
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE SCALING OF POLICY CONSTRAINTS FOR
OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) enables learning effective policies from fixed
datasets without any environment interaction. Existing methods typically employ
policy constraints to mitigate the distribution shift encountered during offline RL
training. However, because the scale of the constraints varies across tasks and
datasets of differing quality, existing methods must meticulously tune hyperpa-
rameters to match each dataset, which is time-consuming and often impractical.
To bridge this gap, we propose Adaptive Scaling of Policy Constraints (ASPC), a
second-order differentiable framework that automatically adjusts the scale of policy
constraints during training. We theoretically analyze its performance improvement
guarantee. In experiments on 39 datasets across four D4RL domains, ASPC using a
single hyperparameter configuration outperforms other adaptive constraint methods
and state-of-the-art offline RL algorithms that require per-dataset tuning, achieving
an average 35% improvement in normalized performance over the baseline. More-
over, ASPC consistently yields additional gains when integrated with a variety of
existing offline RL algorithms, demonstrating its broad generality.

1 INTRODUCTION

Offline reinforcement learning (RL) learns a policy exclusively from a fixed, pre-collected dataset
without further interactions with the environment Levine et al. (2020). This characteristic is particu-
larly crucial in real-world applications such as autonomous driving El Sallab et al. (2017); Kendall
et al. (2019), healthcare Prasad et al. (2017); Wang et al. (2018), industry Zhan et al. (2022); Yuan
et al. (2024), and other tasks, where interacting with the environment can be expensive and risky.

Despite the potential advantages, a critical challenge in offline RL is the distribution shift Levine et al.
(2020) between the offline data and the training policies, often leading to suboptimal or even invalid
policy updates. Many methods have been proposed to mitigate the adverse effects of the distribution
shift. A common strategy is to impose explicit or implicit policy constraints Fujimoto et al. (2019);
Kumar et al. (2020); Fujimoto & Gu (2021); Kostrikov et al. (2022), ensuring that the learned policy
remains close to the behavior policy used to collect the dataset. By imposing constraints on policy
updates, these methods can effectively mitigate the extrapolation error of the Q value Fujimoto et al.
(2019) induced by the distribution shift while offering certain performance guarantees.

A central but often overlooked issue in policy constraint methods is the choice of the constraint
scale, which crucially governs the balance between the RL objective and the behavior cloning (BC)
term. Existing approaches fall into two categories. First, methods that rely on dataset-specific
hyperparameter tuning can achieve strong results, but their performance collapses once a single
configuration is applied across tasks or datasets of varying quality, as shown in Figure 1(b). Second,
adaptive variants with fixed hyperparameters Peng et al. (2023); Yang et al. (2024) alleviate tuning
costs, yet they only reweight actions locally and neglect the global trade-off scale, leaving a significant
gap to carefully tuned baselines. In practical offline RL, where extensive tuning is prohibitively
expensive or even infeasible, the pressing challenge is how to achieve robust performance with a
single hyperparameter configuration across diverse datasets.

To enable a single hyperparameter configuration to match or exceed the performance of finely tuned
methods across datasets of varying quality and tasks, we propose an adaptive scaling of policy
constraints (ASPC) approach that dynamically adjusts the constraint scale during training. The
intuition of this method is shown in Figure 1(a). Our approach leverages a second-order differentiable

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: (a) The RL–BC trade-off in offline RL. ASPC dynamically balances RL and BC, yielding a
reliable and effective policy (left). Existing methods fail to properly calibrate this trade-off, resulting
in suboptimal or collapsed policies (middle and right). (b) Percent difference in performance for
ReBRAC and A2PR under a single hyperparameter setting across all datasets. HC = HalfCheetah,
Hop = Hopper, W = Walker, r = random, m = medium, mr = medium-replay, me = medium-expert,
Um = umaze, M = medium, L = large, d = diverse, p = play. Large drops highlight the sensitivity of
prior methods to per-dataset tuning.

optimization framework Finn et al. (2017) to balance the goals of RL and BC. Specifically, we
parameterize the scale factor α as a learnable parameter that balances the RL objective LRL and the
BC objective LBC in TD3+BC Fujimoto & Gu (2021). The combined objective L is given by

L = αLRL + LBC, (1)
For the full definitions of α, refer to equation 3. During training, α is dynamically adjusted by
constraining the rate of change of the Q-value and the BC loss, enabling the algorithm to discover a
more stable learning path and exhibit remarkable adaptability across tasks and datasets.

We theoretically analyze the performance improvement guarantee of ASPC and extensively evaluate
it on the D4RL benchmark Levine et al. (2020). Our empirical results demonstrate that ASPC
outperforms other state-of-the-art offline RL algorithms that depend on meticulously tuned hyper-
parameters for each dataset, while adding only minimal computational overhead to the original
TD3+BC backbone. In addition, ASPC improves a variety of offline RL algorithms beyond TD3+BC,
further indicating its generality and broad applicability.

2 RELATED WORKS

2.1 OFFLINE RL

Offline RL aims to learn policies purely from static datasets and suffers from distribution shift
between the behavior policy and the learned policy, leading to value overestimation and policy
collapse. Existing approaches address this challenge from several perspectives. Policy constraint
methods explicitly Fujimoto et al. (2019); Fujimoto & Gu (2021) or implicitly Kumar et al. (2020);
Kostrikov et al. (2022) regularize the learned policy toward the behavior distribution. Uncertainty-
aware approaches penalize actions with high epistemic or aleatoric uncertainty An et al. (2021);
Bai et al. (2022); Zhang et al. (2023). Sequence modeling methods reformulate RL as conditional
trajectory modeling using transformers Chen et al. (2021); Janner et al. (2021). Among these,
policy constraint methods have emerged as the most direct and widely adopted solution, but their
effectiveness crucially depends on properly scaling the constraint. This motivates our focus on
developing an adaptive scaling mechanism that eliminates the need for per-dataset tuning while
retaining robustness across diverse offline RL benchmarks.

2.2 ADAPTIVE POLICY CONSTRAINTS

Balancing the RL objective against BC is central to offline RL, and the strength of this constraint
critically affects both stability and performance. Recent work has explored adaptive ways to tune this

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

balance. Trajectory- or sample-weighting methods such as AW Hong et al. (2023), wPC Peng et al.
(2023), and OAP Yang et al. (2023) reweight transitions or actions based on estimated value or expert
preference, thereby adjusting constraint strength locally. Other approaches introduce auxiliary models
to refine constraint scaling, for example PRDC Ran et al. (2023), GORL Yang et al. (2024), A2PR
Liu et al. (2024), and IEPC Liu & Hofert (2024). Despite these advances, current approaches either
rely on per-dataset hyperparameter tuning for optimal performance, or apply a fixed configuration
that yields only limited gains across domains. Our ASPC method addresses this gap by dynamically
adjusting the constraint scale during training, enabling robust performance across diverse datasets
with a single hyperparameter configuration.

3 PRELIMINARIES

RL problems are formulated as a Markov decision process (MDP), described by the tuple (S,A,
P,R, γ). The set of states is S, the set of actions is A, the transition probability function is P (s′|s, a),
the reward function is R(s, a), and γ ∈ [0, 1) is the discount factor. The objective is to find a policy
π : S → A that maximizes the expected discounted return. This objective is equivalently expressed
as maximizing the Q-value Qπ(s, a) under π, given by:

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
, (2)

where st and at represent the state and action at time t. In practice, RL algorithms update Q-values
using the Bellman equation as an iterative rule, seeking to converge to the optimal policy π∗.

A central challenge for offline RL is the distribution shift. When a state–action pair (s, a) lies outside
the dataset D, directly optimizing the Q–function may cause severe over-estimation. One remedy is
to constrain the target policy π to stay close to the behaviour policy πβ . TD3+BC Fujimoto & Gu
(2021) does so by solving:

π = argmax
π

E(s,a)∼D

[
λ Q(s, π(s))︸ ︷︷ ︸

RL

− (π(s)− a)2︸ ︷︷ ︸
BC

]
, λ =

α
1
N

∑
i |Q(si, ai)|

. (3)

normalizes the RL term to the scale of the BC loss. In vanilla TD3+BC, α is a fixed constant. Instead
of keeping the scale factor α static, we update it throughout training.

4 METHOD

We now present the ASPC algorithm in detail. We begin by introducing its core framework, a second-
order differentiable optimization that adaptively balances the RL and BC objectives (Section 4.1). We
then provide a theoretical analysis (Section 4.2), which explains the role of the mutual constraint term
and establishes single-step and long-term performance guarantees. Finally, we describe a practical
instantiation of ASPC built on TD3+BC (Section 4.3), which enables its application to standard
offline RL benchmarks.

4.1 ADAPTIVE SCALING OF POLICY CONSTRAINTS

To adaptively adjust the relative scaling between the RL and BC objectives, ASPC adopts a meta-
learning approach Finn et al. (2017); Franceschi et al. (2018). It converts the scale factor α in equa-
tion 3 into a learnable parameter and optimizes it dynamically via bilevel training, utilizing inner
updates and outer updates to maximize RL exploration near the behavior policy.

Inner Update To optimize the policy under offline data, we define the inner objective as

Linner(θ;α) = E(s,a)∼D

[
−λ(α)Q

(
s, πθ(s)

)
+ ∥πθ(s)− a∥2

]
, (4)

where λ(α) = α
/
Es∼D[|Q(s, πθ(s))|]. The inner update is then obtained via a gradient descent step

with learning rate ηθ:
θ̃(α) = θ − ηθ∇θLinner(θ;α), (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and θ̃(α) denotes the updated policy parameters after one inner step.

Outer Update While the inner update optimizes the policy parameters θ for a given scale α, the outer
update is responsible for adjusting α itself so as to dynamically balance the RL and BC objectives.
The outer loss is composed of three coordinated components. L1 mirrors TD3 + BC and steers α
toward a better balance between RL and BC. L2 penalizes abrupt increases in the expected Q-value,
while L3 constrains large shifts in the BC loss. Together, L2 and L3 adaptively regulate the step
prescribed by L1, preventing either RL or BC from dominating and thereby stabilizing training.
Formally, we write:

L1 = −α
Es∼D

[
Q
(
s, πθ̃(s)

)]
Es∼D

[∣∣Q(s, πθ̃(s))∣∣] + E(s,a)∼D

[∥∥πθ̃(s)− a∥∥2] , (6)

L2 =
(
Es∼D

[
Q
(
s, πθ̃(s)

)]
− Es∼D[Q(s, πθ(s))]

)2
, (7)

L3 =
(
L2.detach

) (
sup

(s,a)∈D
∥πθ(s)− a∥2

) (
sup

(s,a)∈D

∣∣∥πθ̃(s)− a∥2 − ∥πθ(s)− a∥2∣∣), (8)

The outer objective is
Louter

(
θ̃(α)

)
= L1 + L2 + L3. (9)

Here, πθ and πθ̃ denote the policies before and after the inner update, respectively. .detach indicates
stopping gradients. While L1 and L2 are relatively standard, the design of L3 requires clarification.
Theoretically, its form follows directly from Theorem 4.4, with details in Appendix A.3. Intuitively,
L3 combines three factors: the rate of change in Q-values, the upper bound of the BC loss, and the
variation in BC loss across iterations. Large Q-value fluctuations or a high BC-loss bound signal
rapid policy change or significant deviation from the behavior policy. In such cases, strengthening
the penalty on BC variation helps suppress distributional shift and stabilize training, consistent with
our intuition. To update α, we treat the inner update parameters θ̃(α) as an implicit function of α and
use second-order derivatives. Lets ηα be the learning rate of α. The gradient-descent step is

α← α− ηα
(
∂Louter

(
θ̃(α))

∂θ̃

∂θ̃(α)

∂α

)
, (10)

4.2 THEORETICAL ANALYSIS

We now analyze the theoretical properties of ASPC. We show that the outer objective ensures stable
updates and reduces the gap to the optimal policy.
Assumption 4.1. The critic Q(s, a) and the transition kernel P (· | s, a) are Lipschitz continuous
with respect to the action variable. That is, there exist constants LQ, LP > 0, independent of s, such
that for all s ∈ S and all a1, a2 ∈ A,
∥Q(s, a1)−Q(s, a2)∥ ≤ LQ∥a1 − a2∥, ∥P (· | s, a1)− P (· | s, a2)∥TV ≤ LP ∥a1 − a2∥. (11)

Proposition 4.2 (Mutual constraints between ∆LBC and (∆Q)2). Under Assumption 4.1, the change
in BC loss (∆LBC) and the squared change in Q-values ((∆Q)2) mutually constrain each other:
(∆Q)2 provides a lower bound on ∆LBC , while ∆LBC provides an upper bound on (∆Q)2.

This result shows that the two penalties in equation 7 and equation 8 are inherently coupled rather
than independent. It explains why in practice some tasks succeed with only one of them, while others
require both for stable training (see Section 5.5). The detailed proof is provided in Appendix A.1.
Proposition 4.3 (Single-step performance lower bound). For the update step from πt to πt+1, the
performance improvement admits the following lower bound:

J(πt+1)− J(πt) ≥
1

1− γ

(
∆Q− Φ(∆LBC∞ , c2∞)

)
, (12)

where Φ(∆LBC∞ , c2∞) is a nonnegative function depending on the BC-loss variation upper bound
∆LBC∞ and the BC-loss upper bound c2∞.

This proposition serves as the theoretical basis for Theorem 4.4. It also directly motivates the design
of the penalty term L3 (equation 8), whose form is derived from bounding Φ(∆LBC∞ , c2∞). The
detailed derivation of Φ is deferred to Appendix A.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 4.4 (Single-step performance condition for ASPC). An idealized ASPC update that satisfies
the condition ∆Q ≥ Φ leads to a non-decreasing policy performance: J(πt+1)− J(πt) ≥ 0.

ASPC employs a smooth relaxation of this condition via the outer objective, which is designed to
guide updates toward this provably stable regime. The detailed proof is given in Appendix A.3.
Theorem 4.5 (Performance gap to optimal). With Theorem 4.4, after T iterations when the single-step
gain vanishes (δT = 0), the gap to the optimal policy satisfies:

J(π∗)− J(πT) ≤ Ψ(εβ)− T δmin, (13)

where Ψ(εβ) is a function of the mismatch εβ between the behavior policy and the optimal policy,
and δmin denotes the minimal single-step improvement before convergence.

This theorem shows that ASPC progressively reduces the suboptimality gap until convergence, where
the remaining gap is controlled by Ψ(εβ). The full derivation of Ψ(εβ) is given in Appendix A.4.

Algorithm 1 Adaptive Scaling of Policy Constraints
Initialize: critic and actor networks, scale factor α, replay buffer D, update intervals kπ, kα.

1: for i = 1 to N do
2: Critic update:
3: Sample minibatch from D; Compute TD targets and update critic networks;
4: if i mod kπ = 0 then
5: Actor update (inner):
6: Compute Linner(θ;α) by equation 4; Compute θ̃(α) by equation 5;
7: Update actor networks;
8: if i mod (kπ ·kα) = 0 then
9: α update (outer):

10: Compute Louter

(
θ̃(α)) by equation 9; Update α via equation 10;

11: end if
12: Soft update critic and actor networks;
13: end if
14: end for

4.3 IMPLEMENTATION ON TD3+BC

To make ASPC practical, we instantiate it on top of the TD3+BC backbone with only two mod-
ifications: (i) a redesigned critic network, and (ii) a learnable scale factor α. All other network
components and hyperparameters remain unchanged. See Appendix B.2 for a full specification.

Recent studies show that deeper critics Kumar et al. (2022); Lee et al. (2022) and the insertion of
LayerNorm between layers Nikulin et al. (2023); Ball et al. (2023); Tarasov et al. (2024a) can mitigate
Q-value over-estimation and improve stability. Following this evidence, we extend the TD3+BC
critic from two to three hidden layers and insert a LayerNorm after each layer. An ablation of this
choice is provided in Section 5.5.

Algorithm 1 lists the ASPC procedure. Blue highlights indicate lines that differ from the TD3+BC
backbone. Although second-order gradients increase cost, we set the α-update interval kα far longer
than the actor-update interval kπ, which maintains performance while sharply reducing runtime.
Section 5.4 analyses this trade-off in detail.

5 EXPERIMENTS

In this section we evaluate ASPC on the D4RL benchmark. Section 5.1 compares ASPC with strong
baselines to demonstrate its adaptability and overall effectiveness. Section 5.2 analyzes the learning
curves of α during training, further illustrating ASPC’s adaptive behaviour. Section 5.3 investigates
the necessity of dynamically adjusting α. Section 5.4 reports runtime results to highlight the efficiency
of ASPC. Section 5.5 presents ablation studies on the key components of ASPC. Section 5.5 provides
results on integrating the ideas of ASPC with other methods, and Section 5.5 presents the performance
of ASPC on the OGBench benchmark.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Average normalized score over the final evaluation across four random seeds. The best
performance in each dataset is highlighted in bold, while the second-best performance is indicated
with an underline. Blue shading indicates methods with top domain average performance. The symbol
± denotes the standard deviation. ✓denotes fixed hyperparameters, whereas ✗denotes dataset-specific
ones. *To ensure fairness, TD3+BC and wPC employ the robust critic described in Section 5.5.

Task Name TD3+BC*(✓) A2PR(✓) IQL(✗) wPC*(✓) ReBRAC(✗) ASPC (Ours)(✓)

H
al

fC
he

et
ah

Random 10.6 ± 0.7 21.1 ± 0.8 19.5 ± 0.8 18.8 ± 0.7 29.5 ± 1.5 20.8 ± 0.9
Medium 49.6 ± 0.2 56.1 ± 0.3 50.0 ± 0.2 54.8 ± 0.2 65.6 ± 1.0 58.7 ± 0.4
Expert 100.4 ± 0.4 99.9 ± 3.2 95.5 ± 2.1 103.8 ± 2.4 105.9 ± 1.7 105.1 ± 1.2
Medium-Expert 97.9 ± 1.6 95.9 ± 6.0 92.7 ± 2.8 98.9 ± 8.5 101.1 ± 5.2 99.9 ± 1.2
Medium-Replay 45.8 ± 0.2 49.0 ± 0.4 42.1 ± 3.6 48.1 ± 0.2 51.0 ± 0.8 50.6 ± 0.5
Full-Replay 74.5 ± 1.6 79.5 ± 1.5 75.0 ± 0.7 76.7 ± 2.3 82.1 ± 1.1 79.3 ± 0.9

H
op

pe
r

Random 8.6 ± 0.2 20.1 ± 11.6 10.1 ± 5.9 8.5 ± 1.4 8.1 ± 2.4 9.4 ± 1.5
Medium 62.0 ± 3.0 78.3 ± 4.4 65.2 ± 4.2 81.8 ± 9.8 102.0 ± 1.0 92.7 ± 7.2
Expert 108.2 ± 4.2 83.9 ± 6.0 108.8 ± 3.1 79.1 ± 26.6 100.1 ± 8.3 112.3 ± 0.4
Medium-Expert 103.3 ± 9.2 110.8 ± 2.6 85.5 ± 29.7 109.1 ± 4.5 107.0 ± 6.4 111.0 ± 2.1
Medium-Replay 47.4 ± 35.4 98.9 ± 2.0 89.6 ± 13.2 100.8 ± 0.7 98.1 ± 5.3 101.3 ± 0.6
Full-Replay 90.3 ± 22.9 97.1 ± 17.8 104.4 ± 10.8 105.6 ± 0.6 107.1 ± 0.4 107.2 ± 0.5

W
al

ke
r2

d

Random 5.9 ± 3.5 1.2 ± 1.5 11.3 ± 7.0 12.5 ± 10.6 18.4 ± 4.5 15.6 ± 6.4
Medium 62.0 ± 3.0 84.2 ± 4.7 80.7 ± 3.4 89.6 ± 0.3 82.5 ± 3.6 92.4 ± 5.4
Expert 108.2 ± 4.2 84.8 ± 49.0 96.9 ± 32.3 111.5 ± 0.1 112.3 ± 0.2 110.8 ± 0.1
Medium-Expert 103.3 ± 9.2 88.2 ± 40.7 112.1 ± 0.5 110.1 ± 0.5 111.6 ± 0.3 111.1 ± 0.3
Medium-Replay 76.6 ± 12.7 84.5 ± 12.3 75.4 ± 9.3 93.4 ± 3.0 77.3 ± 7.9 97.6 ± 0.5
Full-Replay 88.3 ± 11.7 102.5 ± 0.0 97.5 ± 1.4 99.5 ± 0.5 102.2 ± 1.7 102.1 ± 0.2

MuJoCo Avg 70.7 74.2 72.9 77.8 81.2 82.1

M
az

e2
d Umaze 34.5 ± 13.9 102.5 ± 6.3 -8.9 ± 6.1 73.1 ± 13.8 106.8 ± 22.1 128.1 ± 31.8

Medium 63.3 ± 63.3 90.4 ± 29.6 34.8 ± 2.7 87.4 ± 48.7 105.1 ± 31.6 117.8 ± 17.3
Large 108.9 ± 43.6 177.7 ± 34.2 61.7 ± 3.5 123.3 ± 70.5 78.3 ± 61.7 195.8 ± 31.3

Maze2d Avg 68.9 123.53 46.2 94.6 96.7 147.2

A
nt

M
az

e

Umaze 100.0 ± 0.0 92.5 ± 8.3 83.3 ± 4.5 97.5 ± 5.0 97.8 ± 1.0 92.5 ± 5.0
Umaze-Diverse 87.5 ± 12.5 32.5 ± 34.9 70.6 ± 3.7 75.0 ± 20.8 88.3 ± 13.0 92.5 ± 9.5
Medium-Play 7.5 ± 9.5 40.0 ± 7.1 64.6 ± 4.9 85.0 ± 5.7 84.0 ± 4.2 85.0 ± 12.9
Medium-Diverse 12.5 ± 12.5 40.0 ± 25.5 61.7 ± 6.1 85.0 ± 12.9 76.3 ± 13.5 70.0 ± 11.5
Large-Play 2.5 ± 5.0 5.0 ± 8.7 42.5 ± 6.5 65.0 ± 19.1 60.4 ± 26.1 55.0 ± 5.7
Large-Diverse 2.5 ± 5.0 22.5 ± 14.8 27.6 ± 7.8 65.0 ± 10.0 54.4 ± 25.1 52.5 ± 18.9

AntMaze Avg 35.4 38.75 58.3 78.7 76.8 74.5

Pe
n Human 53.8 ± 15.7 -2.1 ± 0.0 81.5 ± 17.5 39.9 ± 12.8 103.5 ± 14.1 81.1 ± 8.1

Cloned 71.7 ± 21.5 6.5 ± 6.0 77.2 ± 17.7 34.6 ± 11.3 91.8 ± 21.7 87.2 ± 4.2
Expert 126.6 ± 24.8 51.5 ± 38.4 133.6 ± 16.0 141.8 ± 11.8 154.1 ± 5.4 141.2 ± 9.4

D
oo

r Human 0.0 ± 0.0 -0.2 ± 0.0 3.1 ± 2.0 -0.2 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Cloned 0.0 ± 0.0 -0.3 ± 0.0 0.8 ± 1.0 0.0 ± 0.0 1.1 ± 2.6 0.0 ± 0.0
Expert 81.6 ± 16.3 -0.3 ± 0.0 105.3 ± 2.8 51.4 ± 55.3 104.6 ± 2.4 105.6 ± 0.4

H
am

m
er Human 0.0 ± 0.0 1.1 ± 0.4 2.5 ± 1.9 0.0 ± 0.1 0.2 ± 0.2 2.2 ± 3.2

Cloned 0.1 ± 0.0 0.3 ± 0.0 1.1 ± 0.5 0.1 ± 0.1 6.7 ± 3.7 12.0 ± 9.1
Expert 132.8 ± 0.4 0.3 ± 0.1 129.6 ± 71.5 57.6 ± 0.1 133.8 ± 0.7 128.6 ± 0.4

R
el

oc
at

e Human 0.0 ± 0.0 -0.3 ± 0.0 0.1 ± 0.1 0.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.2
Cloned 0.0 ± 0.0 -0.3 ± 0.0 0.2 ± 0.4 0.1 ± 0.0 0.9 ± 1.6 0.0 ± 0.0
Expert 90.6 ± 18.2 -0.3 ± 0.0 106.5 ± 2.5 6.7 ± 4.6 106.6 ± 3.2 111.2 ± 2.4

Adroit Avg 46.4 4.65 53.4 28.8 58.6 55.7

Total Avg 57.7 51.2 62.6 64.2 74.8 77.9

5.1 COMPARATIVE PERFORMANCE ON BENCHMARK

We evaluate ASPC on 39 datasets spanning four D4RL domains Levine et al. (2020): MuJoCo (v2),
AntMaze (v2), Maze2d (v1), and Adroit (v1). Our baselines include TD3+BC Fujimoto & Gu (2021)
and IQL Kostrikov et al. (2022) as standard policy-constraint methods. wPC Peng et al. (2023)
and A2PR Liu et al. (2024) are state-of-the-art (SOTA) adaptive policy constraint methods built on
TD3+BC. ReBRAC Tarasov et al. (2024a) integrates multiple performance-boosting components into
TD3+BC and has achieved SOTA results across a wide range of datasets. TD3+BC, wPC, A2PR, and
ASPC are all set as the single hyperparameter set, whereas IQL and ReBRAC rely on dataset-specific
hyperparameters found via grid search. We reproduce results for TD3+BC, wPC and A2PR. IQL and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 50 100 150 200
D4RL Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

≥
τ halfcheetah

hopper

walker2d

maze2d

antmazepen

door

hammer

relocate

0

0.50

1.0

Average score (min–max scaled)

TD3+BC
A2PR
IQL
wPC
ReBRAC
ASPC

Figure 2: Left: performance profiles on 39 datasets of D4RL. Right: radar chart of the mean
performance across the nine tasks.

ReBRAC results are taken from Tarasov et al. (2024a;b). Complete experimental details for each
algorithm are provided in the appendix B.2.

The performance comparison is summarized in Table 1. ASPC achieves the best performance on
MuJoCo and Maze2d, and exhibits competitive results on Adroit and AntMaze. Most notably, ASPC
attains SOTA performance on average across all four domains, which not only outperforms other
adaptive policy constraint methods but also surpasses approaches that rely on meticulous per-dataset
hyperparameter tuning, highlighting its remarkable adaptability. Figure 2 shows that the performance
profile curves (left) place ASPC above all baselines for almost every threshold, and the min-max-
scaled radar chart (right) gives ASPC the largest, most balanced polygon, visually confirming its
strong and stable performance across tasks without per-dataset tuning.

0.0 0.5 1.0
2

10

20

A
lp

ha

halfcheetah

0.0 0.5 1.0
Train Steps / 1M

2

6

10

hopper

0.0 0.5 1.0
2

10

20
walker2d

medium-replay-v2 medium-v2 medium-expert-v2 expert-v2

Figure 3: Learning curves of α on halfcheetah, hopper, and walker2d across datasets of different
quality. Higher-quality datasets yield smaller α (favoring BC), while lower-quality ones yield larger
α (favoring RL). α is initialized to 2.5.

5.2 ADAPTABILITY OF THE SACLE FACTOR

Dataset Adaptability Figure 3 shows the evolution of α on HalfCheetah, Hopper, and Walker2d
for four dataset quality levels, listed from highest to lowest as expert, medium-expert, medium, and
medium-replay. Across all three tasks, higher-quality datasets lead to smaller α, which places more
weight on BC, whereas lower-quality datasets lead to larger α, shifting the emphasis toward RL. The
consistent ordering confirms that ASPC automatically adjusts the policy-constraint scale to dataset
quality without any per-dataset hyperparameter tuning.

0.0 0.5 1.0
Train Steps / 1M

10−1

100

101

A
lp

ha

antmaze-umaze-v2
door-expert-v1

hammer-expert-v1
maze2d-umaze-v1

pen-expert-v1
relocate-expert-v1

Figure 4: Learning curves of α on six different tasks. The algorithm automatically adjusts α based
on the task characteristics. The y-axis is shown in logarithmic scale for better visualization.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Task Adaptability Figure 4 plots the α trajectories on six heterogeneous tasks. Tasks such as door,
pen, hammer, and relocate possess narrow expert data distributions; here α settles near 10−1, giving
greater weight to BC. Conversely, antmaze and maze2d, whose datasets contain highly sub-optimal
trajectories, drive α above 10, shifting emphasis to RL. This task-aware scaling requires no manual
tuning and highlights ASPC’s cross-task adaptability.

Training Adaptability Combining the curves from Figures 4 and 3, we observe a common learning
dynamic: α first drops (or rises only slightly) during the early training phase, indicating greater
reliance on BC when the policy is still immature. As learning progresses and the critic stabilises,
α gradually increases, handing more control to RL. This smooth, stage-wise adjustment underpins
ASPC’s stable convergence across tasks and datasets.

5.3 NECESSITY OF DYNAMIC SCALE FACTOR ADJUSTMENT

As shown in Table 1, the hyperparameters meticulously selected via grid search ultimately underper-
form compared to the ASPC algorithm, which dynamically adjusts hyperparameters during training.
This observation raises the question: is grid search simply failing to find the best setting, or is the
dynamic adjustment in ASPC the true source of its advantage? To answer this, we conduct three
controlled tests. Naive α. TD3+BC is run with a fixed scale factor α = 2.5. Converged α. TD3+BC
is run with α fixed to the final value reached by ASPC on the same dataset. Linear α. TD3+BC starts
from α = 2.5 and linearly interpolates to the above converged value over the training horizon. To
ensure fairness, all TD3+BC variants utilize the same robust critic architecture as ASPC, comprising
three hidden layers, each followed by a LayerNorm.

Table 2: Results under different α settings. Values in parentheses indicate the percent difference from
Naive. Blue denotes improvement, and red denotes degradation.

Domain Naive α Converged α Linear α Dynamic α (ASPC)

Mujoco 70.3 79.3 (↑12.8%) 77.0 (↑9.5%) 82.1 (↑16.8%)
Maze2d 61.9 133.2 (↑115.2%) 103.3 (↑66.9%) 147.2 (↑137.8%)

AntMaze 28.7 64.1 (↑123.3%) 56.3 (↑96.2%) 74.5 (↑159.2%)
Adroit 49.9 49.1 (↓1.6%) 47.6 (↓4.6%) 55.7 (↑11.6%)

Total Avg 57.0 71.8 (↑25.9%) 66.7 (↑17.0%) 77.9 (↑36.6%)

Table 2 summarises the mean normalised scores in the four D4RL domains. Percentages in blue
report the relative gain over the naive baseline that fixes α = 2.5. Converged α and Linear α both
outperform the naive setting, which confirms that the value to which ASPC eventually converges
is a much more appropriate scale for the policy constraint. ASPC (Dynamic α) still exceeds the
Converged variant by a wide margin, and the Linear schedule closes only part of the gap. These
results show that simply finding a good fixed α is not enough. Adapting the scale throughout training
is essential for the best performance. ASPC provides this dynamic adjustment automatically and
therefore achieves the highest overall score.

5.4 RUNTIME ANALYSIS

ASPC employs second-order gradient computations for updating α, which increases cost. However,
its update interval (kα) can be set substantially longer than that of the actor (kπ), thereby minimizing
the additional computational overhead. To evaluate runtime efficiency, we compare the execution
time of one million iterations of ASPC against that of other baseline algorithms. Figure 5 presents
a bar chart comparing the runtime of ASPC against TD3+BC, CQL, IQL, wPC and A2PR on the
halfcheetah-medium-v2 dataset. The results indicate that ASPC introduces only a minimal additional
computational overhead beyond that of TD3+BC.

We further analyze the relationship between kα, runtime, and performance, as illustrated in Figure 5.
The baseline setting for kα is 10, we observe that reducing kα does not lead to significant performance
degradation. This suggests that ASPC effectively captures the correct gradient optimization direction,
maintaining robustness even when the gradient step size is large. When kα is set to 30, the runtime
is nearly identical to that of TD3+BC while maintaining strong performance. This highlights the
efficiency of the ASPC algorithm.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CQL IQL A2PR wPC ASPC TD3+BC

100

200

R
un

 T
im

e
(m

in
)

243

164
144

109 107 97

(a)
5 10 20 30

100

110

113

107

102

99

(b)

74

78

Pe
rf

or
m

an
ce

78.0 77.9
76.8

75.5

Figure 5: (a) Runtime comparison of different algorithms. (b) Runtime and average performance
under different α-update intervals (kα). ASPC introduces only minimal overhead compared to
TD3+BC, and increasing the update interval reduces runtime while maintaining high performance.

5.5 ABLATION STUDIES

Robust Critic(RC) When using the original TD3+BC critic network (with two hidden layers and no
LayerNorm), during the process of adjusting α, Q-values exhibit significant instability, frequently
leading to overestimation, causing catastrophic failure of the algorithm. Since wPC is also designed
based on the original TD3+BC framework, we include it in our experiments related to RC (with three
hidden layers and LayerNorm). Figure 6a presents the experimental results. The results indicate that
when RC is not utilized, both wPC and ASPC achieve limited performance improvement and even
exhibit performance degradation on certain tasks.

MuJoCo Maze2d AntMaze Adroit Total Avg

0

200

400

Pe
rc

en
t D

iff
er

en
ce

TD3+BC w/RC
wPC (w/o RC)
wPC w/RC
ASPC w/o RC
ASPC w/RC

(a)

MuJoCo Maze2d AntMaze Adroit Total Avg

−60

−40

−20

0

Pe
rc

en
t D

iff
er

en
ce

1
1+2
1+3

(b)

Figure 6: (a) Percent difference relative to the baseline TD3+BC (w/o RC (critic with three hidden
layers, each incorporating LayerNorm)). (b) Percent difference of outer loss variants equation 9
relative to the full ASPC configuration.

Loss Function Figure 6b reveals clear, domain-dependent effects when the regularization terms are
added to the base loss L1. Adding neither term (L1 only) gives the poorest performance. Introducing
only L2 lifts performance in MuJoCo and Adroit to the level of full ASPC, while leaving AntMaze
almost unchanged. Conversely, adding only L3 significantly boosts AntMaze but has little effect
on MuJoCo or Adroit. For Maze2D, neither single term suffices. Only the full loss L1 + L2 + L3

attains the best result. These results can be explained by Proposition 4.2, which shows that L2 and
L3 implicitly constrain one another. Consequently, adding L2 in MuJoCo and Adroit implicitly
bounds ∆LBC as well, so the single-step performance guarantee of Theorem 4.4 is already satisfied.
Conversely, in AntMaze a direct L3 penalty implicitly limits (∆Q)2, again meeting the theorem’s
lower bound. For Maze2D, however, neither implicit relation is strong enough; both L2 and L3 must
be enforced explicitly for the condition in Theorem 4.4 to hold.

5.6 EXTENDING ASPC TO OTHER OFFLINE RL METHODS

Many offline RL algorithms follow the form of equation 1. To evaluate the generality of ASPC,
we integrate its adaptive policy constraint into three representative baselines, including IQL, CQL,
and Diffusion-QL Wang et al. (2023). Each method contains a hyperparameter analogous to α that
controls the balance between value learning and conservatism. We replace this manually tuned
coefficient with a learnable parameter and update it using the same bi-level second-order procedure
as ASPC. The detailed objectives for each algorithm are provided in Appendix D.

As shown in Table 3, incorporating ASPC consistently improves the performance of all three baselines,
which demonstrates the broad applicability of our approach. IQL yields the smallest improvement,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Performance on Gym-MuJoCo datasets. +ASPC denotes the baseline combined with ASPC,
and the percent change indicates its relative improvement over the baseline.

Gym-MuJoCo IQL +ASPC CQL +ASPC Diffusion-QL +ASPC

halfcheetah-medium 50.0 48.4 (↓3.2%) 46.8 56.3 (↑20.3%) 51.5 59.2 (↑15.0%)
halfcheetah-medium-expert 92.7 94.4 (↑1.8%) 94.2 93.6 (↓0.6%) 96.8 96.7 (↓0.1%)
halfcheetah-medium-replay 42.1 44.4 (↑5.5%) 45.3 51.0 (↑12.6%) 47.8 58.2 (↑21.8%)
hopper-medium 65.2 61.4 (↓5.8%) 61.3 71.6 (↑16.8%) 90.5 101.0 (↑11.6%)
hopper-medium-expert 85.5 100.2 (↑17.2%) 90.1 106.9 (↑18.6%) 111.1 111.1 (↑0.0%)
hopper-medium-replay 89.6 88.3 (↓1.4%) 77.5 79.9 (↑3.1%) 101.3 100.4 (↓0.9%)
walker2d-medium 80.7 83.9 (↑4.0%) 82.6 83.8 (↑1.5%) 87.0 80.3 (↓7.7%)
walker2d-medium-expert 112.1 112.1 (↑0.0%) 109.1 109.7 (↑0.6%) 110.1 110.5 (↑0.4%)
walker2d-medium-replay 75.4 77.5 (↑2.8%) 74.5 81.7 (↑9.7%) 95.5 95.2 (↓0.3%)

Average 77.0 79.0 (↑2.5%) 75.7 81.6 (↑7.8%) 88.0 90.3 (↑2.6%)

and a possible reason is that it performs implicit Q learning, so increasing α does not effectively
shift the policy toward the RL objective. This implicit structure offers stability but limits the best
achievable performance. CQL benefits more from ASPC because updating α directly adjusts the
level of conservatism. Diffusion-QL already achieves very strong results, and ASPC further improves
its performance, which highlights the robustness of ASPC even when applied to a strong baseline.

5.7 ADDITIONAL EXPERIMENTS ON OGBENCH

We further evaluate the generality and robustness of ASPC on OGBench Park et al. (2025a), a new
benchmark for offline goal-conditioned RL. Results across ten datasets in Table 4 show that ASPC
clearly surpasses all existing baselines, indicating strong applicability beyond D4RL. Since FQL Park
et al. (2025b) also follows equation 1, we integrate ASPC by making its scale factor learnable and
applying the same bi level optimization procedure, with details in Appendix D. This modification
consistently improves FQL, further supporting the broad generality of ASPC across standard and
goal-conditioned offline RL.

Table 4: Performance on OGBench. Each entry shows mean± std. FQL+ASPC includes the relative
performance change over FQL. Bold numbers indicate the best performance for each task.

OGBench TD3+BC IQL ReBRAC ASPC FQL FQL+ASPC

antmaze-large-navigate-singletask-task1-v0 20± 44 48± 9 91± 10 93± 4 80± 8 84 (↑5.0%)
antmaze-large-navigate-singletask-task2-v0 20± 31 42± 6 88± 4 87± 7 57± 10 63 (↑10.5%)
antmaze-large-navigate-singletask-task3-v0 58± 31 72± 7 51± 18 96± 4 93± 3 88 (↓5.4%)
antmaze-large-navigate-singletask-task4-v0 31± 37 51± 9 84± 7 86± 5 80± 4 70 (↓12.5%)
antmaze-large-navigate-singletask-task5-v0 35± 38 54± 2 90± 2 88± 4 83± 4 80 (↓3.6%)
antmaze-giant-navigate-singletask-task1-v0 0± 1 0± 0 27± 22 22± 20 4± 5 2 (↓50.00%)
antmaze-giant-navigate-singletask-task2-v0 15± 24 1± 1 16± 17 74± 19 9± 7 26 (↑188.9%)
antmaze-giant-navigate-singletask-task3-v0 0± 1 0± 0 34± 22 18± 13 0± 1 0 (↑0.0%)
antmaze-giant-navigate-singletask-task4-v0 11± 18 0± 0 5± 12 65± 18 14± 23 33 (↑135.7%)
antmaze-giant-navigate-singletask-task5-v0 16± 25 19± 7 49± 22 55± 14 16± 28 49 (↑206.3%)

Average 20.6 28.7 53.5 68.4 43.6 49.5 (↑13.5%)

6 CONCLUSION

We presented ASPC, a bi-level framework that adapts the RL–BC trade off by optimizing the
scaling factor α through second-order updates. ASPC yields consistent improvements not only on
TD3+BC but also when combined with other offline RL baselines, demonstrating strong generality.
However, these simple integrations yield smaller gains than those seen with TD3+BC, indicating that
different algorithms may require ASPC-style components tailored to their training dynamics. Future
work includes developing such method-specific adaptive mechanisms under a unified principle and
evaluating them on larger benchmarks and real-world datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on methodological advances in offline RL. All experiments are conducted on
standard simulated benchmarks, which do not involve human subjects, personally identifiable in-
formation, or sensitive data. We strictly follow the licensing terms of all datasets and simulation
platforms used in this study. Our method, Adaptive Scaling of Policy Constraints (ASPC), is designed
to improve the stability and reliability of offline RL algorithms. While RL has the potential for
deployment in safety-critical domains, such as robotics and autonomous systems, the experiments in
this paper remain purely in simulation. Any real-world use of these methods should be preceded by
domain-specific safety checks and human oversight to avoid unintended harm.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. The proposed method is
described in detail in Section 4, and the complete theoretical derivations are provided in Appendix A.
Experimental settings and hyperparameters are reported in Appendix B. Moreover, we include the
full implementation code in the Supplementary Material to facilitate replication of all results.

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driv-ing. stat, 1050:8, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pp. 1568–1577. PMLR, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Zhang-Wei Hong, Pulkit Agrawal, Rémi Tachet des Combes, and Romain Laroche. Harnessing mixed
offline reinforcement learning datasets via trajectory weighting. arXiv preprint arXiv:2306.13085,
2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pp. 267–274, 2002.

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In 2019 international
conference on robotics and automation (ICRA), pp. 8248–8254. IEEE, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. arXiv preprint arXiv:2211.15144,
2022.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision
transformers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-guided
policy regularization for offline reinforcement learning. In International Conference on Machine
Learning, pp. 31406–31424. PMLR, 2024.

Yang Liu and Marius Hofert. Implicit and explicit policy constraints for offline reinforcement learning.
In Causal Learning and Reasoning, pp. 499–513. PMLR, 2024.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by
random network distillation. In International Conference on Machine Learning, pp. 26228–26244.
PMLR, 2023.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In The Thirteenth International Conference on Learning Representa-
tions, 2025a. URL https://openreview.net/forum?id=M992mjgKzI.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In International Conference on
Machine Learning (ICML), 2025b.

Zhiyong Peng, Changlin Han, Yadong Liu, and Zongtan Zhou. Weighted policy constraints for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 9435–9443, 2023.

Niranjani Prasad, Li Fang Cheng, Corey Chivers, Michael Draugelis, and Barbara E Engelhardt. A
reinforcement learning approach to weaning of mechanical ventilation in intensive care units. In
33rd Conference on Uncertainty in Artificial Intelligence, UAI 2017, 2017.

Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
with dataset constraint for offline reinforcement learning. In International Conference on Machine
Learning, pp. 28701–28717. PMLR, 2023.

Jie Ren*, Xidong Feng*, Bo Liu*, Xuehai Pan*, Yao Fu, Luo Mai, and Yaodong Yang. Torchopt: An
efficient library for differentiable optimization. Journal of Machine Learning Research, 24(367):
1–14, 2023. URL http://jmlr.org/papers/v24/23-0191.html.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024a.

12

https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=M992mjgKzI
http://jmlr.org/papers/v24/23-0191.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. Advances in Neural Information
Processing Systems, 36, 2024b.

Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. Supervised reinforcement learning with
recurrent neural network for dynamic treatment recommendation. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2447–2456, 2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gradient:
Convergence analysis. In Uncertainty in Artificial Intelligence, pp. 2159–2169. PMLR, 2022.

Qisen Yang, Shenzhi Wang, Matthieu Gaetan Lin, Shiji Song, and Gao Huang. Boosting offline
reinforcement learning with action preference query. In International Conference on Machine
Learning, pp. 39509–39523. PMLR, 2023.

Qisen Yang, Shenzhi Wang, Qihang Zhang, Gao Huang, and Shiji Song. Hundreds guide millions:
Adaptive offline reinforcement learning with expert guidance. IEEE transactions on neural
networks and learning systems, 35(11):16288–16300, 2024.

Zhaolin Yuan, ZiXuan Zhang, Xiaorui Li, Yunduan Cui, Ming Li, and Xiaojuan Ban. Controlling
partially observed industrial system based on offline reinforcement learning—a case study of paste
thickener. IEEE Transactions on Industrial Informatics, 2024.

Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, and Yu Zheng. Deepthermal:
Combustion optimization for thermal power generating units using offline reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 4680–4688, 2022.

Junjie Zhang, Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, Jun Yang, Le Wan, and Xiu Li. Uncertainty-
driven trajectory truncation for data augmentation in offline reinforcement learning. In ECAI 2023,
pp. 3018–3025. IOS Press, 2023.

13

https://openreview.net/forum?id=AHvFDPi-FA

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THEORETICAL PROOFS

A.1 PROOF OF PROPOSITION 4.2

Throughout the argument, we adopt the following shorthand. We index the policies as

πt ≡ πθ, πt+1 ≡ πθ̃.
We write

LBC
t := E(s,a)∼D[∥πt(s)− a∥2], LBC

t+1 := E(s,a)∼D[∥πt+1(s)− a∥2],

∆LBC := |LBC
t+1 − LBC

t |, c :=
√
LBC
t , x := Es∼D[∥πt+1(s)− πt(s)∥2].

Lemma A.1 (Reverse triangle inequality). For all A,B ∈ R one has |A+B| ≥
∣∣|A| − |B|∣∣.

Lemma A.2 (Cauchy–Schwarz). For square–integrable real random variables X,Y ,
∣∣E[XY]

∣∣ ≤(
E[X2]

)1/2(E[Y 2]
)1/2

.

Proof. The proof proceeds in three steps.

Step 1: A lower bound on ∆LBC . Expand the definition of ∆LBC and simplify:

∆LBC =
∣∣∣Es[∥∥πt+1(s)− πβ(s)

∥∥2 − ∥∥πt(s)− πβ(s)∥∥2]∣∣∣
=
∣∣∣Es[(πt+1(s)− πβ(s)

)⊤(
πt+1(s)− πβ(s)

)
−
(
πt(s)− πβ(s)

)⊤(
πt(s)− πβ(s)

)]∣∣∣
=
∣∣∣Es[(πt+1(s)− πβ(s) + πt(s)− πβ(s)

)⊤ · (πt+1(s)− πt(s)
)]∣∣∣

=
∣∣∣Es[∥∥πt+1(s)− πt(s)

∥∥2 + 2
(
πt(s)− πβ(s)

)⊤(
πt+1(s)− πt(s)

)]∣∣∣
=
∣∣∣x+ 2Es

[(
πt(s)− πβ(s)

)⊤(
πt+1(s)− πt(s)

)]∣∣∣
A.1
≥ |x| − 2

∣∣∣Es[(πt(s)− πβ(s))⊤(πt+1(s)− πt(s)
)]∣∣∣

= x− 2
∣∣∣Es[(πt(s)− πβ(s))⊤(πt+1(s)− πt(s)

)]∣∣∣
A.2
≥ x− 2

√
Es
∥∥πt(s)− πβ(s)∥∥2 ·√Es

∥∥πt+1(s)− πt(s)
∥∥2

= x− 2c
√
x .

(14)
Since ∆LBC ≥ 0 by definition, combining with equation 14 yields

∆LBC ≥ max
{
x− 2c

√
x, 0

}
. (15)

Step 2: An upper bound on (∆Q)2. Jensen’s inequality and the assumption 4.1 yield

(∆Q)2 =
(
Es
[
Q(s, πt+1(s))−Q(s, πt(s))

])2
≤ Es

[
(Q(s, πt+1(s))−Q(s, πt(s)))

2
]

≤ L2
QEs ∥πt+1(s)− πt(s)∥2

= L2
Q x

(16)

Step 3: Mutual bound. From equation 16 we have

x ≥ xmin := (∆Q)2/L2
Q. (17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Since ∆LBC ≥ max{x− 2c
√
x, 0} from equation 15, we relate this expression to ∆Q as follows.

The function h(x) = x− 2c
√
x is non-positive on [0, 4c2] and strictly increasing on [4c2,∞). When

|∆Q| ≤ 2cLQ, we have xmin ≤ 4c2, and h(xmin) is non-positive; thus ∆LBC ≥ 0 ≥ h(xmin).
When |∆Q| > 2cLQ, we have xmin > 4c2 and h(x) is increasing for all x ≥ xmin, which gives
∆LBC ≥ h(xmin). Combining the two regimes yields the bound

∆LBC ≥ max
{
0,

(∆Q)2

L2
Q

− 2c
|∆Q|
LQ

}
. (18)

Similarly, using equation 15 we obtain the following upper bounds for x:

x ≤
(
c+

√
c2 +∆LBC

)2
. (19)

Combining equation 16 with equation 19 gives an upper bound on (∆Q)2:

(∆Q)2 ≤ L2
Q

(
c+

√
c2 +∆LBC

)2
. (20)

equation 18 and equation 20 together yield the desired mutual bounds.

A.2 PROOF OF PROPOSITION 4.3

This section analyses conditions under which the one-step performance difference J(πt+1)− J(πt)
admits a tractable lower bound when training on a fixed offline dataset D collected under behavior
policy πβ (so D ≈ dπβ

).
Lemma A.3 (Performance-difference lemma). For any policies π1 and π2,

J(π1)− J(π2) =
1

1− γ
Es∼dπ1

[
Ea∼π1Q

π2(s, a)− V π2(s)
]
. (21)

The proof of Lemma A.3 can be found in Kakade & Langford (2002).
Lemma A.4. Under Assumption 4.1, the total variation distance between the visitation distributions
of any policy π and the behavior policy πβ satisfies

∥dπ − dπβ
∥1 =

∫
s

∣∣dπ(s)− dπβ
(s)
∣∣ ds ≤ C LP max

s∈S
∥π(s)− πβ(s)∥. (22)

where C > 0 is a constant.

The proof of Lemma A.4 can be found in the appendix of Xiong et al. (2022).
Lemma A.5 (Sup-norm version of equation 19). Define

x∞ := sup
s
∥πt+1(s)− πt(s)∥2,

c2∞ := sup
s
∥πt(s)− πβ(s)∥2,

∆LBC∞ := sup
s

∣∣∥πt+1(s)− πβ(s)∥2 − ∥πt(s)− πβ(s)∥2
∣∣.

Then
x∞ ≤

(
c∞ +

√
c2∞ +∆LBC∞

)2
. (23)

Proof. For each s, let ∆LBC(s) = ∥πt+1(s)− πβ(s)∥2 − ∥πt(s)− πβ(s)∥2. Then

∥πt+1(s)− πt(s)∥2 = [(πt+1(s)− πβ(s))− (πt(s)− πβ(s))]2

≤
(
∥πt+1(s)− πβ(s)∥+ ∥πt(s)− πβ(s)∥

)2
=
(√
∥πt+1(s)− πβ(s)∥2 + ∥πt(s)− πβ(s)∥

)2
=
(√
∥πt(s)− πβ(s)∥2 +∆LBC(s) + ∥πt(s)− πβ(s)∥

)2
≤
(
c∞ +

√
c2∞ +∆LBC∞

)2
.

(24)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Taking the supremum over s gives the stated result:

x∞ = sup
s
∥πt+1(s)− πt(s)∥2 ≤

(
c∞ +

√
c2∞ +∆LBC∞

)2
. (25)

The proof of Lemma A.5 is finished.

Proof. In our deterministic setting, the conditional action distribution π(·|s) for any state s is a Dirac
measure concentrated at a single action. Specifically, for π2 in Lemma A.3 we have:

V π2(s) = Ea∼π2
[Qπ2(s, a)] = Qπ2(s, π2(s)), (26)

Applying Lemma A.3 with π1 = πt+1 and π2 = πt gives:

J(πt+1)− J(πt) =
1

1− γ
Es∼dπt+1

[
Qπt(s, πt+1(s))−Qπt(s, πt(s))

]
. (27)

Write the performance–difference identity equation 27 as

J(πt+1)− J(πt) =
1

1− γ
Es∼dπt+1

[
Qπt(s, πt+1(s))−Qπt(s, πt(s))

]
=

1

1− γ

{
Es∼D

[
Qπt(s, πt+1(s))−Qπt(s, πt(s))

]
+

∫ (
dπt+1(s)−D(s)

)(
Qπt(s, πt+1(s))−Qπt(s, πt(s))

)
ds
}

≥ 1

1− γ

{
Es∼D

[
Qπt(s, πt+1(s))−Qπt(s, πt(s))

]︸ ︷︷ ︸
∆Q

−
∣∣∣∫ (dπt+1(s)−D(s)

)(
Qπt(s, πt+1(s))−Qπt(s, πt(s))

)
ds
∣∣∣}

≥ 1

1− γ

{
∆Q− ∥dπt+1

− dπβ
∥1 · sup

s

∣∣Qπt(s, πt+1(s))−Qπt(s, πt(s))
∣∣}

A.4
≥ 1

1− γ

{
∆Q− C LP max

s
∥πt+1 − πβ∥ · sup

s

∣∣Qπt(s, πt+1(s))−Qπt(s, πt(s))
∣∣}

4.1
≥ 1

1− γ

{
∆Q− C LPLQ max

s
∥πt+1 − πβ∥ · max

s
∥πt+1 − πt∥

}
≥ 1

1− γ

{
∆Q− C LPLQ (max

s
∥πt+1 − πt∥+max

s
∥πt − πβ∥) max

s
∥πt+1 − πt∥

}
=

1

1− γ

{
∆Q− C LPLQ (

√
x∞ + c∞)

√
x∞

}
A.5
≥ 1

1− γ

{
∆Q− C LPLQ

[
(c∞ +

√
c2∞ +∆LBC∞)2 + c∞

√
c2∞ +∆LBC∞ + c2∞

]}
=

1

1− γ

{
∆Q− C LPLQ (3c2∞ + 3c

√
c2∞ +∆LBC∞ +∆LBC∞)

}
.

(28)

Thus, the one–step performance satisfies the lower bound

J(πt+1)− J(πt) ≥
1

1− γ

(
∆Q− κ(3c2∞ + 3c

√
c2∞ +∆LBC∞ +∆LBC∞)

)
,

κ := C LPLQ.

(29)

The proof of Proposition 4.3 is finished.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 4.4

We now show how our outer-loss components ensure the performance lower bound equation 29 is
maintained.

L1 equation 6 updates α based on the relative gradients of Q-value and the BC loss. Under the
initialization assumption ∇θE[Q] > ∇θLBC , so L1 updates α to favor Q-improvement.

In our algorithm, the two regularizers L2 and L3 play complementary roles in guaranteeing safe
single-step improvements. Specifically, L2 in equation 7 penalizes the squared change in the Q-
function, ∆Q2, to prevent overly large and unreliable Q-updates. Due to the bootstrapping error
inherent in RL, the single-step Q-value changes can be noisy, and therefore we apply an exponential
moving average (EMA) for stabilization. In order to preserve the one-step performance lower bound
equation 29, L3 in equation 8 must impose a matching penalty on the bias term identified in that
bound. By choosing L3 so that its curvature mirrors that of L2, we ensure the single-step performance
guarantee remains non-negative.

Proof. We perform a second-order Taylor expansion of
√
c2∞ +∆LBC∞ around ∆LBC∞ = 0, assum-

ing ∆LBC∞ /c2∞ ≪ 1, discarding higher-order and constant terms. Substituting into the square and
retaining only terms up to O(∆LBC∞) yields:

L3 = κ2
(
3c2∞ + 3c∞

√
c2∞ +∆LBC∞ +∆LBC∞

)2
= κ2

(
3c2∞ + 3c∞

(
c∞ +

∆LBC
∞

2c∞
− (∆LBC

∞)2

8c3∞
+O(∆LBC

3

∞)
)
+∆LBC∞

)2
= κ2

(
6c2∞ + 5

2 ∆L
BC
∞ − 3

8

(∆LBC∞)2

c2∞
+O(∆LBC

3

∞)
)2

= κ2
(
36 c4∞ + 30 c2∞ ∆LBC∞ +O(∆LBC

2

∞)
)

= 36κ2 c4∞ + 30κ2 c2∞ ∆LBC∞ + O(∆LBC
2

∞)

≈ 30κ2 c2∞ ∆LBC∞

= wc2∞ ∆LBC∞ , w := 30k2.

(30)

In practice, we scale L3 by the value of L2 to match its regularization strength and simply set w to 1:

L3 = (∆Q)2 c2∞ ∆LBC∞ . (31)

By setting an appropriate w, the algorithm can guarantee that:

J(πt+1)− J(πt) ≥ 0. (32)

The proof of Theorem 4.4 is finished.

A.4 PROOF OF THEOREM 4.5

Proof. We split the total performance gap into two components:

J(π∗)− J(πT) =
[
J(π∗)− J(π0)

]
−
[
J(π1)− J(π0)

]
−
[
J(π2)− J(π1)

]
− · · · −

[
J(πT)− J(πT−1)

]
= J(π∗)− J(π0)−

T−1∑
i=0

[
J(πi+1)− J(πi)

]
.

(33)
We first observe that the behavior-cloning loss

LBCt = E(s,a)∼D
∥∥πt(s)− a∥∥2 (34)

decreases rapidly during early training. Hence there exists a warm-up time t0 such that

LBCt0 ≤ ε0 =⇒ Es∼D∥πt0(s)− β(s)∥ ≤
√
ε0, (35)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and we set
π0 := πt0 ≈ β.

then

J(π∗)− J(π0) =
1

1− γ

(
Es∼dπ∗ [r(s)]− Es∼dπ0

[r(s)]
)

=
1

1− γ

∫
s

(
dπ∗(s)− dπ0

(s)
)
r(s) ds

≤ 1

1− γ

∫
s

∣∣dπ∗(s)− dπ0
(s)
∣∣ Rmax ds

=
Rmax

1− γ
∥ dπ∗ − dπ0∥1

A.4
≤ Rmax

1− γ
C LP max

s
∥π∗(s)− π0(s)∥

≤ C LP Rmax

1− γ

(
max
s
∥π∗(s)− β(s)∥︸ ︷︷ ︸

εβ

+ Es∼D∥π0(s)− β(s)∥
)
.

≤ C LP Rmax

1− γ
(
εβ +

√
ε0
)
.

(36)

We define
∆0 =

C LP Rmax

1− γ
(
εβ +

√
ε0
)

(37)

Next, each one-step update i produces the gain equation 32

δi = J(πi+1)− J(πi) ≥ 0. (38)

Summing these gains yields the unified bound

J(π∗)− J(πT) ≤ ∆0 −
T−1∑
i=0

δi. (39)

With a fixed regularization weight α, the sequence {δi} tends to decay rapidly toward zero or even
become negative. Therefore, static α leaves a large residual gap in equation 39. Our meta-update
dynamically adjusts α so that each δi stays bounded below by a positive constant δmin > 0 over a
long horizon. Thus

J(π∗)− J(πT) ≤ ∆0 − T δmin. (40)
The proof of Theorem 4.5 is finished.

B EXPERIMENTAL DETAILS

B.1 HARDWARE AND SOFTWARE

We use the following hadrward:

1) Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10 GHz
2) NVIDIA GeForce RTX 4090 GPU

We use the following software versions:

1) Python 3.8.10
2) D4RL 1.1
3) MuJoCo 3.2.3

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

4) Gym 0.23.1
5) mujoco-py 2.1.2.14
6) PyTorch 2.2.2 + CUDA 12.1
7) TorchOpt 0.7.3 Ren* et al. (2023)

B.2 HYPERPARAMETERS

The network structures and hyperparameter configurations of each algorithm corresponding to Table
1 are as follows.

Table 5: ASPC hyperparameters.

Hyperparameter Value

TD3+BC
hyperparameters

Optimizer Adam Kingma (2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture

Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Critic LayerNorm True
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

ASPC
hyperparameters

Initial α 2.5
α learning rate 2e-3
α learning rate decay Exponential
α update interval 10
EMA smoothing factor 0.995

Table 6: TD3+BC hyperparameters.

Hyperparameter Value

TD3+BC
hyperparameters

Optimizer Adam Kingma (2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
α 2.5

Architecture

Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Critic LayerNorm True
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

C LEARNING CURVES

C.1 SCALE FACTOR CURVES

Figure 7 plots the α learning curves for all 39 datasets. The curves show that our algorithm (i) drives
α toward distinct optima across tasks and (ii) merely modulates its step size and pace when the dataset

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: wPC hyperparameters.

Hyperparameter Value

wPC
hyperparameters

Optimizer Adam Kingma (2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Value learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.1
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
α 2.5

Architecture

Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Critic LayerNorm True
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Value hidden dim 256
Value hidden layers 2
Value activation function ReLU

Table 8: A2PR hyperparameters.

Hyper-parameters Value

TD3+BC
hyperparameters

Optimizer Adam Kingma (2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate τ 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
α 2.5

Architecture

Q-Critic hidden dim 256
Q-Critic hidden layers 3
Q-Critic Activation function ReLU
V-Critic hidden dim 256
V-Critic hidden layers 3
V-Critic Activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU

A2PR
hyperparameters

Normalized state True
ϵA 0
w1, w2 1.0

Table 9: IQL hyperparameters.

Hyperparameter Value

IQL
hyperparameters

Optimizer Adam Kingma (2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Value learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Learning rate decay Cosine

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Value hidden dim 256
Value hidden layers 2
Value activation function ReLU

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: IQL’s best hyperparameters used in D4RL benchmark.

Task Name β IQL τ Deterministic policy
halfcheetah-random 3.0 0.95 False
halfcheetah-medium 3.0 0.95 False
halfcheetah-expert 6.0 0.9 False
halfcheetah-medium-expert 3.0 0.7 False
halfcheetah-medium-replay 3.0 0.95 False
halfcheetah-full-replay 1.0 0.7 False

hopper-random 1.0 0.95 False
hopper-medium 3.0 0.7 True
hopper-expert 3.0 0.5 False
hopper-medium-expert 6.0 0.7 False
hopper-medium-replay 6.0 0.7 True
hopper-full-replay 10.0 0.9 False

walker2d-random 0.5 0.9 False
walker2d-medium 6.0 0.5 False
walker2d-expert 6.0 0.9 False
walker2d-medium-expert 1.0 0.5 False
walker2d-medium-replay 0.5 0.7 False
walker2d-full-replay 1.0 0.7 False

maze2d-umaze 3.0 0.7 False
maze2d-medium 3.0 0.7 False
maze2d-large 3.0 0.7 False

antmaze-umaze 10.0 0.7 False
antmaze-umaze-diverse 10.0 0.95 False
antmaze-medium-play 6.0 0.9 False
antmaze-medium-diverse 6.0 0.9 False
antmaze-large-play 10.0 0.9 False
antmaze-large-diverse 6.0 0.9 False

pen-human 1.0 0.95 False
pen-cloned 10.0 0.9 False
pen-expert 10.0 0.8 False

door-human 0.5 0.9 False
door-cloned 6.0 0.7 False
door-expert 0.5 0.7 False

hammer-human 3.0 0.9 False
hammer-cloned 6.0 0.7 False
hammer-expert 0.5 0.95 False

relocate-human 1.0 0.95 False
relocate-cloned 6.0 0.9 False
relocate-expert 10.0 0.9 False

Table 11: ReBRAC hyperparameters.

Hyperparameter Value

ReBRAC
hyperparameters

Optimizer Adam Kingma (2014)

Mini-batch size 1024 on Gym-MuJoCo,
256 on others

Learning rate 1e-3 on Gym-MuJoCo,
1e-4 on AntMaze

Discount factor γ 0.999 on AntMaze,
0.99 on others

Target update rate τ 5e-3

Architecture

Hidden dim (all networks) 256
Hidden layers (all networks) 3
Activation function ReLU
Critic LayerNorm True

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: ReBRAC’s best hyperparameters used in D4RL benchmark.

Task Name β1 (actor) β2 (critic)

halfcheetah-random 0.001 0.1
halfcheetah-medium 0.001 0.01
halfcheetah-expert 0.01 0.01
halfcheetah-medium-expert 0.01 0.1
halfcheetah-medium-replay 0.01 0.001
halfcheetah-full-replay 0.001 0.1

hopper-random 0.001 0.01
hopper-medium 0.01 0.001
hopper-expert 0.1 0.001
hopper-medium-expert 0.1 0.01
hopper-medium-replay 0.05 0.5
hopper-full-replay 0.01 0.01

walker2d-random 0.01 0.0
walker2d-medium 0.05 0.1
walker2d-expert 0.01 0.5
walker2d-medium-expert 0.01 0.01
walker2d-medium-replay 0.05 0.01
walker2d-full-replay 0.01 0.01

maze2d-umaze 0.003 0.001
maze2d-medium 0.003 0.001
maze2d-large 0.003 0.001

antmaze-umaze 0.003 0.002
antmaze-umaze-diverse 0.003 0.001
antmaze-medium-play 0.001 0.0005
antmaze-medium-diverse 0.001 0.0
antmaze-large-play 0.002 0.001
antmaze-large-diverse 0.002 0.002

pen-human 0.1 0.5
pen-cloned 0.05 0.5
pen-expert 0.01 0.01

door-human 0.1 0.1
door-cloned 0.01 0.1
door-expert 0.05 0.01

hammer-human 0.01 0.5
hammer-cloned 0.1 0.5
hammer-expert 0.01 0.01

relocate-human 0.1 0.01
relocate-cloned 0.1 0.01
relocate-expert 0.05 0.01

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

quality changes within the same task. This dual behaviour highlights the method’s adaptability to
both task differences and data-quality variations.

0.0 0.5 1.0
Train Steps / 1M

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
lp

ha

halfcheetah

expert-v2
full-replay-v2
medium-expert-v2
medium-replay-v2
medium-v2
random-v2

0.0 0.5 1.0
Train Steps / 1M

4

6

8

10

A
lp

ha

hopper
expert-v2
full-replay-v2
medium-expert-v2
medium-replay-v2
medium-v2
random-v2

0.0 0.5 1.0
Train Steps / 1M

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
lp

ha

walker2d

expert-v2
full-replay-v2
medium-expert-v2
medium-replay-v2
medium-v2
random-v2

0.0 0.5 1.0
Train Steps / 1M

3

4

5

6

7

8

9

A
lp

ha

maze2d
large-v1
medium-v1
umaze-v1

0.0 0.5 1.0
Train Steps / 1M

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
lp

ha

antmaze

large-diverse-v2
large-play-v2
medium-diverse-v2
medium-play-v2
umaze-diverse-v2
umaze-v2

0.0 0.5 1.0
Train Steps / 1M

0.5

1.0

1.5

2.0

2.5

A
lp

ha

pen
cloned-v1
expert-v1
human-v1

0.0 0.5 1.0
Train Steps / 1M

0.0

0.5

1.0

1.5

2.0

2.5

A
lp

ha

door
cloned-v1
expert-v1
human-v1

0.0 0.5 1.0
Train Steps / 1M

0.0

0.5

1.0

1.5

2.0

2.5

A
lp

ha

hammer
cloned-v1
expert-v1
human-v1

0.0 0.5 1.0
Train Steps / 1M

0.0

0.5

1.0

1.5

2.0

2.5

A
lp

ha

relocate
cloned-v1
expert-v1
human-v1

Figure 7: Learning curves of α for nine tasks across 39 datasets.

C.2 PERFORMANCE CURVES

Figure 8 shows the learning curves of all four algorithms on the 39 D4RL datasets. ASPC rises
much more rapidly than the baselines, typically within the first 0.2–0.3 M environment steps, and
surpasses them long before the others stabilize. Its final normalized scores are almost always the
highest (or very close to the highest) across all task families, maintaining a clear margin where the
competing methods usually plateau. Moreover, the shaded regions (mean ± 1 s.d. over four seeds)
remain consistently narrow for ASPC, and its curves show no late-stage collapses, pointing to lower
variance and steadier adaptation across widely varying task dynamics and data quality. Overall, the
figure suggests that ASPC combines greater sample efficiency, stronger ultimate performance, and
more reliable behavior than the other approaches.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0

5

10

15

20

25

N
or

m
al

iz
ed

 S
co

re

halfcheetah-random-v2

0.0 0.5 1.0
0

20

40

60
halfcheetah-medium-v2

0.0 0.5 1.0
0

25

50

75

100

halfcheetah-expert-v2

0.0 0.5 1.0
0

20

40

60

80

100

halfcheetah-medium-expert-v2

0.0 0.5 1.0

10

20

30

40

50

halfcheetah-medium-replay-v2

0.0 0.5 1.0
0

20

40

60

80

N
or

m
al

iz
ed

 S
co

re

halfcheetah-full-replay-v2

0.0 0.5 1.0
0

10

20

30

hopper-random-v2

0.0 0.5 1.0

20

40

60

80

100

hopper-medium-v2

0.0 0.5 1.0
0

25

50

75

100

125

hopper-expert-v2

0.0 0.5 1.0
0

25

50

75

100

125

hopper-medium-expert-v2

0.0 0.5 1.0
0

25

50

75

100

N
or

m
al

iz
ed

 S
co

re

hopper-medium-replay-v2

0.0 0.5 1.0

20

40

60

80

100

120
hopper-full-replay-v2

0.0 0.5 1.0

0

10

20

walker2d-random-v2

0.0 0.5 1.0

0

20

40

60

80

100

walker2d-medium-v2

0.0 0.5 1.0
0

25

50

75

100

125

walker2d-expert-v2

0.0 0.5 1.0

0

50

100

N
or

m
al

iz
ed

 S
co

re

walker2d-medium-expert-v2

0.0 0.5 1.0
0

25

50

75

100

walker2d-medium-replay-v2

0.0 0.5 1.0

0

25

50

75

100

walker2d-full-replay-v2

0.0 0.5 1.0

0

50

100

150

maze2d-umaze-v1

0.0 0.5 1.0

0

50

100

150

maze2d-medium-v1

0.0 0.5 1.0

0

50

100

150

200

250

N
or

m
al

iz
ed

 S
co

re

maze2d-large-v1

0.0 0.5 1.0

0

25

50

75

100

antmaze-umaze-v2

0.0 0.5 1.0

0

25

50

75

100

antmaze-umaze-diverse-v2

0.0 0.5 1.0

0

25

50

75

100

antmaze-medium-play-v2

0.0 0.5 1.0

0

25

50

75

100

antmaze-medium-diverse-v2

0.0 0.5 1.0

0

20

40

60

80

N
or

m
al

iz
ed

 S
co

re

antmaze-large-play-v2

0.0 0.5 1.0

0

20

40

60

80

antmaze-large-diverse-v2

0.0 0.5 1.0

0

25

50

75

100

pen-human-v1

0.0 0.5 1.0

0

50

100

pen-cloned-v1

0.0 0.5 1.0

0

50

100

150

pen-expert-v1

0.0 0.5 1.0

0

2

4

N
or

m
al

iz
ed

 S
co

re

door-human-v1

0.0 0.5 1.0

−2.5

0.0

2.5

5.0

7.5

10.0
door-cloned-v1

0.0 0.5 1.0

0

25

50

75

100

door-expert-v1

0.0 0.5 1.0

0

10

20

30
hammer-human-v1

0.0 0.5 1.0
Train Steps / 1M

0

20

40

60
hammer-cloned-v1

0.0 0.5 1.0
Train Steps / 1M

0

50

100

150

N
or

m
al

iz
ed

 S
co

re

hammer-expert-v1

0.0 0.5 1.0
Train Steps / 1M

0

1

2

3
relocate-human-v1

0.0 0.5 1.0
Train Steps / 1M

−0.5

0.0

0.5

1.0

relocate-cloned-v1

0.0 0.5 1.0
Train Steps / 1M

0

25

50

75

100

relocate-expert-v1

TD3+BC
wPC
A2PR
ASPC

Figure 8: Learning curves comparing the performance of ASPC against other baselines.

D INTEGRATING ASPC WITH OTHER OFFLINE RL ALGORITHMS

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D.1 INTEGRATION WITH IQL

In IQL, the policy is trained by advantage-weighted behavior cloning. Let adv(s, a) denote the IQL
advantage estimate and β > 0 the temperature parameter. We integrate ASPC by treating β as the
adaptive policy-constraint coefficient.

Inner objective. The IQL actor minimizes

LIQL
inner(θ;β) = E(s,a)∼D

[
exp(β adv(s, a)) ℓBC(πθ(a | s))

]
, (41)

where ℓBC(πθ(a | s)) = − log πθ(a | s). A single gradient step yields the updated policy πθ̃(β).

Outer objective. Following ASPC, we construct an outer loss on the updated policy using a
normalized Q-improvement term and the corresponding BC loss:

LIQL
1 (β) = −

Es[Q(s, πθ̃(s))]

Es[|Q(s, πθ̃(s))|]
+ E(s,a)

[
exp(β adv(s, a)) ℓBC(πθ̃(a | s))

]
. (42)

The second term measures the change in mean Q-value induced by the inner update:

LIQL
2 (β) =

(
Es[Q(s, πθ̃(s))]− Es[Q(s, πθ(s))]

)2
. (43)

The outer objective for adapting β is

LIQL
outer(β) = L

IQL
1 (β) + LIQL

2 (β). (44)

D.2 INTEGRATION WITH CQL

CQL constrains Q-values by penalizing larger Q-values on out-of-distribution (OOD) actions. Let
α > 0 denote the conservatism coefficient. Following ASPC, we treat α as the adaptive policy-
constraint parameter.

Inner objective. Given a batch (s, a, r, s′), the CQL critic update solves

LCQL
inner(ψ;α) = E

[(
Qψ(s, a)− T Q(s, a)

)2]︸ ︷︷ ︸
Bellman regression

+ α
(
Ea′∼π(·|s)[Qψ(s, a′)]−Qψ(s, a)

)
︸ ︷︷ ︸

CQL penalty

, (45)

where
T Q(s, a) = r + γ Ea′∼π(·|s′)[min(Qψ−(s′, a′))].

A single gradient step produces the updated critic Qψ̃(α).

Outer objective. ASPC evaluates the updated critic with a normalized Q-improvement term and
the corresponding CQL penalty, forming

LCQL
1 (α) = −

Es[Qψ̃(s, π(s))]
Es[|Qψ̃(s, π(s))|]

+ α
(
Ea′∼π(·|s)[Qψ̃(s, a

′)]− E(s,a)[Qψ̃(s, a)]
)
. (46)

The Q-value change induced by the inner update is

LCQL
2 (α) =

(
Es[Qψ̃(s, π(s))]− Es[Qψ(s, π(s))]

)2
. (47)

The outer objective for adapting α becomes

LCQL
outer(α) = L

CQL
1 (α) + LCQL

2 (α). (48)

D.3 INTEGRATION WITH DIFFUSION-QL

Diffusion-QL trains a diffusion policy by combining a behavior-cloning loss with a normalized
Q-term. Let η > 0 be the coefficient controlling the trade-off between policy improvement and
imitation. Following ASPC, we treat η as the adaptive constraint parameter.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Inner objective. Given state–action pairs (s, a), the diffusion policy πθ is trained under the objective

LDQL
inner(θ; η) = E(s,a)∼D

[
LBC(πθ(s), a)

]︸ ︷︷ ︸
Diffusion behavior cloning

+ η
(
−

Es
[
Q(s, πθ(s))

]
Es
[
|Q(s, πθ(s))|

])︸ ︷︷ ︸
normalized Q-improvement

. (49)

A single gradient step produces the updated diffusion policy πθ̃(η).

Outer objective. ASPC evaluates the updated diffusion policy through a normalized Q-value term
and the corresponding BC term:

LDQL
1 (η) = −η

Es[Q(s, πθ̃(s))]

Es[|Q(s, πθ̃(s))|]
+ E(s,a)

[
LBC

(
πθ̃(s), a

)]
. (50)

The Q-improvement induced by the inner update is captured by

LDQL
2 (η) =

(
Es[Q(s, πθ̃(s))]− Es[Q(s, πθ(s))]

)2
. (51)

The outer objective becomes

LDQL
outer(η) = L

DQL
1 (η) + LDQL

2 (η). (52)

D.4 INTEGRATION WITH FQL

FQL employs two policies: (i) a teacher flow policy trained purely by flow-matching, and (ii) a
student one-step flow policy trained via distillation and Q-improvement. Only the student policy
interacts with the Q-function, making it the component that requires adaptive scaling. We integrate
ASPC by treating the student’s trade-off coefficient α as the adaptive constraint parameter.

Teacher objective (BC Flow). The teacher flow policy is trained via standard flow-matching:

Lteacher = E(s,a)

[
∥fθ(s, xt, t)− (a− x0)∥2

]
, (53)

where xt = (1− t)x0 + ta and fθ denotes the flow velocity network. This loss is independent of α.

Inner objective (Student Flow). The student one-step policy πθ predicts an action in a single step
and matches the teacher via a distillation loss, while also incorporating a normalized Q-improvement
term. The inner objective is

LFQL
inner(θ;α) = Es,ε

[
∥πθ(s, ε)− πteacher(s, ε)∥2

]︸ ︷︷ ︸
distillation (BC) term

+ α
(
− Es[Q(s, πθ(s))]

Es[|Q(s, πθ(s))|]

)
︸ ︷︷ ︸

normalized Q-improvement

. (54)

A single gradient update produces the updated student policy πθ̃(α).

Outer objective. ASPC evaluates the updated student policy by combining its normalized Q-value
and distillation loss, and the Q-improvement incurred by the inner update:

LFQL
1 (α) = −α

Es[Q(s, πθ̃(s))]

Es[|Q(s, πθ̃(s))|]
+ Es,ε

[
∥πθ̃(s, ε)− πteacher(s, ε)∥

2
]
, (55)

LFQL
2 (α) =

(
Es[Q(s, πθ̃(s))]− Es[Q(s, πθ(s))]

)2
. (56)

The outer objective becomes

LFQL
outer(α) = L

FQL
1 (α) + LFQL

2 (α). (57)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E ADDITIONAL EMPIRICAL ANALYSES

E.1 PERFORMANCE ON ANTMAZE AND ADROIT

As shown in Table 1, ASPC does not achieve state-of-the-art performance on AntMaze and Adroit.
Both benchmarks are characterized by extremely sparse rewards, with AntMaze in particular using a
binary 0–1 success signal Fu et al. (2020). In such settings, even online RL methods struggle to learn
effectively, and behavior cloning plays a dominant role in determining policy quality.

Although ASPC can adapt α toward a more BC-dominated regime, the current BC term imitates all
actions in the dataset, including suboptimal or unsuccessful trajectories. This limits the attainable
performance on sparse-reward tasks. To address this issue, we experimented with augmenting the
BC term using advantage-weighted behavior cloning, where high-advantage samples receive larger
weights. The modified loss improves the selectivity of imitation by emphasizing demonstrably good
behaviors. Experimental results, shown in Figure 9, indicate consistent performance gains on both
AntMaze and Adroit when advantage-weighting is applied. This suggests that selectively imitating
high-quality behaviors is crucial for sparse-reward offline RL tasks.

an
tm

aze
-um

aze

an
tm

aze
-um

aze
-di

ve
rse

an
tm

aze
-m

ed
ium

-pl
ay

an
tm

aze
-m

ed
ium

-di
ve

rse

an
tm

aze
-la

rge
-pl

ay

an
tm

aze
-la

rge
-di

ve
rse

AntM
aze

 Ave
rag

e

pe
n-h

um
an

pe
n-c

lon
ed

pe
n-e

xp
ert

do
or-

ex
pe

rt

ha
mmer-

clo
ne

d

ha
mmer-

ex
pe

rt

rel
oc

ate
-ex

pe
rt

Adro
it A

ve
rag

e
0.0

72.8

145.5

N
or

m
al

iz
ed

 S
co

re +8.1%
-5.4% +8.8%

+21.4%

+13.6% +23.8%

+10.1%
+12.8% +8.9%

+3.0%

-0.9%

+63.3%

+0.0%

-0.8%

+3.9%

ASPC
ASPC+AW

Figure 9: Normalized scores on AntMaze and Adroit tasks. Each pair of bars corresponds to a single
dataset (plus the domain-wise average), comparing ASPC (orange) and ASPC+AW (green), where
ASPC+AW applies advantage-weighted behavior cloning. The percentages annotated above the green
bars indicate the relative performance change of ASPC+AW with respect to ASPC on each task.

E.2 ABLATION ON THE FORMULATION OF THE L3 TERM

To better understand the role of each component in the L3 term, we consider five variants. The first
variant keeps only the third component:

L
(1)
3 = sup

(s,a)∈D

∣∣∥πθ̃(s)− a∥2 − ∥πθ(s)− a∥2∣∣ .
The second variant multiplies the third component by the squared BC deviation:

L
(2)
3 =

(
sup

(s,a)∈D
∥πθ(s)− a∥2

)
L
(1)
3 .

The third variant replaces the BC-deviation factor with the detached L2 term:

L
(3)
3 = (L2 detach) L

(1)
3 .

The fourth variant is the complete formulation used in our method:

L
(4)
3 = (L2 detach)

(
sup

(s,a)∈D
∥πθ(s)− a∥2

)
L
(1)
3 .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 13: Ablation on different formulations of the L3 term. Values in parentheses denote relative
change (%) w.r.t. the full formulation (variant 4). Positive changes are shown in blue, negative in red.

Formulation Gym-MuJoCo Maze2d AntMaze Adroit Total Avg

(1) 76.7 (-6.6%) 97.2 (-34.0%) 31.7 (-57.4%) 55.2 (-0.9%) 64.7 (-16.9%)
(2) 76.8 (-6.5%) 107.2 (-27.2%) 31.9 (-57.2%) 54.9 (-1.4%) 65.5 (-15.9%)
(3) 81.1 (-1.2%) 151.8 (+3.1%) 73.3 (-1.6%) 56.1 (+0.7%) 77.7 (-0.2%)

(4) 82.1 147.2 74.5 55.7 77.9

(5) 82.0 (-0.1%) 149.2 (+1.4%) 74.6 (+0.1%) 55.5 (-0.4%) 77.9 (+0.0%)

The fifth variant replaces both supremum operators in L(4)
3 by dataset expectations:

L
(5)
3 = (L2 detach)

(
E(s,a)∼D∥πθ(s)− a∥2

) ∣∣E(s,a)∼D
[
∥πθ̃(s)− a∥

2 − ∥πθ(s)− a∥2
]∣∣ .

Table 13 summarizes the results. Variants (3)–(5), which include the detached L2 term, provide clear
gains on Maze2d and AntMaze, showing that this component is essential for these domains. By
contrast, Adroit displays only minor differences across all variants, suggesting that Q-value gradients
dominate BC-related gradients there, making the precise form of L3 less influential. Finally, variant
(5) achieves a performance nearly identical to the full formulation, implying that strict worst-case
bounds using the sup operator are not essential in practice.

E.3 CASE STUDY OF ASPC DYNAMICS

Figure 10 shows the training dynamics on halfcheetah-medium-v2. ASPC consistently increases both
the estimated Q-value and the BC loss, while simultaneously improving the normalized score. It is
essential to note that the increase in BC loss under ASPC does not indicate instability or degradation.
Since ASPC deliberately allows the policy to deviate from the behavior policy when such deviations
yield sufficient Q-value improvement, the BC loss can increase while performance improves. This
matches our theory: whenever the Q-value gain compensates for the increased deviation, the update
remains beneficial. Thus, an increasing BC loss indicates that ASPC is escaping the behavior cloning
regime and moving toward higher-value actions. In contrast, TD3+BC rapidly plateaus in all three
curves, indicating that its fixed trade-off between RL and BC limits its ability to continue improving.

0.0 0.5 1.0
Train Steps / 1M

5.2

279.8

554.4

Q
 v

al
ue

Q value

0.0 0.5 1.0
Train Steps / 1M

0.02139

0.05378

0.08616

B
C

 lo
ss

BC loss

0.0 0.5 1.0
Train Steps / 1M

28.36

43.10

57.83

N
or

m
al

iz
ed

 S
co

re

Normalized Score

TD3+BC
ASPC

Figure 10: Case study on halfcheetah-medium-v2. ASPC maintains increasing Q-values and BC
loss throughout training, accompanied by continuous improvement in normalized score. In contrast,
TD3+BC quickly saturates in all three metrics. This behavior is consistent with the theoretical single-
step performance improvement condition, illustrating that ASPC sustains stable policy enhancement
over the course of training.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0.1 2.5 10
0.00

45.16

90.31

N
or

m
al

iz
ed

 S
co

re

73.9

82.1
77.1

Gym-MuJoCo Avg

0.1 2.5 10
0.0

93.7

187.3

73.0

147.2

170.3
Maze2d Avg

0.1 2.5 10
0.00

40.98

81.95
73.3 74.5

68.3

AntMaze Avg

0.1 2.5 10
0.00

30.64

61.27
55.1 55.7

32.9

Adroit Avg

Figure 11: Sensitivity of ASPC to the initial value of α. We compare three initializations (α0 =
0.1, 2.5, 10) and report the domain-wise normalized averages.

F HYPERPARAMETER SENSITIVITY ANALYSES

F.1 SENSITIVITY TO THE INITIAL VALUE OF α

Figure 11 illustrates the influence of the initial value of α on ASPC. Across Gym-MuJoCo, AntMaze,
and Adroit, the intermediate setting α0 = 2.5 provides the strongest overall performance, while a
very small initialization (α0 = 0.1) tends to bias the early update dynamics too strongly toward
BC, limiting the contribution of the RL term. Conversely, an excessively large initialization (e.g.,
α0 = 10) can overemphasize the RL component at the beginning, which weakens the intended
stabilizing effect of the BC objective and leads to performance drops, particularly on Adroit. These
observations indicate that a balanced initialization is important for achieving stable optimization.

F.2 SENSITIVITY TO THE LEARNING RATE OF α

We study the effect of the learning rate used for updating α. The results show that different domains
prefer different learning rate magnitudes. Too small values slow down the adjustment of the RL–BC
trade-off, while too large values make the meta-update unstable and degrade performance.

2e-2 2e-3 2e-4
0.00

45.16

90.31

N
or

m
al

iz
ed

 S
co

re 63.3

82.1
76.2

Gym-MuJoCo Avg

2e-2 2e-3 2e-4
0.0

93.2

186.3 169.4

147.2

107.9

Maze2d Avg

2e-2 2e-3 2e-4
0.00

40.98

81.95

26.7

74.5

41.7

AntMaze Avg

2e-2 2e-3 2e-4
0.00

30.91

61.82 56.2 55.7
51.3

Adroit Avg

Figure 12: Sensitivity analysis on the learning rate of α across all domains. Each panel reports the
domain-level normalized score under three learning rate settings (2× 10−2, 2× 10−3, 2× 10−4).

G THE USE OF LLM

Large Language Models (LLMs) were used to aid and polish the writing of this paper. In particular,
they were applied to rephrase sentences for improved readability and refine grammar and wording to
meet academic style requirements.

29

	Introduction
	Related Works
	Offline RL
	Adaptive Policy Constraints

	Preliminaries
	Method
	Adaptive Scaling of Policy Constraints
	Theoretical Analysis
	Implementation on TD3+BC

	Experiments
	Comparative Performance on Benchmark
	Adaptability of the Sacle Factor
	Necessity of Dynamic Scale Factor Adjustment
	Runtime Analysis
	Ablation Studies
	Extending ASPC to Other Offline RL Methods
	Additional Experiments on OGBench

	Conclusion
	Theoretical Proofs
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5

	Experimental Details
	Hardware and Software
	Hyperparameters

	Learning Curves
	Scale Factor Curves
	Performance Curves

	Integrating ASPC with Other Offline RL Algorithms
	Integration with IQL
	Integration with CQL
	Integration with Diffusion-QL
	Integration with FQL

	Additional Empirical Analyses
	Performance on AntMaze and Adroit
	Ablation on the Formulation of the L3 Term
	Case Study of ASPC Dynamics

	Hyperparameter Sensitivity Analyses
	Sensitivity to the Initial Value of
	Sensitivity to the Learning Rate of

	The use of LLM

