

ADAPTIVE SCALING OF POLICY CONSTRAINTS FOR OFFLINE REINFORCEMENT LEARNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Offline reinforcement learning (RL) enables learning effective policies from fixed
 012 datasets without any environment interaction. Existing methods typically employ
 013 policy constraints to mitigate the distribution shift encountered during offline RL
 014 training. However, because the scale of the constraints varies across tasks and
 015 datasets of differing quality, existing methods must meticulously tune hyperpar-
 016 ameters to match each dataset, which is time-consuming and often impractical.
 017 To bridge this gap, we propose Adaptive Scaling of Policy Constraints (ASPC), a
 018 second-order differentiable framework that automatically adjusts the scale of policy
 019 constraints during training. We theoretically analyze its performance improvement
 020 guarantee. In experiments on 39 datasets across four D4RL domains, ASPC using a
 021 single hyperparameter configuration outperforms other adaptive constraint methods
 022 and state-of-the-art offline RL algorithms that require per-dataset tuning, achieving
 023 an average 35% improvement in normalized performance over the baseline. **More-**
 024 **over, ASPC consistently yields additional gains when integrated with a variety of**
 025 **existing offline RL algorithms, demonstrating its broad generality.**

1 INTRODUCTION

028 Offline reinforcement learning (RL) learns a policy exclusively from a fixed, pre-collected dataset
 029 without further interactions with the environment Levine et al. (2020). This characteristic is particu-
 030 larly crucial in real-world applications such as autonomous driving El Sallab et al. (2017); Kendall
 031 et al. (2019), healthcare Prasad et al. (2017); Wang et al. (2018), industry Zhan et al. (2022); Yuan
 032 et al. (2024), and other tasks, where interacting with the environment can be expensive and risky.

033 Despite the potential advantages, a critical challenge in offline RL is the distribution shift Levine et al.
 034 (2020) between the offline data and the training policies, often leading to suboptimal or even invalid
 035 policy updates. Many methods have been proposed to mitigate the adverse effects of the distribution
 036 shift. A common strategy is to impose explicit or implicit policy constraints Fujimoto et al. (2019);
 037 Kumar et al. (2020); Fujimoto & Gu (2021); Kostrikov et al. (2022), ensuring that the learned policy
 038 remains close to the behavior policy used to collect the dataset. By imposing constraints on policy
 039 updates, these methods can effectively mitigate the extrapolation error of the Q value Fujimoto et al.
 040 (2019) induced by the distribution shift while offering certain performance guarantees.

041 A central but often overlooked issue in policy constraint methods is the choice of the constraint
 042 scale, which crucially governs the balance between the RL objective and the behavior cloning (BC)
 043 term. Existing approaches fall into two categories. First, methods that rely on dataset-specific
 044 hyperparameter tuning can achieve strong results, but their performance collapses once a single
 045 configuration is applied across tasks or datasets of varying quality, as shown in Figure 1(b). Second,
 046 adaptive variants with fixed hyperparameters Peng et al. (2023); Yang et al. (2024) alleviate tuning
 047 costs, yet they only reweight actions locally and neglect the global trade-off scale, leaving a significant
 048 gap to carefully tuned baselines. In practical offline RL, where extensive tuning is prohibitively
 049 expensive or even infeasible, the pressing challenge is how to achieve robust performance with a
 050 single hyperparameter configuration across diverse datasets.

051 To enable a single hyperparameter configuration to match or exceed the performance of finely tuned
 052 methods across datasets of varying quality and tasks, we propose an adaptive scaling of policy
 053 constraints (ASPC) approach that dynamically adjusts the constraint scale during training. The
 intuition of this method is shown in Figure 1(a). Our approach leverages a second-order differentiable

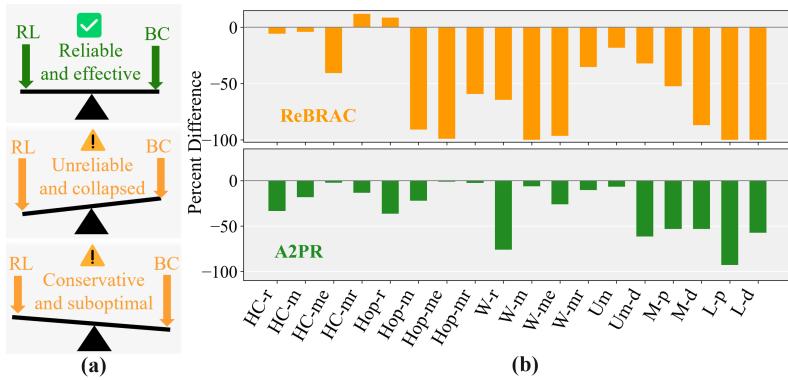


Figure 1: (a) The RL–BC trade-off in offline RL. ASPC dynamically balances RL and BC, yielding a reliable and effective policy (left). Existing methods fail to properly calibrate this trade-off, resulting in suboptimal or collapsed policies (middle and right). (b) Percent difference in performance for ReBRAC and A2PR under a single hyperparameter setting across all datasets. HC = HalfCheetah, Hop = Hopper, W = Walker, r = random, m = medium, mr = medium-replay, me = medium-expert, Um = umaze, M = medium, L = large, d = diverse, p = play. Large drops highlight the sensitivity of prior methods to per-dataset tuning.

optimization framework Finn et al. (2017) to balance the goals of RL and BC. Specifically, we parameterize the scale factor α as a learnable parameter that balances the RL objective \mathcal{L}_{RL} and the BC objective \mathcal{L}_{BC} in TD3+BC Fujimoto & Gu (2021). The combined objective \mathcal{L} is given by

$$\mathcal{L} = \alpha \mathcal{L}_{\text{RL}} + \mathcal{L}_{\text{BC}}, \quad (1)$$

For the full definitions of α , refer to equation 3. During training, α is dynamically adjusted by constraining the rate of change of the Q-value and the BC loss, enabling the algorithm to discover a more stable learning path and exhibit remarkable adaptability across tasks and datasets.

We theoretically analyze the performance improvement guarantee of ASPC and extensively evaluate it on the D4RL benchmark Levine et al. (2020). Our empirical results demonstrate that ASPC outperforms other state-of-the-art offline RL algorithms that depend on meticulously tuned hyperparameters for each dataset, while adding only minimal computational overhead to the original TD3+BC backbone. [In addition, ASPC improves a variety of offline RL algorithms beyond TD3+BC, further indicating its generality and broad applicability.](#)

2 RELATED WORKS

2.1 OFFLINE RL

Offline RL aims to learn policies purely from static datasets and suffers from distribution shift between the behavior policy and the learned policy, leading to value overestimation and policy collapse. Existing approaches address this challenge from several perspectives. Policy constraint methods explicitly Fujimoto et al. (2019); Fujimoto & Gu (2021) or implicitly Kumar et al. (2020); Kostrikov et al. (2022) regularize the learned policy toward the behavior distribution. Uncertainty-aware approaches penalize actions with high epistemic or aleatoric uncertainty An et al. (2021); Bai et al. (2022); Zhang et al. (2023). Sequence modeling methods reformulate RL as conditional trajectory modeling using transformers Chen et al. (2021); Janner et al. (2021). Among these, policy constraint methods have emerged as the most direct and widely adopted solution, but their effectiveness crucially depends on properly scaling the constraint. This motivates our focus on developing an adaptive scaling mechanism that eliminates the need for per-dataset tuning while retaining robustness across diverse offline RL benchmarks.

2.2 ADAPTIVE POLICY CONSTRAINTS

Balancing the RL objective against BC is central to offline RL, and the strength of this constraint critically affects both stability and performance. Recent work has explored adaptive ways to tune this

balance. Trajectory- or sample-weighting methods such as AW Hong et al. (2023), wPC Peng et al. (2023), and OAP Yang et al. (2023) reweight transitions or actions based on estimated value or expert preference, thereby adjusting constraint strength locally. Other approaches introduce auxiliary models to refine constraint scaling, for example PRDC Ran et al. (2023), GORL Yang et al. (2024), A2PR Liu et al. (2024), and IEPC Liu & Hofert (2024). Despite these advances, current approaches either rely on per-dataset hyperparameter tuning for optimal performance, or apply a fixed configuration that yields only limited gains across domains. Our ASPC method addresses this gap by dynamically adjusting the constraint scale during training, enabling robust performance across diverse datasets with a single hyperparameter configuration.

3 PRELIMINARIES

RL problems are formulated as a Markov decision process (MDP), described by the tuple (S, A, P, R, γ) . The set of states is S , the set of actions is A , the transition probability function is $P(s'|s, a)$, the reward function is $R(s, a)$, and $\gamma \in [0, 1]$ is the discount factor. The objective is to find a policy $\pi : S \rightarrow A$ that maximizes the expected discounted return. This objective is equivalently expressed as maximizing the Q-value $Q^\pi(s, a)$ under π , given by:

$$Q^\pi(s, a) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \mid s_0 = s, a_0 = a \right], \quad (2)$$

where s_t and a_t represent the state and action at time t . In practice, RL algorithms update Q-values using the Bellman equation as an iterative rule, seeking to converge to the optimal policy π^* .

A central challenge for offline RL is the distribution shift. When a state-action pair (s, a) lies outside the dataset \mathcal{D} , directly optimizing the Q-function may cause severe over-estimation. One remedy is to constrain the target policy π to stay close to the behaviour policy π_β . TD3+BC Fujimoto & Gu (2021) does so by solving:

$$\pi = \arg \max_{\pi} \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[\lambda \underbrace{Q(s, \pi(s))}_{\text{RL}} - \underbrace{(\pi(s) - a)^2}_{\text{BC}} \right], \quad \lambda = \frac{\alpha}{\frac{1}{N} \sum_i |Q(s_i, a_i)|}. \quad (3)$$

normalizes the RL term to the scale of the BC loss. In vanilla TD3+BC, α is a fixed constant. Instead of keeping the scale factor α static, we update it throughout training.

4 METHOD

We now present the ASPC algorithm in detail. We begin by introducing its core framework, a second-order differentiable optimization that adaptively balances the RL and BC objectives (Section 4.1). We then provide a theoretical analysis (Section 4.2), which explains the role of the mutual constraint term and establishes single-step and long-term performance guarantees. Finally, we describe a practical instantiation of ASPC built on TD3+BC (Section 4.3), which enables its application to standard offline RL benchmarks.

4.1 ADAPTIVE SCALING OF POLICY CONSTRAINTS

To adaptively adjust the relative scaling between the RL and BC objectives, ASPC adopts a meta-learning approach Finn et al. (2017); Franceschi et al. (2018). It converts the scale factor α in equation 3 into a learnable parameter and optimizes it dynamically via bilevel training, utilizing inner updates and outer updates to maximize RL exploration near the behavior policy.

Inner Update To optimize the policy under offline data, we define the inner objective as

$$\mathcal{L}_{\text{inner}}(\theta; \alpha) = \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[-\lambda(\alpha) Q(s, \pi_\theta(s)) + \|\pi_\theta(s) - a\|^2 \right], \quad (4)$$

where $\lambda(\alpha) = \alpha / \mathbb{E}_{s \sim \mathcal{D}} [|Q(s, \pi_\theta(s))|]$. The inner update is then obtained via a gradient descent step with learning rate η_θ :

$$\tilde{\theta}(\alpha) = \theta - \eta_\theta \nabla_\theta \mathcal{L}_{\text{inner}}(\theta; \alpha), \quad (5)$$

162 and $\tilde{\theta}(\alpha)$ denotes the updated policy parameters after one inner step.
 163

164 **Outer Update** While the inner update optimizes the policy parameters θ for a given scale α , the outer
 165 update is responsible for adjusting α itself so as to dynamically balance the RL and BC objectives.
 166 The outer loss is composed of three coordinated components. \mathcal{L}_1 mirrors TD3 + BC and steers α
 167 toward a better balance between RL and BC. \mathcal{L}_2 penalizes abrupt increases in the expected Q-value,
 168 while \mathcal{L}_3 constrains large shifts in the BC loss. Together, \mathcal{L}_2 and \mathcal{L}_3 adaptively regulate the step
 169 prescribed by \mathcal{L}_1 , preventing either RL or BC from dominating and thereby stabilizing training.
 170 Formally, we write:

$$\mathcal{L}_1 = -\alpha \frac{\mathbb{E}_{s \sim \mathcal{D}}[Q(s, \pi_{\tilde{\theta}}(s))] - \mathbb{E}_{s \sim \mathcal{D}}[Q(s, \pi_{\theta}(s))]}{\mathbb{E}_{s \sim \mathcal{D}}[Q(s, \pi_{\tilde{\theta}}(s))]} + \mathbb{E}_{(s, a) \sim \mathcal{D}}[\|\pi_{\tilde{\theta}}(s) - a\|^2], \quad (6)$$

$$\mathcal{L}_2 = \left(\mathbb{E}_{s \sim \mathcal{D}}[Q(s, \pi_{\tilde{\theta}}(s))] - \mathbb{E}_{s \sim \mathcal{D}}[Q(s, \pi_{\theta}(s))] \right)^2, \quad (7)$$

$$\mathcal{L}_3 = (\mathcal{L}_2.\text{detach}) \left(\sup_{(s, a) \in \mathcal{D}} \|\pi_{\theta}(s) - a\|^2 \right) \left(\sup_{(s, a) \in \mathcal{D}} |\|\pi_{\tilde{\theta}}(s) - a\|^2 - \|\pi_{\theta}(s) - a\|^2| \right), \quad (8)$$

177 The outer objective is

$$\mathcal{L}_{\text{outer}}(\tilde{\theta}(\alpha)) = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3. \quad (9)$$

178 Here, π_{θ} and $\pi_{\tilde{\theta}}$ denote the policies before and after the inner update, respectively. $.\text{detach}$ indicates
 179 stopping gradients. While \mathcal{L}_1 and \mathcal{L}_2 are relatively standard, the design of \mathcal{L}_3 requires clarification.
 180 Theoretically, its form follows directly from Theorem 4.4, with details in Appendix A.3. Intuitively,
 181 \mathcal{L}_3 combines three factors: the rate of change in Q-values, the upper bound of the BC loss, and the
 182 variation in BC loss across iterations. Large Q-value fluctuations or a high BC-loss bound signal
 183 rapid policy change or significant deviation from the behavior policy. In such cases, strengthening
 184 the penalty on BC variation helps suppress distributional shift and stabilize training, consistent with
 185 our intuition. To update α , we treat the inner update parameters $\tilde{\theta}(\alpha)$ as an implicit function of α and
 186 use second-order derivatives. Lets η_{α} be the learning rate of α . The gradient-descent step is
 187

$$\alpha \leftarrow \alpha - \eta_{\alpha} \left(\frac{\partial \mathcal{L}_{\text{outer}}(\tilde{\theta}(\alpha))}{\partial \tilde{\theta}} \frac{\partial \tilde{\theta}(\alpha)}{\partial \alpha} \right), \quad (10)$$

191 4.2 THEORETICAL ANALYSIS

192 We now analyze the theoretical properties of ASPC. We show that the outer objective ensures stable
 193 updates and reduces the gap to the optimal policy.

194 **Assumption 4.1.** The critic $Q(s, a)$ and the transition kernel $P(\cdot | s, a)$ are Lipschitz continuous
 195 with respect to the action variable. That is, there exist constants $L_Q, L_P > 0$, independent of s , such
 196 that for all $s \in \mathcal{S}$ and all $a_1, a_2 \in \mathcal{A}$,

$$197 \|Q(s, a_1) - Q(s, a_2)\| \leq L_Q \|a_1 - a_2\|, \|P(\cdot | s, a_1) - P(\cdot | s, a_2)\|_{\text{TV}} \leq L_P \|a_1 - a_2\|. \quad (11)$$

198 **Proposition 4.2** (Mutual constraints between ΔL_{BC} and $(\Delta Q)^2$). *Under Assumption 4.1, the change
 199 in BC loss (ΔL_{BC}) and the squared change in Q-values ($(\Delta Q)^2$) mutually constrain each other:
 200 $(\Delta Q)^2$ provides a lower bound on ΔL_{BC} , while ΔL_{BC} provides an upper bound on $(\Delta Q)^2$.*

201 This result shows that the two penalties in equation 7 and equation 8 are inherently coupled rather
 202 than independent. It explains why in practice some tasks succeed with only one of them, while others
 203 require both for stable training (see Section 5.5). The detailed proof is provided in Appendix A.1.

204 **Proposition 4.3** (Single-step performance lower bound). *For the update step from π_t to π_{t+1} , the
 205 performance improvement admits the following lower bound:*

$$206 J(\pi_{t+1}) - J(\pi_t) \geq \frac{1}{1-\gamma} \left(\Delta Q - \Phi(\Delta L_{\infty}^{BC}, c_{\infty}^2) \right), \quad (12)$$

207 where $\Phi(\Delta L_{\infty}^{BC}, c_{\infty}^2)$ is a nonnegative function depending on the BC-loss variation upper bound
 208 ΔL_{∞}^{BC} and the BC-loss upper bound c_{∞}^2 .

209 This proposition serves as the theoretical basis for Theorem 4.4. It also directly motivates the design
 210 of the penalty term \mathcal{L}_3 (equation 8), whose form is derived from bounding $\Phi(\Delta L_{\infty}^{BC}, c_{\infty}^2)$. The
 211 detailed derivation of Φ is deferred to Appendix A.2.

216 **Theorem 4.4** (Single-step performance condition for ASPC). *An idealized ASPC update that satisfies
217 the condition $\Delta Q \geq \Phi$ leads to a non-decreasing policy performance: $J(\pi_{t+1}) - J(\pi_t) \geq 0$.*
218

219 ASPC employs a smooth relaxation of this condition via the outer objective, which is designed to
220 guide updates toward this provably stable regime. The detailed proof is given in Appendix A.3.

221 **Theorem 4.5** (Performance gap to optimal). *With Theorem 4.4, after T iterations when the single-step
222 gain vanishes ($\delta_T = 0$), the gap to the optimal policy satisfies:*

$$223 \quad J(\pi^*) - J(\pi_T) \leq \Psi(\varepsilon_\beta) - T \delta_{\min}, \quad (13)$$

224 where $\Psi(\varepsilon_\beta)$ is a function of the mismatch ε_β between the behavior policy and the optimal policy,
225 and δ_{\min} denotes the minimal single-step improvement before convergence.
226

227 This theorem shows that ASPC progressively reduces the suboptimality gap until convergence, where
228 the remaining gap is controlled by $\Psi(\varepsilon_\beta)$. The full derivation of $\Psi(\varepsilon_\beta)$ is given in Appendix A.4.
229

230 **Algorithm 1** Adaptive Scaling of Policy Constraints

231 **Initialize:** critic and actor networks, scale factor α , replay buffer \mathcal{D} , update intervals k_π, k_α .

232 1: **for** $i = 1$ to N **do**
233 2: **Critic update:**
234 3: Sample minibatch from D ; Compute TD targets and update critic networks;
235 4: **if** $i \bmod k_\pi = 0$ **then**
236 5: **Actor update (inner):**
237 6: Compute $\mathcal{L}_{\text{inner}}(\theta; \alpha)$ by equation 4; Compute $\tilde{\theta}(\alpha)$ by equation 5;
238 7: Update actor networks;
239 8: **if** $i \bmod (k_\pi \cdot k_\alpha) = 0$ **then**
240 9: **α update (outer):**
241 10: Compute $\mathcal{L}_{\text{outer}}(\tilde{\theta}(\alpha))$ by equation 9; Update α via equation 10;
242 11: **end if**
243 12: Soft update critic and actor networks;
244 13: **end if**
245 14: **end for**

246
247 4.3 IMPLEMENTATION ON TD3+BC

248 To make ASPC practical, we instantiate it on top of the TD3+BC backbone with only two mod-
249ifications: (i) a redesigned critic network, and (ii) a learnable scale factor α . All other network
250 components and hyperparameters remain unchanged. See Appendix B.2 for a full specification.
251

252 Recent studies show that deeper critics Kumar et al. (2022); Lee et al. (2022) and the insertion of
253 LayerNorm between layers Nikulin et al. (2023); Ball et al. (2023); Tarasov et al. (2024a) can mitigate
254 Q-value over-estimation and improve stability. Following this evidence, we extend the TD3+BC
255 critic from two to three hidden layers and insert a LayerNorm after each layer. An ablation of this
256 choice is provided in Section 5.5.

257 Algorithm 1 lists the ASPC procedure. Blue highlights indicate lines that differ from the TD3+BC
258 backbone. Although second-order gradients increase cost, we set the α -update interval k_α far longer
259 than the actor-update interval k_π , which maintains performance while sharply reducing runtime.
260 Section 5.4 analyses this trade-off in detail.

261
262 5 EXPERIMENTS

263 In this section we evaluate ASPC on the D4RL benchmark. Section 5.1 compares ASPC with strong
264 baselines to demonstrate its adaptability and overall effectiveness. Section 5.2 analyzes the learning
265 curves of α during training, further illustrating ASPC’s adaptive behaviour. Section 5.3 investigates
266 the necessity of dynamically adjusting α . Section 5.4 reports runtime results to highlight the efficiency
267 of ASPC. Section 5.5 presents ablation studies on the key components of ASPC. **Section 5.5 provides**
268 **results on integrating the ideas of ASPC with other methods, and Section 5.5 presents the performance**
269 **of ASPC on the OGBench benchmark.**

270
 271 Table 1: Average normalized score over the final evaluation across four random seeds. The best
 272 performance in each dataset is highlighted in **bold**, while the second-best performance is indicated
 273 with an underline. Blue shading indicates methods with top domain average performance. The symbol
 274 \pm denotes the standard deviation. \checkmark denotes fixed hyperparameters, whereas \times denotes dataset-specific
 275 ones. *To ensure fairness, TD3+BC and wPC employ the robust critic described in Section 5.5.

	Task Name	TD3+BC*(\checkmark)	A2PR(\checkmark)	IQL(\times)	wPC*(\checkmark)	ReBRAC(\times)	ASPC (Ours)(\checkmark)
277 278 279 280 281 282	HalfCheetah Random	10.6 \pm 0.7	21.1 \pm 0.8	19.5 \pm 0.8	18.8 \pm 0.7	29.5 \pm 1.5	20.8 \pm 0.9
	Medium	49.6 \pm 0.2	56.1 \pm 0.3	50.0 \pm 0.2	54.8 \pm 0.2	65.6 \pm 1.0	<u>58.7</u> \pm 0.4
	Expert	100.4 \pm 0.4	99.9 \pm 3.2	95.5 \pm 2.1	103.8 \pm 2.4	105.9 \pm 1.7	<u>105.1</u> \pm 1.2
	Medium-Expert	97.9 \pm 1.6	95.9 \pm 6.0	92.7 \pm 2.8	98.9 \pm 8.5	101.1 \pm 5.2	<u>99.9</u> \pm 1.2
	Medium-Replay	45.8 \pm 0.2	49.0 \pm 0.4	42.1 \pm 3.6	48.1 \pm 0.2	51.0 \pm 0.8	<u>50.6</u> \pm 0.5
	Full-Replay	74.5 \pm 1.6	<u>79.5</u> \pm 1.5	75.0 \pm 0.7	76.7 \pm 2.3	82.1 \pm 1.1	79.3 \pm 0.9
283 284 285 286 287 288	Hopper Random	8.6 \pm 0.2	20.1 \pm 11.6	<u>10.1</u> \pm 5.9	8.5 \pm 1.4	8.1 \pm 2.4	9.4 \pm 1.5
	Medium	62.0 \pm 3.0	78.3 \pm 4.4	65.2 \pm 4.2	81.8 \pm 9.8	102.0 \pm 1.0	<u>92.7</u> \pm 7.2
	Expert	108.2 \pm 4.2	83.9 \pm 6.0	<u>108.8</u> \pm 3.1	79.1 \pm 26.6	100.1 \pm 8.3	112.3 \pm 0.4
	Medium-Expert	103.3 \pm 9.2	<u>110.8</u> \pm 2.6	85.5 \pm 29.7	109.1 \pm 4.5	107.0 \pm 6.4	111.0 \pm 2.1
	Medium-Replay	47.4 \pm 35.4	98.9 \pm 2.0	89.6 \pm 13.2	<u>100.8</u> \pm 0.7	98.1 \pm 5.3	101.3 \pm 0.6
	Full-Replay	90.3 \pm 22.9	97.1 \pm 17.8	104.4 \pm 10.8	105.6 \pm 0.6	<u>107.1</u> \pm 0.4	107.2 \pm 0.5
289 290 291 292 293 294	Walker2d Random	5.9 \pm 3.5	1.2 \pm 1.5	11.3 \pm 7.0	12.5 \pm 10.6	18.4 \pm 4.5	<u>15.6</u> \pm 6.4
	Medium	62.0 \pm 3.0	84.2 \pm 4.7	80.7 \pm 3.4	<u>89.6</u> \pm 0.3	82.5 \pm 3.6	92.4 \pm 5.4
	Expert	108.2 \pm 4.2	84.8 \pm 49.0	96.9 \pm 32.3	<u>111.5</u> \pm 0.1	112.3 \pm 0.2	110.8 \pm 0.1
	Medium-Expert	103.3 \pm 9.2	88.2 \pm 40.7	112.1 \pm 0.5	110.1 \pm 0.5	<u>111.6</u> \pm 0.3	111.1 \pm 0.3
	Medium-Replay	76.6 \pm 12.7	84.5 \pm 12.3	75.4 \pm 9.3	93.4 \pm 3.0	77.3 \pm 7.9	97.6 \pm 0.5
	Full-Replay	88.3 \pm 11.7	102.5 \pm 0.0	97.5 \pm 1.4	99.5 \pm 0.5	102.2 \pm 1.7	102.1 \pm 0.2
MuJoCo Avg		70.7	74.2	72.9	77.8	<u>81.2</u>	82.1
295 296 297	Maze2d Umaze	34.5 \pm 13.9	102.5 \pm 6.3	-8.9 \pm 6.1	73.1 \pm 13.8	<u>106.8</u> \pm 22.1	128.1 \pm 31.8
	Medium	63.3 \pm 63.3	90.4 \pm 29.6	34.8 \pm 2.7	87.4 \pm 48.7	<u>105.1</u> \pm 31.6	117.8 \pm 17.3
	Large	108.9 \pm 43.6	<u>177.7</u> \pm 34.2	61.7 \pm 3.5	123.3 \pm 70.5	78.3 \pm 61.7	195.8 \pm 31.3
Maze2d Avg		68.9	<u>123.53</u>	46.2	94.6	96.7	<u>147.2</u>
298 299 300 301 302 303	AntMaze Umaze	100.0 \pm 0.0	92.5 \pm 8.3	83.3 \pm 4.5	97.5 \pm 5.0	97.8 \pm 1.0	92.5 \pm 5.0
	Umaze-Diverse	87.5 \pm 12.5	32.5 \pm 34.9	70.6 \pm 3.7	75.0 \pm 20.8	<u>88.3</u> \pm 13.0	92.5 \pm 9.5
	Medium-Play	7.5 \pm 9.5	40.0 \pm 7.1	64.6 \pm 4.9	85.0 \pm 5.7	84.0 \pm 4.2	85.0 \pm 12.9
	Medium-Diverse	12.5 \pm 12.5	40.0 \pm 25.5	61.7 \pm 6.1	85.0 \pm 12.9	76.3 \pm 13.5	70.0 \pm 11.5
	Large-Play	2.5 \pm 5.0	5.0 \pm 8.7	42.5 \pm 6.5	65.0 \pm 19.1	60.4 \pm 26.1	55.0 \pm 5.7
	Large-Diverse	2.5 \pm 5.0	22.5 \pm 14.8	27.6 \pm 7.8	65.0 \pm 10.0	54.4 \pm 25.1	52.5 \pm 18.9
AntMaze Avg		35.4	38.75	58.3	<u>78.7</u>	<u>76.8</u>	<u>74.5</u>
304 305 306	Pen Human	53.8 \pm 15.7	-2.1 \pm 0.0	<u>81.5</u> \pm 17.5	39.9 \pm 12.8	103.5 \pm 14.1	81.1 \pm 8.1
	Cloned	71.7 \pm 21.5	6.5 \pm 6.0	77.2 \pm 17.7	34.6 \pm 11.3	91.8 \pm 21.7	<u>87.2</u> \pm 4.2
	Expert	126.6 \pm 24.8	51.5 \pm 38.4	133.6 \pm 16.0	<u>141.8</u> \pm 11.8	154.1 \pm 5.4	141.2 \pm 9.4
307 308 309	Door Human	0.0 \pm 0.0	-0.2 \pm 0.0	3.1 \pm 2.0	-0.2 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0
	Cloned	0.0 \pm 0.0	-0.3 \pm 0.0	0.8 \pm 1.0	0.0 \pm 0.0	1.1 \pm 2.6	0.0 \pm 0.0
	Expert	81.6 \pm 16.3	-0.3 \pm 0.0	<u>105.3</u> \pm 2.8	51.4 \pm 55.3	104.6 \pm 2.4	105.6 \pm 0.4
310 311 312	Hammer Human	0.0 \pm 0.0	1.1 \pm 0.4	2.5 \pm 1.9	0.0 \pm 0.1	0.2 \pm 0.2	<u>2.2</u> \pm 3.2
	Cloned	0.1 \pm 0.0	0.3 \pm 0.0	1.1 \pm 0.5	0.1 \pm 0.1	6.7 \pm 3.7	12.0 \pm 9.1
	Expert	132.8 \pm 0.4	0.3 \pm 0.1	129.6 \pm 71.5	57.6 \pm 0.1	<u>133.8</u> \pm 0.7	128.6 \pm 0.4
313 314 315	Relocate Human	0.0 \pm 0.0	-0.3 \pm 0.0	0.1 \pm 0.1	0.1 \pm 0.0	0.0 \pm 0.0	0.1 \pm 0.2
	Cloned	0.0 \pm 0.0	-0.3 \pm 0.0	0.2 \pm 0.4	0.1 \pm 0.0	0.9 \pm 1.6	0.0 \pm 0.0
	Expert	90.6 \pm 18.2	-0.3 \pm 0.0	106.5 \pm 2.5	6.7 \pm 4.6	<u>106.6</u> \pm 3.2	111.2 \pm 2.4
Adroit Avg		46.4	4.65	<u>53.4</u>	28.8	<u>58.6</u>	<u>55.7</u>
Total Avg		57.7	51.2	62.6	64.2	<u>74.8</u>	<u>77.9</u>

5.1 COMPARATIVE PERFORMANCE ON BENCHMARK

We evaluate ASPC on 39 datasets spanning four D4RL domains Levine et al. (2020): MuJoCo (v2), AntMaze (v2), Maze2d (v1), and Adroit (v1). Our baselines include TD3+BC Fujimoto & Gu (2021) and IQL Kostrikov et al. (2022) as standard policy-constraint methods. wPC Peng et al. (2023) and A2PR Liu et al. (2024) are state-of-the-art (SOTA) adaptive policy constraint methods built on TD3+BC. ReBRAC Tarasov et al. (2024a) integrates multiple performance-boosting components into TD3+BC and has achieved SOTA results across a wide range of datasets. TD3+BC, wPC, A2PR, and ASPC are all set as the single hyperparameter set, whereas IQL and ReBRAC rely on dataset-specific hyperparameters found via grid search. We reproduce results for TD3+BC, wPC and A2PR. IQL and

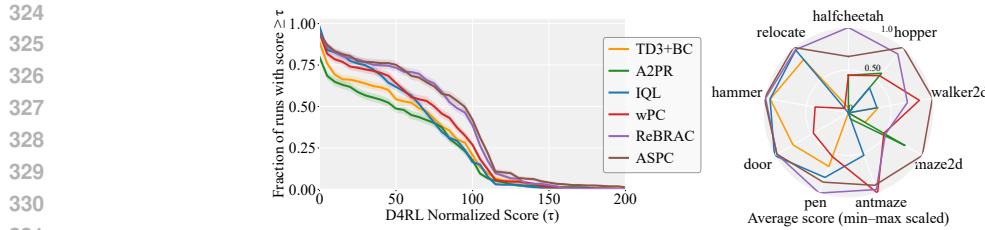


Figure 2: Left: performance profiles on 39 datasets of D4RL. Right: radar chart of the mean performance across the nine tasks.

ReBRAC results are taken from Tarasov et al. (2024a;b). Complete experimental details for each algorithm are provided in the appendix B.2.

The performance comparison is summarized in Table 1. ASPC achieves the best performance on MuJoCo and Maze2d, and exhibits competitive results on Adroit and AntMaze. Most notably, ASPC attains SOTA performance on average across all four domains, which not only outperforms other adaptive policy constraint methods but also surpasses approaches that rely on meticulous per-dataset hyperparameter tuning, highlighting its remarkable adaptability. Figure 2 shows that the performance profile curves (left) place ASPC above all baselines for almost every threshold, and the min-max-scaled radar chart (right) gives ASPC the largest, most balanced polygon, visually confirming its strong and stable performance across tasks without per-dataset tuning.

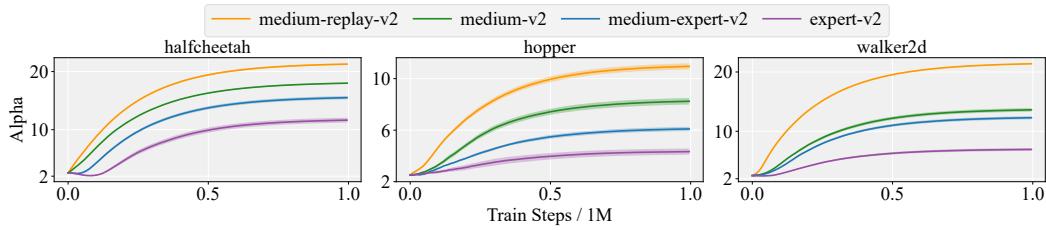


Figure 3: Learning curves of α on halfcheetah, hopper, and walker2d across datasets of different quality. Higher-quality datasets yield smaller α (favoring BC), while lower-quality ones yield larger α (favoring RL). α is initialized to 2.5.

5.2 ADAPTABILITY OF THE SACLE FACTOR

Dataset Adaptability Figure 3 shows the evolution of α on HalfCheetah, Hopper, and Walker2d for four dataset quality levels, listed from highest to lowest as expert, medium-expert, medium, and medium-replay. Across all three tasks, higher-quality datasets lead to smaller α , which places more weight on BC, whereas lower-quality datasets lead to larger α , shifting the emphasis toward RL. The consistent ordering confirms that ASPC automatically adjusts the policy-constraint scale to dataset quality without any per-dataset hyperparameter tuning.

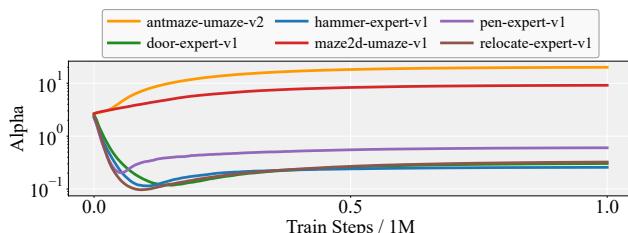


Figure 4: Learning curves of α on six different tasks. The algorithm automatically adjusts α based on the task characteristics. The y-axis is shown in logarithmic scale for better visualization.

378 **Task Adaptability** Figure 4 plots the α trajectories on six heterogeneous tasks. Tasks such as door,
 379 pen, hammer, and relocate possess narrow expert data distributions; here α settles near 10^{-1} , giving
 380 greater weight to BC. Conversely, antmaze and maze2d, whose datasets contain highly sub-optimal
 381 trajectories, drive α above 10, shifting emphasis to RL. This task-aware scaling requires no manual
 382 tuning and highlights ASPC’s cross-task adaptability.

383 **Training Adaptability** Combining the curves from Figures 4 and 3, we observe a common learning
 384 dynamic: α first drops (or rises only slightly) during the early training phase, indicating greater
 385 reliance on BC when the policy is still immature. As learning progresses and the critic stabilises,
 386 α gradually increases, handing more control to RL. This smooth, stage-wise adjustment underpins
 387 ASPC’s stable convergence across tasks and datasets.

389 5.3 NECESSITY OF DYNAMIC SCALE FACTOR ADJUSTMENT

390 As shown in Table 1, the hyperparameters meticulously selected via grid search ultimately underper-
 391 form compared to the ASPC algorithm, which dynamically adjusts hyperparameters during training.
 392 This observation raises the question: is grid search simply failing to find the best setting, or is the
 393 dynamic adjustment in ASPC the true source of its advantage? To answer this, we conduct three
 394 controlled tests. **Naive α .** TD3+BC is run with a fixed scale factor $\alpha = 2.5$. **Converged α .** TD3+BC
 395 is run with α fixed to the final value reached by ASPC on the same dataset. **Linear α .** TD3+BC starts
 396 from $\alpha = 2.5$ and linearly interpolates to the above converged value over the training horizon. To
 397 ensure fairness, all TD3+BC variants utilize the same robust critic architecture as ASPC, comprising
 398 three hidden layers, each followed by a LayerNorm.

400 Table 2: Results under different α settings. Values in parentheses indicate the percent difference from
 401 Naive. Blue denotes improvement, and red denotes degradation.

403 Domain	404 Naive α	405 Converged α	406 Linear α	407 Dynamic α (ASPC)
Mujoco	70.3	79.3 (↑12.8%)	77.0 (↑9.5%)	82.1 (↑16.8%)
Maze2d	61.9	133.2 (↑115.2%)	103.3 (↑66.9%)	147.2 (↑137.8%)
AntMaze	28.7	64.1 (↑123.3%)	56.3 (↑96.2%)	74.5 (↑159.2%)
Adroit	49.9	49.1 (↓1.6%)	47.6 (↓4.6%)	55.7 (↑11.6%)
Total Avg	57.0	71.8 (↑25.9%)	66.7 (↑17.0%)	77.9 (↑36.6%)

410 Table 2 summarises the mean normalised scores in the four D4RL domains. Percentages in blue
 411 report the relative gain over the naive baseline that fixes $\alpha = 2.5$. Converged α and Linear α both
 412 outperform the naive setting, which confirms that the value to which ASPC eventually converges
 413 is a much more appropriate scale for the policy constraint. ASPC (Dynamic α) still exceeds the
 414 Converged variant by a wide margin, and the Linear schedule closes only part of the gap. These
 415 results show that simply finding a good fixed α is not enough. Adapting the scale throughout training
 416 is essential for the best performance. ASPC provides this dynamic adjustment automatically and
 417 therefore achieves the highest overall score.

418 5.4 RUNTIME ANALYSIS

420 ASPC employs second-order gradient computations for updating α , which increases cost. However,
 421 its update interval (k_α) can be set substantially longer than that of the actor (k_π), thereby minimizing
 422 the additional computational overhead. To evaluate runtime efficiency, we compare the execution
 423 time of one million iterations of ASPC against that of other baseline algorithms. Figure 5 presents
 424 a bar chart comparing the runtime of ASPC against TD3+BC, CQL, IQL, wPC and A2PR on the
 425 halfcheetah-medium-v2 dataset. The results indicate that ASPC introduces only a minimal additional
 426 computational overhead beyond that of TD3+BC.

427 We further analyze the relationship between k_α , runtime, and performance, as illustrated in Figure 5.
 428 The baseline setting for k_α is 10, we observe that reducing k_α does not lead to significant performance
 429 degradation. This suggests that ASPC effectively captures the correct gradient optimization direction,
 430 maintaining robustness even when the gradient step size is large. When k_α is set to 30, the runtime
 431 is nearly identical to that of TD3+BC while maintaining strong performance. This highlights the
 efficiency of the ASPC algorithm.

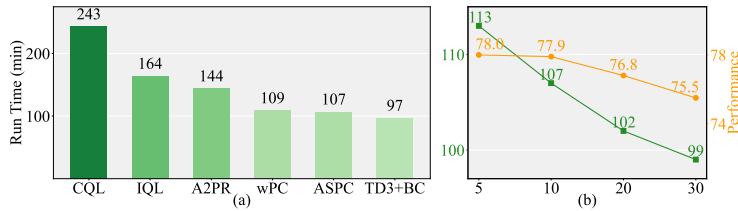


Figure 5: (a) Runtime comparison of different algorithms. (b) Runtime and average performance under different α -update intervals (k_α). ASPC introduces only minimal overhead compared to TD3+BC, and increasing the update interval reduces runtime while maintaining high performance.

5.5 ABLATION STUDIES

Robust Critic(RC) When using the original TD3+BC critic network (with two hidden layers and no LayerNorm), during the process of adjusting α , Q-values exhibit significant instability, frequently leading to overestimation, causing catastrophic failure of the algorithm. Since wPC is also designed based on the original TD3+BC framework, we include it in our experiments related to RC (with three hidden layers and LayerNorm). Figure 6a presents the experimental results. The results indicate that when RC is not utilized, both wPC and ASPC achieve limited performance improvement and even exhibit performance degradation on certain tasks.

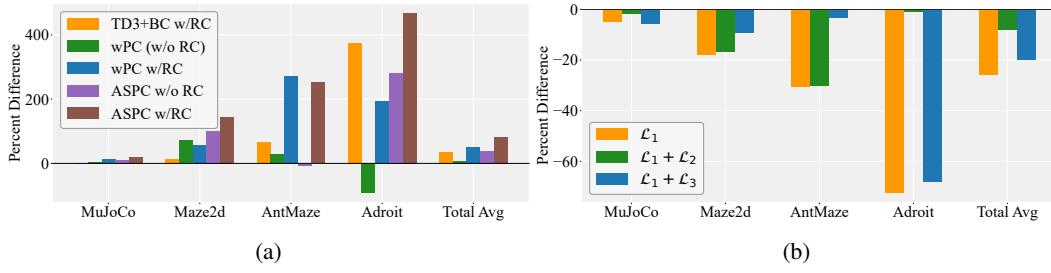


Figure 6: (a) Percent difference relative to the baseline TD3+BC (w/o RC (critic with three hidden layers, each incorporating LayerNorm)). (b) Percent difference of outer loss variants equation 9 relative to the full ASPC configuration.

Loss Function Figure 6b reveals clear, domain-dependent effects when the regularization terms are added to the base loss \mathcal{L}_1 . Adding neither term (\mathcal{L}_1 only) gives the poorest performance. Introducing only \mathcal{L}_2 lifts performance in MuJoCo and Adroit to the level of full ASPC, while leaving AntMaze almost unchanged. Conversely, adding only \mathcal{L}_3 significantly boosts AntMaze but has little effect on MuJoCo or Adroit. For Maze2D, neither single term suffices. Only the full loss $\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$ attains the best result. These results can be explained by Proposition 4.2, which shows that \mathcal{L}_2 and \mathcal{L}_3 implicitly constrain one another. Consequently, adding \mathcal{L}_2 in MuJoCo and Adroit implicitly bounds ΔL_{BC} as well, so the single-step performance guarantee of Theorem 4.4 is already satisfied. Conversely, in AntMaze a direct \mathcal{L}_3 penalty implicitly limits $(\Delta Q)^2$, again meeting the theorem's lower bound. For Maze2D, however, neither implicit relation is strong enough; both \mathcal{L}_2 and \mathcal{L}_3 must be enforced explicitly for the condition in Theorem 4.4 to hold.

5.6 EXTENDING ASPC TO OTHER OFFLINE RL METHODS

Many offline RL algorithms follow the form of equation 1. To evaluate the generality of ASPC, we integrate its adaptive policy constraint into three representative baselines, including IQL, CQL, and Diffusion-QL Wang et al. (2023). Each method contains a hyperparameter analogous to α that controls the balance between value learning and conservatism. We replace this manually tuned coefficient with a learnable parameter and update it using the same bi-level second-order procedure as ASPC. The detailed objectives for each algorithm are provided in Appendix D.

As shown in Table 3, incorporating ASPC consistently improves the performance of all three baselines, which demonstrates the broad applicability of our approach. IQL yields the smallest improvement,

486 Table 3: Performance on Gym-MuJoCo datasets. +ASPC denotes the baseline combined with ASPC,
 487 and the percent change indicates its relative improvement over the baseline.

Gym-MuJoCo	IQL	+ASPC	CQL	+ASPC	Diffusion-QL	+ASPC
halfcheetah-medium	50.0	48.4 (-3.2%)	46.8	56.3 (+20.3%)	51.5	59.2 (+15.0%)
halfcheetah-medium-expert	92.7	94.4 (+1.8%)	94.2	93.6 (-0.6%)	96.8	96.7 (-0.1%)
halfcheetah-medium-replay	42.1	44.4 (+5.5%)	45.3	51.0 (+12.6%)	47.8	58.2 (+21.8%)
hopper-medium	65.2	61.4 (-5.8%)	61.3	71.6 (+16.8%)	90.5	101.0 (+11.6%)
hopper-medium-expert	85.5	100.2 (+17.2%)	90.1	106.9 (+18.6%)	111.1	111.1 (0.0%)
hopper-medium-replay	89.6	88.3 (-1.4%)	77.5	79.9 (+3.1%)	101.3	100.4 (-0.9%)
walker2d-medium	80.7	83.9 (+4.0%)	82.6	83.8 (+1.5%)	87.0	80.3 (-7.7%)
walker2d-medium-expert	112.1	112.1 (0.0%)	109.1	109.7 (+0.6%)	110.1	110.5 (+0.4%)
walker2d-medium-replay	75.4	77.5 (+2.8%)	74.5	81.7 (+9.7%)	95.5	95.2 (-0.3%)
Average	77.0	79.0 (+2.5%)	75.7	81.6 (+7.8%)	88.0	90.3 (+2.6%)

501 and a possible reason is that it performs implicit Q learning, so increasing α does not effectively
 502 shift the policy toward the RL objective. This implicit structure offers stability but limits the best
 503 achievable performance. CQL benefits more from ASPC because updating α directly adjusts the
 504 level of conservatism. Diffusion-QL already achieves very strong results, and ASPC further improves
 505 its performance, which highlights the robustness of ASPC even when applied to a strong baseline.

5.7 ADDITIONAL EXPERIMENTS ON OGBENCH

509 We further evaluate the generality and robustness of ASPC on OGBench Park et al. (2025a), a new
 510 benchmark for offline goal-conditioned RL. Results across ten datasets in Table 4 show that ASPC
 511 clearly surpasses all existing baselines, indicating strong applicability beyond D4RL. Since FQL Park
 512 et al. (2025b) also follows equation 1, we integrate ASPC by making its scale factor learnable and
 513 applying the same bi level optimization procedure, with details in Appendix D. This modification
 514 consistently improves FQL, further supporting the broad generality of ASPC across standard and
 515 goal-conditioned offline RL.

567 Table 4: Performance on OGBench. Each entry shows mean \pm std. FQL+ASPC includes the relative
 568 performance change over FQL. Bold numbers indicate the best performance for each task.

OGBench	TD3+BC	IQL	ReBRAC	ASPC	FQL	FQL+ASPC
antmaze-large-navigate-singletask-task1-v0	20 ± 44	48 ± 9	91 ± 10	93 ± 4	80 ± 8	84 (+5.0%)
antmaze-large-navigate-singletask-task2-v0	20 ± 31	42 ± 6	88 ± 4	87 ± 7	57 ± 10	63 (+10.5%)
antmaze-large-navigate-singletask-task3-v0	58 ± 31	72 ± 7	51 ± 18	96 ± 4	93 ± 3	88 (-5.4%)
antmaze-large-navigate-singletask-task4-v0	31 ± 37	51 ± 9	84 ± 7	86 ± 5	80 ± 4	70 (-12.5%)
antmaze-large-navigate-singletask-task5-v0	35 ± 38	54 ± 2	90 ± 2	88 ± 4	83 ± 4	80 (-3.6%)
antmaze-giant-navigate-singletask-task1-v0	0 ± 1	0 ± 0	27 ± 22	22 ± 20	4 ± 5	2 (-50.00%)
antmaze-giant-navigate-singletask-task2-v0	15 ± 24	1 ± 1	16 ± 17	74 ± 19	9 ± 7	26 (+188.9%)
antmaze-giant-navigate-singletask-task3-v0	0 ± 1	0 ± 0	34 ± 22	18 ± 13	0 ± 1	0 (0.0%)
antmaze-giant-navigate-singletask-task4-v0	11 ± 18	0 ± 0	5 ± 12	65 ± 18	14 ± 23	33 (+135.7%)
antmaze-giant-navigate-singletask-task5-v0	16 ± 25	19 ± 7	49 ± 22	55 ± 14	16 ± 28	49 (+206.3%)
Average	20.6	28.7	53.5	68.4	43.6	49.5 (+13.5%)

6 CONCLUSION

534 We presented ASPC, a bi-level framework that adapts the RL-BC trade off by optimizing the
 535 scaling factor α through second-order updates. ASPC yields consistent improvements not only on
 536 TD3+BC but also when combined with other offline RL baselines, demonstrating strong generality.
 537 However, these simple integrations yield smaller gains than those seen with TD3+BC, indicating that
 538 different algorithms may require ASPC-style components tailored to their training dynamics. Future
 539 work includes developing such method-specific adaptive mechanisms under a unified principle and
 evaluating them on larger benchmarks and real-world datasets.

540
541
ETHICS STATEMENT

542 This work focuses on methodological advances in offline RL. All experiments are conducted on
 543 standard simulated benchmarks, which do not involve human subjects, personally identifiable in-
 544 formation, or sensitive data. We strictly follow the licensing terms of all datasets and simulation
 545 platforms used in this study. Our method, Adaptive Scaling of Policy Constraints (ASPC), is designed
 546 to improve the stability and reliability of offline RL algorithms. While RL has the potential for
 547 deployment in safety-critical domains, such as robotics and autonomous systems, the experiments in
 548 this paper remain purely in simulation. Any real-world use of these methods should be preceded by
 549 domain-specific safety checks and human oversight to avoid unintended harm.

550
551
REPRODUCIBILITY STATEMENT
552

553 We have taken several measures to ensure the reproducibility of our work. The proposed method is
 554 described in detail in Section 4, and the complete theoretical derivations are provided in Appendix A.
 555 Experimental settings and hyperparameters are reported in Appendix B. Moreover, we include the
 556 full implementation code in the Supplementary Material to facilitate replication of all results.

557
558
REFERENCES
559

560 Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
 561 reinforcement learning with diversified q-ensemble. *Advances in neural information processing*
 562 *systems*, 34:7436–7447, 2021.

563 Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
 564 Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. *arXiv*
 565 *preprint arXiv:2202.11566*, 2022.

566 Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
 567 with offline data. In *International Conference on Machine Learning*, pp. 1577–1594. PMLR, 2023.

568 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
 569 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 570 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

571 Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
 572 learning framework for autonomous driving. *stat*, 1050:8, 2017.

573 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 574 deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

575 Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
 576 programming for hyperparameter optimization and meta-learning. In *International conference on*
 577 *machine learning*, pp. 1568–1577. PMLR, 2018.

578 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 579 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

580 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 581 *Advances in neural information processing systems*, 34:20132–20145, 2021.

582 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
 583 exploration. In *International conference on machine learning*, pp. 2052–2062. PMLR, 2019.

584 Zhang-Wei Hong, Pulkit Agrawal, Rémi Tachet des Combes, and Romain Laroche. Harnessing mixed
 585 offline reinforcement learning datasets via trajectory weighting. *arXiv preprint arXiv:2306.13085*,
 586 2023.

587 Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
 588 modeling problem. *Advances in neural information processing systems*, 34:1273–1286, 2021.

594 Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
595 *Proceedings of the nineteenth international conference on machine learning*, pp. 267–274, 2002.
596

597 Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
598 Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In *2019 international*
599 *conference on robotics and automation (ICRA)*, pp. 8248–8254. IEEE, 2019.

600 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
601 2014.

602 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
603 q-learning. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=68n2s9ZJWF8>.
604

605 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
606 reinforcement learning. *Advances in Neural Information Processing Systems*, 33:1179–1191, 2020.

607 Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
608 learning on diverse multi-task data both scales and generalizes. *arXiv preprint arXiv:2211.15144*,
609 2022.

610 Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama,
611 Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision
612 transformers. *Advances in Neural Information Processing Systems*, 35:27921–27936, 2022.

613 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
614 review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

615 Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-guided
616 policy regularization for offline reinforcement learning. In *International Conference on Machine*
617 *Learning*, pp. 31406–31424. PMLR, 2024.

618 Yang Liu and Marius Hofert. Implicit and explicit policy constraints for offline reinforcement learning.
619 In *Causal Learning and Reasoning*, pp. 499–513. PMLR, 2024.

620 Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by
621 random network distillation. In *International Conference on Machine Learning*, pp. 26228–26244.
622 PMLR, 2023.

623 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
624 offline goal-conditioned RL. In *The Thirteenth International Conference on Learning Representations*,
625 2025a. URL <https://openreview.net/forum?id=M992mjgKzI>.

626 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In *International Conference on*
627 *Machine Learning (ICML)*, 2025b.

628 Zhiyong Peng, Changlin Han, Yadong Liu, and Zongtan Zhou. Weighted policy constraints for
629 offline reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
630 volume 37, pp. 9435–9443, 2023.

631 Niranjani Prasad, Li Fang Cheng, Corey Chivers, Michael Draugelis, and Barbara E Engelhardt. A
632 reinforcement learning approach to weaning of mechanical ventilation in intensive care units. In
633 *33rd Conference on Uncertainty in Artificial Intelligence, UAI 2017*, 2017.

634 Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
635 with dataset constraint for offline reinforcement learning. In *International Conference on Machine*
636 *Learning*, pp. 28701–28717. PMLR, 2023.

637 Jie Ren*, Xidong Feng*, Bo Liu*, Xuehai Pan*, Yao Fu, Luo Mai, and Yaodong Yang. Torchopt: An
638 efficient library for differentiable optimization. *Journal of Machine Learning Research*, 24(367):
639 1–14, 2023. URL <http://jmlr.org/papers/v24/23-0191.html>.

640 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
641 minimalist approach to offline reinforcement learning. *Advances in Neural Information Processing*
642 *Systems*, 36, 2024a.

648 Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
 649 Research-oriented deep offline reinforcement learning library. *Advances in Neural Information
 650 Processing Systems*, 36, 2024b.

651

652 Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. Supervised reinforcement learning with
 653 recurrent neural network for dynamic treatment recommendation. In *Proceedings of the 24th ACM
 654 SIGKDD international conference on knowledge discovery & data mining*, pp. 2447–2456, 2018.

655

656 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 657 class for offline reinforcement learning. In *The Eleventh International Conference on Learning
 658 Representations*, 2023. URL <https://openreview.net/forum?id=AHvFDPi-FA>.

659

660 Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gradient:
 661 Convergence analysis. In *Uncertainty in Artificial Intelligence*, pp. 2159–2169. PMLR, 2022.

662

663 Qisen Yang, Shenzhi Wang, Matthieu Gaetan Lin, Shiji Song, and Gao Huang. Boosting offline
 664 reinforcement learning with action preference query. In *International Conference on Machine
 665 Learning*, pp. 39509–39523. PMLR, 2023.

666

667 Qisen Yang, Shenzhi Wang, Qihang Zhang, Gao Huang, and Shiji Song. Hundreds guide millions:
 668 Adaptive offline reinforcement learning with expert guidance. *IEEE transactions on neural
 669 networks and learning systems*, 35(11):16288–16300, 2024.

670

671 Zhaolin Yuan, ZiXuan Zhang, Xiaorui Li, Yunduan Cui, Ming Li, and Xiaojuan Ban. Controlling
 672 partially observed industrial system based on offline reinforcement learning—a case study of paste
 673 thickener. *IEEE Transactions on Industrial Informatics*, 2024.

674

675 Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, and Yu Zheng. Deepthermal:
 676 Combustion optimization for thermal power generating units using offline reinforcement learning.
 677 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 4680–4688, 2022.

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A THEORETICAL PROOFS**
 703

704 **A.1 PROOF OF PROPOSITION 4.2**
 705

706 Throughout the argument, we adopt the following shorthand. We index the policies as
 707

$$\pi_t \equiv \pi_\theta, \quad \pi_{t+1} \equiv \pi_{\tilde{\theta}}.$$

709 We write

$$\begin{aligned} 710 \quad L_t^{\text{BC}} &:= \mathbb{E}_{(s,a) \sim \mathcal{D}} [\|\pi_t(s) - a\|^2], \quad L_{t+1}^{\text{BC}} := \mathbb{E}_{(s,a) \sim \mathcal{D}} [\|\pi_{t+1}(s) - a\|^2], \\ 711 \quad \Delta L_{\text{BC}} &:= |L_{t+1}^{\text{BC}} - L_t^{\text{BC}}|, \quad c := \sqrt{L_t^{\text{BC}}}, \quad x := \mathbb{E}_{s \sim \mathcal{D}} [\|\pi_{t+1}(s) - \pi_t(s)\|^2]. \end{aligned}$$

712 **Lemma A.1** (Reverse triangle inequality). *For all $A, B \in \mathbb{R}$ one has $|A + B| \geq |A| - |B|$.*

713 **Lemma A.2** (Cauchy–Schwarz). *For square–integrable real random variables X, Y , $|\mathbb{E}[XY]| \leq$
 714 $(\mathbb{E}[X^2])^{1/2}(\mathbb{E}[Y^2])^{1/2}$.*

715 *Proof.* The proof proceeds in three steps.

716 Step 1: A lower bound on ΔL_{BC} . Expand the definition of ΔL_{BC} and simplify:

$$\begin{aligned} 717 \quad \Delta L_{\text{BC}} &= \left| \mathbb{E}_s \left[\|\pi_{t+1}(s) - \pi_\beta(s)\|^2 - \|\pi_t(s) - \pi_\beta(s)\|^2 \right] \right| \\ 718 \quad &= \left| \mathbb{E}_s \left[(\pi_{t+1}(s) - \pi_\beta(s))^\top (\pi_{t+1}(s) - \pi_\beta(s)) - (\pi_t(s) - \pi_\beta(s))^\top (\pi_t(s) - \pi_\beta(s)) \right] \right| \\ 719 \quad &= \left| \mathbb{E}_s \left[(\pi_{t+1}(s) - \pi_\beta(s) + \pi_t(s) - \pi_\beta(s))^\top \cdot (\pi_{t+1}(s) - \pi_t(s)) \right] \right| \\ 720 \quad &= \left| \mathbb{E}_s \left[\|\pi_{t+1}(s) - \pi_t(s)\|^2 + 2(\pi_t(s) - \pi_\beta(s))^\top (\pi_{t+1}(s) - \pi_t(s)) \right] \right| \\ 721 \quad &= \left| x + 2\mathbb{E}_s \left[(\pi_t(s) - \pi_\beta(s))^\top (\pi_{t+1}(s) - \pi_t(s)) \right] \right| \\ 722 \quad &\stackrel{A.1}{\geq} |x| - 2 \left| \mathbb{E}_s \left[(\pi_t(s) - \pi_\beta(s))^\top (\pi_{t+1}(s) - \pi_t(s)) \right] \right| \\ 723 \quad &= x - 2 \left| \mathbb{E}_s \left[(\pi_t(s) - \pi_\beta(s))^\top (\pi_{t+1}(s) - \pi_t(s)) \right] \right| \\ 724 \quad &\stackrel{A.2}{\geq} x - 2 \sqrt{\mathbb{E}_s \|\pi_t(s) - \pi_\beta(s)\|^2} \cdot \sqrt{\mathbb{E}_s \|\pi_{t+1}(s) - \pi_t(s)\|^2} \\ 725 \quad &= x - 2c\sqrt{x}. \end{aligned} \tag{14}$$

726 Since $\Delta L_{\text{BC}} \geq 0$ by definition, combining with equation 14 yields

$$\Delta L_{\text{BC}} \geq \max \{x - 2c\sqrt{x}, 0\}. \tag{15}$$

727 Step 2: An upper bound on $(\Delta Q)^2$. Jensen’s inequality and the assumption 4.1 yield

$$\begin{aligned} 728 \quad (\Delta Q)^2 &= \left(\mathbb{E}_s [Q(s, \pi_{t+1}(s)) - Q(s, \pi_t(s))] \right)^2 \\ 729 \quad &\leq \mathbb{E}_s [(Q(s, \pi_{t+1}(s)) - Q(s, \pi_t(s)))^2] \\ 730 \quad &\leq L_Q^2 \mathbb{E}_s \|\pi_{t+1}(s) - \pi_t(s)\|^2 \\ 731 \quad &= L_Q^2 x \end{aligned} \tag{16}$$

732 Step 3: Mutual bound. From equation 16 we have

$$x \geq x_{\min} := (\Delta Q)^2 / L_Q^2. \tag{17}$$

756 Since $\Delta L_{BC} \geq \max\{x - 2c\sqrt{x}, 0\}$ from equation 15, we relate this expression to ΔQ as follows.
 757 The function $h(x) = x - 2c\sqrt{x}$ is non-positive on $[0, 4c^2]$ and strictly increasing on $[4c^2, \infty)$. When
 758 $|\Delta Q| \leq 2cL_Q$, we have $x_{\min} \leq 4c^2$, and $h(x_{\min})$ is non-positive; thus $\Delta L_{BC} \geq 0 \geq h(x_{\min})$.
 759 When $|\Delta Q| > 2cL_Q$, we have $x_{\min} > 4c^2$ and $h(x)$ is increasing for all $x \geq x_{\min}$, which gives
 760 $\Delta L_{BC} \geq h(x_{\min})$. Combining the two regimes yields the bound

$$761 \quad \Delta L_{BC} \geq \max\left\{0, \frac{(\Delta Q)^2}{L_Q^2} - 2c \frac{|\Delta Q|}{L_Q}\right\}. \quad (18)$$

764 Similarly, using equation 15 we obtain the following upper bounds for x :

$$766 \quad x \leq (c + \sqrt{c^2 + \Delta L_{BC}})^2. \quad (19)$$

768 Combining equation 16 with equation 19 gives an upper bound on $(\Delta Q)^2$:

$$769 \quad (\Delta Q)^2 \leq L_Q^2 (c + \sqrt{c^2 + \Delta L_{BC}})^2. \quad (20)$$

771 equation 18 and equation 20 together yield the desired mutual bounds. \square

773 A.2 PROOF OF PROPOSITION 4.3

775 This section analyses conditions under which the one-step performance difference $J(\pi_{t+1}) - J(\pi_t)$
 776 admits a tractable lower bound when training on a fixed offline dataset D collected under behavior
 777 policy π_β (so $D \approx d_{\pi_\beta}$).

778 **Lemma A.3** (Performance-difference lemma). *For any policies π_1 and π_2 ,*

$$779 \quad J(\pi_1) - J(\pi_2) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\pi_1}} [\mathbb{E}_{a \sim \pi_1} Q^{\pi_2}(s, a) - V^{\pi_2}(s)]. \quad (21)$$

782 The proof of Lemma A.3 can be found in Kakade & Langford (2002).

783 **Lemma A.4.** *Under Assumption 4.1, the total variation distance between the visitation distributions
 784 of any policy π and the behavior policy π_β satisfies*

$$785 \quad \|d_\pi - d_{\pi_\beta}\|_1 = \int_s |d_\pi(s) - d_{\pi_\beta}(s)| ds \leq C L_P \max_{s \in \mathcal{S}} \|\pi(s) - \pi_\beta(s)\|. \quad (22)$$

788 where $C > 0$ is a constant.

789 The proof of Lemma A.4 can be found in the appendix of Xiong et al. (2022).

791 **Lemma A.5** (Sup-norm version of equation 19). *Define*

$$792 \quad x_\infty := \sup_s \|\pi_{t+1}(s) - \pi_t(s)\|^2,$$

$$793 \quad c_\infty^2 := \sup_s \|\pi_t(s) - \pi_\beta(s)\|^2,$$

$$794 \quad \Delta L_\infty^{BC} := \sup_s \|\pi_{t+1}(s) - \pi_\beta(s)\|^2 - \|\pi_t(s) - \pi_\beta(s)\|^2.$$

797 Then

$$798 \quad x_\infty \leq (c_\infty + \sqrt{c_\infty^2 + \Delta L_\infty^{BC}})^2. \quad (23)$$

800 *Proof.* For each s , let $\Delta L_{BC}(s) = \|\pi_{t+1}(s) - \pi_\beta(s)\|^2 - \|\pi_t(s) - \pi_\beta(s)\|^2$. Then

$$802 \quad \|\pi_{t+1}(s) - \pi_t(s)\|^2 = [(\pi_{t+1}(s) - \pi_\beta(s)) - (\pi_t(s) - \pi_\beta(s))]^2$$

$$803 \quad \leq (\|\pi_{t+1}(s) - \pi_\beta(s)\| + \|\pi_t(s) - \pi_\beta(s)\|)^2$$

$$804 \quad = \left(\sqrt{\|\pi_{t+1}(s) - \pi_\beta(s)\|^2 + \|\pi_t(s) - \pi_\beta(s)\|^2} \right)^2$$

$$805 \quad = \left(\sqrt{\|\pi_t(s) - \pi_\beta(s)\|^2 + \Delta L_{BC}(s) + \|\pi_t(s) - \pi_\beta(s)\|^2} \right)^2$$

$$806 \quad \leq (c_\infty + \sqrt{c_\infty^2 + \Delta L_\infty^{BC}})^2. \quad (24)$$

810 Taking the supremum over s gives the stated result:
811

$$812 \quad x_\infty = \sup_s \|\pi_{t+1}(s) - \pi_t(s)\|^2 \leq (c_\infty + \sqrt{c_\infty^2 + \Delta L_\infty^{BC}})^2. \quad (25)$$

814 The proof of Lemma A.5 is finished. \square
815

816 *Proof.* In our deterministic setting, the conditional action distribution $\pi(\cdot|s)$ for any state s is a Dirac
817 measure concentrated at a single action. Specifically, for π_2 in Lemma A.3 we have:
818

$$819 \quad V^{\pi_2}(s) = \mathbb{E}_{a \sim \pi_2}[Q^{\pi_2}(s, a)] = Q^{\pi_2}(s, \pi_2(s)), \quad (26)$$

820 Applying Lemma A.3 with $\pi_1 = \pi_{t+1}$ and $\pi_2 = \pi_t$ gives:
821

$$822 \quad J(\pi_{t+1}) - J(\pi_t) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\pi_{t+1}}} [Q^{\pi_t}(s, \pi_{t+1}(s)) - Q^{\pi_t}(s, \pi_t(s))]. \quad (27)$$

823 Write the performance-difference identity equation 27 as
824

$$\begin{aligned} 825 \quad J(\pi_{t+1}) - J(\pi_t) &= \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\pi_{t+1}}} [Q^{\pi_t}(s, \pi_{t+1}(s)) - Q^{\pi_t}(s, \pi_t(s))] \\ 826 \\ 827 \quad &= \frac{1}{1-\gamma} \left\{ \mathbb{E}_{s \sim D} [Q^{\pi_t}(s, \pi_{t+1}(s)) - Q^{\pi_t}(s, \pi_t(s))] \right. \\ 828 \\ 829 \quad &\quad + \int (d_{\pi_{t+1}}(s) - D(s)) (Q^{\pi_t}(s, \pi_{t+1}(s)) - Q^{\pi_t}(s, \pi_t(s))) ds \Big\} \\ 830 \\ 831 \quad &\geq \frac{1}{1-\gamma} \left\{ \underbrace{\mathbb{E}_{s \sim D} [Q^{\pi_t}(s, \pi_{t+1}(s)) - Q^{\pi_t}(s, \pi_t(s))]}_{\Delta Q} \right. \\ 832 \\ 833 \quad &\quad - \left| \int (d_{\pi_{t+1}}(s) - D(s)) (Q^{\pi_t}(s, \pi_{t+1}(s)) - Q^{\pi_t}(s, \pi_t(s))) ds \right| \Big\} \\ 834 \\ 835 \quad &\geq \frac{1}{1-\gamma} \left\{ \Delta Q - \|d_{\pi_{t+1}} - d_{\pi_t}\|_1 \cdot \sup_s |Q^{\pi_t}(s, \pi_{t+1}(s)) - Q^{\pi_t}(s, \pi_t(s))| \right\} \\ 836 \\ 837 \quad &\stackrel{A.4}{\geq} \frac{1}{1-\gamma} \left\{ \Delta Q - C L_P \max_s \|\pi_{t+1} - \pi_t\| \cdot \sup_s |Q^{\pi_t}(s, \pi_{t+1}(s)) - Q^{\pi_t}(s, \pi_t(s))| \right\} \\ 838 \\ 839 \quad &\stackrel{4.1}{\geq} \frac{1}{1-\gamma} \left\{ \Delta Q - C L_P L_Q \max_s \|\pi_{t+1} - \pi_t\| \cdot \max_s \|\pi_{t+1} - \pi_t\| \right\} \\ 840 \\ 841 \quad &\geq \frac{1}{1-\gamma} \left\{ \Delta Q - C L_P L_Q (\max_s \|\pi_{t+1} - \pi_t\| + \max_s \|\pi_t - \pi_\beta\|) \max_s \|\pi_{t+1} - \pi_t\| \right\} \\ 842 \\ 843 \quad &= \frac{1}{1-\gamma} \left\{ \Delta Q - C L_P L_Q (\sqrt{x_\infty} + c_\infty) \sqrt{x_\infty} \right\} \\ 844 \\ 845 \quad &\stackrel{A.5}{\geq} \frac{1}{1-\gamma} \left\{ \Delta Q - C L_P L_Q \left[(c_\infty + \sqrt{c_\infty^2 + \Delta L_\infty^{BC}})^2 + c_\infty \sqrt{c_\infty^2 + \Delta L_\infty^{BC} + c_\infty^2} \right] \right\} \\ 846 \\ 847 \quad &= \frac{1}{1-\gamma} \left\{ \Delta Q - C L_P L_Q (3c_\infty^2 + 3c_\infty \sqrt{c_\infty^2 + \Delta L_\infty^{BC}} + \Delta L_\infty^{BC}) \right\}. \end{aligned} \quad (28)$$

848 Thus, the one-step performance satisfies the lower bound
849

$$850 \quad J(\pi_{t+1}) - J(\pi_t) \geq \frac{1}{1-\gamma} \left(\Delta Q - \kappa (3c_\infty^2 + 3c_\infty \sqrt{c_\infty^2 + \Delta L_\infty^{BC}} + \Delta L_\infty^{BC}) \right), \quad (29)$$

$$851 \quad \kappa := C L_P L_Q.$$

852 The proof of Proposition 4.3 is finished. \square
853

864 A.3 PROOF OF THEOREM 4.4
865866 We now show how our outer-loss components ensure the performance lower bound equation 29 is
867 maintained.868 \mathcal{L}_1 equation 6 updates α based on the relative gradients of Q-value and the BC loss. Under the
869 initialization assumption $\nabla_\theta \mathbb{E}[Q] > \nabla_\theta L_{BC}$, so \mathcal{L}_1 updates α to favor Q-improvement.
870871 In our algorithm, the two regularizers \mathcal{L}_2 and \mathcal{L}_3 play complementary roles in guaranteeing safe
872 single-step improvements. Specifically, \mathcal{L}_2 in equation 7 penalizes the squared change in the Q-
873 function, ΔQ^2 , to prevent overly large and unreliable Q-updates. Due to the bootstrapping error
874 inherent in RL, the single-step Q-value changes can be noisy, and therefore we apply an exponential
875 moving average (EMA) for stabilization. In order to preserve the one-step performance lower bound
876 equation 29, \mathcal{L}_3 in equation 8 must impose a matching penalty on the bias term identified in that
877 bound. By choosing \mathcal{L}_3 so that its curvature mirrors that of \mathcal{L}_2 , we ensure the single-step performance
878 guarantee remains non-negative.
879879 *Proof.* We perform a second-order Taylor expansion of $\sqrt{c_\infty^2 + \Delta L_\infty^{BC}}$ around $\Delta L_\infty^{BC} = 0$, assum-
880 ing $\Delta L_\infty^{BC} / c_\infty^2 \ll 1$, discarding higher-order and constant terms. Substituting into the square and
881 retaining only terms up to $O(\Delta L_\infty^{BC})$ yields:

882
$$\begin{aligned} \mathcal{L}_3 &= \kappa^2 \left(3c_\infty^2 + 3c_\infty \sqrt{c_\infty^2 + \Delta L_\infty^{BC}} + \Delta L_\infty^{BC} \right)^2 \\ &= \kappa^2 \left(3c_\infty^2 + 3c_\infty \left(c_\infty + \frac{\Delta L_\infty^{BC}}{2c_\infty} - \frac{(\Delta L_\infty^{BC})^2}{8c_\infty^3} + O(\Delta L_\infty^{BC^3}) \right) + \Delta L_\infty^{BC} \right)^2 \\ &= \kappa^2 \left(6c_\infty^2 + \frac{5}{2} \Delta L_\infty^{BC} - \frac{3}{8} \frac{(\Delta L_\infty^{BC})^2}{c_\infty^2} + O(\Delta L_\infty^{BC^3}) \right)^2 \\ &= \kappa^2 \left(36c_\infty^4 + 30c_\infty^2 \Delta L_\infty^{BC} + O(\Delta L_\infty^{BC^2}) \right) \\ &= 36\kappa^2 c_\infty^4 + 30\kappa^2 c_\infty^2 \Delta L_\infty^{BC} + O(\Delta L_\infty^{BC^2}) \\ &\approx 30\kappa^2 c_\infty^2 \Delta L_\infty^{BC} \\ &= w c_\infty^2 \Delta L_\infty^{BC}, \quad w := 30\kappa^2. \end{aligned} \tag{30}$$

890 In practice, we scale \mathcal{L}_3 by the value of \mathcal{L}_2 to match its regularization strength and simply set w to 1:
891

892
$$\mathcal{L}_3 = (\Delta Q)^2 c_\infty^2 \Delta L_\infty^{BC}. \tag{31}$$

893 By setting an appropriate w , the algorithm can guarantee that:
894

895
$$J(\pi_{t+1}) - J(\pi_t) \geq 0. \tag{32}$$

896 The proof of Theorem 4.4 is finished. \square
897900 A.4 PROOF OF THEOREM 4.5
901902 *Proof.* We split the total performance gap into two components:
903

904
$$\begin{aligned} J(\pi^*) - J(\pi_T) &= [J(\pi^*) - J(\pi_0)] - [J(\pi_1) - J(\pi_0)] - [J(\pi_2) - J(\pi_1)] - \cdots - [J(\pi_T) - J(\pi_{T-1})] \\ &= J(\pi^*) - J(\pi_0) - \sum_{i=0}^{T-1} [J(\pi_{i+1}) - J(\pi_i)]. \end{aligned} \tag{33}$$

905 We first observe that the behavior-cloning loss
906

907
$$L_t^{BC} = \mathbb{E}_{(s,a) \sim D} \|\pi_t(s) - a\|^2 \tag{34}$$

908 decreases rapidly during early training. Hence there exists a warm-up time t_0 such that
909

910
$$L_{t_0}^{BC} \leq \varepsilon_0 \implies \mathbb{E}_{s \sim D} \|\pi_{t_0}(s) - \beta(s)\| \leq \sqrt{\varepsilon_0}, \tag{35}$$

918 and we set

$$\pi_0 := \pi_{t_0} \approx \beta.$$

919 then

$$\begin{aligned}
 920 \quad J(\pi^*) - J(\pi_0) &= \frac{1}{1-\gamma} \left(\mathbb{E}_{s \sim d_{\pi^*}} [r(s)] - \mathbb{E}_{s \sim d_{\pi_0}} [r(s)] \right) \\
 921 \quad &= \frac{1}{1-\gamma} \int_s (d_{\pi^*}(s) - d_{\pi_0}(s)) r(s) \, ds \\
 922 \quad &\leq \frac{1}{1-\gamma} \int_s |d_{\pi^*}(s) - d_{\pi_0}(s)| R_{\max} \, ds \\
 923 \quad &= \frac{R_{\max}}{1-\gamma} \|d_{\pi^*} - d_{\pi_0}\|_1 \\
 924 \quad &\stackrel{A.4}{\leq} \frac{R_{\max}}{1-\gamma} C L_P \max_s \|\pi^*(s) - \pi_0(s)\| \\
 925 \quad &\leq \frac{C L_P R_{\max}}{1-\gamma} \underbrace{\left(\max_s \|\pi^*(s) - \beta(s)\| + \mathbb{E}_{s \sim D} \|\pi_0(s) - \beta(s)\| \right)}_{\varepsilon_\beta} \\
 926 \quad &\leq \frac{C L_P R_{\max}}{1-\gamma} (\varepsilon_\beta + \sqrt{\varepsilon_0}). \tag{36}
 \end{aligned}$$

927 We define

$$\Delta_0 = \frac{C L_P R_{\max}}{1-\gamma} (\varepsilon_\beta + \sqrt{\varepsilon_0}) \tag{37}$$

928 Next, each one-step update i produces the gain equation 32

$$\delta_i = J(\pi_{i+1}) - J(\pi_i) \geq 0. \tag{38}$$

929 Summing these gains yields the unified bound

$$930 \quad J(\pi^*) - J(\pi_T) \leq \Delta_0 - \sum_{i=0}^{T-1} \delta_i. \tag{39}$$

931 With a fixed regularization weight α , the sequence $\{\delta_i\}$ tends to decay rapidly toward zero or even
 932 become negative. Therefore, static α leaves a large residual gap in equation 39. Our meta-update
 933 dynamically adjusts α so that each δ_i stays bounded below by a positive constant $\delta_{\min} > 0$ over a
 934 long horizon. Thus

$$935 \quad J(\pi^*) - J(\pi_T) \leq \Delta_0 - T \delta_{\min}. \tag{40}$$

936 The proof of Theorem 4.5 is finished. \square

937 B EXPERIMENTAL DETAILS

938 B.1 HARDWARE AND SOFTWARE

939 We use the following hardware:

940 1) Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10 GHz
 941 2) NVIDIA GeForce RTX 4090 GPU

942 We use the following software versions:

943 1) Python 3.8.10
 944 2) D4RL 1.1
 945 3) MuJoCo 3.2.3

972 4) Gym 0.23.1
 973 5) mujoco-py 2.1.2.14
 974 6) PyTorch 2.2.2 + CUDA 12.1
 975 7) TorchOpt 0.7.3 Ren* et al. (2023)

977 **B.2 HYPERPARAMETERS**

980 The network structures and hyperparameter configurations of each algorithm corresponding to Table
 981 1 are as follows.

982 **Table 5: ASPC hyperparameters.**

	Hyperparameter	Value
TD3+BC hyperparameters	Optimizer	Adam Kingma (2014)
	Critic learning rate	3e-4
	Actor learning rate	3e-4
	Mini-batch size	256
	Discount factor	0.99
	Target update rate	5e-3
	Policy noise	0.2
	Policy noise clipping	(-0.5, 0.5)
ASPC hyperparameters	Policy update frequency	2
	Critic hidden dim	256
	Critic hidden layers	3
	Critic activation function	ReLU
	Critic LayerNorm	True
	Actor hidden dim	256
	Actor hidden layers	2
ASPC hyperparameters	Actor activation function	ReLU
	Initial α	2.5
	α learning rate	2e-3
	α learning rate decay	Exponential
	α update interval	10
	EMA smoothing factor	0.995

1002 **Table 6: TD3+BC hyperparameters.**

	Hyperparameter	Value
TD3+BC hyperparameters	Optimizer	Adam Kingma (2014)
	Critic learning rate	3e-4
	Actor learning rate	3e-4
	Mini-batch size	256
	Discount factor	0.99
	Target update rate	5e-3
	Policy noise	0.2
	Policy noise clipping	(-0.5, 0.5)
ASPC hyperparameters	Policy update frequency	2
	α	2.5
	Critic hidden dim	256
	Critic hidden layers	3
	Critic activation function	ReLU
	Critic LayerNorm	True
	Actor hidden dim	256
	Actor hidden layers	2
	Actor activation function	ReLU

1021 **C LEARNING CURVES**

1023 **C.1 SCALE FACTOR CURVES**

1025 Figure 7 plots the α learning curves for all 39 datasets. The curves show that our algorithm (i) drives
 1026 α toward distinct optima across tasks and (ii) merely modulates its step size and pace when the dataset

1026
1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 7: wPC hyperparameters.

	Hyperparameter	Value
wPC hyperparameters	Optimizer	Adam Kingma (2014)
	Critic learning rate	3e-4
	Actor learning rate	3e-4
	Value learning rate	3e-4
	Mini-batch size	256
	Discount factor	0.99
	Target update rate	5e-3
	Policy noise	0.1
	Policy noise clipping	(-0.5, 0.5)
Architecture	Policy update frequency	2
	α	2.5
	Critic hidden dim	256
	Critic hidden layers	3
	Critic activation function	ReLU
	Critic LayerNorm	True
	Actor hidden dim	256
	Actor hidden layers	2
	Actor activation function	ReLU
A2PR hyperparameters	Value hidden dim	256
	Value hidden layers	2
	Value activation function	ReLU

Table 8: A2PR hyperparameters.

	Hyper-parameters	Value
TD3+BC hyperparameters	Optimizer	Adam Kingma (2014)
	Critic learning rate	3e-4
	Actor learning rate	3e-4
	Mini-batch size	256
	Discount factor	0.99
	Target update rate τ	5e-3
	Policy noise	0.2
	Policy noise clipping	(-0.5, 0.5)
	Policy update frequency	2
Architecture	α	2.5
	Q-Critic hidden dim	256
	Q-Critic hidden layers	3
	Q-Critic Activation function	ReLU
	V-Critic hidden dim	256
	V-Critic hidden layers	3
	V-Critic Activation function	ReLU
	Actor hidden dim	256
	Actor hidden layers	2
A2PR hyperparameters	Actor Activation function	ReLU
	Normalized state	True
	ϵ_A	0
	w_1, w_2	1.0

Table 9: IQL hyperparameters.

	Hyperparameter	Value
IQL hyperparameters	Optimizer	Adam Kingma (2014)
	Critic learning rate	3e-4
	Actor learning rate	3e-4
	Value learning rate	3e-4
	Mini-batch size	256
	Discount factor	0.99
	Target update rate	5e-3
	Learning rate decay	Cosine
Architecture	Critic hidden dim	256
	Critic hidden layers	2
	Critic activation function	ReLU
	Actor hidden dim	256
	Actor hidden layers	2
	Actor activation function	ReLU
	Value hidden dim	256
	Value hidden layers	2
	Value activation function	ReLU

Table 10: IQL’s best hyperparameters used in D4RL benchmark.

Task Name	β	IQL τ	Deterministic policy
halfcheetah-random	3.0	0.95	False
halfcheetah-medium	3.0	0.95	False
halfcheetah-expert	6.0	0.9	False
halfcheetah-medium-expert	3.0	0.7	False
halfcheetah-medium-replay	3.0	0.95	False
halfcheetah-full-replay	1.0	0.7	False
hopper-random	1.0	0.95	False
hopper-medium	3.0	0.7	True
hopper-expert	3.0	0.5	False
hopper-medium-expert	6.0	0.7	False
hopper-medium-replay	6.0	0.7	True
hopper-full-replay	10.0	0.9	False
walker2d-random	0.5	0.9	False
walker2d-medium	6.0	0.5	False
walker2d-expert	6.0	0.9	False
walker2d-medium-expert	1.0	0.5	False
walker2d-medium-replay	0.5	0.7	False
walker2d-full-replay	1.0	0.7	False
maze2d-umaze	3.0	0.7	False
maze2d-medium	3.0	0.7	False
maze2d-large	3.0	0.7	False
antmaze-umaze	10.0	0.7	False
antmaze-umaze-diverse	10.0	0.95	False
antmaze-medium-play	6.0	0.9	False
antmaze-medium-diverse	6.0	0.9	False
antmaze-large-play	10.0	0.9	False
antmaze-large-diverse	6.0	0.9	False
pen-human	1.0	0.95	False
pen-cloned	10.0	0.9	False
pen-expert	10.0	0.8	False
door-human	0.5	0.9	False
door-cloned	6.0	0.7	False
door-expert	0.5	0.7	False
hammer-human	3.0	0.9	False
hammer-cloned	6.0	0.7	False
hammer-expert	0.5	0.95	False
relocate-human	1.0	0.95	False
relocate-cloned	6.0	0.9	False
relocate-expert	10.0	0.9	False

Table 11: ReBRAC hyperparameters.

Hyperparameter			Value
ReBRAC hyperparameters	Optimizer	Adam Kingma (2014)	
	Mini-batch size	1024 on Gym-MuJoCo, 256 on others	
	Learning rate	1e-3 on Gym-MuJoCo, 1e-4 on AntMaze	
	Discount factor γ	0.999 on AntMaze, 0.99 on others	
	Target update rate τ	5e-3	
Architecture	Hidden dim (all networks)	256	
	Hidden layers (all networks)	3	
	Activation function	ReLU	
	Critic LayerNorm	True	

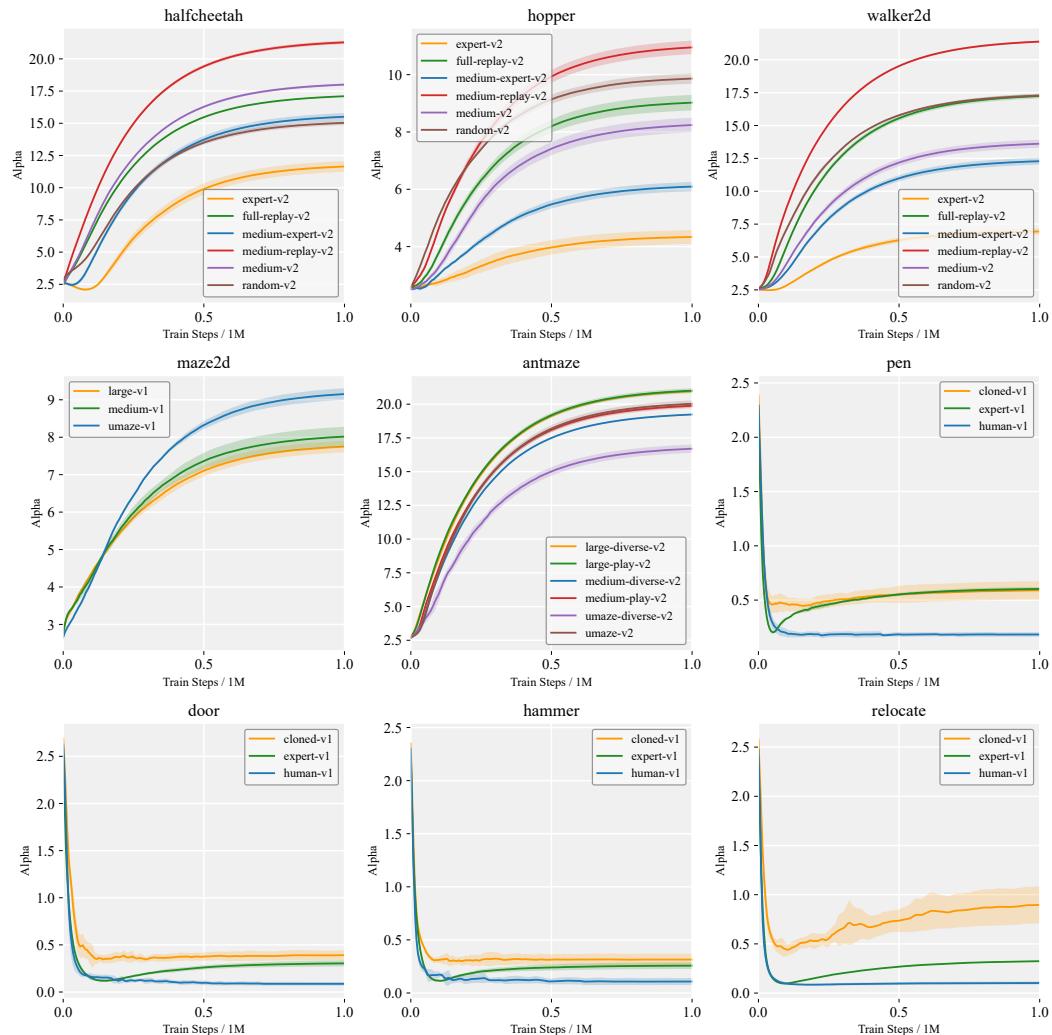
1134
 1135
 1136
 1137
 1138
 1139
 1140

1141 Table 12: ReBRAC’s best hyperparameters used in D4RL benchmark.
 1142

Task Name	β_1 (actor)	β_2 (critic)
halfcheetah-random	0.001	0.1
halfcheetah-medium	0.001	0.01
halfcheetah-expert	0.01	0.01
halfcheetah-medium-expert	0.01	0.1
halfcheetah-medium-replay	0.01	0.001
halfcheetah-full-replay	0.001	0.1
hopper-random	0.001	0.01
hopper-medium	0.01	0.001
hopper-expert	0.1	0.001
hopper-medium-expert	0.1	0.01
hopper-medium-replay	0.05	0.5
hopper-full-replay	0.01	0.01
walker2d-random	0.01	0.0
walker2d-medium	0.05	0.1
walker2d-expert	0.01	0.5
walker2d-medium-expert	0.01	0.01
walker2d-medium-replay	0.05	0.01
walker2d-full-replay	0.01	0.01
maze2d-umaze	0.003	0.001
maze2d-medium	0.003	0.001
maze2d-large	0.003	0.001
antmaze-umaze	0.003	0.002
antmaze-umaze-diverse	0.003	0.001
antmaze-medium-play	0.001	0.0005
antmaze-medium-diverse	0.001	0.0
antmaze-large-play	0.002	0.001
antmaze-large-diverse	0.002	0.002
pen-human	0.1	0.5
pen-cloned	0.05	0.5
pen-expert	0.01	0.01
door-human	0.1	0.1
door-cloned	0.01	0.1
door-expert	0.05	0.01
hammer-human	0.01	0.5
hammer-cloned	0.1	0.5
hammer-expert	0.01	0.01
relocate-human	0.1	0.01
relocate-cloned	0.1	0.01
relocate-expert	0.05	0.01

1182
 1183
 1184
 1185
 1186
 1187

1188 quality changes within the same task. This dual behaviour highlights the method's adaptability to
 1189 both task differences and data-quality variations.
 1190



1225 Figure 7: Learning curves of α for nine tasks across 39 datasets.
 1226
 1227
 1228

1229 C.2 PERFORMANCE CURVES

1230
 1231 Figure 8 shows the learning curves of all four algorithms on the 39 D4RL datasets. ASPC rises
 1232 much more rapidly than the baselines, typically within the first 0.2–0.3 M environment steps, and
 1233 surpasses them long before the others stabilize. Its final normalized scores are almost always the
 1234 highest (or very close to the highest) across all task families, maintaining a clear margin where the
 1235 competing methods usually plateau. Moreover, the shaded regions (mean \pm 1 s.d. over four seeds)
 1236 remain consistently narrow for ASPC, and its curves show no late-stage collapses, pointing to lower
 1237 variance and steadier adaptation across widely varying task dynamics and data quality. Overall,
 1238 the figure suggests that ASPC combines greater sample efficiency, stronger ultimate performance, and
 1239 more reliable behavior than the other approaches.
 1240
 1241

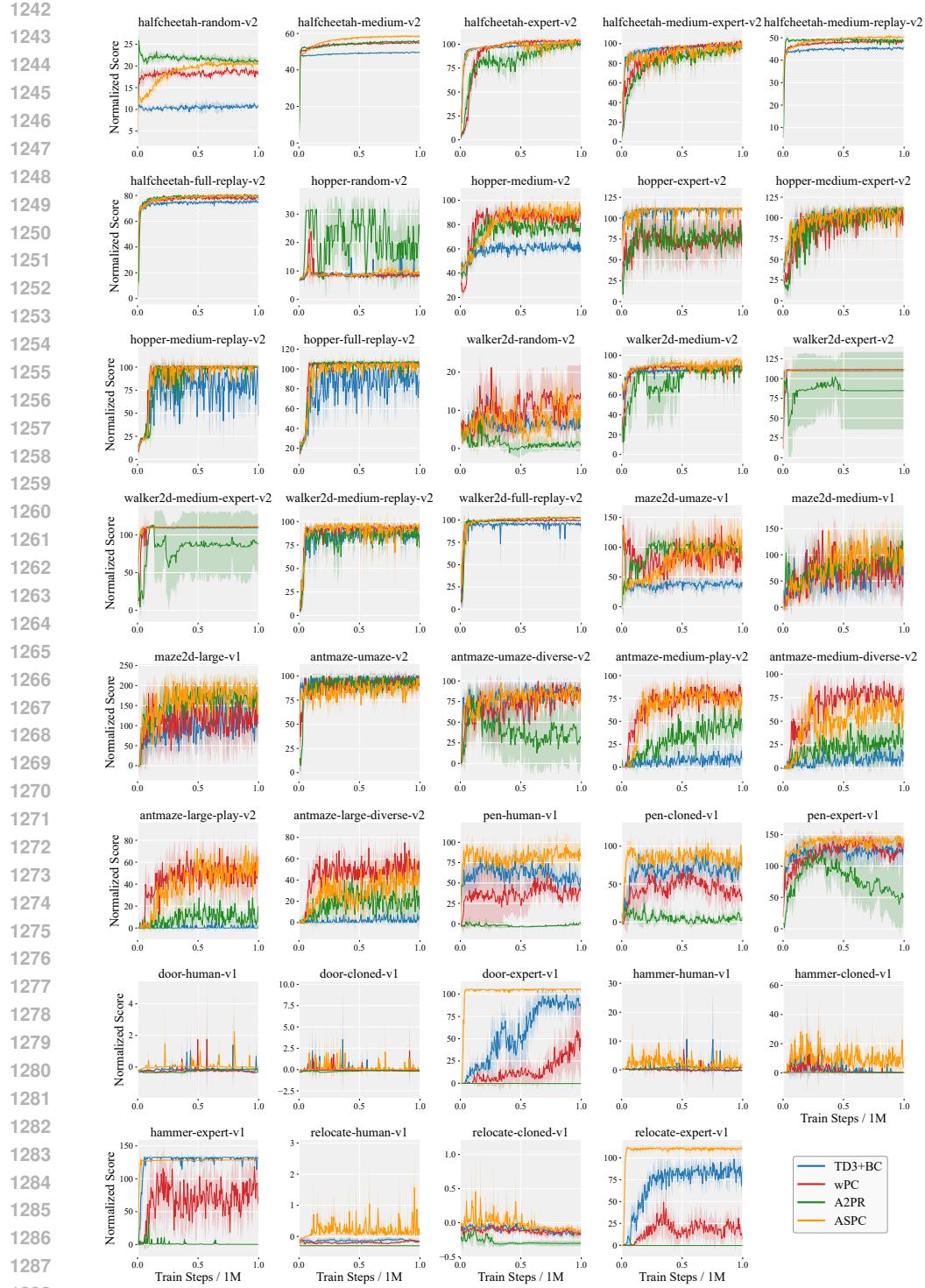


Figure 8: Learning curves comparing the performance of ASPC against other baselines.

D INTEGRATING ASPC WITH OTHER OFFLINE RL ALGORITHMS

1296
1297

D.1 INTEGRATION WITH IQL

1298
1299
1300

In IQL, the policy is trained by advantage-weighted behavior cloning. Let $\text{adv}(s, a)$ denote the IQL advantage estimate and $\beta > 0$ the temperature parameter. We integrate ASPC by treating β as the adaptive policy-constraint coefficient.

1301
1302

Inner objective. The IQL actor minimizes

1303
1304

$$\mathcal{L}_{\text{inner}}^{\text{IQL}}(\theta; \beta) = \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[\exp(\beta \text{adv}(s, a)) \ell_{\text{BC}}(\pi_\theta(a | s)) \right], \quad (41)$$

1305
1306

where $\ell_{\text{BC}}(\pi_\theta(a | s)) = -\log \pi_\theta(a | s)$. A single gradient step yields the updated policy $\pi_{\tilde{\theta}(\beta)}$.

1307
1308
1309

Outer objective. Following ASPC, we construct an outer loss on the updated policy using a normalized Q-improvement term and the corresponding BC loss:

1310
1311

$$\mathcal{L}_1^{\text{IQL}}(\beta) = -\frac{\mathbb{E}_s [Q(s, \pi_{\tilde{\theta}}(s))] }{\mathbb{E}_s [|Q(s, \pi_{\tilde{\theta}}(s))|]} + \mathbb{E}_{(s, a)} \left[\exp(\beta \text{adv}(s, a)) \ell_{\text{BC}}(\pi_{\tilde{\theta}}(a | s)) \right]. \quad (42)$$

1312
1313

The second term measures the change in mean Q-value induced by the inner update:

1314
1315

$$\mathcal{L}_2^{\text{IQL}}(\beta) = \left(\mathbb{E}_s [Q(s, \pi_{\tilde{\theta}}(s))] - \mathbb{E}_s [Q(s, \pi_\theta(s))] \right)^2. \quad (43)$$

1316

The outer objective for adapting β is

1317
1318

$$\mathcal{L}_{\text{outer}}^{\text{IQL}}(\beta) = \mathcal{L}_1^{\text{IQL}}(\beta) + \mathcal{L}_2^{\text{IQL}}(\beta). \quad (44)$$

1319
1320

D.2 INTEGRATION WITH CQL

1321
1322
1323
1324

CQL constrains Q-values by penalizing larger Q-values on out-of-distribution (OOD) actions. Let $\alpha > 0$ denote the conservatism coefficient. Following ASPC, we treat α as the adaptive policy-constraint parameter.

1325
1326
1327
1328

Inner objective. Given a batch (s, a, r, s') , the CQL critic update solves

$$\mathcal{L}_{\text{inner}}^{\text{CQL}}(\psi; \alpha) = \underbrace{\mathbb{E} \left[(Q_\psi(s, a) - \mathcal{T}Q(s, a))^2 \right]}_{\text{Bellman regression}} + \alpha \underbrace{\left(\mathbb{E}_{a' \sim \pi(\cdot | s)} [Q_\psi(s, a')] - Q_\psi(s, a) \right)}_{\text{CQL penalty}}, \quad (45)$$

1329
1330
1331

where

$$\mathcal{T}Q(s, a) = r + \gamma \mathbb{E}_{a' \sim \pi(\cdot | s')} [\min(Q_{\psi^-}(s', a'))].$$

1332
1333

A single gradient step produces the updated critic $Q_{\tilde{\psi}(\alpha)}$.

1334
1335

Outer objective. ASPC evaluates the updated critic with a normalized Q-improvement term and the corresponding CQL penalty, forming

1336
1337
1338

$$\mathcal{L}_1^{\text{CQL}}(\alpha) = -\frac{\mathbb{E}_s [Q_{\tilde{\psi}}(s, \pi(s))] }{\mathbb{E}_s [|Q_{\tilde{\psi}}(s, \pi(s))|]} + \alpha \left(\mathbb{E}_{a' \sim \pi(\cdot | s)} [Q_{\tilde{\psi}}(s, a')] - \mathbb{E}_{(s, a)} [Q_{\tilde{\psi}}(s, a)] \right). \quad (46)$$

1339
1340
1341

The Q-value change induced by the inner update is

1342
1343

$$\mathcal{L}_2^{\text{CQL}}(\alpha) = \left(\mathbb{E}_s [Q_{\tilde{\psi}}(s, \pi(s))] - \mathbb{E}_s [Q_\psi(s, \pi(s))] \right)^2. \quad (47)$$

1344
1345

The outer objective for adapting α becomes

1346
1347

$$\mathcal{L}_{\text{outer}}^{\text{CQL}}(\alpha) = \mathcal{L}_1^{\text{CQL}}(\alpha) + \mathcal{L}_2^{\text{CQL}}(\alpha). \quad (48)$$

1348
1349

D.3 INTEGRATION WITH DIFFUSION-QL
 Diffusion-QL trains a diffusion policy by combining a behavior-cloning loss with a normalized Q-term. Let $\eta > 0$ be the coefficient controlling the trade-off between policy improvement and imitation. Following ASPC, we treat η as the adaptive constraint parameter.

1350 **Inner objective.** Given state-action pairs (s, a) , the diffusion policy π_θ is trained under the objective
 1351

$$\mathcal{L}_{\text{inner}}^{\text{DQL}}(\theta; \eta) = \underbrace{\mathbb{E}_{(s,a) \sim \mathcal{D}} [\mathcal{L}_{\text{BC}}(\pi_\theta(s), a)]}_{\text{Diffusion behavior cloning}} + \eta \underbrace{\left(-\frac{\mathbb{E}_s [Q(s, \pi_\theta(s))] }{\mathbb{E}_s [|Q(s, \pi_\theta(s))|]} \right)}_{\text{normalized Q-improvement}}. \quad (49)$$

1356 A single gradient step produces the updated diffusion policy $\pi_{\tilde{\theta}(\eta)}$.
 1357

1358 **Outer objective.** ASPC evaluates the updated diffusion policy through a normalized Q-value term
 1359 and the corresponding BC term:
 1360

$$\mathcal{L}_1^{\text{DQL}}(\eta) = -\eta \frac{\mathbb{E}_s [Q(s, \pi_{\tilde{\theta}}(s))] }{\mathbb{E}_s [|Q(s, \pi_{\tilde{\theta}}(s))|]} + \mathbb{E}_{(s,a)} [\mathcal{L}_{\text{BC}}(\pi_{\tilde{\theta}}(s), a)]. \quad (50)$$

1363 The Q-improvement induced by the inner update is captured by
 1364

$$\mathcal{L}_2^{\text{DQL}}(\eta) = \left(\mathbb{E}_s [Q(s, \pi_{\tilde{\theta}}(s))] - \mathbb{E}_s [Q(s, \pi_\theta(s))] \right)^2. \quad (51)$$

1367 The outer objective becomes
 1368

$$\mathcal{L}_{\text{outer}}^{\text{DQL}}(\eta) = \mathcal{L}_1^{\text{DQL}}(\eta) + \mathcal{L}_2^{\text{DQL}}(\eta). \quad (52)$$

1371 D.4 INTEGRATION WITH FQL

1373 FQL employs two policies: (i) a teacher flow policy trained purely by flow-matching, and (ii) a
 1374 student one-step flow policy trained via distillation and Q-improvement. Only the student policy
 1375 interacts with the Q-function, making it the component that requires adaptive scaling. We integrate
 1376 ASPC by treating the student’s trade-off coefficient α as the adaptive constraint parameter.
 1377

1378 **Teacher objective (BC Flow).** The teacher flow policy is trained via standard flow-matching:
 1379

$$\mathcal{L}_{\text{teacher}} = \mathbb{E}_{(s,a)} [\|f_\theta(s, x_t, t) - (a - x_0)\|^2], \quad (53)$$

1381 where $x_t = (1 - t)x_0 + ta$ and f_θ denotes the flow velocity network. This loss is independent of α .
 1382

1383 **Inner objective (Student Flow).** The student one-step policy π_θ predicts an action in a single step
 1384 and matches the teacher via a distillation loss, while also incorporating a normalized Q-improvement
 1385 term. The inner objective is
 1386

$$\mathcal{L}_{\text{inner}}^{\text{FQL}}(\theta; \alpha) = \underbrace{\mathbb{E}_{s,\varepsilon} [\|\pi_\theta(s, \varepsilon) - \pi_{\text{teacher}}(s, \varepsilon)\|^2]}_{\text{distillation (BC) term}} + \alpha \underbrace{\left(-\frac{\mathbb{E}_s [Q(s, \pi_\theta(s))] }{\mathbb{E}_s [|Q(s, \pi_\theta(s))|]} \right)}_{\text{normalized Q-improvement}}. \quad (54)$$

1390 A single gradient update produces the updated student policy $\pi_{\tilde{\theta}(\alpha)}$.
 1391

1393 **Outer objective.** ASPC evaluates the updated student policy by combining its normalized Q-value
 1394 and distillation loss, and the Q-improvement incurred by the inner update:
 1395

$$\mathcal{L}_1^{\text{FQL}}(\alpha) = -\alpha \frac{\mathbb{E}_s [Q(s, \pi_{\tilde{\theta}}(s))] }{\mathbb{E}_s [|Q(s, \pi_{\tilde{\theta}}(s))|]} + \mathbb{E}_{s,\varepsilon} [\|\pi_{\tilde{\theta}}(s, \varepsilon) - \pi_{\text{teacher}}(s, \varepsilon)\|^2], \quad (55)$$

$$\mathcal{L}_2^{\text{FQL}}(\alpha) = \left(\mathbb{E}_s [Q(s, \pi_{\tilde{\theta}}(s))] - \mathbb{E}_s [Q(s, \pi_\theta(s))] \right)^2. \quad (56)$$

1400 The outer objective becomes
 1401

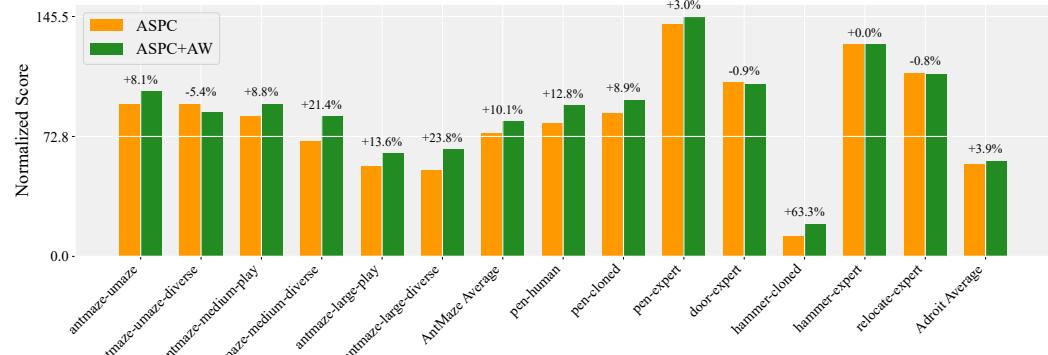
$$\mathcal{L}_{\text{outer}}^{\text{FQL}}(\alpha) = \mathcal{L}_1^{\text{FQL}}(\alpha) + \mathcal{L}_2^{\text{FQL}}(\alpha). \quad (57)$$

1404 E ADDITIONAL EMPIRICAL ANALYSES

1405 E.1 PERFORMANCE ON ANTMAZE AND ADROIT

1406 As shown in Table 1, ASPC does not achieve state-of-the-art performance on AntMaze and Adroit.
 1407 Both benchmarks are characterized by extremely sparse rewards, with AntMaze in particular using a
 1408 binary 0–1 success signal Fu et al. (2020). In such settings, even online RL methods struggle to learn
 1409 effectively, and behavior cloning plays a dominant role in determining policy quality.
 1410

1411 Although ASPC can adapt α toward a more BC-dominated regime, the current BC term imitates all
 1412 actions in the dataset, including suboptimal or unsuccessful trajectories. This limits the attainable
 1413 performance on sparse-reward tasks. To address this issue, we experimented with augmenting the
 1414 BC term using advantage-weighted behavior cloning, where high-advantage samples receive larger
 1415 weights. The modified loss improves the selectivity of imitation by emphasizing demonstrably good
 1416 behaviors. Experimental results, shown in Figure 9, indicate consistent performance gains on both
 1417 AntMaze and Adroit when advantage-weighting is applied. This suggests that selectively imitating
 1418 high-quality behaviors is crucial for sparse-reward offline RL tasks.
 1419



1433 Figure 9: Normalized scores on AntMaze and Adroit tasks. Each pair of bars corresponds to a single
 1434 dataset (plus the domain-wise average), comparing ASPC (orange) and ASPC+AW (green), where
 1435 ASPC+AW applies advantage-weighted behavior cloning. The percentages annotated above the green
 1436 bars indicate the relative performance change of ASPC+AW with respect to ASPC on each task.
 1437

1440 E.2 ABLATION ON THE FORMULATION OF THE L_3 TERM

1441 To better understand the role of each component in the L_3 term, we consider five variants. The first
 1442 variant keeps only the third component:
 1443

$$L_3^{(1)} = \sup_{(s,a) \in \mathcal{D}} \left| \|\pi_{\hat{\theta}}(s) - a\|^2 - \|\pi_{\theta}(s) - a\|^2 \right|.$$

1444 The second variant multiplies the third component by the squared BC deviation:
 1445

$$L_3^{(2)} = \left(\sup_{(s,a) \in \mathcal{D}} \|\pi_{\theta}(s) - a\|^2 \right) L_3^{(1)}.$$

1446 The third variant replaces the BC-deviation factor with the detached L_2 term:
 1447

$$L_3^{(3)} = (L_2 \text{ detach}) L_3^{(1)}.$$

1448 The fourth variant is the complete formulation used in our method:
 1449

$$L_3^{(4)} = (L_2 \text{ detach}) \left(\sup_{(s,a) \in \mathcal{D}} \|\pi_{\theta}(s) - a\|^2 \right) L_3^{(1)}.$$

1458
1459
1460 Table 13: Ablation on different formulations of the L_3 term. Values in parentheses denote relative
1461 change (%) w.r.t. the full formulation (variant 4). Positive changes are shown in **blue**, negative in **red**.

1461 Formulation	1462 Gym-MuJoCo	1463 Maze2d	1464 AntMaze	1465 Adroit	1466 Total Avg
(1)	76.7 (-6.6%)	97.2 (-34.0%)	31.7 (-57.4%)	55.2 (-0.9%)	64.7 (-16.9%)
(2)	76.8 (-6.5%)	107.2 (-27.2%)	31.9 (-57.2%)	54.9 (-1.4%)	65.5 (-15.9%)
(3)	81.1 (-1.2%)	151.8 (+3.1%)	73.3 (-1.6%)	56.1 (+0.7%)	77.7 (-0.2%)
(4)	82.1	147.2	74.5	55.7	77.9
(5)	82.0 (-0.1%)	149.2 (+1.4%)	74.6 (+0.1%)	55.5 (-0.4%)	77.9 (+0.0%)

1467

1468

1469

1470 The fifth variant replaces both supremum operators in $L_3^{(4)}$ by dataset expectations:

1471

1472

1473

$$L_3^{(5)} = (L_2 \text{ detach}) (\mathbb{E}_{(s,a) \sim \mathcal{D}} \|\pi_\theta(s) - a\|^2) |\mathbb{E}_{(s,a) \sim \mathcal{D}} [\|\pi_{\tilde{\theta}}(s) - a\|^2 - \|\pi_\theta(s) - a\|^2]|.$$

1474

1475 Table 13 summarizes the results. Variants (3)–(5), which include the detached L_2 term, provide clear
1476 gains on Maze2d and AntMaze, showing that this component is essential for these domains. By
1477 contrast, Adroit displays only minor differences across all variants, suggesting that Q-value gradients
1478 dominate BC-related gradients there, making the precise form of L_3 less influential. Finally, variant
1479 (5) achieves a performance nearly identical to the full formulation, implying that strict worst-case
1480 bounds using the sup operator are not essential in practice.

1481

1482

1483

1484 E.3 CASE STUDY OF ASPC DYNAMICS

1485

1486 Figure 10 shows the training dynamics on halfcheetah-medium-v2. ASPC consistently increases both
1487 the estimated Q-value and the BC loss, while simultaneously improving the normalized score. It is
1488 essential to note that the increase in BC loss under ASPC does not indicate instability or degradation.
1489 Since ASPC deliberately allows the policy to deviate from the behavior policy when such deviations
1490 yield sufficient Q-value improvement, the BC loss can increase while performance improves. This
1491 matches our theory: whenever the Q-value gain compensates for the increased deviation, the update
1492 remains beneficial. Thus, an increasing BC loss indicates that ASPC is escaping the behavior cloning
1493 regime and moving toward higher-value actions. In contrast, TD3+BC rapidly plateaus in all three
1494 curves, indicating that its fixed trade-off between RL and BC limits its ability to continue improving.

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

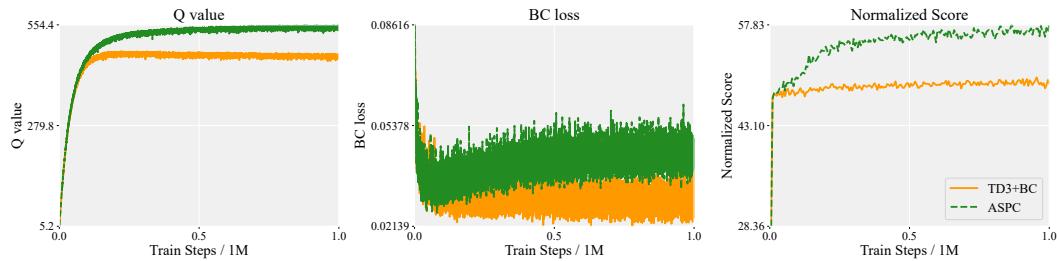
1507

1508

1509

1510

1511



1505 Figure 10: Case study on halfcheetah-medium-v2. ASPC maintains increasing Q-values and BC
1506 loss throughout training, accompanied by continuous improvement in normalized score. In contrast,
1507 TD3+BC quickly saturates in all three metrics. This behavior is consistent with the theoretical single-
1508 step performance improvement condition, illustrating that ASPC sustains stable policy enhancement
1509 over the course of training.

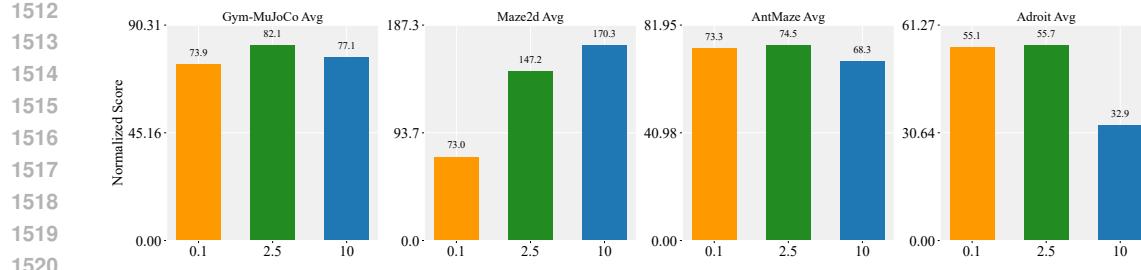


Figure 11: Sensitivity of ASPC to the initial value of α . We compare three initializations ($\alpha_0 = 0.1, 2.5, 10$) and report the domain-wise normalized averages.

F HYPERPARAMETER SENSITIVITY ANALYSES

F.1 SENSITIVITY TO THE INITIAL VALUE OF α

Figure 11 illustrates the influence of the initial value of α on ASPC. Across Gym-MuJoCo, AntMaze, and Adroit, the intermediate setting $\alpha_0 = 2.5$ provides the strongest overall performance, while a very small initialization ($\alpha_0 = 0.1$) tends to bias the early update dynamics too strongly toward BC, limiting the contribution of the RL term. Conversely, an excessively large initialization (e.g., $\alpha_0 = 10$) can overemphasize the RL component at the beginning, which weakens the intended stabilizing effect of the BC objective and leads to performance drops, particularly on Adroit. These observations indicate that a balanced initialization is important for achieving stable optimization.

F.2 SENSITIVITY TO THE LEARNING RATE OF α

We study the effect of the learning rate used for updating α . The results show that different domains prefer different learning rate magnitudes. Too small values slow down the adjustment of the RL–BC trade-off, while too large values make the meta-update unstable and degrade performance.

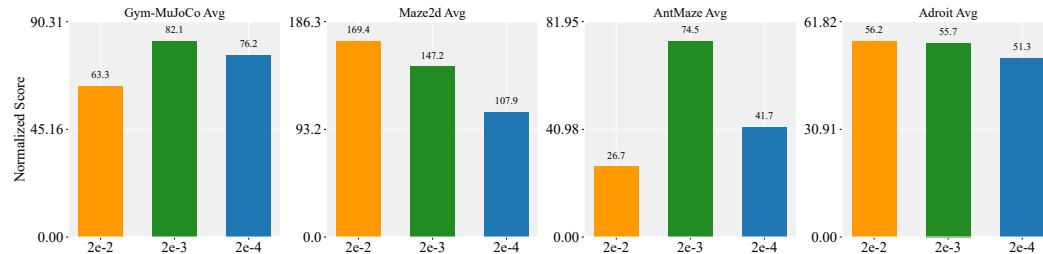


Figure 12: Sensitivity analysis on the learning rate of α across all domains. Each panel reports the domain-level normalized score under three learning rate settings ($2 \times 10^{-2}, 2 \times 10^{-3}, 2 \times 10^{-4}$).

G THE USE OF LLM

Large Language Models (LLMs) were used to aid and polish the writing of this paper. In particular, they were applied to rephrase sentences for improved readability and refine grammar and wording to meet academic style requirements.