assume
multivariate Gaussian distributions for the bounding box regression b. Importantly, what motivates
for optimizing the given entropy measure is its equivalence to maximizing the information gain of a
model (MacKay, 1992).

5. Experiments and Evaluations

In this work, a VR based telepresence system is proposed, which is to provide real-time 3D displays
of the robots’ workspace and also a haptic guidance to a human operator. The main contribution is
the realization of such a system using robotic perception and active learning methods. This section
therefore evaluates the proposed pipelines by examining how the created VR can match the real
remote scenes, and if the identified challenges (in Figure 4) are addressed by the proposed pipelines.
Then, the results from the field experiments are presented, in order to characterize the effectiveness
of the overall system in advancing aerial manipulation for real world applications.

5.1. Ablation Studies and Evaluations

Several ablation studies are provided for the insights behind the presented algorithms. In particular,
empirical evaluations of the devised algorithms, when facing the outlined challenges in Figure 4, are
the aim.

5.1.1. Visual Object Pose Estimation for Known Objects

To recap, the marker tracking algorithms can be exploited for creating the VR with the known sets
of objects. Here, the identified challenges are the shadows, the loss-of-sight or the partial views of
the markers, which can cause the mismatch between the real remote scene and the VR. To address
these challenges, the SLAM estimates of commodity visual-inertial sensors have been integrated,
and here, validation of the devised algorithm is performed. To this end, the accuracy, the run-time
and the robustness of the proposed algorithm are examined.
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Ezperiment setup. For this, the ground truth of the relative poses between the objects and the
camera are measured using a Vicon tracking system. Then, the algorithms are evaluated on the
sequences that simulates the peg-in-hole insertion tasks. The Vicon measurements represent the
ground truth of the object poses for the indoor environments. To evaluate the effectiveness of the
proposed algorithm against the identified challenges, the observed failure modes of the existing
marker tracking systems are manually created. The baselines are the APRILTAG3 (Wang and Olson,
2016) (denoted as AP3) and the ARTOOLKITPLUS (Wagner and Schmalstieg, 2007) (denoted as ART),
which represent a plug-in-and-play alternatives. Particularly, as the proposed algorithm extends the
ARTOOLKITPLUS with SLAM estimates, this choice of the baseline enables a direct comparison. Five
repetitions of these experiments are conducted in total.

Results The quantitative and qualitative results are reported in Figures 9 and 10, respectively.
In Figure 10, the estimated trajectories of the relative poses are compared with the Vicon measure-
ments. As depicted, the proposed algorithm is robust against the lost-of-sight problems of object
localization with a hand-eye camera. On the other hand, the alternatives namely, AP3 and ART
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“u:j 0.10 ”mTo o t‘n’j > ®o1 > § 0.50
= 0.05 =" s 00 g0l 2 g o1 5025
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Figure 9. A summary statistics. Root Mean Squared Error (RMSE) and run-time are reported for the baseline
methods and the proposed extension to the ARTOOLKITPLUS. Lower the better for both the measures.
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Figure 10. Qualitative results of the proposed marker tracking algorithm. (a) The existing marker tracking
algorithms under the loss-of-sight of the markers are evaluated. (b) The proposed extension of the marker
tracking algorithm with SLAM estimates is evaluated under the same scenario of the loss-of-sight. (c) The
estimated positions from the baselines and the proposed algorithm are compared. These results indicate that the
proposed algorithm can cope with the loss-of-sight of the markers and the time delays, thereby justifying the
design choices of the algorithm. Three markers of size 2.5cm, a marker of 6.25cm, and a marker of 10cm are
used in this evaluation scenario.
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produce jumps as no markers are detected (between ¢ = 2 to 8 as an example) when the camera
loses the sight of the markers. This is due to the design of the algorithm where the SLAM estimates
of the camera pose are integrated out, whenever the markers are not detected. Furthermore, ART
suffers from a time delay, while AP3 has both the time delay, and the slow run-time. Moreover, the
proposed algorithm can compensate the time delay, resulting in slightly more accurate estimates. The
corresponding Root Mean Squared Errors (RMSE) is reported in Figure 9 along with the run-time.
We observe that AP3 is slow when using high-resolution images, and this results in more errors as the
trajectories are compared. In the approach, these trajectories are relevant for creating the VR with
object localization methods. In this experiment, the proposed method yields the least errors and
fastest run-time. We attribute the former to the robustness against the loss-of-sight of the markers,
while the later is due to the integration of the inertial sensors. These analysis of the accuracy,
the robustness and the run-time validates the proposed algorithm. Moreover, the success of the
algorithm is visually demonstrated in the video attachment, in addition to Figures 10(a) and 10(b).

5.1.2. LiDAR Object Pose Estimation for Objects of Unknown Geometry

For the external scenes without the availability of a precise geometry, a LiDAR based object pose
estimation pipeline has been proposed. The features of the pipeline are to deal with the challenges
that are outlined in Figure 4. Thus the aim now is to validate the components of the pipeline using
the collected visual-inertial-LiDAR, datasets.

Ezxperiment setup. For this, the point clouds and the visual data are collected in various situations.
Within the controlled lab environment the following scenarios are created: a “nominal” scenario
where the sensors ideally are pointed to an object statically, a “shaking” scenario in which imperfect
hovering of the robot creates sensor movements, a “rotation” scenario where the robot rotates around
the object, and a “occlusion” scenario in which the robot arm and other objects moves to occlude the
target object. These scenarios represent the identified challenges during a manipulation task (e.g.,
see Figure 4). To further evaluate the proposed pipeline in a realistic use-case, additional scenarios
are considered in outdoor environments. These are: a “night” scenario where the sensor data were
collected during a manipulation task in the night, a “tower 1”7 and “tower 2” scenarios where the
data is similarly acquired at two different locations. Importantly, the given extensive evaluations
over varying conditions are motivated by the considered industrial scenarios where this paper aims
to build a working system that goes beyond the proof-of-concept prototypes.

For the baselines, the off-the-shelf methods such as point-to-point ICP (Besl and McKay, 1992;
Babin et al., 2019), point-to-plane ICP (Park et al., 2017; Rusinkiewicz and Levoy, 2001) and the
combination with the global registration methods (Zhou et al., 2016) are compared. The pairwise
registration is denoted pICP (with coarse-to-fine matching strategy) whereas pFPFH denotes the
global registration method. These are to examine the vanilla object pose estimators without specific
measures to address the identified challenges. For brevity, only the best performing ones between the
point-to-point and the point-to-plane methods are reported. Furthermore, we compare our method
without different components to evaluate the contributions of each modules to the final performance.
These are the pure odometry (odom), odometry with posegraph backend (backend), combination
of odometry and local object poses (comb) and the proposed object pose estimator (all). For better
insights, we evaluate these methods with masked out dynamic part of the scene while existing
works motivate the importance of masking out the dynamic parts of the scene in SLAM context.
With these baselines, closely following Babin et al. (2019); Park et al. (2017), the RMSE of the
translation (RMSE t) and the rotation (RMSE R), the number of valid matches, and the run-time
of each algorithms are measured.

Results. The quantitative and qualitative results are reported in Figures 11 and 12, respectively. In
these experiments, the proposed object pose estimator yielded the least RMSE for both translation
and rotation. Odometry with and without the back-end suffers from drift over time, while the vanilla
methods such as pICP and pFPFH performs poorly when the view point changes are significant.
The later is qualitatively shown in Figure 12, while the number of matches in Figure 11 also indicate
their relatively poor registration between the target and the source point clouds. supports the claims

Field Robotics, March, 2023 - 3:323-367



346 - Lee et al.
|
E 0.3 1
L 0.2
2]
E 0.1 2 )
0.0 L = I.' I I.' L —
nominal shaking rotation occulusion night towerl tower3
0.2
|
T
o
0.1
w
1)
= |
0.0 I'- I- I'- I' - I' I'l —
nominal shaking rotation occulusion night towerl tower3
= I -
& 2000 4
<
B |
©
= 1000 1 | |
B
©
N I ) I |,| || |,| .,| —
nominal shaking rotation occulusion night towerl tower3
|
w 0.6
[
£ 044
=1
5 024 ' '
ol I I [
0.0 A La A I.' La A T
nominal shaking rotation occulusion night towerl tower3

pICP/0.07
pFPFH/0.053
odom/0.247
comb/0.031
backend/0.222
all/0.013

pICP/0.037
pFPFH/0.061
odom/0.076
comb/0.014
backend/0.07
all/0.007

plCP/465
PFPFH/564
odom/1042
comb/1038
backend/1042
all/1037

plCP/0.188
pFPFH/0.598
odom/0.07
comb/0.07
backend/0.07
all/0.07

Figure 11. Statistical analysis of the baselines and the proposed method per scenario. Lower the better for the
RMSE and run-time, and higher the better for the number of valid point cloud matches. These results indicate
that the proposed algorithm can cope with the identified challenges, thereby justifying the design choices of the
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Figure 12. Qualitative results for the LiDAR based object pose estimators. (a) Evaluation of a vanilla object
pose estimator. (b) Evaluation of the proposed object pose estimator. (c) Plots of the estimated positions from
a baseline (pFOFH) and our approach (all) against the ground truth (gt) measurements. The qualitative results
over occlusion and rotation scenarios justify the design choices of the proposed method. The monotonic gray
indicates the source point cloud while the colored point cloud refers to the current scan. All point clouds are

cropped for the visualization purpose.
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of this work on the identified challenges. Moreover, as shown in Figure 11, it can be seen that all
the components introduced namely, pose-graph, local object poses and odometry, contributes to the
accuracy of the estimates. With respect to the run-time, the odometry based methods are real-time
capable, which we attribute to the significant overlap between two consecutive LiDAR scans that
helps ICP algorithm to converge faster. On the other hand, pFPFH is the slowest in terms of run-time
because it relies on several components such as feature extraction, correspondence matching, and
refinement through ICP. All these results are consistently observed across seven scenarios with
varying degrees of severity. hese experiments justify and validate the proposed methods and its design
choices. Importantly, the key take-away is the effectiveness of combining object pose estimators with
SLAM methods for floating-base system, which can handle the failure cases of conventional object
pose estimators via introspection.

5.1.3. Bayesian Active Learning for Field Robotics

Lastly, the proposed Bayesian active learning framework is evaluated within the context of field
robotics. To recap, the main challenge is to deal with the large variations in the environment, which
may hurt the performance of an object detector that has never seen such data in the training set.
The natural question to evaluate here is the amount of labeling efforts that the active learning
framework can save. As an application of the Bayesian active learning paradigm for field robotics,
we focus on the impact of the system performance rather than the algorithmic advances.

Ezxperiment setup. To this end, the visual data in various locations and conditions have been
gathered. These are not only the (i) laboratory environments, but also (ii) the outdoor environments
in different locations. These environments are denoted as scenes 1-6 or S1-6, which are visualized in
Figure 13. To evaluate the system performance, the manual annotations within these images have
been created. The objects are cage, pipe and robotic arm. In total of about 20k images, we randomly
label 5k images. The splits are performed at the ratio of 7.5:2:0.5 respectively to a pool, test and
validation set. This is to simulate the real world scenario where the training data is initially limited
(e.g., the data collected in summer, and having to test in the winter). We add uniform sampling
from pool data (denoted as random) and MC-dropout (Gal and Ghahramani, 2016) as the baseline.
While deep ensembles (Lakshminarayanan et al., 2017) are another popular baseline, the suitability
to active learning is limited due to the excessive training time. Here, the sampling strategy chosen
from Feng et al. (2022b), and therefore, the only difference between the baseline methods are the
uncertainty estimates.

Implementation details are as follows. the Pytorch implementations are used, namely, the Reti-
nanet implementation from Detectron2 (Lin et al., 2017) and the official implementation of BayesOD
(Harakeh et al., 2020) with slight modifications for better performance. These modifications include
the use of Bayesian inference only for the bounding box regression, instead of also applying to
the classification head. The learning rate has also been tuned to obtain better convergence. The
monte-carlo samples of 30 are used for computing the uncertainty estimates, and the rank of 100
and 50 BO iterations are used. The latter is applicable to only the Laplace approximation, which was
applied to all the layers in the Retinanet. On the other hand, only the existing dropout layers within
Retinanet have been used for MC-dropout. Such implementations are motivated by the promise of
each methods. MC-dropout assumes dropout layer, and have been popular in practice as one could
make use of existing dropout layers, while Laplace approximation can directly render every layer as
Bayesian, given an already trained parameters.

Results. Firstly, it is evaluated, how much data annotations one can save by comparing the
training setups that uses 100% of the annotated training data against the acquisition sequences
of 5%, 10%, 256%, 50%, and 75% of the total data. Repeated sequentially over each scenes, the
performance of the resulting object detector with mAP as a metric, are measured. The test set
contains samples from each scenes and therefore, this repetition shows how the performance gap
due to scene variations are being closed. The results are depicted in Figure 14. We observe that
the gap between the active learner (AL) and the Retinanet with 100% of annotated data (denoted
100%), reduces as we increase the acquisition size from 5% to 75% of the total data. In particular,
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Figure 13. Collected sets of pool data from different scenes. Six different scenes cover indoor as well as outdoor
environments, varying backgrounds and height, and the scenes with snow and at night.

in these scenarios, AL with only 25% of the total annotated data can reach more than 95% of the
100%s mAP values, which results in saving upto 75% of the annotated data. This results are due to
the redundancy in the data. We believe this result can motivate AL for field robotic applications,
where the data preparation can be inherently more expensive than the laboratory settings.

Next, the design choices of the proposed active learning pipeline are examined by comparing the
method against the selected baselines. The results are depicted in Figure 15. Here, the transfers
between the scenes are assumed. As the robots may operate at different environments, we attempt
to evaluate by starting the active learning with a neural network in an indoor scene, and acquiring
the data over different outdoor scenes. For all the results, we acquire 5% of the data per iterations,
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Figure 14. Results of active learning (AL) compared to the training setup that uses 100% of all data over
different scenes. AL is used for the acquisition sequence of 5%, 10%, 25%, 50%, and 75% of all data. Higher the
better for mAP. The results show that one can save upto 75% of data, in order to reach more than 95% of the
total performance.
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Figure 15. Comparisons of the proposed pipeline (INF) with other baselines such as random sampling (random)
and MC-dropout (MCD) over six different scenes. The mean mAP during the active learning process is displayed
along with the labels of the curve. The standard deviation is shown in shade. Higher the mean mAP, the
better.

and repeat 10 iterations to reach the 50% of the all data. In total, three random seeds are used
to compute the standard deviation (also in Figure 14) for the statistical significance. Examining
the mean mAP over all the iterations, the data suggests that the performance increases over using
MC-dropout. The results are consistently observed in several settings with different magnitude of
the improvements. We attribute the reason to post-hoc nature of our Laplace approximation based
approach. To elaborate, the methods that are based on variational inference, such as MC-dropout,
might be at disadvantage in active learning settings, where each loop involves training a DNN.
Naturally, as variational inference rather learns uncertainty during training, finding hyperparameters
that deliver good performance over many loops is difficult. On the other hand, post-hoc methods
such as ours, the uncertainty estimates are obtained after training the DNN. This decoupling enables
us to extensively search for hyperparameters, which is feasible within each active learning loop.
Therefore we interpret these results to show the validity of the design choices of the proposed active
learning pipeline. In summary, the key take ways are the redundancy of the data when training a
neural network in dynamic and unstructured environments, and an active learning framework with
well-calibrated uncertainty estimates can produce a practical and positive impact by guiding the
data preparation steps towards efficiency.
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Figure 16. Qualitative results for peg-in-hole task with the aerial manipulator. (a) Approach phase, (b) precise
positioning, and (c) successful insertion. Top: overview of the robot's remote workspace, where SAM is suspended
by a crane. Middle: the operator view with live video streams, and the created VR, which displays four different
view points simultaneously, and provides haptic guidance in both position and orientation. Bottom: close view on
the robot's workspace. With the proposed VR based system, the operator is able to achieve precise peg-in-hole
task with the robot in outdoor environments. The markers of size 2.5 cm (x3), 6.25 cm (x1), and 10 cm (x1) are
used in this scenario.

5.2. Field Testing and User Validation

While the previous focus was on the validation of the methods for VR creation, the flight experiments
with SAM is now presented. The main purpose is to evaluate the benefits of the proposed system
in advancing aerial manipulation capabilities. To this end, we examine two industrial scenarios
in outdoor environments. Then, the robustness of the proposed system is examined by varying
environments and users.

Ezxperiment setup. The design of our experiment setup is to account for real world applications
of aerial manipulators. As a first step, the description of two industrial scenarios with SAM are
provided, which involve the following aerial manipulation tasks in dynamic and unstructured
environments.

o Industrial task 1: Peg-in-hole insertion. As one of the benchmarks for manipulation, this task
involves inserting an object (attached to the end-effector) into a hole. An example is depicted
in Figure 16. Industrial tasks such as valve opening and closing in high altitude areas, or in-air
assembly of structures require the execution of this task. In this work, the peg-in-hole task
with an error margin of less than 2.5 mm is considered. This is a challenging task for aerial
manipulation, since the robotic arm is on a floating base.

o Industrial task 2: Pick-and-place and force exertion. Two other benchmarks for manipu-
lation are combined, which are pick-and-place and force exertion, in the second task. In
particular, our scenario, designed under the scope of the EU project AEROARMS, involves
deployment and retrieval of an inspection robotic crawler. An example is depicted in Figure 17.
It requires grasping of a cage (as a carrier of the crawler robot), placing the cage on a
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Figure 17. Qualitative results for deployment of robotic crawler within an industrial inspection and maintenance
scenario. [(a)—(c)] The carrier brings the robot from the ground to the remote location. (d) The robot picks the
cage that carries the inspection robotic crawler. (e) The robot places the cage on a mock up of an industrial pipe.
(f) The robot exerts force on the cage, so that the crawler can roll out of the cage without falling. The operator
can use the VR (bottom), which contains 3D information as opposed to 2D camera images (middle). Live video
stream is also subject to over and under exposure when under a shadow on a bright day. With the proposed
VR based system, the robot is able to execute advanced aerial manipulation tasks for the considered real world
application. Four markers of size 5cm are used for the cage hosting the mobile robot. The first experiment used
a marker of 25 cm on the pipe with its CAD model. Later these primitives were replaced by the proposed LiDAR
based pose estimation algorithm.

pipe, and pressing the cage onto the pipe while the crawler moves in and out of it for pipe
inspection.

Note that, for the execution of these two tasks, the operator is located far away from the robot
without direct visual contact to the workspace of the robot. More concretely, as shown in Figures 16
and 17, the robot operates in an outdoor environment, while its operator remotely commands the
robotic arm from a ground station. This simulates a real world application scenario of a teleoperated
aerial robot.

To evaluate the feasibility and benefits of the proposed telepresence system in advancing aerial
manipulation capabilities of SAM, four sets of experiments are considered.

e Set 1: Repetitions of peg-in-hole insertion. Several repetitions of the peg-in-hole insertion
task are performed (as shown in Figure 16). Here, we vary the conditions by executing the
manipulation tasks with three modes, namely, (a) VR and haptic guidance mode (denoted
VR+HG), (b) VR mode (denoted by VR+Tele), and (c) only with live camera streams (denoted
CAM). Eight repetitions are performed for each mode, and the total time for a successful
execution is chosen as an evaluation metric.

o Set 2: Repetitions of pick-and-place. Several repetitions of the pick-and-place task are performed
(similar to the environment in Figure 16 without the crane and the markers on the pipe). Here,
we also consider three modes, namely, (a) VR and haptic guidance mode (denoted by VR+HG),
(b) VR mode (denoted by VR+Tele), and (c) only with live camera streams (denoted CAM).
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Six repetitions are performed for each mode, with the total time for a successful execution as
an evaluation metric.

o Set 3: User validation. In a laboratory setting, a user validation study is conducted with three
subjects. The variations of the users are to demonstrate that the considered manipulation tasks
can be performed by different users. The considered tasks are force exertion onto a pipe for
three seconds (denoted by validation task 1), and also placing a cage on a pipe with and without
moving base (denoted as validation tasks 2 and 3, respectively). With VR and haptic guidance
mode, the total time for a successful execution is chosen as an evaluation metric.

e Set 4. Operations at night with VR. For both the industrial tasks, we perform experiments at
night without sunlight. With flash light from an external source, the feasibility and benefits of
the proposed system are demonstrated. At night in outdoor environments, this functionality of
being able to perform manipulation tasks is important to increase the range of operation hours
including emergency services for several industrial use-cases of aerial manipulators.

With these sets of experiments, the aim is to examine the following aspects. For Set 1, the
VR+HG mode are examined for achieving manipulation tasks with a high precision. The proposed
marker tracking algorithm is utilized here. With Set 2, the benefits of VR in providing depth
information to the operator with haptic guidance only for the orientation, are examined. The LiDAR
based object pose estimator is utilized here for pipe localization, while the pose of the cage is
monitored with the marker tracking method. Set 3 aims for a user validation, while with Set 4, we
attempt to push the limits of the proposed system. Again, the use-case of the developed system is
to augment the live video streams by providing 3D visual feedback and haptic guidance. The use of
VR interface only, is not the intended use-case of the system. Besides, in industrial scenarios of pipe
inspection and maintenance, the pipes are often very long and their inspection points are unknown
a priori. Therefore the proposed Lidar based pose estimation method is used to localize the pipe.
This use-case justifies the assumption that the object is semantically known, but no geometry is
available.

Results. The results of sets 1, 2, and 3 are depicted in Figure 18. First and foremost, the
comparison study of the peg-in-hole insertion tasks with 24 successful executions shows that VR+HG
requires the least execution time, while VR+Tele and CAM took similar mean execution times. Note
that the executions with CAM used an automated initialization of the end-effector orientation,
which was to make the task execution successful. The superiority of VR+HG is expected as the
human operator is assisted by the haptic guidance system. Similarly, the comparison study of
the pick-and-place task shows similar trend, where the statistics are computed using 18 successful

Comparison Study - Industrial Scenarios Indoor User Validation Study
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Figure 18. Performance of SAM in terms of execution time. Left: the results of the comparison study is depicted,
where we compare pure VR based telepresence (VR+Tele), VR with haptic guidance (VR+HG) and a solution
using only a camera (CAM). The statistics are computed over 24 and 16 successful executions in outdoor
environments for the peg-in-hole and pick-and-place tasks, respectively. Right: the results of user validation is
shown, where three users performed three pre-designed tasks, namely, force exertion and placing the cage on the
pipe. The statistics are computed over 27 successful executions in an indoor environment. Lower the execution
time, better the performance.
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Figure 19. Qualitative visualization of aerial manipulation performed during the night. [(a) and (c)] The camera
view and the VR. [(b) and (d)] The translation and the orientation of the robots’ end-effector. The corresponding
pairs are (a), (b) and (c), (d). These results suggest that the proposed system can extend the operational range
of SAM, which further establishes its viability for real world industrial applications. External views are depicted
in Figure 20.

executions in an outdoor environment. As a third point, the user validation demonstrates that
all the tasks can be executed by different users with different performance characteristics. Results
from the scenario with a moving base, namely, validation task 3, required more time for execution,
which indicates that the tasks are more challenging with a moving base. Overall, these studies
indicate the performance benefits of the system including feasibility and robustness of the proposed
system.

The qualitative results of set 4 are depicted in Figure 19. The figures show the live-stream view
from the eye-in-hand camera, and also from the VR. Lights are provided from an external source
and the camera exposures are tuned to achieve balance between noise, brightness and stability of
streaming. Poses of the end-effector are plotted to illustrate task executions. These plots are also
similar for the peg-in-hole and the pick-and-place tasks from previous sets of experiments. Notably
in (b) of Figure 19, peg-in-hole insertion is best characterized in z-axis between 50 and 60s. In (d)
of Figure 19, the placements are observed in z axis between 28 and 35 s, while the effects of haptic
guidance is shown between 8 and 15s. These experiments show that the proposed concept can also
work under the unfavorable lighting conditions, thereby extending the operation range of the aerial
manipulators. Additional plots for the interaction wrenches during the manipulation task can be
found in the appendix (Figures 23 and 24).
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Figure 20. Aerial manipulation at night. The views of the scene from an external camera are depicted. Left: SAM
performing peg-in-hole insertion task at night. Right: SAM placing a cage onto a metal pipe for the deployment
of a robotic crawler. SAM and the objects are highlighted in white.

5.3. Discussion

The results obtained with ablation studies and field experiments suggest successful development
and deployment of the proposed VR based telepresence system for advancing aerial manipulation.
For providing both the sense of touch and the sense of vision to the human operator, the proposed
system featured not only a haptic device, but also a VR interface that provides a real-time 3D
display of the robot’s workspace as well as a haptic guidance. In the experiments, it is shown that
the system neither requires any external sensors nor pre-generated maps, copes with the challenges
of a floating-base manipulation systems, i.e., induced motions of attached sensors due to coupling
between the manipulator and the base, fuses multiple sensors whenever appropriate, and has been
exhaustively evaluated outside laboratory settings. These features of the proposed VR system are
requirements for several industrial applications of aerial manipulation technologies. To the best of our
knowledge, using on-board robotic perception only, this work is the first of its kind to demonstrate
the feasibility of such VR based concept in dynamic and unstructured environments, which includes
several outdoor locations, days and nights, as well as different seasons.

To build such a system, several methodological insights are provided, from the identification
of practical challenges to their working solutions, both of which are validated using the real data
from robot’s sensors. In particular, the object pose estimators are subject to nonholistic view of
the objects, which includes loss-of-sight, partial view and occlusions as examples. For this, we have
combined the object pose estimators with ego-motion tracking of the environments using real-
time SLAM estimates. In the custom datasets that emulate these challenges, the results show that
the identified problems can be coped with, which has resulted in the pipelines that meets the
requirements of VR creation in accuracy, run-time, and robustness. Moreover, when one aims for
a long-term deployment of a learning system in outdoor environments, we find that data collection
and preparation become a practical problem. To this end, a pool based active learning pipeline has
been evaluated, which used a previous work on uncertainty quantification (Lee et al., 2020b). In a
field robotics settings, the results show that only 25% of total data are enough to reach 95% of a
solution with all data points and other baseline approaches can be outperformed, overall improving
the sampling-inefficiency of DNNs.

Overall, the experiments of this work illustrate several benefits of the proposed VR based telep-
resence system for advancing aerial manipulation capabilities in real world applications. Intuitively,
a virtual environment allows the human operator to change its sight-of-view, zoom in and out, and
provides a haptic guidance. In the presented comparison study (with 40 task executions in outdoor
environments; a single user), the results show significant reduction in the total execution time when
using the proposed system with haptic guidance. The user validation study (three users with 28 total
task executions) suggests that three different users can execute the tasks successfully with varying
degrees of performance. Moreover, with the demonstration of the operations at night, the range of
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operation hours has been extended for the current aerial manipulation systems. All these results are
obtained within two industrial scenarios that requires advanced aerial manipulation capabilities,
namely, pick-and-place, force application, and peg-in-hole, which goes beyond a contact based
inspection. Therefore these results demonstrate the viability of the proposed VR based telepresence
concept for industrial applications in the real world.

5.4. Lessons Learned

During the flight campaigns with SAM, we learned a few lessons, which we would like to share with
the community. These lessons learned are centered around the proposed VR based telepresence
system. Note that the focus herein is on the use-cases of the proposed system, the design choices,
and the limitations.

On use-cases of VR with haptic guidance for aerial manipulation. The necessity of VR with
haptic guidance for SAM (or robots with similar morphology) largely depends on the choice of the
haptic device and difficulty of the manipulation tasks. In the initial flight experiments using only
the 2-DoF Space Joystick Rjo in Lee et al. (2020a), the operator could not easily complete the
considered manipulation tasks by only relying on live camera streams. On the other hand, at the
later stages of development, it was much easier for the operator to complete the tasks, when we
augmented the system with the 6-DOF haptic device Lambda. With the 6-DoF device Lambda and
a whole-body controller of the suspended platform to handle occlusions and enhance the camera’s
field of view [e.g., in Coelho et al. (2021)], the operators could also complete the tasks using only
live video streams, despite slower execution time.

However, while the necessity of VR and haptic guidance may depend on the system and the
complexity of tasks, we find that the combination of VR, haptic guidance and live video stream
resulted in the best performing system. Intuitively, the live video stream can provide situational
awareness to the human operator, but suffers from over- and underexposure depending on the
light conditions, camera jitters due to the movement of the platform under severe winds, lack of
complete 3D information and inability to provide haptic guidance. The proposed VR system can
complement the live video stream as it does not degrade with outdoor conditions, provides complete
3D information with an option to change the field of view, and supports haptic guidance. Another
benefit is that VR enables seeing the “full model” instead of the limited field of view of the camera
at its current position, which includes configuration of the robotic arm.

On scene graph verses 3D reconstruction. The VR creation from robot perception can either rely
on scene graph or 3D reconstruction techniques, where the choice of the approach largely depends on
the validity of either static-base or floating-base assumptions. For example, a ground based mobile
manipulators can first stop, and then perform manipulation. If the scene and objects are static,
the relative motion between the sensors and the objects can be easily estimated, and the real-time
capability from the perception algorithm is not required. In such a scenario, relying on the outputs
of 3D sensors such as RGB-D or stereo would be the simplest option to implement. The robot can
map the environments and the objects first to ensure a good field of view, e.g., avoiding occlusions,
and then use the map to create a VR. On the other hand, if the relative motion between the sensors
and the objects are consistently changing, e.g., in a floating-base system like ours, we find that
the scene graph approach can be better suited. The scene graph approach can rely on the object
pose estimators that are fast and accurate, and the existing corner cases such as occlusions and
loss-of-sight can be handled by using the proposed pipelines. Another consideration is bandwidth,
i.e., the object poses require only 6D vectors while streaming point clouds is more expensive. The
6D pose representation can also be plugged in directly for the shared controllers with position based
visual servoing (as in VR+HG).

On inherent uncertainty in VR creation. The proposed VR from robot perception cannot match
the reality perfectly. In spite of this limitation, the considered task could be successfully completed
even for several challenging outdoor environments. What attributed to the successful deployment
of the proposed VR system was identifying when the VR was prone to failures (see Figure 5).
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The provided object pose estimators mitigates the identified failure cases by combining a standard
object pose estimator with tracking of the environments. Here, the combination is facilitated by
a module that identifies the failure cases, e.g., self-evaluation of point cloud processing methods,
and missed detection of the markers while using visual-inertial systems. Moreover, in the proposed
active learning pipeline, a more explicits representation of uncertainty is used to improve the data
preparation steps for our DNN based component. Therefore we find that reliability awareness of an
algorithm is crucial for the robotic systems to achieve complex tasks in dynamic and unstructured
environments. This is in line with Thrun et al. (2000).

The current use of DNN’s uncertainty has been off-line, like pool based active learning, while
its use on-board the robot could potentially offer several more benefits. In this regard, combining
a real-time uncertainty estimation method (Lee et al., 2022) with a reliability-aware shared control
architecture (Balachandran et al., 2020), could be an interesting direction of future research for
reliable operations of complex systems in unstructured and dynamic environments. Lastly, a full-
scale user study is envisioned, which is tailored on telepresence robots with aerial manipulation
capabilities, in outdoor environments.

6. Conclusion

In this paper, the real world applications of aerial manipulation in dynamic and unstructured
environments are envisioned. A novel telepresence system has been proposed, which involves not
only a haptic device for the sense of touch, but also a virtual reality (VR) for enhancing the sense
of vision and further providing haptic guidance. To create such system, we identified challenges
while using off-the-shelf methods, and devised several extensions to address them. These techniques
include pose estimation pipelines for industrial objects of both known and unknown geometries, and
also a deep active learning pipeline to efficiently collect and annotate training data. Empirically,
we validated the proposed methods using datasets collected from the robot’s sensors. With these,
the influence of each component is examined with regard to mitigating the identified challenges,
and we demonstrate the feasibility of creating the real-time and accurate VR. Methodologically, the
key to success was an awareness of the algorithms’ own failures and uncertainty — also known as
robotic introspection. One example is the combination of object pose estimation and SLAM, which
is facilitated by a module that identified the failure cases. Another example is the active learning
pipeline, where information gain is computed from an explicit representation of uncertainty. With
the DLR’s SAM platform, we conducted exhaustive experiments over extended durations in which
we executed over 70 complex aerial manipulation tasks to characterize the performance of the
resulting system. The obtained experimental results show that the proposed system can reduce the
execution time of both pick-and-place and peg-in-hole insertion tasks by approximately 1.8 times.
The system is also demonstrated to operate at night without any direct sun light. As a result,
we characterize the viability of the proposed system for future industrial applications of aerial
manipulation technology.

A. Platform Design, Control, Teleoperation, and IT Architectures

In this section, we present the details about platform design and control, teleoperation system and
IT architectures.

A.1. Platform Control

The control framework of SAM is depicted in Figure 21. It includes three separate controllers
for three sets of actuators. Each of these blocks are to fulfill three different control tasks. The first
controller is a propeller based oscillation damping and yaw motion control using IMU as a single main
sensor. The main task hereinis to damp out oscillations and control yaw motion. Oscillations occur
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Figure 21. The control framework of SAM. Propeller based oscillation damping and yaw controller, torque
controller for robotic manipulator, and feedforward position controller for the winches. Oscillation damping and
yaw controller use propeller based actuation to stabilize the platform while SAM is performing manipulation
task. IMU provides feedback signals. Impedance based torque control is performed for the robotic arm, where
joint encoders and torque sensing are used as feedback. The three winches can adjust the length of the cable
suspending the platform.

due to the forces and moments caused by the robotic arm, which interacts with the environments.
In outdoor settings, severe wind, motion of the carrier, and other external disturbances cause such
oscillations. Damping out these undesired motions are to perform precise manipulation tasks with
the robotic arm. Similarly, yaw motion controller is to change the orientation of the platform, which
can position the manipulator in a convenient pose. To do so, the robot actuation is performed by
eight propellers attached to each BLDC motors. The Electronic Speed Controllers (ESCs) regulates
BLDC motors to rotate at specific speed. The used sensors are again a single IMU attached to a
fixed point of the platform. The control signals are generated by the propeller controller, which is
essentially a PID control algorithm. These control signals are mapped to PWM signals per each
motors using the known configurations of motors and propellers. The frequency rate is 200 Hz in
a real-time computer. Secondly, a feedforward position controller is used to control three winches.
These winches are connected to cables that suspend the platforms. Maxon motors are used without
any feedback signals. The main feature is to control the length of the cables. With these, the pitch
and the roll orientation of the platform can be adjusted with slower dynamics. Another advantage
is to move the platform up and down, without moving the carrier. Here, a simple feedforward
position controller is integrated where desired relative cable length are converted into the motor
movements. The frequency rate of the controller is again 200Hz in a real-time computer. Lastly, the
robotic arm attached to the platform, is controlled using impedance based torque control algorithm.
Torque control is the current golden standards for such robotic arms. The main task here is to
perform grasping and manipulation tasks, using the torque control capabilities of the robot. This
means that, in the teleoperation mode, the robotic arm must follow the command from the human
operator, while autonomously taking care of local redundancy of the joints. Joint encoders and
torque sensors provide such feedback signals. The manipulator’s internal joint torque controller uses
sampling rate of 3kHz.
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Figure 22. Teleoperation architecture based on Time-Domain Passivity Approach (TDPA). The TDPA approach
ensures stability under imperfect communication between the haptic device and the robot and consists of two
components, namely, passivity observer and passivity controller. The proposed telepresence system also includes
haptic guidance, robotic perception, and VR for 3D visual feedback.

A.2. Teleoperation System

The used bilateral teleoperation system is depicted in Figure 22. The main challenge is ensuring a
stable bilateral teleoperation with force feedback. Instabilities can be caused by time delays, packet
loss and jitters, which are characteristics of imperfect communication.

In the paper, a two channel architecture with time-domain passivity approach is used, which
works as follows. The human operator sends both position v,,(t) (velocity analogously) from the
haptic device device to the robot at time ¢. Due to the time delay T', the robot receives them as
Vsd(t) = v (t —T') where G}, is a scaling factor that can be tuned to match both system dynamics.
A local impedance controller then generate reference force fs(t) based on command position. If K
terms represent controller gains and x,, v, € R? are the respective feedback signals from the robot
which enables position tracking, then the total commanded force can be written as

fs(t) = de(vsd(t) - vs(t)) + Kps(xsd(t) - xs(t))~ (17)

The computed force f0(t) = Gsfs(t —T) and measured forces at the end effector fp,.(t) =
Gefe(t — T) are sent back to the haptic device resulting in the force feedback term fy,(¢) in
Equation (18) where we additionally add a feedforward term with v,,(t). The feedforward terms
add transparency to the system and is known to be advantageous over a two-channel architecture:

fn () = fimo(t) + frme(t) + Kamvm (1) (18)

As the signals pass through communication channels, time delays, jitter, and packet losses are
typically present and can cause instability of overall system. To cope with this issue, we use TDPA
which constitutes two components namely, Passivity Observer (PO) and Passivity Controller (PC).
Briefly speaking, PO monitors the energy flow of a network whereas PC dissipates the energy
introduced by the network. A key underlying idea is PC’s control law ensures passivity of the
system by damping out the energy that is more than the stored amount. Since passivity is a sufficient
condition for stability, TDPA ensures stability in trade-off to performance. Therefore POPCs are
placed for delayed signals at the robot side vy, (t — T') and haptic device side fs(t — T'). For brevity,
let us denote the haptic device signals received and sent as u,,(k — D) and y,,(k) and the robot
input and output signals as us(k — D) and ys(k). Here, k is a discrete time and D is a discrete time
delay. Then,

) U (k — D) if Wy (k)>0 (19)
Um,c = m
’ Um(k — D) — TV[;%(?IC)) Ym (k) else
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Figure 23. Wrench forces and moments from the peg-in-hole experiments. The poses of the end-effector are
alternatively depicted in Figure 19. In F,, between 50 and 60 s, a drop in force is observed due to the successful
peg-in-hole insertion.
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Figure 24. Wrench forces and moments from the pick-and-place experiments. The corresponding poses of the
end-effector are depicted in Figure 19. In Mz, the haptic guidance activation can be seen, which leads to correction
of the yaw angle.

is the governed control law at haptic device. The same rationale applies at the robot side. In
Equation (19), T is the sampling time and W,,(k) is the energy flow at haptic device, which
is observed by the PO. In this way, PC modifies the delayed signal so that passivity condition
W (k) > 0 for all k is met:

Wm(k) = Es,in(k - D) - Em,out(k) + Em,PC(k)a
Es,in(k' - D) = Es,in(k - D — 1) + TsPs,in(k - D)7 (20)
5Em,out(k> = m,out(k - 1) + Tst,out(k)~
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Figure 25. SAM'’s IT architecture. The broad division is between the ground station and the robot. The ground
station hosts haptic device, VR, and the human operator. WiFi routers are used to communicate to the robot,
which simulates the real teleoperation scenarios with imperfect communication and delays. The robot hosts
computers, actuators, sensors and other auxiliary components such as power distribution, battery, etc. SAM
has three computers. The robot control unit (RCU) deals with the control of robotic manipulator and hosts
real-time LINUX as its operating system. The flight control computers (FCC) deals with platform control, including
propellers, winches and additional servo motors as landing gear. FCC hosts QNX real-time LINUX system. Lastly,
NVIDIA Jetson TX2 is used as a vision processing unit. The TX2 hosts non-real-time LINUX (ubuntu tegra) but
has a GPU for deploying the deep learning models.

PO essentially estimates W,, (k) for PCs control law. This is achieved by Equation (20) which
uses the delayed energy F;in(k — D) input from the robot side, the energy exiting at the haptic
device side Ey, out(k) and the dissipated energy by PC Ey, pc(k). As the signals being exchanged
are velocities v and forces f, the energy can be computed by inner products and sampling time. The
power contributions should take into account the direction of energy flow. For example, P, = 0 if
Ps iy < 0) and otherwise, Py iy = fs(k)(—vm(n — D)). Taking into account time delays, jitter, and
packet-loss, TDPA works on energy level and it ensures stability in teleoperation.
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Besides, the presented perception algorithms are executed in the robot, providing the information
about the object poses. This information is feed into the ground station for creating VR. Another
usage of perception is haptic guidance via virtual fixtures. Virtual fixtures (Bettini et al., 2004) are
artificial walls that, by means of force feedback, helps the human operator for high performance
task execution. Once the human operator is trying to move outside the artifical walls, certain
computed forces are activated and sent to the haptic device through TDPA. This then limits
the motion of the human operator by inserting certain forces and moments in the haptic device.
Because these artificial walls are obtained from the perception system of the robot, the proposed
telepresence system supports the haptic guidance. More details about virtual fixtures and other
means of haptic guidances are presented by Thomas et al. (2012); Sagardia and Hulin (2018);
Martins et al. (2018).

A.3. IT Architectures

In Figure 25, an overview of the used IT architecture is shown. Broadly, the setup can be divided
into the ground station components and the robot itself. To emulate real industrial scenarios
of telepresence robots, the connection between the robot and the ground station is established
through a WiFi router. The ground station constitutes of a laptop (Dell Latitude 5591), a haptic
device (Force dimension Lambda or DLR SpaceJoystick Ryo), VR headset (Meta occulus) and
a computer monitor. VR headset is optionally used. From the robot side, the Flight Control
Computer (FCC) is employed, which is a product from the DLR aerial robotic spin-off Elektra
UAS. FCC is a QNX based real-time system and contains a field-programmable gate array (FPGA)
based safety switch. FCC is connected to winches, servo motors (Futaba S3152) and ESCs with
custom written drivers. Oscillation damping controller, yaw controller and on-and-off of servos are
executed within FCC. This modules read data from IMU (Xsens MTi 100-Series). In addition,
FCC is also connected to the manual command transmitter via a radio link. The robot control
unit (RCU) is based on Kontron KTH81 Flex board and uses real-time LINUX patch of open suse
operating system. Ethernet for Control Automation Technology (EtherCAT) protocol is used to
communication with the robotic arm. We note that EtherCAT is a standardized real-time bus
that enables synchronous actuation of all the joint motors. RCU executes TDPA, haptic guidance,
and impedance controller, while reading joint and torque information from the robotic arm. The
last computing module is NVIDIA Jetson TX2 which contains all the sensor drivers, perception
software stacks, and other GPU processing modules for running deep learning models. The sensors
are all connected via Ethernet interface. For this, Cogswell carrier board is employed, which
supports five Ethernet ports with Power of Ethernet (PoE) functionality. With this, Mako camera
is easily powered. The carrier board also handles high data throughput from all these sensors.
The robot is additionally equipped with safety switch for the robotic arm, power distribution
system and battery. All the computers and WiFi routers are connected via an Ethernet switch
(Netgear GS105). The communication between the ground station and the robot is through the
point-to-point communication channel by opening an access point. Ubiquiti Bullet M5 is employed
for the access point.
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