Under review as a conference paper at ICLR 2026

ADAPTIVE SCALING OF POLICY CONSTRAINTS FOR
OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) enables learning effective policies from fixed
datasets without any environment interaction. Existing methods typically employ
policy constraints to mitigate the distribution shift encountered during offline RL
training. However, because the scale of the constraints varies across tasks and
datasets of differing quality, existing methods must meticulously tune hyperpa-
rameters to match each dataset, which is time-consuming and often impractical.
To bridge this gap, we propose Adaptive Scaling of Policy Constraints (ASPC), a
second-order differentiable framework that automatically adjusts the scale of policy
constraints during training. We theoretically analyze its performance improvement
guarantee. In experiments on 39 datasets across four DARL domains, ASPC using a
single hyperparameter configuration outperforms other adaptive constraint methods
and state-of-the-art offline RL algorithms that require per-dataset tuning, achieving
an average 35% improvement in normalized performance over the baseline. More-
over, ASPC consistently yields additional gains when integrated with a variety of
existing offline RL algorithms, demonstrating its broad generality.

1 INTRODUCTION

Offline reinforcement learning (RL) learns a policy exclusively from a fixed, pre-collected dataset
without further interactions with the environment Levine et al.| (2020). This characteristic is particu-
larly crucial in real-world applications such as autonomous driving [El Sallab et al.|(2017); [Kendall
et al.| (2019), healthcare |Prasad et al.|(2017); |Wang et al.| (2018)), industry Zhan et al.[(2022)); |Yuan
et al.[(2024), and other tasks, where interacting with the environment can be expensive and risky.

Despite the potential advantages, a critical challenge in offline RL is the distribution shift|Levine et al.
(2020) between the offline data and the training policies, often leading to suboptimal or even invalid
policy updates. Many methods have been proposed to mitigate the adverse effects of the distribution
shift. A common strategy is to impose explicit or implicit policy constraints |[Fujimoto et al.[(2019);
Kumar et al.| (2020); |[Fujimoto & Gu|(2021)); Kostrikov et al.|(2022)), ensuring that the learned policy
remains close to the behavior policy used to collect the dataset. By imposing constraints on policy
updates, these methods can effectively mitigate the extrapolation error of the Q value |Fujimoto et al.
(2019) induced by the distribution shift while offering certain performance guarantees.

A central but often overlooked issue in policy constraint methods is the choice of the constraint
scale, which crucially governs the balance between the RL objective and the behavior cloning (BC)
term. Existing approaches fall into two categories. First, methods that rely on dataset-specific
hyperparameter tuning can achieve strong results, but their performance collapses once a single
configuration is applied across tasks or datasets of varying quality, as shown in Figure[T[b). Second,
adaptive variants with fixed hyperparameters Peng et al.| (2023); | Yang et al.|(2024)) alleviate tuning
costs, yet they only reweight actions locally and neglect the global trade-off scale, leaving a significant
gap to carefully tuned baselines. In practical offline RL, where extensive tuning is prohibitively
expensive or even infeasible, the pressing challenge is how to achieve robust performance with a
single hyperparameter configuration across diverse datasets.

To enable a single hyperparameter configuration to match or exceed the performance of finely tuned
methods across datasets of varying quality and tasks, we propose an adaptive scaling of policy
constraints (ASPC) approach that dynamically adjusts the constraint scale during training. The
intuition of this method is shown in Figure[T(a). Our approach leverages a second-order differentiable

Under review as a conference paper at ICLR 2026

RL BC U e Bumess B BE B BEBEBEEBEEEBREB —

Reliable
and effective l

Percent Dlifference
=
S

%

i L LI l-'lll I
=50

i A2PR

>
JORISIFIOEION

Figure 1: (a) The RL-BC trade-off in offline RL. ASPC dynamically balances RL and BC, yielding a
reliable and effective policy (left). Existing methods fail to properly calibrate this trade-off, resulting
in suboptimal or collapsed policies (middle and right). (b) Percent difference in performance for
ReBRAC and A2PR under a single hyperparameter setting across all datasets. HC = HalfCheetah,
Hop = Hopper, W = Walker, r = random, m = medium, mr = medium-replay, me = medium-expert,
Um = umaze, M = medium, L = large, d = diverse, p = play. Large drops highlight the sensitivity of
prior methods to per-dataset tuning.

optimization framework |Finn et al| (2017) to balance the goals of RL and BC. Specifically, we
parameterize the scale factor « as a learnable parameter that balances the RL objective Lgy, and the
BC objective Lp¢ in TD3+BC |Fujimoto & Gu|(2021). The combined objective L is given by

L =aLlry+ Lac, (D

For the full definitions of «, refer to equation[3] During training, « is dynamically adjusted by
constraining the rate of change of the Q-value and the BC loss, enabling the algorithm to discover a
more stable learning path and exhibit remarkable adaptability across tasks and datasets.

We theoretically analyze the performance improvement guarantee of ASPC and extensively evaluate
it on the D4RL benchmark |Levine et al.| (2020). Our empirical results demonstrate that ASPC
outperforms other state-of-the-art offline RL algorithms that depend on meticulously tuned hyper-
parameters for each dataset, while adding only minimal computational overhead to the original
TD3+BC backbone. In addition, ASPC improves a variety of offline RL algorithms beyond TD3+BC,
further indicating its generality and broad applicability.

2 RELATED WORKS

2.1 OFFLINE RL

Offline RL aims to learn policies purely from static datasets and suffers from distribution shift
between the behavior policy and the learned policy, leading to value overestimation and policy
collapse. Existing approaches address this challenge from several perspectives. Policy constraint
methods explicitly [Fujimoto et al.|(2019); [Fujimoto & Gu(2021) or implicitly Kumar et al.[(2020);
Kostrikov et al.|(2022) regularize the learned policy toward the behavior distribution. Uncertainty-
aware approaches penalize actions with high epistemic or aleatoric uncertainty |An et al.[(2021);
Bai et al.|(2022);|Zhang et al.| (2023)). Sequence modeling methods reformulate RL as conditional
trajectory modeling using transformers |Chen et al.| (2021)); Janner et al.| (2021). Among these,
policy constraint methods have emerged as the most direct and widely adopted solution, but their
effectiveness crucially depends on properly scaling the constraint. This motivates our focus on
developing an adaptive scaling mechanism that eliminates the need for per-dataset tuning while
retaining robustness across diverse offline RL benchmarks.

2.2 ADAPTIVE POLICY CONSTRAINTS

Balancing the RL objective against BC is central to offline RL, and the strength of this constraint
critically affects both stability and performance. Recent work has explored adaptive ways to tune this

Under review as a conference paper at ICLR 2026

balance. Trajectory- or sample-weighting methods such as AW Hong et al.| (2023), wPC |Peng et al.
(2023), and OAP|Yang et al.| (2023) reweight transitions or actions based on estimated value or expert
preference, thereby adjusting constraint strength locally. Other approaches introduce auxiliary models
to refine constraint scaling, for example PRDC Ran et al.| (2023), GORL |Yang et al.|(2024), A2PR
Liu et al.| (2024)), and IEPC |Liu & Hofert (2024)). Despite these advances, current approaches either
rely on per-dataset hyperparameter tuning for optimal performance, or apply a fixed configuration
that yields only limited gains across domains. Our ASPC method addresses this gap by dynamically
adjusting the constraint scale during training, enabling robust performance across diverse datasets
with a single hyperparameter configuration.

3 PRELIMINARIES

RL problems are formulated as a Markov decision process (MDP), described by the tuple (.5, A4,
P, R,). The set of states is .5, the set of actions is A, the transition probability function is P(s’|s, a),
the reward function is R(s,a), and v € [0, 1) is the discount factor. The objective is to find a policy
7 : S — A that maximizes the expected discounted return. This objective is equivalently expressed
as maximizing the Q-value Q™ (s, a) under 7, given by:

Q"(s,a) = Ex [Z 7' R(st, ar)
t=0

Sozs,ao:a]) @

where s, and a, represent the state and action at time ¢. In practice, RL algorithms update Q-values
using the Bellman equation as an iterative rule, seeking to converge to the optimal policy 7*.

A central challenge for offline RL is the distribution shift. When a state—action pair (s, a) lies outside
the dataset D, directly optimizing the Q—function may cause severe over-estimation. One remedy is
to constrain the target policy 7 to stay close to the behaviour policy 3. TD3+BC|Fujimoto & Gu
(2021) does so by solving:

(07

T I QG a)

normalizes the RL term to the scale of the BC loss. In vanilla TD3+BC, « is a fixed constant. Instead
of keeping the scale factor « static, we update it throughout training.

™ = argmax E(S,G)ND[)\ Q(s,m(s)) — (mw(s) — a)2 A 3)

RL BC

4 METHOD

We now present the ASPC algorithm in detail. We begin by introducing its core framework, a second-
order differentiable optimization that adaptively balances the RL and BC objectives (Section[4.T). We
then provide a theoretical analysis (Section[4.2), which explains the role of the mutual constraint term
and establishes single-step and long-term performance guarantees. Finally, we describe a practical
instantiation of ASPC built on TD3+BC (Section 4.3)), which enables its application to standard
offline RL benchmarks.

4.1 ADAPTIVE SCALING OF PoLICY CONSTRAINTS

To adaptively adjust the relative scaling between the RL and BC objectives, ASPC adopts a meta-
learning approach Finn et al.| (2017); Franceschi et al.| (2018). It converts the scale factor « in equa-
tion [3]into a learnable parameter and optimizes it dynamically via bilevel training, utilizing inner
updates and outer updates to maximize RL exploration near the behavior policy.

Inner Update To optimize the policy under offline data, we define the inner objective as
£inner(9; O() = IE(s,a)ND |:—>\(O() Q(S7 71-0(3)) + ||770(5) - ClH2:|))

where A(a) = a/E;p[|Q(s, mp(s))|]. The inner update is then obtained via a gradient descent step
with learning rate ny:

0(a) = 0 — 19 VoLimer(0; @), 5)

Under review as a conference paper at ICLR 2026

and 0 () denotes the updated policy parameters after one inner step.

Outer Update While the inner update optimizes the policy parameters for a given scale «, the outer
update is responsible for adjusting « itself so as to dynamically balance the RL and BC objectives.
The outer loss is composed of three coordinated components. £ mirrors TD3 + BC and steers «
toward a better balance between RL and BC. £, penalizes abrupt increases in the expected Q-value,
while L3 constrains large shifts in the BC loss. Together, L2 and L3 adaptively regulate the step
prescribed by £, preventing either RL or BC from dominating and thereby stabilizing training.
Formally, we write:

— —a ESND[Q(sawé(S))} a-(s) — a 2
b= Esp[|Q(s,m5(5))] " E(S’G)ND[H () —al }’ ©®
L2 = (Ean [Qs m3(5))] ~ Earnn Qs mo(s))]) ™
= etac su Yy 570,2 su 7T~57a277l' 57@2
£a= (Ladetach) (sup_[lmo(s) = al’) (sup_|lma(s) = ol = lIma(s) = all’), (®

The outer objective is

»Couter(g(a)) = »Cl + £2 + £3~ (9)
Here, mg and 7 denote the policies before and after the inner update, respectively. .detach indicates
stopping gradients. While £, and £, are relatively standard, the design of L3 requires clarification.
Theoretically, its form follows directly from Theorem[{.4] with details in Appendix [A.3] Intuitively,
L3 combines three factors: the rate of change in Q-values, the upper bound of the BC loss, and the
variation in BC loss across iterations. Large Q-value fluctuations or a high BC-loss bound signal
rapid policy change or significant deviation from the behavior policy. In such cases, strengthening
the penalty on BC variation helps suppress distributional shift and stabilize training, consistent with
our intuition. To update «, we treat the inner update parameters 6(c«) as an implicit function of « and
use second-order derivatives. Lets 7, be the learning rate of «. The gradient-descent step is

8£out6r(9(a)) 09(a))

a(—a—na< PY; B

(10)

4.2 THEORETICAL ANALYSIS

We now analyze the theoretical properties of ASPC. We show that the outer objective ensures stable
updates and reduces the gap to the optimal policy.

Assumption 4.1. The critic (s, a) and the transition kernel P(- | s, a) are Lipschitz continuous
with respect to the action variable. That is, there exist constants Lg, Lp > 0, independent of s, such
that for all s € S and all a;,as € A,

1Q(s,a1) = Q(s, a2)|| < Lallar — az||, [[P(- [s,a1) = P(- | 5,a2)[[rv < Lpllar —agf|. (11)

Proposition 4.2 (Mutual constraints between AL ¢ and (AQ)?). Under Assumption the change
in BC loss (ALpc) and the squared change in Q-values ((AQ)?) mutually constrain each other:
(AQ)? provides a lower bound on AL gc, while ALgc provides an upper bound on (AQ)>.

This result shows that the two penalties in equation [7]and equation [§] are inherently coupled rather
than independent. It explains why in practice some tasks succeed with only one of them, while others
require both for stable training (see Section[5.5)). The detailed proof is provided in Appendix [A.T]

Proposition 4.3 (Single-step performance lower bound). For the update step from 7 to w41, the
performance improvement admits the following lower bound:

1
Tma) = J(m) 2 (8@ - ALk, &), (12)

where ®(ALBC | c2.) is a nonnegative function depending on the BC-loss variation upper bound

oo) o0

ALBC and the BC-loss upper bound c2..

This proposition serves as the theoretical basis for Theorem{.4] It also directly motivates the design
of the penalty term L3 (equation , whose form is derived from bounding ®(ALZC 2). The
detailed derivation of ® is deferred to Appendix [A.2]

Under review as a conference paper at ICLR 2026

Theorem 4.4 (Single-step performance condition for ASPC). An idealized ASPC update that satisfies
the condition AQ > ® leads to a non-decreasing policy performance: J(miy1) — J(me) > 0.

ASPC employs a smooth relaxation of this condition via the outer objective, which is designed to
guide updates toward this provably stable regime. The detailed proof is given in Appendix [A3]

Theorem 4.5 (Performance gap to optimal). With Theorem[{.4} after T iterations when the single-step
gain vanishes (61 = 0), the gap to the optimal policy satisfies:

J(m*) = J(rr) < ¥(eg) — T Smins (13)
where U(eg) is a function of the mismatch € g between the behavior policy and the optimal policy,
and d i, denotes the minimal single-step improvement before convergence.

This theorem shows that ASPC progressively reduces the suboptimality gap until convergence, where
the remaining gap is controlled by W (e). The full derivation of ¥(eg) is given in Appendix

Algorithm 1 Adaptive Scaling of Policy Constraints

Initialize: critic and actor networks, scale factor «, replay buffer D, update intervals k., k.

1: fori =1to N do

2: Critic update:

3 Sample minibatch from D; Compute TD targets and update critic networks;
4 if mod k, = 0 then

5: Actor update (inner):

6 Compute Linner (6;) by equation@ Compute 6(a) by equation

7 Update actor networks;

8 if i mod (k,-k,) = 0 then

9: o update (outer):
10: Compute Loute,.(t?(oz)) by equationEI; Update « via equation
11: end if
12: Soft update critic and actor networks;
13: end if
14: end for

4.3 IMPLEMENTATION ON TD3+BC

To make ASPC practical, we instantiate it on top of the TD3+BC backbone with only two mod-
ifications: (i) a redesigned critic network, and (ii) a learnable scale factor o. All other network
components and hyperparameters remain unchanged. See Appendix [B.2]for a full specification.

Recent studies show that deeper critics Kumar et al.| (2022)); |Lee et al.|(2022)) and the insertion of
LayerNorm between layers|Nikulin et al.|(2023)); Ball et al.|(2023); Tarasov et al.|(2024a) can mitigate
Q-value over-estimation and improve stability. Following this evidence, we extend the TD3+BC
critic from two to three hidden layers and insert a LayerNorm after each layer. An ablation of this
choice is provided in Section [5.3]

Algorithm T]lists the ASPC procedure. Blue highlights indicate lines that differ from the TD3+BC
backbone. Although second-order gradients increase cost, we set the a-update interval k, far longer
than the actor-update interval k,, which maintains performance while sharply reducing runtime.
Section [5.4] analyses this trade-off in detail.

5 EXPERIMENTS

In this section we evaluate ASPC on the DARL benchmark. Section [5.1]compares ASPC with strong
baselines to demonstrate its adaptability and overall effectiveness. Section[5.2]analyzes the learning
curves of « during training, further illustrating ASPC’s adaptive behaviour. Section [5.3]investigates
the necessity of dynamically adjusting c.. Section[5.4]reports runtime results to highlight the efficiency
of ASPC. Section[5.5]presents ablation studies on the key components of ASPC. Section [5.5] provides
results on integrating the ideas of ASPC with other methods, and Section[5.5]presents the performance
of ASPC on the OGBench benchmark.

Under review as a conference paper at ICLR 2026

Table 1: Average normalized score over the final evaluation across four random seeds. The best
performance in each dataset is highlighted in bold, while the second-best performance is indicated
with an underline. Blue shading indicates methods with top domain average performance. The symbol
=+ denotes the standard deviation. v'denotes fixed hyperparameters, whereas Xdenotes dataset-specific
ones. “To ensure fairness, TD3+BC and wPC employ the robust critic described in Section

Task Name | TD3+BC*(v) A2PR(V) IQL(X) wPC*(/) ReBRAC(X) | ASPC (Ours)(v)
- Random 10.6 £ 0.7 21.1+08 195+£0.8 18.8 £0.7 295+ 15 20.8 £ 0.9
£ Medium 49.6 +£0.2 56.1 £ 0.3 50.0 £ 0.2 54.8 +0.2 65.6 + 1.0 58.7+0.4
& Expert 1004404 999+32 95.5 + 2.1 103.8+24 1059+ 1.7 105.1 +1.2
£ Medium-Expert 979+ 1.6 95.9 + 6.0 92.7+2.8 989+85 1011452 99.9 + 1.2
£ Medium-Replay 458 +02 490+ 04 42.1+36 48.1+02 51.0+0.8 50.6 + 0.5
Full-Replay 745 + 1.6 795+ 1.5 75.0 £0.7 76.7 £2.3 821+ 1.1 79.3 £0.9
Random 8.6+0.2 201+11.6 101459 85+ 14 8.1+24 94415
5 Medium 62.0+3.0 783 + 4.4 652442 81.8+9.8 1020+ 1.0 92.7+72
& Expert 1082 £ 4.2 839+60 1088+3.1 79.14+266 100.1 8.3 1123+ 04
S Medium-Expert 1033+£9.2 1108+26 8554297 109.1+45 107.0+6.4 111.0 £ 2.1
Medium-Replay | 4744354 989+20 89.6+132 1008407 98.1+53 101.3 + 0.6
Full-Replay 9034229 97.1+178 10444108 105.6+0.6 107.1+04 107.2+ 0.5
Random 59435 12415 113£70 125+106 184+45 156 + 6.4
= Medium 62.0 + 3.0 84.2 + 4.7 80.7 + 3.4 89.6 + 0.3 82.5+ 3.6 92.4+54
& Expert 1082442 84.8+49.0 9694323 111.5+01 1123 +02 110.8 + 0.1
= Medium-Expert 1033492 8824407 1121+£05 110.1+£05 111.6+03 111.1+£03
B Medium-Replay | 76.6+127 845+123 754+93 93.4+3.0 773 +£79 97.6 £ 0.5
Full-Replay 883+ 11.7 1025+00 975+ 14 995+0.5 1022417 102.1 £ 0.2
MuJoCo Avg 70.7 74.2 72.9 77.8 81.2 82.1
2 Umaze 3454139 1025+63 -89+6.1 73.1+138 106.8 +22.1 128.1+31.8
§ Medium 633+633 904+296 348427 87.4+487 105.1+316 117.8 + 17.3
S Large 1089 +43.6 177.7+342 61.7+35 1233+705 7834617 195.8 +31.3
Maze2d Avg 68.9 123.53 46.2 94.6 96.7 147.2
Umaze 100.0 £ 00 92.5+83 833+45 97.5+5.0 97.8 4+ 1.0 92,5+ 5.0
9 Umaze-Diverse 875+ 125 325+349 706+37 750+208 883+ 13.0 925495
< Medium-Play 75495 40.0+£7.1 64.6 £4.9 85.0 £5.7 84.0 + 4.2 85.0 £ 12.9
£ Medium-Diverse | 1254+ 125 400+255 61.7+61 850+129 763 +135 70.0 + 11.5
< Large-Play 25450 50+87 425+65 65.0+£19.1 604 +26.1 550+ 5.7
Large-Diverse 25450 25+ 148 276+78 65.0+100 544 +251 52,54 18.9
AntMaze Avg 354 38.75 58.3 78.7 76.8 74.5
- Human 53.8 +15.7 21400 8154175 399+128 103.5+ 14.1 81.1 + 8.1
£ Cloned 71.7 +£21.5 6.5+ 6.0 7724177 346+11.3 91.8+21.7 87.2+42
Expert 1266 +£248 515+384 133.6+160 141.8+11.8 154.1+54 1412+94
5 Human 0.0+ 0.0 -0.240.0 31420 -0.240.0 0.0+ 0.0 0.0+0.0
& Cloned 0.0+ 0.0 03+0.0 0.8+ 1.0 0.0+0.0 11426 0.0+ 0.0
Expert 81.6 + 16.3 03+00 1053+28 51.4+553 104.6+24 105.6 + 0.4
5 Human 0.0+ 0.0 1.1+£04 25+19 0.0 +0.1 02402 22+32
§ Cloned 0.1+0.0 0.3+0.0 1.14+05 0.1+0.1 6.7 +3.7 12.0 +9.1
£ Expert 132.8 + 0.4 0.340.1 1296 +71.5 57.6+0.1 133.8+0.7 128.6 + 0.4
£ Human 0.0+ 0.0 03+00 0.140.1 0.1+0.0 0.0£0.0 0.1+£02
g Cloned 0.0+ 0.0 -03+0.0 02+04 0.1+0.0 09+16 0.0+ 0.0
© Expert 90.6 + 18.2 03+00 106.5+25 6.7+4.6 106.6 + 3.2 1112+ 24
Adroit Avg \ 46.4 4.65 53.4 28.8 58.6 55.7
Total Avg \ 57.7 51.2 62.6 64.2 74.8 77.9
5.1 COMPARATIVE PERFORMANCE ON BENCHMARK

We evaluate ASPC on 39 datasets spanning four D4RL domains [Levine et al.| (2020): MuJoCo (v2),
AntMaze (v2), Maze2d (v1), and Adroit (v1). Our baselines include TD3+BC [Fujimoto & Gu! (2021)
and IQL [Kostrikov et al.| (2022) as standard policy-constraint methods. wPC |Peng et al.| (2023))
and A2PR [Liu et al.| (2024) are state-of-the-art (SOTA) adaptive policy constraint methods built on
TD3+BC. ReBRAC Tarasov et al.|(2024a)) integrates multiple performance-boosting components into
TD3+BC and has achieved SOTA results across a wide range of datasets. TD3+BC, wPC, A2PR, and
ASPC are all set as the single hyperparameter set, whereas IQL and ReBRAC rely on dataset-specific
hyperparameters found via grid search. We reproduce results for TD3+BC, wPC and A2PR. IQL and

Under review as a conference paper at ICLR 2026

halfcheetah

2
=
S

o
3} 9hopper
S TD3+BC
2
Zors =5 o \
s — IQL walker2d
£0.50 —
] wPC
B 025 — ReBRAC
a V..
.% — ASPC ‘aze2d
2
= 0.00, 50 100 150 200 pen antmaze
D4RL Normalized Score (1) Average score (min-max scaled)

Figure 2: Left: performance profiles on 39 datasets of DARL. Right: radar chart of the mean
performance across the nine tasks.

ReBRAC results are taken from [Tarasov et al|(2024ajb). Complete experimental details for each
algorithm are provided in the appendix

The performance comparison is summarized in Table[I] ASPC achieves the best performance on
MuJoCo and Maze2d, and exhibits competitive results on Adroit and AntMaze. Most notably, ASPC
attains SOTA performance on average across all four domains, which not only outperforms other
adaptive policy constraint methods but also surpasses approaches that rely on meticulous per-dataset
hyperparameter tuning, highlighting its remarkable adaptability. Figure [2] shows that the performance
profile curves (left) place ASPC above all baselines for almost every threshold, and the min-max-
scaled radar chart (right) gives ASPC the largest, most balanced polygon, visually confirming its
strong and stable performance across tasks without per-dataset tuning.

medium-replay-v2 —— medium-v2 —— medium-expert-v2 expert-v2
halfcheetah hopper walker2d
20 10 20
<
=
2 2 2
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Train Steps / IM

Figure 3: Learning curves of « on halfcheetah, hopper, and walker2d across datasets of different
quality. Higher-quality datasets yield smaller « (favoring BC), while lower-quality ones yield larger
o (favoring RL). « is initialized to 2.5.

5.2 ADAPTABILITY OF THE SACLE FACTOR

Dataset Adaptability Figure [3shows the evolution of o on HalfCheetah, Hopper, and Walker2d
for four dataset quality levels, listed from highest to lowest as expert, medium-expert, medium, and
medium-replay. Across all three tasks, higher-quality datasets lead to smaller «, which places more
weight on BC, whereas lower-quality datasets lead to larger «, shifting the emphasis toward RL. The
consistent ordering confirms that ASPC automatically adjusts the policy-constraint scale to dataset
quality without any per-dataset hyperparameter tuning.

antmaze-umaze-v2 hammer-expert-v1 pen-expert-vl

door-expert-v1 maze2d-umaze-v1 relocate-expert-v1

Alpha

0.0 0.5 1.0
Train Steps / IM

Figure 4: Learning curves of « on six different tasks. The algorithm automatically adjusts « based
on the task characteristics. The y-axis is shown in logarithmic scale for better visualization.

Under review as a conference paper at ICLR 2026

Task Adaptability Figure 4| plots the « trajectories on six heterogeneous tasks. Tasks such as door,
pen, hammer, and relocate possess narrow expert data distributions; here « settles near 10!, giving
greater weight to BC. Conversely, antmaze and maze2d, whose datasets contain highly sub-optimal
trajectories, drive o above 10, shifting emphasis to RL. This task-aware scaling requires no manual
tuning and highlights ASPC’s cross-task adaptability.

Training Adaptability Combining the curves from Figures 4] and[3] we observe a common learning
dynamic: « first drops (or rises only slightly) during the early training phase, indicating greater
reliance on BC when the policy is still immature. As learning progresses and the critic stabilises,
« gradually increases, handing more control to RL. This smooth, stage-wise adjustment underpins
ASPC’s stable convergence across tasks and datasets.

5.3 NECESSITY OF DYNAMIC SCALE FACTOR ADJUSTMENT

As shown in Table[I] the hyperparameters meticulously selected via grid search ultimately underper-
form compared to the ASPC algorithm, which dynamically adjusts hyperparameters during training.
This observation raises the question: is grid search simply failing to find the best setting, or is the
dynamic adjustment in ASPC the true source of its advantage? To answer this, we conduct three
controlled tests. Naive a. TD3+BC is run with a fixed scale factor & = 2.5. Converged a. TD3+BC
is run with « fixed to the final value reached by ASPC on the same dataset. Linear o. TD3+BC starts
from oo = 2.5 and linearly interpolates to the above converged value over the training horizon. To
ensure fairness, all TD3+BC variants utilize the same robust critic architecture as ASPC, comprising
three hidden layers, each followed by a LayerNorm.

Table 2: Results under different « settings. Values in parentheses indicate the percent difference from
Naive. Blue denotes improvement, and red denotes degradation.

Domain | Naive v | Converged o | Linear o | Dynamic a (ASPC)

Mujoco 70.3 79.3 (112.8%) 77.0 (19.5%) 82.1 (116.8%)

Maze2d 61.9 | 1332 (11152%) | 103.3 (166.9%) | 147.2 (1137.8%)

AntMaze | 287 64.1 (1123.3%) | 56.3 (196.2%) 74.5 (1159.2%)
Adroit 49.9 49.1 (11.6%) 47.6 (14.6%) 55.7 (111.6%)

Total Avg | 57.0 | 71.8(125.9%) | 66.7 (117.0%) | 77.9 (136.6%)

Table [2| summarises the mean normalised scores in the four D4RL domains. Percentages in blue
report the relative gain over the naive baseline that fixes o = 2.5. Converged « and Linear o both
outperform the naive setting, which confirms that the value to which ASPC eventually converges
is a much more appropriate scale for the policy constraint. ASPC (Dynamic «) still exceeds the
Converged variant by a wide margin, and the Linear schedule closes only part of the gap. These
results show that simply finding a good fixed « is not enough. Adapting the scale throughout training
is essential for the best performance. ASPC provides this dynamic adjustment automatically and
therefore achieves the highest overall score.

5.4 RUNTIME ANALYSIS

ASPC employs second-order gradient computations for updating «, which increases cost. However,
its update interval (k) can be set substantially longer than that of the actor (k,), thereby minimizing
the additional computational overhead. To evaluate runtime efficiency, we compare the execution
time of one million iterations of ASPC against that of other baseline algorithms. Figure [5] presents
a bar chart comparing the runtime of ASPC against TD3+BC, CQL, IQL, wPC and A2PR on the
halfcheetah-medium-v2 dataset. The results indicate that ASPC introduces only a minimal additional
computational overhead beyond that of TD3+BC.

We further analyze the relationship between k,,, runtime, and performance, as illustrated in Figure
The baseline setting for k,, is 10, we observe that reducing k,, does not lead to significant performance
degradation. This suggests that ASPC effectively captures the correct gradient optimization direction,
maintaining robustness even when the gradient step size is large. When k,, is set to 30, the runtime
is nearly identical to that of TD3+BC while maintaining strong performance. This highlights the
efficiency of the ASPC algorithm.

Under review as a conference paper at ICLR 2026

243 113

)

=3

S
/

164
6 144 Y

109 107 97

Run Time (min)
S
=
o
[3]

100 99

CQL QL A2PR wPC ASPC TD3+BC 5 10 20 30
@ ®)
Figure 5: (a) Runtime comparison of different algorithms. (b) Runtime and average performance
under different c-update intervals (k,). ASPC introduces only minimal overhead compared to
TD3+BC, and increasing the update interval reduces runtime while maintaining high performance.

5.5 ABLATION STUDIES

Robust Critic(RC) When using the original TD3+BC critic network (with two hidden layers and no
LayerNorm), during the process of adjusting «, Q-values exhibit significant instability, frequently
leading to overestimation, causing catastrophic failure of the algorithm. Since wPC is also designed
based on the original TD3+BC framework, we include it in our experiments related to RC (with three
hidden layers and LayerNorm). Figure[6a] presents the experimental results. The results indicate that
when RC is not utilized, both wPC and ASPC achieve limited performance improvement and even
exhibit performance degradation on certain tasks.

400- TD3+BC w/RC
3 BN wPC (w/o RC) 3 |
5 =W wPCwWRC g
£)0 T ASPC wioRC 2
2 BN ASPC w/RC 240
g 8 2a
23 S
g S o W £y +L,
B L+ L3
MulJoCo Maze2d AntMaze Adroit Total Avg MuJoCo Maze2d AntMaze Adroit Total Avg
(a) (b)

Figure 6: (a) Percent difference relative to the baseline TD3+BC (w/o RC (critic with three hidden
layers, each incorporating LayerNorm)). (b) Percent difference of outer loss variants equation [9]
relative to the full ASPC configuration.

Loss Function Figure [6b|reveals clear, domain-dependent effects when the regularization terms are
added to the base loss £;. Adding neither term (£; only) gives the poorest performance. Introducing
only £, lifts performance in MuJoCo and Adroit to the level of full ASPC, while leaving AntMaze
almost unchanged. Conversely, adding only L3 significantly boosts AntMaze but has little effect
on MuJoCo or Adroit. For Maze2D, neither single term suffices. Only the full loss £1 + Lo + L3
attains the best result. These results can be explained by Proposition[d.2] which shows that £, and
L3 implicitly constrain one another. Consequently, adding £ in MuJoCo and Adroit implicitly
bounds AL ¢ as well, so the single-step performance guarantee of Theorem [4.4]is already satisfied.
Conversely, in AntMaze a direct £3 penalty implicitly limits (AQ)?, again meeting the theorem’s
lower bound. For Maze2D, however, neither implicit relation is strong enough; both £ and £3 must
be enforced explicitly for the condition in Theorem &.4]to hold.

5.6 EXTENDING ASPC TO OTHER OFFLINE RL METHODS

Many offline RL algorithms follow the form of equation[I} To evaluate the generality of ASPC,
we integrate its adaptive policy constraint into three representative baselines, including IQL, CQL,
and Diffusion-QL Wang et al.|(2023)). Each method contains a hyperparameter analogous to « that
controls the balance between value learning and conservatism. We replace this manually tuned
coefficient with a learnable parameter and update it using the same bi-level second-order procedure
as ASPC. The detailed objectives for each algorithm are provided in Appendix

As shown in Table[3] incorporating ASPC consistently improves the performance of all three baselines,
which demonstrates the broad applicability of our approach. IQL yields the smallest improvement,

Under review as a conference paper at ICLR 2026

Table 3: Performance on Gym-MuJoCo datasets. +ASPC denotes the baseline combined with ASPC,
and the percent change indicates its relative improvement over the baseline.

Gym-MuJoCo \ IQL +ASPC \ CQL +ASPC \Diffusion-QL +ASPC
halfcheetah-medium 50.0 48.4(13.2%) | 46.8 56.3 (120.3%) 51.5 59.2 (115.0%)
halfcheetah-medium-expert | 92.7 94.4 (11.8%) | 94.2 93.6 (J0.6%) 96.8 96.7 (10.1%)
halfcheetah-medium-replay | 42.1 444 (15.5%) | 45.3 51.0 (112.6%) 47.8 58.2 (121.8%)
hopper-medium 652 61.4(58%) | 61.3 71.6(116.8%) 90.5 101.0 (111.6%)
hopper-medium-expert 85.5 100.2 (117.2%) | 90.1 106.9 (118.6%) 111.1 111.1 (10.0%)
hopper-medium-replay 89.6 883 ([1.4%) | 775 79.9 (13.1%) 101.3 100.4 (10.9%)
walker2d-medium 80.7 839 (14.0%) | 82.6 83.8 (11.5%) 87.0 80.3 (17.7%)
walker2d-medium-expert | 112.1 112.1 (10.0%) | 109.1 109.7 (10.6%) 110.1 110.5 (10.4%)
walker2d-medium-replay 754 77.5(12.8%) | 745 81.7 (19.7%) 95.5 95.2 (10.3%)
Average \ 77.0 79.0 (12.5%) \ 757 81.6 (17.8%) \ 88.0 90.3 (12.6%)

and a possible reason is that it performs implicit Q learning, so increasing « does not effectively
shift the policy toward the RL objective. This implicit structure offers stability but limits the best
achievable performance. CQL benefits more from ASPC because updating « directly adjusts the
level of conservatism. Diffusion-QL already achieves very strong results, and ASPC further improves
its performance, which highlights the robustness of ASPC even when applied to a strong baseline.

5.7 ADDITIONAL EXPERIMENTS ON OGBENCH

We further evaluate the generality and robustness of ASPC on OGBench [Park et al.|(2025a), a new
benchmark for offline goal-conditioned RL. Results across ten datasets in Table 4] show that ASPC
clearly surpasses all existing baselines, indicating strong applicability beyond D4RL. Since FQL Park
et al] (2025D) also follows equation[I} we integrate ASPC by making its scale factor learnable and
applying the same bi level optimization procedure, with details in Appendix |D} This modification
consistently improves FQL, further supporting the broad generality of ASPC across standard and
goal-conditioned offline RL.

Table 4: Performance on OGBench. Each entry shows mean = std. FQL+ASPC includes the relative
performance change over FQL. Bold numbers indicate the best performance for each task.

OGBench | TD3+BC | IQL | ReBRAC | ASPC | FQL FQL+ASPC

antmaze-large-navigate-singletask-task1-v0 | 20+£44 | 48+9 | 91+£10 93 +4 80+ 8 84 (15.0%)
antmaze-large-navigate-singletask-task2-v0 | 20+31 | 42+£6 88+4 87T+ 7 57+ 10 63 (110.5%)
antmaze-large-navigate-singletask-task3-v0 | 58 £31 | 72+£7 | 51+£18 96 £ 4 93+3 88 (15.4%)
antmaze-large-navigate-singletask-task4-v0 | 31 £37 | 51£9 847 865 80+ 4 70 (112.5%)
antmaze-large-navigate-singletask-task5-v0 | 35+£38 | 54 £2 90 £ 2 88 +4 83+4 80 (13.6%)
antmaze-giant-navigate-singletask-task1-v0 0+1 0£0 27 + 22 22 +20 4+5 2 (150.00%)
antmaze-giant-navigate-singletask-task2-v0 | 15+ 24 1+1 16£17 | 74+£19 9+7 26 (1188.9%)
antmaze-giant-navigate-singletask-task3-v0 0+1 0£0 34 £ 22 18 £13 0+1 0 (10.0%)
antmaze-giant-navigate-singletask-task4-v0 | 11 £18 0£0 5+12 65+18 | 14+23 33 (1135.7%)
antmaze-giant-navigate-singletask-task5-v0 | 16 £25 | 19+£7 | 49+£22 | 55+14 | 16 £28 49 (1206.3%)

Average | 206 | 287 | 535 | 684 | 43.6 49.5(113.5%)

6 CONCLUSION

We presented ASPC, a bi-level framework that adapts the RL-BC trade off by optimizing the
scaling factor « through second-order updates. ASPC yields consistent improvements not only on
TD3+BC but also when combined with other offline RL baselines, demonstrating strong generality.
However, these simple integrations yield smaller gains than those seen with TD3+BC, indicating that
different algorithms may require ASPC-style components tailored to their training dynamics. Future
work includes developing such method-specific adaptive mechanisms under a unified principle and
evaluating them on larger benchmarks and real-world datasets.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on methodological advances in offline RL. All experiments are conducted on
standard simulated benchmarks, which do not involve human subjects, personally identifiable in-
formation, or sensitive data. We strictly follow the licensing terms of all datasets and simulation
platforms used in this study. Our method, Adaptive Scaling of Policy Constraints (ASPC), is designed
to improve the stability and reliability of offline RL algorithms. While RL has the potential for
deployment in safety-critical domains, such as robotics and autonomous systems, the experiments in
this paper remain purely in simulation. Any real-world use of these methods should be preceded by
domain-specific safety checks and human oversight to avoid unintended harm.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. The proposed method is
described in detail in Section[d] and the complete theoretical derivations are provided in Appendix [A]
Experimental settings and hyperparameters are reported in Appendix [B] Moreover, we include the
full implementation code in the Supplementary Material to facilitate replication of all results.

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified g-ensemble. Advances in neural information processing
systems, 34:7436-7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084-15097, 2021.

Ahmad EI Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driv-ing. stat, 1050:8, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126—-1135. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pp. 1568-1577. PMLR, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Zhang-Wei Hong, Pulkit Agrawal, Rémi Tachet des Combes, and Romain Laroche. Harnessing mixed
offline reinforcement learning datasets via trajectory weighting. arXiv preprint arXiv:2306.13085,
2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273-1286, 2021.

11

Under review as a conference paper at ICLR 2026

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pp. 267-274, 2002.

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In 2019 international
conference on robotics and automation (ICRA), pp. 8248-8254. IEEE, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9Z2JWF 8l

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline g-
learning on diverse multi-task data both scales and generalizes. arXiv preprint arXiv:2211.15144,
2022.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision
transformers. Advances in Neural Information Processing Systems, 35:27921-27936, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-guided
policy regularization for offline reinforcement learning. In International Conference on Machine
Learning, pp. 31406-31424. PMLR, 2024.

Yang Liu and Marius Hofert. Implicit and explicit policy constraints for offline reinforcement learning.
In Causal Learning and Reasoning, pp. 499-513. PMLR, 2024.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by
random network distillation. In International Conference on Machine Learning, pp. 26228-26244.
PMLR, 2023.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In The Thirteenth International Conference on Learning Representa-
tions, 2025a. URL https://openreview.net/forum?id=M992mjgKzI.

Seohong Park, Qiyang Li, and Sergey Levine. Flow g-learning. In International Conference on
Machine Learning (ICML), 2025b.

Zhiyong Peng, Changlin Han, Yadong Liu, and Zongtan Zhou. Weighted policy constraints for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 9435-9443, 2023.

Niranjani Prasad, Li Fang Cheng, Corey Chivers, Michael Draugelis, and Barbara E Engelhardt. A
reinforcement learning approach to weaning of mechanical ventilation in intensive care units. In
33rd Conference on Uncertainty in Artificial Intelligence, UAI 2017, 2017.

Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
with dataset constraint for offline reinforcement learning. In International Conference on Machine
Learning, pp. 28701-28717. PMLR, 2023.

Jie Ren*, Xidong Feng*, Bo Liu*, Xuehai Pan*, Yao Fu, Luo Mai, and Yaodong Yang. Torchopt: An
efficient library for differentiable optimization. Journal of Machine Learning Research, 24(367):
1-14,2023. URL http://Jmlr.org/papers/v24/23-0191.html.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024a.

12

https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=M992mjgKzI
http://jmlr.org/papers/v24/23-0191.html

Under review as a conference paper at ICLR 2026

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. Advances in Neural Information
Processing Systems, 36, 2024b.

Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. Supervised reinforcement learning with
recurrent neural network for dynamic treatment recommendation. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2447-2456, 2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Huagqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gradient:
Convergence analysis. In Uncertainty in Artificial Intelligence, pp. 2159-2169. PMLR, 2022.

Qisen Yang, Shenzhi Wang, Matthieu Gaetan Lin, Shiji Song, and Gao Huang. Boosting offline
reinforcement learning with action preference query. In International Conference on Machine
Learning, pp. 39509-39523. PMLR, 2023.

Qisen Yang, Shenzhi Wang, Qihang Zhang, Gao Huang, and Shiji Song. Hundreds guide millions:
Adaptive offline reinforcement learning with expert guidance. IEEE transactions on neural
networks and learning systems, 35(11):16288-16300, 2024.

Zhaolin Yuan, ZiXuan Zhang, Xiaorui Li, Yunduan Cui, Ming Li, and Xiaojuan Ban. Controlling
partially observed industrial system based on offline reinforcement learning—a case study of paste
thickener. IEEE Transactions on Industrial Informatics, 2024.

Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, and Yu Zheng. Deepthermal:
Combustion optimization for thermal power generating units using offline reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 4680—4688, 2022.

Junjie Zhang, Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, Jun Yang, Le Wan, and Xiu Li. Uncertainty-
driven trajectory truncation for data augmentation in offline reinforcement learning. In ECAI 2023,
pp. 3018-3025. I0S Press, 2023.

13

https://openreview.net/forum?id=AHvFDPi-FA

Under review as a conference paper at ICLR 2026

A THEORETICAL PROOFS

A.1 PROOF OF PROPOSITION[4.2]

Throughout the argument, we adopt the following shorthand. We index the policies as
Ty = Ty, T+1 = ﬂ'é
We write

LtBC = E(S,a)ND[Hﬁt(S) - a||2]7 Lz]:3+01 = E(S,a)ND[||7rt+1(S) - a”ﬂv

ALpc =L — L7Cl, e=1/LPC, @ :=Eoup(|mesi(s) — m(s)]]-
Lemma A.1 (Reverse triangle inequality). For all A, B € R one has |A + B| > ||A| - |B||.
Lemma A.2 (Cauchy-Schwarz). For square—integrable real random variables XY, |E[X Y]| <

(E[x2) " (B[v2]) ",

Proof. The proof proceeds in three steps.

Step 1: A lower bound on A Lp¢. Expand the definition of AL g and simplify:

ALpe =B |l (s) — ma()]” ~Ilm(s) ~ ms()]]|
= B[(mis1(5) = () (mes1(s) = m4(5) = (muls) = ma(s)" () = ma(s))] |

= B[(mes1(5) = mals) + muls) = ma(s)) " - (mes1(s) = m(9))]

7 () = w42 () = m5() (mrea () = ()] |

T+ 2Es[(7rt(8) —74(s)) (meaa(s) = 7”(5))} ‘

-
2l = 2[B, [(e(s) = ma(5) (71 (5) = mi(s)) |
T
— 2 — 2|, [(m(s) — 15(3)) " (mega(s) — wt(s))] ‘
2 2
> x—2 \/]ESHTH(S) —7s(s)||” \/ESHm_,_l(s) —m(s)||
=z —2c/z.
(14)
Since ALpc > 0 by definition, combining with equation [T4] yields
ALpc > max{z —2c\/z, 0}. (15)
Step 2: An upper bound on (AQ)?. Jensen’s inequality and the assumption yield
2
(AQ)* = (E, [Qs,m41(5)) = Qs m(s))])
< B [(Q(s,me41(5)) — Q(s,mi(s)))?] (16)
< LRHE, [|mes1(s) — mi(s)]|
Lé x
Step 3: Mutual bound. From equation [T we have
T 2 Tin 1= (AQ)Q/LQQ (17)

14

Under review as a conference paper at ICLR 2026

Since ALpc > max{z — 2¢y/z,0} from equation[15] we relate this expression to AQ as follows.
The function k() = 2 — 2¢y/z is non-positive on [0, 4c?] and strictly increasing on [4c?, 00). When
|AQ| < 2cLg, we have Tpin < 4c¢?, and h(Zmin) is non-positive; thus ALgc > 0 > h(Zmin)-
When |[AQ| > 2cLq, we have zmi, > 4c? and h(z) is increasing for all > 2., Which gives
ALpc > h(2min). Combining the two regimes yields the bound

ALpe = max{o, <AL%)2 — 2 %S' 3 (18)
Similarly, using equation [I5] we obtain the following upper bounds for x:
v < (c+VE+ALgo)’. (19)
Combining equation |16| with equation gives an upper bound on (AQ)?:
(AQ)? < L3(c+ V@ +ALpe)™. (20)
equation[I8]and equation 20| together yield the desired mutual bounds. O

A.2 PROOF OF PROPOSITION[4.3]

This section analyses conditions under which the one-step performance difference J (1) — J ()
admits a tractable lower bound when training on a fixed offline dataset D collected under behavior
policy g (so D = dwﬂ).
Lemma A.3 (Performance-difference lemma). For any policies w1 and 7,
1
J(m) — J(ma) = i Esnd,, [Bamr, @ (s,a) — V7(s)]. 1)
The proof of Lemma [A.3]|can be found in[Kakade & Langford| (2002).

Lemma A.4. Under Assumption the total variation distance between the visitation distributions
of any policy m and the behavior policy g satisfies

s = doylls = [1da(5) = oy (5)] ds < € L maxn(s) = ma)]| (22)
where C > 0 is a constant.

The proof of Lemma[A.4]can be found in the appendix of Xiong et al| (2022).
Lemma A.5 (Sup-norm version of equation[T9). Define

Too = sup [[my1(s) — m(s)|?,
S
2, = sup ||mi(s) — ma(s)|1%,
S
ALZS = sup||mera(s) = ma(s)|* = llme(s) — ma(s)||-
S

Then
Too < (Coo +1/cA + ALOB;C)Q. (23)

Proof. For each s, let ALpc(s) = ||mii1(s) — ma(s)||> — ||me(s) — ms(s)||?. Then
(mer1(s) = ma(s)) = (me(s) — ma(s)))?
Ime1(s) = ma(3)]| + Ima(s) = ma(s))’
2
JImea)~ ma @ + mats) — (o)) o6

Im(@) — w31+ ALo(s) + lm(s) = ma(s)1)’
Coo +4/C2 + ALC‘ZJC)Q.

15

I* =

[7e41(s) — i (s)

<

Il
AN N N T

IN

Under review as a conference paper at ICLR 2026

Taking the supremum over s gives the stated result:

oo = sup |1 (s) — 7 (5)]> < (coo +y/c2 + ALBC)?, (25)

The proof of Lemma[A.3]is finished. O

Proof. In our deterministic setting, the conditional action distribution 7(-|s) for any state s is a Dirac
measure concentrated at a single action. Specifically, for 75 in Lemma[A 3| we have:

V72 (s) = Banrm, [Q (s, 0)] = Q@ (s, m2(s)), (26)
Applying Lemma[A3|with 7, = 7,1 and 7y = 7, gives:

H(ma1) = (70) = T Buvat, [Q7 (5. 7042(5) = @7 (s, m(5)- @n

Write the performance—difference identity equation|7_7| as
(1) — J(m) = ﬁ Eswd,,t+1 [Qm (s,me41(8)) — Q™ (s,m(s))]
1
= ﬁ{Est [Q™ (s, mi41(s)) — Q™ (s, ()]
+ /(dm+1 (s) = D(s)) (Q7 (s, m41(s)) — Q™ (s, m(s))) ds}

1

L=y

v

{Ban @ (5. m1()) = Q7 (5, m(s))]
AQ
(A () = D()) (Q (s, Te41(5)) = Q7 (s, mi(s)) ds| |

|
—

= 1 i ,Y{AQ —ldr, i — drylla ‘Slslp|Qm(3»7Tt+1(S)) — Q”t(s,m(s))|}

? 1 i V{AQ — CLp max|im s —ms] - SI;P|QM (s, mer1(s)) — Q™ (s, 7Tt(S))|}
= : . - {AQ - € LpLq max|mys — s - max [mss — i }

Z 1 iv{AQ — O LpLq (max |1 — me| + max ||my — mpl]) max 741 — 7TtH}
= {80 Clrko (Vi + o) Vi)

1 i W{AQ —CLpLq {(Coo +4/ck + ALEC)? + cm\/m+ cgo] }
=7 i 7{AQ —C LpLg (32, +3cy/c% + ALBC + ALOB;C)}.

(28)

Thus, the one—step performance satisfies the lower bound

1
_ > - _ 2 2 BC BC
Tma) = J(m) 2 g (AQ K(3c2, + 3¢y /2, + ALBC + ALBS)), 09)
k=CLpLg.

The proof of Proposition[4.3]is finished. O

16

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM [4.4]

We now show how our outer-loss components ensure the performance lower bound equation [29]is
maintained.

L1 equation [6] updates « based on the relative gradients of Q-value and the BC loss. Under the
initialization assumption VyE[Q] > VyLpc, so L1 updates « to favor Q-improvement.

In our algorithm, the two regularizers £ and L3 play complementary roles in guaranteeing safe
single-step improvements. Specifically, £, in equation [7] penalizes the squared change in the Q-
function, AQ?, to prevent overly large and unreliable Q-updates. Due to the bootstrapping error
inherent in RL, the single-step Q-value changes can be noisy, and therefore we apply an exponential
moving average (EMA) for stabilization. In order to preserve the one-step performance lower bound
equation [29] L3 in equation [§] must impose a matching penalty on the bias term identified in that
bound. By choosing L3 so that its curvature mirrors that of £,, we ensure the single-step performance
guarantee remains non-negative.

Proof. We perform a second-order Taylor expansion of /cZ, + ALEC around ALOBOC = 0, assum-
ing ALBC /c2 <« 1, discarding higher-order and constant terms. Substituting into the square and
retaining only terms up to O(ALEY) yields:

2
L3 = K2 (30?)0 + 3co0y/ 2 + ALBC + ALiC)

. 2
= K2 (3020 + 3¢ (coo 4 ALT (AL O(ALOBOCS)) + ALEOC)

2Co0 8c3,

(ALZE)?
%

2
= r?(6e% + S ALEC — 3 +0(ALE))
(30)

— #2(36¢% +30c% ALEC + O(ALE™))

= 36K%ct + 30Kk%cE ALEC + O(ALOBOC2)

Q

30k% 2, ALEC
= wcgo ALOBOC, w = 30k2.

In practice, we scale L3 by the value of £ to match its regularization strength and simply set w to 1:

L3 = (AQ)* 2 ALBC. (31)

By setting an appropriate w, the algorithm can guarantee that:
J(mi1) — J(m) = 0. (32)
The proof of Theorem [.4]is finished. O

A.4 PROOF OF THEOREM [4.3]

Proof. We split the total performance gap into two components:

J(n*) = J(nr) = [J(7*) = J(mo)] = [J(m1) = J(mo)] — [J(mw2) = J(m1)] — -+ = [J(nr) — J(wp—1)]
T-1
:J(W*)—J(T(())— [J(ﬂ'lud)—t](ﬂi)}.
i=0
(33)
We first observe that the behavior-cloning loss
2
LY = E(sa~p|m(s) — d (34)
decreases rapidly during early training. Hence there exists a warm-up time ¢ such that
LPC <ey = Eaunllm,(s) — B(s)| < Vo, (35)

17

Under review as a conference paper at ICLR 2026

and we set
Ty = Ty, = .
then
J(m*) = J(mo) = L(Ewd [7(5)] — Egma [r(s)])
1—7v ™ o
— = [(@9~ () r(e)d
IR A mo(s)) r(s)ds
< L/|d +(5) — iy (5)] Ruax s
- 1—’)/ s 4 o ax
Rmax
- T e —
m Rmax
< 1o OLp max|r*(s) = mo(s)]
— ¢
OL RII]&X %
< CEP T (a1 (5) — H(6)]| + Eammols) —
€8
CL Rmax
= 1P7 (e5 + v/%0)-
-
We define

cL Rmax
Ao = 113_77 (es ++/%0)

Next, each one-step update i produces the gain equation [32]
(51' = J(7Ti+1) - J(’]TZ) 2 0.

Summing these gains yields the unified bound

(36)

B(s)1).

37

(38)

(39)

With a fixed regularization weight «, the sequence {J;} tends to decay rapidly toward zero or even
become negative. Therefore, static o leaves a large residual gap in equation[39] Our meta-update
dynamically adjusts « so that each §; stays bounded below by a positive constant d,,;, > 0 over a

long horizon. Thus
J<7T*) - J(WT) < AO - T(Smilr
The proof of Theorem [4.3]is finished.

B EXPERIMENTAL DETAILS

B.1 HARDWARE AND SOFTWARE
We use the following hadrward:

1) Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10 GHz
2) NVIDIA GeForce RTX 4090 GPU

We use the following software versions:

1) Python 3.8.10
2) D4RL 1.1
3) MuJoCo 3.2.3

18

(40)
O

Under review as a conference paper at ICLR 2026

4) Gym 0.23.1

5) mujoco-py 2.1.2.14

6) PyTorch 2.2.2 + CUDA 12.1

7) TorchOpt 0.7.3Ren* et al.|(2023)

B.2 HYPERPARAMETERS

The network structures and hyperparameter configurations of each algorithm corresponding to Table
[Mare as follows.

Table 5: ASPC hyperparameters.

Hyperparameter Value
Optimizer Adam |Kingma|(2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
h zrDzr:l]rgn(éters Discount factor 0.99

Yperp: Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5,0.5)
Policy update frequency 2
Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU

Architecture Critic LayerNorm True
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Initial o 2.5

ASPC o lefdrn?ng r.:dte ‘ 2e-3)
hyperparameters o ledrmng rate decay Exponential

yp « update interval 10

EMA smoothing factor 0.995

Table 6: TD3+BC hyperparameters.

Hyperparameter Value
Optimizer Adam |Kingma|(2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
TD3+BC Discount factor 0.99
hyperparameters Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5,0.5)
Policy update frequency 2
o 2.5
Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Architecture Critic LayerNorm True
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

C LEARNING CURVES

C.1 ScALE FACTOR CURVES

Figure[/|plots the « learning curves for all 39 datasets. The curves show that our algorithm (i) drives
« toward distinct optima across tasks and (ii) merely modulates its step size and pace when the dataset

19

Under review as a conference paper at ICLR 2026

Table 7: wPC hyperparameters.

Hyperparameter Value
Optimizer Adam |Kingma|(2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Value learning rate 3e-4
WPC Mini-batcl} size 256
hyperparameters Discount factor 0.99
Target update rate 5e-3
Policy noise 0.1
Policy noise clipping (-0.5,0.5)
Policy update frequency 2
« 2.5
Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Critic LayerNorm True
Architecture Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Value hidden dim 256
Value hidden layers 2
Value activation function ReLU

Table 8: A2PR hyperparameters.

Hyper-parameters Value
Optimizer Adam|Kingma|(2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
TD3+BC Discount factor 0.99
hyperparameters Target update rate 7 Se-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
o 2.5
Q-Critic hidden dim 256
Q-Critic hidden layers 3
Q-Critic Activation function ReLU
V-Critic hidden dim 256
Architecture V-Critic hidden layers 3
V-Critic Activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU
A2PR Normalized state True
hyperparameters < 0
w1y, Wo 1.0
Table 9: IQL hyperparameters.
Hyperparameter Value
Optimizer Adam |Kingma|(2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
IQL Value learning rate 3e-4
hyperparameters ~ Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Learning rate decay Cosine
Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Architecture Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Value hidden dim 256
Value hidden layers 2
Value activation function ReLU

20

Under review as a conference paper at ICLR 2026

Table 10: IQL’s best hyperparameters used in D4RL benchmark.

Task Name B IQL T Deterministic policy
halfcheetah-random 3.0 0.95 False
halfcheetah-medium 3.0 0.95 False
halfcheetah-expert 6.0 0.9 False
halfcheetah-medium-expert 3.0 0.7 False
halfcheetah-medium-replay 3.0 0.95 False
halfcheetah-full-replay 1.0 0.7 False
hopper-random 1.0 0.95 False
hopper-medium 3.0 0.7 True
hopper-expert 3.0 0.5 False
hopper-medium-expert 6.0 0.7 False
hopper-medium-replay 6.0 0.7 True
hopper-full-replay 10.0 0.9 False
walker2d-random 0.5 0.9 False
walker2d-medium 6.0 0.5 False
walker2d-expert 6.0 0.9 False
walker2d-medium-expert 1.0 0.5 False
walker2d-medium-replay 0.5 0.7 False
walker2d-full-replay 1.0 0.7 False
maze2d-umaze 3.0 0.7 False
maze2d-medium 3.0 0.7 False
maze2d-large 3.0 0.7 False
antmaze-umaze 10.0 0.7 False
antmaze-umaze-diverse 10.0 0.95 False
antmaze-medium-play 6.0 0.9 False
antmaze-medium-diverse 6.0 0.9 False
antmaze-large-play 10.0 0.9 False
antmaze-large-diverse 6.0 0.9 False
pen-human 1.0 0.95 False
pen-cloned 10.0 0.9 False
pen-expert 10.0 0.8 False
door-human 0.5 0.9 False
door-cloned 6.0 0.7 False
door-expert 0.5 0.7 False
hammer-human 3.0 0.9 False
hammer-cloned 6.0 0.7 False
hammer-expert 0.5 0.95 False
relocate-human 1.0 0.95 False
relocate-cloned 6.0 0.9 False
relocate-expert 10.0 0.9 False

Table 11: ReBRAC hyperparameters.

Hyperparameter Value

Optimizer Adam Kingma|(2014)
1024 on Gym-MuJoCo,
256 on others

le-3 on Gym-MuJoCo,
le-4 on AntMaze

Mini-batch size
ReBRAC
hyperparameters Learning rate

Di ¢ factor ~ 0.999 on AntMaze,
1scount factor vy 0.99 on others
Target update rate 7 Se-3
Hidden dim (all networks) 256
. Hidden layers (all networks) 3
Architecture Activation function ReLU
Critic LayerNorm True

21

Under review as a conference paper at ICLR 2026

Table 12: ReBRAC’s best hyperparameters used in D4RL benchmark.

Task Name B1 (actor) B2 (critic)
halfcheetah-random 0.001 0.1
halfcheetah-medium 0.001 0.01
halfcheetah-expert 0.01 0.01
halfcheetah-medium-expert 0.01 0.1
halfcheetah-medium-replay 0.01 0.001
halfcheetah-full-replay 0.001 0.1
hopper-random 0.001 0.01
hopper-medium 0.01 0.001
hopper-expert 0.1 0.001
hopper-medium-expert 0.1 0.01
hopper-medium-replay 0.05 0.5
hopper-full-replay 0.01 0.01
walker2d-random 0.01 0.0
walker2d-medium 0.05 0.1
walker2d-expert 0.01 0.5
walker2d-medium-expert 0.01 0.01
walker2d-medium-replay 0.05 0.01
walker2d-full-replay 0.01 0.01
maze2d-umaze 0.003 0.001
maze2d-medium 0.003 0.001
maze2d-large 0.003 0.001
antmaze-umaze 0.003 0.002
antmaze-umaze-diverse 0.003 0.001
antmaze-medium-play 0.001 0.0005
antmaze-medium-diverse 0.001 0.0
antmaze-large-play 0.002 0.001
antmaze-large-diverse 0.002 0.002
pen-human 0.1 0.5
pen-cloned 0.05 0.5
pen-expert 0.01 0.01
door-human 0.1 0.1
door-cloned 0.01 0.1
door-expert 0.05 0.01
hammer-human 0.01 0.5
hammer-cloned 0.1 0.5
hammer-expert 0.01 0.01
relocate-human 0.1 0.01
relocate-cloned 0.1 0.01
relocate-expert 0.05 0.01

22

Under review as a conference paper at ICLR 2026

quality changes within the same task. This dual behaviour highlights the method’s adaptability to
both task differences and data-quality variations.

halfcheetah

Alpha

hopper

expert-v2

full-replay-v2
medium-expert-v2
medium-replay-v2
medium-v2
random-v2

umaze-diverse-v2

walker2d

expert-v2 expert-v2
full-replay-v2 full-replay-v2
medium-cxpert-v2 medium-cxpert-v2
medium-replay-v2 4- medium-replay-v2
medium-v2 medium-v2
random-v2 random-v2
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Train Steps / 1M Train Steps / 1M Train Steps / IM
mazeZd antmaze pen
25-
20.0-
17.5- 20
15.0-
< =] 1 5 o
£ 12.5- £
E =
10.0- Bty 1.0-
—— large-play-v2
75- Bo L ar
—— medium-diverse-v2
—— medium-play-v2 0.5-

umaze-v2

25-
' . : .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Train Steps / 1M Train Steps / IM Train Steps / IM
door hammer relocate
25- e
cloned-v
25+ expert-vl 251
—— human-vl 204 human-v1 human-v1
1.5
2 2
= =
= =
1.0-
0.5-
; ! , 0.0+ : \ ; : \
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Train Steps / 1M Train Steps / 1M Train Steps / IM

Figure 7: Learning curves of « for nine tasks across 39 datasets.

C.2 PERFORMANCE CURVES

Figure [§] shows the learning curves of all four algorithms on the 39 D4RL datasets. ASPC rises
much more rapidly than the baselines, typically within the first 0.2—-0.3 M environment steps, and
surpasses them long before the others stabilize. Its final normalized scores are almost always the
highest (or very close to the highest) across all task families, maintaining a clear margin where the
competing methods usually plateau. Moreover, the shaded regions (mean =+ 1 s.d. over four seeds)
remain consistently narrow for ASPC, and its curves show no late-stage collapses, pointing to lower
variance and steadier adaptation across widely varying task dynamics and data quality. Overall, the
figure suggests that ASPC combines greater sample efficiency, stronger ultimate performance, and
more reliable behavior than the other approaches.

23

Under review as a conference paper at ICLR 2026

1242
halfcheetah-random-v2 halfcheetah-medium-v2 halfcheetah-expert-v2 halfcl)i dium-expert-v2 halfcheetah-medium-replay-v2
0- =
1243 s 100- o .
1244 320 o 40| 75- *
1245 B w0 »
E 10 20 25 20
1246 S
Z 5 10
. o
1247 oo 0s 1o 0olo 0s 1o 00 0s 1o 00 05 10
1248 halfcheetah-full-replay-v2 hopper-random-v2 hopper-medium-v2 hopper-medium-expert-v2
» 80 100 125-
1249 5 N " =
1250 k4 .
K- 7 60-
1251 e B
E 201 10- Jjs 40+
15 25
1252 z o ‘] | o | ‘ , |
1253 00 0s 10 00 0s 10 00 0s 10 00 0s 1o
1254 hopper-medium-replay-v2 0- hopper-full-replay-v2 walker2d-random-v2 walker2d-medium-v2 walker2d-expert-v2
° 100- 125-
1255 § 1007 100 1 80- 1004
75- 80-
1256 2 Wi €0 75
= s0- 071 il J! , AL 40- 50
. - 0-
1259 oolo 0s 1o 00 0s 1o 00 0s 1o 00 0s 1o 00 05 10
1260 walker2d-medium-expert-v2 walker2d-medium-replay-v2 walker2d-full-replay-v2 maze2d-umaze-v1
2 100- 100-
=]
1261 3 254 7s-
=
1262 & - -
<
1263 §
1264
1265 1t 2 it diverse-v2 dium-play-v2
1266 g
1267 3
1268 3
E
1269 Z
1270
1271
1272 E"
g 60-
1273 N
<
1274 E 20-
1275 # o
1276 oo 0s 1o 00 0s 1o
door-human-v1 door-cloned-v1 hammer-cloned-v1
1277 . 100- o
g4 75
1278 gz o 40-
1279 8% Je -
E«&LA&‘M@A ,M\L bl ‘W‘* A M’h\
1280 3 00 o
-25-
1281 oo 0s 1o 00 0s 1o 00 0s 10 00 0s 10 00 05 10
1282 Train Steps / IM
hammer-expert-v1 . relocate-human-v1 relocate-cloned-v1 relocate-expert-v1
1283 2 0 o et
=]
S . |
1284 & 100 2 o 757‘
IS v 50-
1285 L " k) \
£ W’M ﬂ‘ l lJy o0-gabill | 25-
| A .
1286 z . e N
1287 oo 0s 1o 00 0s o "% 0s 10 00 0s 10
Train Steps / IM Train Steps / IM Train Steps / IM Train Steps / IM
1288
1289
o0 Figure 8: Learning curves comparing the performance of ASPC against other baselines.
1291
1292

1293 D INTEGRATING ASPC WITH OTHER OFFLINE RLL ALGORITHMS
1294

1295

24

Under review as a conference paper at ICLR 2026

D.1 INTEGRATION WITH IQL

In IQL, the policy is trained by advantage-weighted behavior cloning. Let adv(s, a) denote the IQL
advantage estimate and 8 > 0 the temperature parameter. We integrate ASPC by treating § as the
adaptive policy-constraint coefficient.

Inner objective. The IQL actor minimizes
L1306 8) = E(g.pp | exp(Badv(s, a)) fc(ma(al)] (41)
where lpc(mg(a | s)) = —logmg(a | s). A single gradient step yields the updated policy 75 4.

Outer objective. Following ASPC, we construct an outer loss on the updated policy using a
normalized Q-improvement term and the corresponding BC loss:

| E[Qs,mg(s))]
EL[Q(s,m(s)]]

The second term measures the change in mean Q-value induced by the inner update:

L) =

+ By 0| exp(Badv(s, a)) fac(my(a | s))]. (42)

2
L5(8) = (EclQs, m5(5))) — Eo[Q(s ma(s))]) 3)

The outer objective for adapting (3 is
Lonier(B) = L1¥(8) + £377(8)- (44)

D.2 INTEGRATION WITH CQL
CQL constrains Q-values by penalizing larger Q-values on out-of-distribution (OOD) actions. Let

a > 0 denote the conservatism coefficient. Following ASPC, we treat o as the adaptive policy-
constraint parameter.

Inner objective. Given a batch (s, a,r, s’), the CQL critic update solves

Eg?;.(w;a) =]E[(Qw(s,a) — TQ(S,CL))Q} + o (]Ea’Nﬂ'(-|s) [Qy(s,a")] — Qw(s,a)), (45)

Bellman regression CQL penalty

where
TQ(s,a) =7+ vEq (s min(Qyu-(s',a"))].
A single gradient step produces the updated critic) B(a)"

Outer objective. ASPC evaluates the updated critic with a normalized Q-improvement term and
the corresponding CQL penalty, forming

| E[Qy(s,7(5))]
E[[Q4 ()]

The Q-value change induced by the inner update is

£7% () =

+ 0 (Ban(19)[Qy(5.0)] = B[Qy(s,0)]). 46)

2
£5% (@) = (Eu[Qy(s,7(5))] = Eo[Qu(s, 7(5))]) - (47)

The outer objective for adapting o becomes
Lonter(@) = £ (0) + £5,%(a). (48)

D.3 INTEGRATION WITH DIFFUSION-QL
Diffusion-QL trains a diffusion policy by combining a behavior-cloning loss with a normalized

Q-term. Let n > 0 be the coefficient controlling the trade-off between policy improvement and
imitation. Following ASPC, we treat 7 as the adaptive constraint parameter.

25

Under review as a conference paper at ICLR 2026

Inner objective. Given state—action pairs (s, a), the diffusion policy 7y is trained under the objective

E, [Q(s, mo(s))])
Es[|Q(S77T9(S))|] .

normalized Q-improvement

LR (0:m) = s ayn [Lro(ma(s),a)] +n (-

Diffusion behavior cloning

(49)

A single gradient step produces the updated diffusion policy ()

Outer objective. ASPC evaluates the updated diffusion policy through a normalized Q-value term
and the corresponding BC term:

DQL _ Es[Q(Saﬂé(s))]
L) = g TG mpe)]

The Q-improvement induced by the inner update is captured by

+ Es0) [Loc(m5(s),0)] - (50)

2
£5% () = (B [Q(s, m4(5))] — Eo[Q(s, mo(5))]) - (51)

The outer objective becomes
Loier (1) = L7 () + L3 (1). (52)

D.4 INTEGRATION WITH FQL

FQL employs two policies: (i) a teacher flow policy trained purely by flow-matching, and (ii) a
student one-step flow policy trained via distillation and Q-improvement. Only the student policy
interacts with the Q-function, making it the component that requires adaptive scaling. We integrate
ASPC by treating the student’s trade-off coefficient « as the adaptive constraint parameter.

Teacher objective (BC Flow). The teacher flow policy is trained via standard flow-matching:
Licacher =]E(s,a) [”.fG(Sa T, t) - (a - 1’0)H2], (53)

where z; = (1 — t)xzp + ta and fy denotes the flow velocity network. This loss is independent of c.

Inner objective (Student Flow). The student one-step policy 7y predicts an action in a single step

and matches the teacher via a distillation loss, while also incorporating a normalized Q-improvement
term. The inner objective is

B0l 1=t oo L)

normalized Q-improvement

distillation (BC) term

A single gradient update produces the updated student policy TG(a):

Outer objective. ASPC evaluates the updated student policy by combining its normalized Q-value
and distillation loss, and the Q-improvement incurred by the inner update:

E;[Q(s, m5(5))]

L1%(0) = —a g BTG+ B l1ma(5:€) = Mrcacher(5,)] (55)
259 0) = (BL[Q(s, m3(s))] — Ba[Q(s, mo(s))]) (56)

The outer objective becomes
Loger(@) = £1%(0) + L37"(a). (57)

26

Under review as a conference paper at ICLR 2026

E ADDITIONAL EMPIRICAL ANALYSES

E.1 PERFORMANCE ON ANTMAZE AND ADROIT

As shown in Table[T] ASPC does not achieve state-of-the-art performance on AntMaze and Adroit.
Both benchmarks are characterized by extremely sparse rewards, with AntMaze in particular using a
binary 0-1 success signal [Fu et al|(2020). In such settings, even online RL methods struggle to learn
effectively, and behavior cloning plays a dominant role in determining policy quality.

Although ASPC can adapt o toward a more BC-dominated regime, the current BC term imitates all
actions in the dataset, including suboptimal or unsuccessful trajectories. This limits the attainable
performance on sparse-reward tasks. To address this issue, we experimented with augmenting the
BC term using advantage-weighted behavior cloning, where high-advantage samples receive larger
weights. The modified loss improves the selectivity of imitation by emphasizing demonstrably good
behaviors. Experimental results, shown in Figure[9] indicate consistent performance gains on both
AntMaze and Adroit when advantage-weighting is applied. This suggests that selectively imitating
high-quality behaviors is crucial for sparse-reward offline RL tasks.

+3.0%
145.5-

ASPC ol
I ASPC+AW e
0.9
+8.1% § %
5.4% +8.8% . 128% 8%
. . +21.4% P e
72.8- || 36v% T23.8% -

Normalized Score

0.0-

+3.9%
+63.3%
o

o & &) ©) 3 & o & & o 3

o&(b &&‘ & &4@@ QIQ\ 4‘*&% c,\°‘\ z:\'Qe é"& Q\°‘\ z"f'Qa p Aé{b

q{l’d o & & \‘f’& 3 v & & & & & & & o

K 3 S o & N & < < < v < ¢ ©

& & S & PR & S S
> P & \d X & N & & Q
® of o8 & & & S g
& g &/ N & b

& § & * &
S B & S

Figure 9: Normalized scores on AntMaze and Adroit tasks. Each pair of bars corresponds to a single
dataset (plus the domain-wise average), comparing ASPC (orange) and ASPC+AW (green), where
ASPC+AW applies advantage-weighted behavior cloning. The percentages annotated above the green
bars indicate the relative performance change of ASPC+AW with respect to ASPC on each task.

E.2 ABLATION ON THE FORMULATION OF THE L3 TERM

To better understand the role of each component in the L3 term, we consider five variants. The first
variant keeps only the third component:

1
LY = sup [||m(s) — all? — |[ma(s) — all?|-
(s,a)eD

The second variant multiplies the third component by the squared BC deviation:

LY = < sup ||7re<s>a||2> LY.

(s,a)€D
The third variant replaces the BC-deviation factor with the detached Lo term:
L) = (L, detach) LY.

The fourth variant is the complete formulation used in our method:

Lé‘l) = (L detach) [sup [mo(s) — al? L:(al)'
(s,a)€D

27

Under review as a conference paper at ICLR 2026

Table 13: Ablation on different formulations of the L3 term. Values in parentheses denote relative
change (%) w.r.t. the full formulation (variant 4). Positive changes are shown in blue, negative in red.

Formulation Gym-MuJoCo Maze2d AntMaze Adroit Total Avg
(€))] 76.7 (-6.6%) 972 (-34.0%) 31.7(-57.4%) 552 (-09%) 64.7 (-16.9%)
2) 76.8 (-6.5%) 107.2 (-27.2%) 319 (-57.2%) 549 (-1.4%) 65.5(-15.9%)
3) 81.1 (-1.2%) 151.8 (+3.1%) 733 (-1.6%) 56.1 (+0.7%) 77.7 (-0.2%)
“) 82.1 147.2 74.5 55.7 77.9
5) 82.0 (-0.1%) 149.2 (+1.4%) 74.6 (+0.1%) 55.5(-0.4%) 77.9 (+0.0%)

The fifth variant replaces both supremum operators in L§4) by dataset expectations:

LY = (L detach) (E(s o)~ (s) — al?) [Eq.ayop [Im5(s) — al® = [[ma(s) — all?]|.

Table@ summarizes the results. Variants (3)—(5), which include the detached Lo term, provide clear
gains on Maze2d and AntMaze, showing that this component is essential for these domains. By
contrast, Adroit displays only minor differences across all variants, suggesting that Q-value gradients
dominate BC-related gradients there, making the precise form of L3 less influential. Finally, variant
(5) achieves a performance nearly identical to the full formulation, implying that strict worst-case
bounds using the sup operator are not essential in practice.

E.3 CASE STUDY OF ASPC DYNAMICS

Figure[T0]shows the training dynamics on halfcheetah-medium-v2. ASPC consistently increases both
the estimated Q-value and the BC loss, while simultaneously improving the normalized score. It is
essential to note that the increase in BC loss under ASPC does not indicate instability or degradation.
Since ASPC deliberately allows the policy to deviate from the behavior policy when such deviations
yield sufficient Q-value improvement, the BC loss can increase while performance improves. This
matches our theory: whenever the Q-value gain compensates for the increased deviation, the update
remains beneficial. Thus, an increasing BC loss indicates that ASPC is escaping the behavior cloning
regime and moving toward higher-value actions. In contrast, TD3+BC rapidly plateaus in all three
curves, indicating that its fixed trade-off between RL and BC limits its ability to continue improving.

Q value 008616 BC loss S8 Normalized Score
616 83~ o ‘
| e ,.m.»,“w"‘/f\v"‘ﬂ*"v o hat
W'
| I

"

554.4-

279.8- 0.05378 43.10

Q value
BC loss
Normalized Score

TD3+BC
-== ASPC

S

.24 . . 0.02139- d . 2836 .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5
Train Steps / IM Train Steps / IM Train Steps / IM

Figure 10: Case study on halfcheetah-medium-v2. ASPC maintains increasing Q-values and BC
loss throughout training, accompanied by continuous improvement in normalized score. In contrast,
TD3+BC quickly saturates in all three metrics. This behavior is consistent with the theoretical single-
step performance improvement condition, illustrating that ASPC sustains stable policy enhancement
over the course of training.

28

Under review as a conference paper at ICLR 2026

) Gym-MuJoCo Avg) Maze2d Avg AntMaze Avg) Adroit Avg
90.31 e 1873 oy 8195 vl 6127- o
771

73.9 e 68.3
2
3
_8 329
K456 93.7- 40.98- 30.64-
= 73.0
g I
i=}
P4

0.00- ' ' 0.0- ' ' 0.00- % y '
0.1 25 10 0.1 25 10 0.1 25 10

Figure 11: Sensitivity of ASPC to the initial value of &. We compare three initializations (o9 =
0.1,2.5,10) and report the domain-wise normalized averages.

F HYPERPARAMETER SENSITIVITY ANALYSES

F.1 SENSITIVITY TO THE INITIAL VALUE OF &

Figure [TT]illustrates the influence of the initial value of o on ASPC. Across Gym-MuJoCo, AntMaze,
and Adroit, the intermediate setting aig = 2.5 provides the strongest overall performance, while a
very small initialization (op = 0.1) tends to bias the early update dynamics too strongly toward
BC, limiting the contribution of the RL term. Conversely, an excessively large initialization (e.g.,
ap = 10) can overemphasize the RL component at the beginning, which weakens the intended
stabilizing effect of the BC objective and leads to performance drops, particularly on Adroit. These
observations indicate that a balanced initialization is important for achieving stable optimization.

F.2 SENSITIVITY TO THE LEARNING RATE OF «

We study the effect of the learning rate used for updating . The results show that different domains
prefer different learning rate magnitudes. Too small values slow down the adjustment of the RL-BC
trade-off, while too large values make the meta-update unstable and degrade performance.

. Gym-MuloCo Avg . Maze2d Avg AntMaze Avg Adroit Avg
90.31 o 186.3 0 81.95- 5 61.82- =

76.2
147.2
633
107.9
45.16- 93.2- I 40.98- I 3091
. y y 00" a2 2e-3

000" Toea 2¢-3 2e-4

Normalized Score

Figure 12: Sensitivity analysis on the learning rate of « across all domains. Each panel reports the
domain-level normalized score under three learning rate settings (2 x 1072, 2 x 1073, 2 x 10™%).

G THE USE OF LLM
Large Language Models (LLMs) were used to aid and polish the writing of this paper. In particular,

they were applied to rephrase sentences for improved readability and refine grammar and wording to
meet academic style requirements.

29

	Introduction
	Related Works
	Offline RL
	Adaptive Policy Constraints

	Preliminaries
	Method
	Adaptive Scaling of Policy Constraints
	Theoretical Analysis
	Implementation on TD3+BC

	Experiments
	Comparative Performance on Benchmark
	Adaptability of the Sacle Factor
	Necessity of Dynamic Scale Factor Adjustment
	Runtime Analysis
	Ablation Studies
	Extending ASPC to Other Offline RL Methods
	Additional Experiments on OGBench

	Conclusion
	Theoretical Proofs
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5

	Experimental Details
	Hardware and Software
	Hyperparameters

	Learning Curves
	Scale Factor Curves
	Performance Curves

	Integrating ASPC with Other Offline RL Algorithms
	Integration with IQL
	Integration with CQL
	Integration with Diffusion-QL
	Integration with FQL

	Additional Empirical Analyses
	Performance on AntMaze and Adroit
	Ablation on the Formulation of the L3 Term
	Case Study of ASPC Dynamics

	Hyperparameter Sensitivity Analyses
	Sensitivity to the Initial Value of
	Sensitivity to the Learning Rate of

	The use of LLM

