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Abstract

We consider an online estimation problem involving a set of agents. Each agent has access to a
(personal) process that generates samples from a real-valued distribution and seeks to estimate its
mean. We study the case where some of the distributions have the same mean, and the agents
are allowed to actively query information from other agents. The goal is to design an algorithm
that enables each agent to improve its mean estimate thanks to communication with other agents.
The means as well as the number of distributions with same mean are unknown, which makes
the task nontrivial. We introduce a novel collaborative strategy to solve this online personalized
mean estimation problem. We analyze its time complexity and introduce variants that enjoy good
performance in numerical experiments. We also extend our approach to the setting where clusters
of agents with similar means seek to estimate the mean of their cluster.

1 Introduction

With the wide spreading of personal digital devices, ubiquitous computing and [oT (Internet of Things), the need for
decentralized and collaborative computing has become more pregnant. Indeed, devices are first of all designed to
collect data and this data may be sensitive and/or too large to be transmitted. Therefore, it is often preferable to keep
the data on-device, where it has been collected. Local processing on a single device is a always possible option but
learning in isolation suffers from slow convergence time when data arrives slowly. In that case, collaborative strategies
can be investigated in order to increase statistical power and accelerate learning. In recent years, such collaborative
approaches have been broadly referred to as federated learning (Kairouz et al.l 2021).

The data collected at each device reflects the specific usage, production patterns and objective of the associated agent.
Therefore, we must solve a set of personalized tasks over heterogeneous data distributions. Even though the tasks
are personalized, collaboration can play a significant role in reducing the time complexity and accelerating learning
in presence of agents who share similar objectives. An important building block to design collaborative algorithms is
then to identify agents acquiring data from the same (or similar) distribution. This is particularly difficult to do in an
online setting, in which data becomes available sequentially over time.

In this work, we explore this challenging objective in the context of a new problem: online personalized mean es-
timation. Formally, each agent continuously receives data from a personal o-sub-Gaussian distribution and aims to
construct an accurate estimation of its mean as fast as possible. At each step, each agent receives a new sample from
its distribution but is also allowed to query the current local average of another agent. To enable collaboration, we
assume the existence of an underlying class structure where agents in the same class have the same mean value. We
also consider a relaxed assumption where the means of agents in a class are close (but not necessarily equal). Such
assumptions are natural in many real-world applications (Adi et al.l [2020). A simple example is that of in different
environments, monitoring parameters such as temperature in order to accurately estimate their mean (see for instance
Mateo et al.|[2013). Another example is collaborative filtering, where the goal is to estimate user preferences by lever-
aging the existence of clusters of users with similar preferences (Su & Khoshgoftaar, 2009a). Crucially, the number
of classes and their cardinality are unknown to the agents and must be discovered in an online fashion.

We propose collaborative algorithms to solve this problem, where agents identify the class they belong to in an online
fashion so as to better and faster estimate their own mean by assigning weights to other agents’ estimates. Our approach



Under review as submission to TMLR

is grounded in Probably Approximately Correct (PAC) theory, allowing agents to iteratively discard agents in different
classes with high confidence. We provide a theoretical analysis of our approach by bounding the time required by
an agent to correctly estimate its class with high probability, as well as the time required by an agent to estimate its
mean to the desired accuracy. Our results highlight the dependence on the gaps between the true means of agents in
different classes, and show that in some settings our approach achieves nearly the same time complexity as an oracle
who would know the classes beforehand. Our numerical experiments on synthetic data are in line with our theoretical
findings and show that some empirical variants of our approach can further improve the performance in practice.

The paper is organized as follows. Section[2]discusses the related work on federated learning and collaborative online
learning. In Section |3| we formally describe the problem setting and introduce relevant notations. In Section 4] we
introduce our algorithm and its variants. Section[5|presents our theoretical analysis of the proposed algorithm in terms
of class and mean estimation time complexity. Section [6]is devoted to illustrative numerical experiments. Section
extends our approach to the case where classes consist of agents with similar (but not necessarily equal) means and
agents seek to estimate the mean of their class. We conclude and discuss perspectives for future work in Section [§]

2 Related Work

Over the last few years, collaborative estimation and learning problems involving several agents with local datasets
have been extensively investigated under the broad term of Federated Learning (FL) (Kairouz et al., [2021). While
traditional FL algorithms learn a global estimate for all agents, more personalized approaches have recently attracted
a lot of interest (see for instance Vanhaesebrouck et al., 2017; |Smith et al 2017} [Fallah et al., [2020; Sattler et al.,
2020; Hanzely et al.| [2020; [Marfoq et al.l [2021] and references therein). However, these approaches are not suitable
for online learning and often lack clear statistical assumptions on the relation between local data distributions.

In the online setting, the work on collaborative learning has largely focused on multi-armed bandits (MAB). Most
approaches however consider a single MAB instance which is solved collaboratively by multiple agents. Collaboration
between agents can be implemented through broadcast messages to all agents (Hillel et al.| 2013; Tao et al.| [2019), via
a server (Wang et al.,|2020b)), or relying only on local message exchanges over a network graph (Sankararaman et al.|
2019; |[Martinez-Rubio et al.l 2019; [Wang et al.,[2020a; |[Landgren et al.,[2021)). Other approaches do not allow explicit
communication but instead consider a collision model where agents receive no reward if several agents pull the same
arm (Boursier & Perchet, |[2019;|Wang et al.,|2020a). In any case, all agents aim at solving the same task.

Some recent work considered collaborative MAB settings where the arm means vary across agents. Extending their
previous work (Boursier & Perchet, 2019)), Boursier et al.| (2020) consider the case where arm means can vary among
players. Under their collision model, the problem reduces to finding a one-to-one assignment of agents to arms. In|Shi
& Shen| (2021)), the local arm means of each agent are IID random realizations of fixed global means and the goal is
to solve the global MAB using only observations from the local arms with an algorithm inspired from traditional FL.
Similarly, [Karpov & Zhang| (2022) extend the work of [Tao et al.|(2019) by considering different local arm means for
each agent with the goal to identify the arm with largest aggregated mean. Shi et al.|(2021) introduce a limited amount
of personalization by extending the model of [Shi & Shen| (2021) to optimize a mixture between the global and local
MAB objectives. Réda et al.| (2022)) further consider a known weighted combination of the local MAB objectives. A
crucial difference with our work is that there is no need to discover relations between local distributions to solve the
above problems.

Another related problem is to identify a graph structure on top of the arms in MAB. [Kocdk & Garivier| (2020} 2021)
construct a similarity graph while solving the best arm identification problem, but consider only a single agent. In
contrast, our work considers a multi-agent setting with personalized estimation tasks, and our approach discovers
similarities across agents’ tasks in an online manner.

3 Problem Setting

We consider a mean estimation problem involving A agents. The goal of each agent a € [A] = {1,2,...,A} is to
estimate the mean i, of a personal distribution v, over R. In this work, we assume that there exists o > 0 such that
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each v, is o-sub-Gaussian, i.e.:
1.2 o
VAeR, logE,.,, exp(Az—pg)) < 5)\ o°.

This classical assumption captures a property of strong tail decay, and includes in particular Gaussian distributions
(in that case, the smallest possible o2 corresponds to the variance) as well as any distribution supported on a bounded
interval (e.g., Bernoulli distributions).

We consider an online and collaborative setting where data points are received sequentially and agents can query each
other to learn about their respective distributions. Agents should be thought of as different user devices which operate
in parallel. Therefore, they all receive a new sample and query another agent at each time step.

Formally, we assume that time is synchronized between agents and at each time step ¢, each agent a receives a
new sample z!, from its personal distribution v, with mean f,, which is used to update its local mean estimate
ffz,a = % Yoy xf{. It also chooses another agent [ to guery. As a response from querying agent [, agent a receives the
local average :Ef ; of agent [ (i.e., the average of ¢ independent samples from the personal distribution ;) and stores
it in its memory ig ; along with the corresponding number of samples ng ; = t. Each agent a thus keeps a memory
[(&1,m 1) (&) 4,m, 4)] of the last local averages (and associated number of samples) that it received from
other agents. The information contained in this memory is used to compute an estimate ji, of 1, at each time t. Our

goal is to design a query and estimation procedure for each agent.

As described above, note that when an agent queries another agent at time ¢, it does not receive one sample from this
agent (as e.g. in multi-armed bandits), but receives the full statistics of observations of this agent up to time ¢. This is
considerably much more information than in typical MAB settings, and naturally requires specific strategies.

To measure the performance of an algorithm, we rely on the following notion of (€, d)-convergence in probability
(Bertsekas & Tsitsiklis, 2002 [Wasserman, [2013)), which we recall below.

Definition 1 (PAC-convergence). An estimation procedure for agent a is called (€, 8)-convergent if there exists T, € N
such that the probability that the mean estimator 11’ of agent a is e-distant from the true mean for any time t > 7, is at
least 1 -6:

P(Vt> 7, |0l — pal <€) >1-06. (1)

While it is easy to design (¢, d)-convergent estimation procedure for a single agent taken in isolation, the goal of
this paper is to propose collaborative algorithms where agents benefit from information from other agents by taking
advantage of the relation between the agents’ distributions. This will allow them to build up more accurate estimations
in less time, i.e., with smaller time complexity 7,.

Specifically, to foster collaboration between agents, we consider that the set of agents [ A] is partitioned into equiv-
alence classes that correspond to agents with the same meanﬂ In real scenarios, these classes may represent sensors
in the same environment, objects with the same technical characteristics, users with the same behavior, etc. This as-
sumption makes it possible for an agent to design strategies to identify other agents in the same class and to use their
estimates in order to speed up the estimation of his/her own mean. Formally, we define the class of a as the set of
agents who have the same mean as a.

Definition 2 (Similarity class). The similarity class of agent a is given by:
Co={l€[A]: A0y =0},
where A, | = |pq — ] is the gap between the means of agent a and agent l.
The gaps {Aq,i}a,1e[4] define the problem structure. We consider that the agents do not know the means, the gaps, or

even the number of underlying classes. Hence the classes {C, } 4[] are completely unknown. This makes the problem
quite challenging.

'In Section we will consider a relaxed version of this assumption where classes consist of agents with similar (not necessarily equal) means.
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Algorithm 1 ColME

Parameters: agent a, time horizon H, risk J, weighting scheme «, and query strategy choose_agent
Vie[A]: 20, < 0,n), <0

a,l
€0« (e [A]: d! ;(1) < 0} = [4]
fort=1,...,H do
Vie[A]: 7, < T/ ng,
Perceive:
Receive sample x% ~ v,
o o 2 el

Query:
Query agent [ = choose_agent(C;,) to get 7} ,

t-1
< na,l

~1

3_32,1 < ff,lv nfz.,l <1
Estimate:
Ct < {le[A] :df“;(l) <0}
1y < Yiect Qg X Tl
end for

Output: pf

4 Proposed Approach

In this section, we first introduce some of the key technical components used in our approach, and then present our
proposed algorithm.

4.1 Main Concepts

In our approach, each agent a computes confidence intervals I, ; = [z} ; - Bs(n},;), %, ; + B5(n!, ;)] for the mean
estimators [z}, ;. .., 7/, 4] that it holds in memory at time ¢. The generic confidence bound js(n}, ;) takes as input
the number of samples n’ , seen for agent [ at time ¢, and & corresponds to the risk parameter so that with probability
at least 1 — ¢ the true mean g, falls within the confidence interval I, ;.

Agent a will use these confidence intervals to assess whether another agent [ belongs to the class C, through the
evaluation of an optimistic distance defined below.

Definition 3 (Optimistic distance). The optimistic distance with agent | from the perspective of agent a is defined as:
i 5(1) = |} 0 = @6 4| = Bs (g o) — Bs(nl ). (2)

The “optimistic” terminology is justified by the fact that d", ;(1) is, with high probability, a lower bound on the distance
between the true means . and y; of distributions v, and v;. Recall that two agents belong to the same class if the
distance of their true mean is zero. Since these values are unknown, the idea of the above heuristic is to provide a
proxy based on observed data and high probability confidence bounds. In particular, we will adopt the Optimism in
Face of Uncertainty Principle (OFU) (see|Auer et al.|2002) and consider that two agents may be in the same class if
the optimistic distance is zero or less. Hence, we define an optimistic notion of class accordingly.

Definition 4. The optimistic similarity class from the perspective of agent a at time t is defined as:

Co ={le[A]:dg 5(1) <0}
Having introduced the above concepts, we can now present our algorithm.

4.2 Algorithm

The collaborative mean estimation algorithm we propose, called CoIME, is given in Algorithm [I] (taking the perspec-
tive of agent a). For conciseness, we consider that 35(0) = +oo. At each step ¢, agent a performs three main steps.
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In the Perceive step, the agent receives a sample from its distribution and updates its local average together with the
number of samples.

In the Query step, agent a selects another agent following a query strategy given as a parameter to the ColIME al-
gorithm. Agent a runs the choose_agent function to select another agent [ and asks for its current local estimate to
update its memory. We propose two variants for the choose_agent function:

* Round-Robin: cycle over the set [ A] of agents one by one in a fixed order.

* Restricted-Round-Robin: like round-robin but ignores agents that are not in the set of optimistically similar
agents C..

The focus on round-robin-style strategies is justified by the information structure of our problem setting, which is very
different from classic bandits. Indeed, querying an agent at time ¢ produces an estimate computed on the ¢ observations
collected by this agent so far. The choice of variant (Round-Robin or Restricted-Round-Robin) will affect the class
identification time complexity, as we shall discuss later.

Finally, in the Estimate step, agent a computes the optimistic similarity class C. based on available information, and
constructs its mean estimate as a weighted aggregation of the local averages of agents that belong to C%. We propose
different weighting mechanisms:

Simple weighting. This is a natural weighting mechanism for aggregating samples:

t
¢ na,l

Qg = 0.
ol Zzecg nfl,l

Soft weighting. This is a heuristic weighting mechanism which leverages the intuition that the more the confidence
intervals of two agents overlap, the more likely that they are in the same class. Moreover, the smaller the union
of the agent means, the more confident we are that the agents are in the same class. In other words, we are not
equally confident about all the agents that are selected for estimation, and this weighting mechanism incorporates this
information:

t ot |Ia,anla,l| % 1

o =N
a,l a,l ’
|Ia,a U Ia,ll Zsoft

a,i

t
n ‘In,,aUIa)i‘
where Zgof = Ziecg

—2i 2~ s a normalization factor.
a,anla,i

Aggressive weighting. This is an extension of the previous soft weighting mechanism that is more selective. Not
only does it consider the overlap and intersection of the agents’ confidence intervals, but it also requires the size of the
intersection to be larger than half the size of both confidence intervals from the two agents. Let us denote the binary
value associated with this condition by F, ; = ]]-{|]ayamlml|>min{55(niyl)aﬁﬁ(nflya)}}- Then

t ¢ Haan ol y Eqy

« =n
a,l a,l 5
|Ia,a U Ia,l| Zagg

is a normalization factor.
Ha,anla,i|

where Zuge = Yicct

4.3 Baselines

We introduce two baselines that will be used to put the performance of our approach into perspective, both theoretically
and empirically.

Local estimation. Estimates are computed without any collaboration, using only samples received from the agent’s

own distribution, i.e. !, = z¢ ..

t
N,

Oracle weighting. The agent knows the true class C, via an oracle and uses the simple weighting O‘Z,l = Sy
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5 Theoretical Analysis

In this section, we provide a theoretical analysis of our algorithm CoIME for the query strategy Restricted-Round-
Robin and the simple weighting scheme. Specifically, we bound the time complexity in probability for both class and
mean estimation. Below, we explain the key steps involved in our analysis and state our main results. All proofs can
be found in the appendix.

A key aspect of our analysis is to characterize when the optimistic similarity class (Definition ) coincides with the
true classes. We show that this is the case when two conditions hold. First, for a given agent a, we need the confidence
interval computed by a about agent [ to contain the true mean p; for all [ € A.

Definition 5. We define the following events:

Ep = () |2, — ml < Bs(ng,), 3)
le[A]
Ea=(E; @)
teN

We can guarantee that £, holds with high probability via an appropriate parameterization of confidence intervals. We
use the so-called Laplace method (Maillard, 2019).

Lemma 1. Ler 6 € (0,1), a € [A]. Setting B5(n) = a\/Q% x (1+ %) In(v/n+1/v(8)) with~v(§) = &LA, we have:

P(E,)>1- g. (5)

The second condition is that agent’s a memory about the local estimates of other agents should contain enough samples.
Let us denote by [ 35! ()] the smallest integer n such that z > 85(n).

Definition 6. From the perspective of agent a and at time t, event G, is defined as:

Gy = (N ngy>nhy, (6)
le[A]
1,44 .
: 1¢Ca,
where n;l={m5 ( 4 | ifl¢cCa

[Bgl(%)] otherwise,
with A, = minlE[A]\ca Aa,l~

Note that the required number of samples is inversely proportional to the gaps between the means of agents in different
classes. Having enough samples and knowing that the true means fall within the confidence bounds, we can show that
the class-estimation rule dfl’ 5(1) <0 indicates the membership of { in C,,.

Lemma 2 (Class membership rule). Under E}, A G}, and V1 € [A] and at time t: d, 5(1) >0 <= 1€ [A]\C,.

Using the above lemma, we obtain the following result for the time complexity of class estimation.

Theorem 1 (ColME class estimation time complexity). For any ¢ € (0, 1), employing Restricted-Round-Robin query
strategy, we have:

0 . .
P(3t>(:CL#Cy) < 3 with Co=njy,+A-1 - [EC Ling >n2 +A-1)- (7)
€ \Cq

In the worst case, the class estimation time complexity ¢, for agent a is equal to the number of samples required to
distinguish agent a from the one who has smallest nonzero gap A, to a, plus A — 1 since all others agents that are not
in C, could require the same number of samples. The last term in (7)) accounts for agents that require less samples
and had thus been eliminated before, which reflects the gain of using Restricted-Round-Robin query strategy over
Round-Robin. When we have enough samples (at least (,), Theorem [I] guarantees that we correctly learn the class
(C. = C!) with high probability. We build upon this result to quantify the mean estimation time complexity of our
approach.
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Theorem 2 (ColME mean estimation time complexity). Given the risk parameter §, using the Restricted-Round-
Robin query strategy and simple weighting, the mean estimator ji!, of agent a is (e, g)-convergent, that is:

541, Il -1
el 2

5
lP(Vt>Ta:|/j;—,ua|Se)>1—Z, with 7, = max({g, ). (8)

Several comments are in order. First, recall that collaboration induces a bias in mean estimation before class estima-
tion time. Because the problem structure is unknown, any collaborative algorithm that aggregate observations from
different agents will suffer from this bias, but the bias vanishes as soon as the class is estimated and we outperform
local estimation.

Then, to interpret the guarantees provided by Theorem [2] it is useful to compare them with the local estimation
baseline, which has time complexity [35"(¢)]. Inspecting (8), we see that our approach is faster than local estimation
by a factor of order |C,| as long as the time ¢, needed to correctly identity the class C, is smaller than [ 35" (¢)], that is:

e<Ps(noa+A-1= > Tgns st sa1})- ©)
le[AI\{Ca} ’

This condition relates the desired precision of the solution ¢ to the problem structure captured by the gaps {Aa ;i }ie[4]
between the true means through {n ; },c(] (see Definition|6). We will see in our experiments that our theory predicts
quite well whether an agent empirically benefits from collaboration.

Remarkably, when () is satisfied (i.e., for large enough gaps or small enough ¢), the speed-up achieved by our
approach is nearly optimal. Indeed, the time complexity of the oracle weighting baseline introduced in Section [4.3]is

-1
precisely % + % In a full information setting where agent a would know C, and would also have access to

up-to-date samples from all agents at each step, the time complexity would be w

6 Numerical Results

In this section, we provide numerical experiments on synthetic data to illustrate our theoretical results and assess the
practical performance of our proposed algorithms.

6.1 Experimental Setting

We consider A = 200 agents, a time horizon of 2500 steps and a risk parameter § = 0.001. The personal distributions
of agents are all Gaussian with variance o = 0.25 and belong to one of 3 classes with means 0.2, 0.4 and 0.8. The
class membership of each agent (and thus the value of its true mean) is chosen uniformly at random among the three
classes. We thus obtain roughly balanced class sizes. While the evaluation presented in this section focuses on this
3-class problem, in the appendix we provide additional results on a simpler 2-class problem (with means 0.2 and 0.8)
where the benefits of our algorithm is even more significant.

We consider several variants of our algorithm CoIME: we compare query strategies Round-Robin and Restricted-
Round-Robin with simple weighting, and also evaluate the use of soft and aggressive weighting schemes in the
Restricted-Round-Robin case. This gives 4 variants of our algorithm: Round-Robin, Restricted-Round-Robin, Soft-
Restricted-Round-Robin and Aggressive-Restricted-Round-Robin.

Regarding competing approaches, we recall that our setting is novel and we are not aware of existing algorithms ad-
dressing the same problem. We can however compare against two baseline strategies. The Local baseline corresponds
to the case of no collaboration. On the other hand, the Oracle baseline represents an upper bound on the achievable
performance by any collaborative algorithm as it is given as input the true class membership of each agent and thus
does not need to perform class estimation.

All algorithms are compared across 20 random runs corresponding to 20 different samples. In a given run, at each
time step, each agent receives the same sample for all algorithms.
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Figure 1: Results on a 3-class problem (Gaussian distributions with true means 0.2, 0.4, 0.8). Thanks to our collaborative algorithms
(Soft-Restricted-Round-Robin, Aggressive-Restricted-Round-Robin, Restricted-Round-Robin, Round-Robin), agents are able to
estimate their true class (Fig.[I(a)) and thereby obtain accurate mean estimates much more quickly than using purely local estimation

(Fig. [T(B)).
6.2 Class Estimation

We first focus on the performance in class estimation. In this experiment, only Round-Robin and Restricted-Round-
Robin are shown since the different weighting schemes have no effect on class estimation.

To measure how well an agent a estimates its true class C, with its heuristic class C’, at a given time , we consider the
precision computed as follows:

- ICt N Cal
preCISlonct = T
S ¢

We compute the average and standard deviation of (I0) across runs, and then average these over all agents. Figure[I(a)]
shows how the precision of class estimation varies across time as agents progressively remove others from their
heuristic class and eventually identify their true class. We can see that the classes 0.2 and 0.8 are separated very
early, quickly followed by 0.4 and 0.8 and finally, after sufficiently many samples have been collected, the pair with
the smallest gap (0.4 and 0.2). We also observe that Round-Robin and Restricted-Round-Robin only differ slightly in
the last time steps before classes are identified, as captured by Eq. (7).

(10)

6.3 Mean Estimation

We now turn to our main objective: mean estimation. The error of an agent a at time ¢ is evaluated as the absolute
difference of its mean estimate with its true mean:

error, = |1 — |- (1)

Similar to above, we compute the average and standard deviation of this quantity across runs, and then for each
time step we report in Figure [I(b)] the average of these quantities across all agents for the different algorithms (Soft-
Restricted-Round-Robin, Aggressive-Restricted-Round-Robin, Restricted-Round-Robin, Round-Robin, Oracle, and
Local).

As expected, all variants of ColIME suffer from mean estimation bias in the early steps (due to optimistic class es-
timation). However, as the estimated class of each agent gets more precise (see Figure [[(a)), agents progressively
eliminate this bias and eventually learn estimates with similar error and variance as the Oracle baseline. On the other
hand, Local does not have estimation bias (hence achieves smaller error on average in early rounds) but exhibits much
higher variance, and its average error converges very slowly towards zero. These results show the ability of our col-
laborative algorithms to construct highly accurate mean estimates much faster than without collaboration. We can also
see that Soft-Restricted-Round-Robin and Aggressive-Restricted-Round-Robin converge much quicker to low error
estimates than Restricted-Round-Robin. This shows that our proposed heuristic weighting schemes successfully re-
duce the relative weight given to agents that actually belong to different classes well before they are identified as such
with sufficient confidence. The aggressive weighting scheme is observed to perform best in practice.
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Algorithm conv(0.1) conv(0.01)
Round-Robin 696.81 +514.85  1623.69 + 705.93
Restricted-Round-Robin 685.45 £ 516.19  1601.49 + 720.53
Soft-Restricted-Round-Robin 124.92 + 72.83 1097.95 + 487.76
Aggressive-Restricted-Round-Robin ~ 82.67 + 48.97 491.43 + 180.30
Local 41.11 +38.77  1924.14 + 600.26
Oracle 5.19 £ 3.44 87.80 + 53.10

Table 1: Empirical convergence time (see Eq. of different algorithms for a target estimation error of € = 0.1 (unfavorable regime)
and e = 0.01 (favorable regime). We see that our approach largely outperforms the local estimation baseline in the favorable regime
and remains competitive in the unfavorable regime.

In the appendix, we plot the error in mean estimation for each class separately and observe that agents with mean 0.8
(i.e., in the class that is easiest to discriminate from others) are the fastest to reach highly accurate estimates, followed
by those with mean 0.4, and finally those with mean 0.2.

Finally, we quantitatively compare the convergence time of different algorithms with an empirical measure inspired
by our theoretical PAC criterion (Definition[I). We define the empirical convergence time of an agent as the earliest
time step where the estimation error of the agent always stays lower than some e:

conv,(€) = min{7 e N : Vt > 7, error, < e}. (12)

We denote by conv(e) the average of the above quantity across all runs and all agents.

Table [T]reports the empirical convergence time for two values of € with standard deviations across runs. These values
were chosen to reflect the two different regimes suggested by our theoretical analysis. Indeed, recall that our theory
gives a criterion to predict whether our collaborative algorithms will outperform the Local baseline: this is the case
when the desired accuracy of the solution e is small enough for the given problem instance (see Eq.[9). For the
problem considered here, Eq. (9) gives that Restricted-Round-Robin will outperform Local for all agents as soon as €
is smaller than 0.049. We thus choose € = 0.01 as the favorable regime (where we should beat Local) and € = 0.1 as the
unfavorable regime. The results in Table [I] are consistent with our theory. All variants of our algorithms outperform
Local for e = 0.01, while Local is better for € = 0.1 as agents can reach this precision using only their own samples
faster than they can reliably estimate their class. Overall, Restricted-Round-Robin performs marginally better than
Round-Robin, while Soft-Restricted-Round-Robin and Aggressive-Restricted-Round-Robin significantly outperform
Round-Robin and Restricted-Round-Robin in both cases. Note that Aggressive-Restricted-Round-Robin performs
almost as good as Local in the unfavorable regime. These results again show the relevance of our collaborative
algorithms and heuristic weighting schemes.

7 Extension to Imperfect Classes

So far we have assumed that two agents are in the same class if their personal distributions have exactly the same
mean, which can be restrictive for some use-cases. In this section, we show that we can extend the problem setup and
our approach to the case where two agents are considered to be in the same class if their means are close enough and
agents seek to estimate the mean of their class.

Formally, we define a new notion of similarity class parameterized by a radius 7, which generalizes our previous
notion introduced in Definition 2]

Definition 7. Given 1 > 0, the n-similarity class of agent a is given by:
Cna={le[A]: Aqi <n},
where Ay | = |pa — (| is the gap between the means of agent a and agent l.

This notion of “imperfect” similarity class allows to capture situations where clusters of agents have similar (but not
necessarily equal) means. Such discrepancies between the means of agents in the same class may for instance stem
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from the presence of local measurement bias (e.g., due to local variations in the environment, see Taghavi et al.,[2016)).
They can also be used to model groups of agents with similar preferences, behavior, or goals, in applications like
collaborative filtering (Su & Khoshgoftaar, [2009b),

In this context, it is natural to slightly redefine the estimation objective. Instead of estimating its personal mean p,, as
considered so far, each agent a aims to estimate the mean of its class:

1

> Hi- (13)

u , =
e |C7ha| 1eCy.a

For instance, in the presence of (centered) local measurement bias, estimating the class mean (instead of the local
mean) allows to debias the estimate.

Remark 1 (Non-separated clusters). We do not formally require that the n-similarity classes form separated clusters,
in the sense that for three distinct agents a,l,i € [ A] we may have simultaneously i € Cy 4, 1 € Cyy; and Cpy q # Cp .
This happens when A, ; <n, Ar; <nand n < Ag, < 2n. In this case, the “class” of an agent simply corresponds to
a ball of radius n around its mean, which potentially overlaps with others and thus violates the transitivity property of
equivalence classes. For consistency with the rest of the paper and with an slight abuse of terminology, we continue
to use the term “class”. Although the case of separated clusters appears more natural, we note that our proposed
approach will still work in the non-separated setting, in the sense that agents will correctly estimate the mean of their
class as defined in Eq.[I3]

Based on the above, we can adapt the notion of optimistic similarity class (Definition [2) and the condition on the
number of samples required for this optimistic class to coincide with the true class (Definition[6) by incorporating 1.

Definition 8. The n-optimistic similarity class from the perspective of agent a at time t is defined as:

Cra={le[A]:dg (1) <n}.

Definition 9. From the perspective of agent a and at time t, event th o IS defined as:

Gra= (1o, >nl,, (14)
le[A] '

where n', = _
1851 (Bes™)]  otherwise,

. _{(63(“1")1 ifl¢Ca,

with An,a = minlE[A]\CM Aa,l-
Lemma 3 (Class membership rule). Under E, A G}, , and V1 € [A] and at time t: d, 5(1) >n <= 1 € [A]\Cy,a.

We can see from the above that ruling out an agent [ from the optimistic class C,, , requires more samples for larger 7,
which is expected as the size of the confidence interval needs to be smaller to make this decision reliably.

With these tools in place, we can use our collaborative mean estimation algorithm ColME (Algorithm |I)) presented
before, with only minor modifications: we simply need to replace the notion of optimistic similarity class by the
n-version of Definition 8] and compute the estimate ﬂﬁha at time ¢ using a simple class-uniform weighting scheme
afl, L= ICf,ﬁ to match the objective in Eq.[13| We refer to this algorithm as n-CoIME. Note that n becomes a parameter
of the algorithm, allowing to choose the desired radius for the class structure.

We can now state the class and mean estimation complexity of 77-ColME. The proofs can be found in the appendix.

Theorem 3 (1)-ColME class estimation time complexity). For any § € (0,1), employing Restricted-Round-Robin
query strategy, we have:

B , ,
P(3t>(:Ch, #Cha) < 3 with (1 =nl,+A=1= > L snt vac)- (15)
le[AINCy) a

10
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Theorem 4 (1-ColME mean estimation time complexity). Given the risk parameter §, using the Restricted-Round-
Robin query strategy and class-uniform weighting (while employing Cy, o), the mean estimator ut of agent a is (e, g)-
convergent, that is:

B)
P(Vt> 7l |ph o= byal <€) >1- T with Tl = max (7, B5(€) +[Cpal = 1). (16)

The results are similar as for the “perfect” class case (Theorems [I}{Z)) except that they involve n-dependent quantities.
Note that for large enough gaps or small enough precision € (similar to Eq.[9), we again achieve an optimal speed since
the time complexity of an oracle weighting baseline that would know the true classes beforehand is 85 (€) +|Cy.o| - 1.

8 Conclusion

We have presented collaborative online algorithms where each agent learns the set (class) of agents who shares the
same (or similar) objective and uses this knowledge to speed up the estimation of its personalized mean. We have
provided PAC-style guarantees for the class and mean estimation time complexity of our algorithms. In addition, we
have introduced a number of sample weighting mechanisms to decrease the bias of the estimates in the early rounds
of learning, whose benefits are illustrated empirically.

Our work initiates the study of online, collaborative and personalized estimation and learning problems, which we
believe to be a promising area for future work. First, we would like to provide a theoretical analysis of the soft and
aggressive weighting schemes, which is challenging as the effect of these heuristics occurs before the class has been
correctly identified. Second, instead of an optimistic approach, we could aim to design a more conservative algorithm
where an agent incorporates the estimate of another agent only when it knows (with sufficient probability) that it
belongs to the same class. A downside of such an approach is that it would typically require some knowledge about the
gaps. Third, we would like to extend our approach to handle data drift, where the means of agents can change over time.
Here, one could try to adapt ideas from non-stationary bandits, such as sliding-window UCB (Garivier & Moulines|
2011) or UCB strategies mixed with change-point detection algorithms (Cao et al.,|2019). Finally, the problem could
be extended to cases where each agent aims to solve a personalized machine learning task (Vanhaesebrouck et al.,
2017) based on the data it receives online. In that case, a structure in the distribution conditioned by the outputs of the
learned models can be inferred, introducing an interesting exploration-exploitation dilemma in the learning task.
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Appendix A Proof of Lemma(i]

Lemma 4. Let u!, be the mean value of t independent real-valued random variables with the true mean y,, and is
o-sub-gaussian. For all § € (0,1), it holds:

IP(ate]N,ug—uaza\/?(n:)1n(\/t+1/5))sa , (17)
P(3t e N, p, -l > \/i(1+1)ln(\/t+1/6))s6 . (18)

Proof. The two inequalities are proved in the same way as a direct consequence of Maillard| (2019), Lemma 2.7
therein. Let Y7, ...,Y; be a sequence of independent real-valued random variables where for each s < ¢, Y has mean
1, and is o s-sub-Gaussian, then for all 4 € (0, 1), it holds that

IP(Hte]I\th:(YS—uS)z\JQZJQ(H )In(Vt+1/8)) <o

When all random variables Y have the same mean i, and variance o, we have

P(3teN, i(ys — ) 2 \/2t02(1 +-)In(Vt+1/8)) <4

Taking the average rather than the sum, i.e. dividing both sides by ¢ we obtain that:

P(3teN, Zl(i ~Leyy \/fam (VIR T/8) <5,

Y, 2 1

P(3teN, Z — =y 2 \/ta2(1 + ;)ln(\/t+ 1/6)) <6
s=1

we conclude

And denoting pf, = ¥, i ,

P(3teN,pul —p, 20\/?(1+ %)ln(\/t-t- 1/8)) <6

O
Lemma 1. Let § € (0,1), a € [A]. Setting B5(n) = 0’\/2% x (L+ 1) In(v/n+1/(6)) withv(5) = &, we have:
P(E,)>1- g (5)
Proof. Let us recall that E,, = ﬂ N |z}, =l < Bs(n}, ;). Then
lefA]
P(Ea) =1-P(Ea).
=1-P(3teN, 3¢ ]:|ffz,z—ﬂz|>56(nfz,z))7
21- Z (Ht eN: |xa,l =yl > 55(”2,1))-
le[A]
defining y(9) =
2 1
P(E,)>1- Y P(3teN:|zl,—m|>0\| = x (1+——)In(y/n , +1/7(5))),
( ) 15%4] ( ’ ”ta,z "Z,z ! )
5 )
>1- H=1- 2 -1-2 O
>1- 3 (9) 2,54 S
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Appendix B Proof of Theorem (|

In this section, we prove Theorem [I] We first show Lemma 2] using two technical lemmas. We then prove Lemma [7}
which combined with Lemma 2] yields the main result (Theorem|[T). Let us first remark that

di,s(l) = |‘ffz,a - 9773,1| - 56(”Z,a) - 56(”2,1)7

= |(‘,Efz,a - /j’a) - (i'fz,l - /j‘l) + (/j‘a - N’l)| - ﬂ(s(nfz,a) - ﬁls(nfz,l)'

As a consequence we have

di 5 (1) < D + 1T = ol +1T0 = 1l = Bs(n5,4) = B5(ngy)- (19)
dfz,&(l) 2 Aa7l - |‘fz,a - lu‘a| - |jz,l - /Ll| - B(;(nfz,a) - ﬂ&("tu) (20)

Lemma 5. Under E,, V1€ [A], ifl ¢ Cy then ¥l >n; = [ﬁgl(AZ”' )] we have d, 5(1) > 0.
Proof. Under E,, we have |z}, — | < fs(n},;) and |2, , — p,| < Bs(nl,,). Since nf, , > nl,;, we also have

Bs(nl, ,) < ﬁg(ﬂ;ﬂ. Hence, using (20), dfw(l) > Ngy - 2B5(nk,) - 255(“2,1) > Ay - 455(”3,0- IflecC,
then A,; = 0 and since 35(n! ;) > 0 we cannot ensure that A, ; — 4835(n), ;) > 0. If [ ¢ C, then to ensure that

a,l
di,é(l) A 4ﬂ5(nfl7l) > 0, we need that AZ” > ,85(712’[) and hence n;, | = [651(%)] O

Lemma 6. Under E,, Ve [A], VteN, ifl € Cy then d, 5(1) <0.

Proof. Again, recall that under EY,, we have |7/, — | < 85(n}, ;) and |2}, , = p,| < Bs(n}, ,). Hence, using (19),
&, 5(1) < A+ Bs(n o) + Bs(nl ) = Bs(n o) = Bs(ng ;) = Day. If L € Co then Ay = 0 and thus df, 5(1) < 0.

O

We can now prove Lemma 2] which we restate here for convenience.
Lemma 2 (Class membership rule). Under E[, A G}, and ¥l € [A] and at time t: d}, 5(1) >0 <= 1 € [A]\C,.

Proof. From Lemma @ we directly have one implication. For the other one, if [ ¢ C, because G, holds, we have
Vie[A], nfhl >n;, , therefore we can apply Lemmaand we directly have dfm(l) > 0. O

Lemma 7. Under E,, and using Restricted-Round-Robin algorithm, G, holds when t > (, where

Ca = n;a -1+A- Z ]l{ng >nn  —1+A}-
le[A]NCq ' '

Proof. According to Algorithm Co = [A] and an agent is eliminated from set C}, at time ¢ if !, 5(1) = |z , - %}, ,| -
Bs(nf, o) = Bs(nl, ;) > 0. According to Lemma , the time required to eliminate agent [ from the class C, is at least
n, ;- If agent [ is queried at time n;, ; — 1, then using Restricted-Round-Robin (or round robin), we are sure that it will
be removed from C. for all ¢ larger than n,;—1+A.

Let us consider h being an agent such that n}, , = max;ca}\c, 1 ;- By definition, A, 5, = mingaye, Ao, and n
can be denoted by n;, .

In the case of round robin, we are sure that G, will be true when ¢ > n, o — 1+ A. But using Restricted-Round-Robin,
since the loop ignores agents not in C,, we have that G%, holds when ¢ > (, where

AYN

2In extremely rare cases, the expression ,Bgl( T ) could be an integer and we should add 1 to get a strict inequality. But for conciseness of
the expression, we omit the +1 in the definition of n”, .
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Ca = n;a -1+A- Z ]l{n(*lwa>n;.l—1+A}~ O
le[A]NC, '
Finally, we use the above lemmas to prove Theorem [I] which we restate below for convenience.

Theorem 1 (ColME class estimation time complexity). For any ¢ € (0, 1), employing Restricted-Round-Robin query
strategy, we have:

0 . .
IP(EIt > Ca :C(tz # Ca) < gv with C, = Nga T A-1 _l [Az]zc IL{n;,a>n{:’l+A—1}‘ (N
e[AINC,

Proof. From Lemmaand Lemma we deduce that if E, holds and knowing that C;, = {l € [A] : !, ;(I) < 0} then
Vt > (4, Co = Ct. Hence, IP(VL‘ > (q, Cq = C;) > ]P(Ea) >1-§/8 using Lemma O]

Appendix C Proof of Theorem 2

In this section we detail the proof of Theorem 2} about the PAC mean estimation properties of the CoIME strategy. We
restate the theorem below for convenience.

Theorem 2 (ColIME mean estimation time complexity). Given the risk parameter d, using the Restricted-Round-
Robin query strategy and simple weighting, the mean estimator 1%, of agent a is (e, %)-convergent, that is:

541, ICal =1
AN

1)
P(Vt>7'a:|ﬂg_ﬂa|§€)>1_ia with 7, = max((,, ). )

Proof. Let us assume that at time ¢ we have CZ = C, . Therefore

Zl c fi't nt
t —t t €Cq “a,l'’a,l
Pa= 2 Taglla) = —s

¢ leC, e 2lec, ”Z}l
Remark that ¥;cc, 5 n, ; is the sum of all n}, , samples received by all agents [ in C,. In other words, y, is the
estimation of y, with 33,0 n;l examples. Hence in order to have |ul, — p1,| < € when E, holds, we should have
B(Ziec, N ;) < €. Letus see at what time denoted by 1., we have [57(€)] = X, 7, ;- With Algorithmusing
Restricted-Round-Robin, we know that when C}; = C,, then only members of C, are queried. Therefore,

ICal -1
2

{5_1(5)] =Neat (Nea = 1)+ + (Nea — ICal +1) = |Ca|ne,a -

BERGINNYER!
Ne,q = C. + 5

Cal,

As a summary, if £, holds, then we have V¢ > n 4, C., = C, implies that |, — j1,| < €. Now, following Theorem |1} we

have P(3t > ¢, : CL #C,) < . Since 7, = max((a, ne,a) > Can then P(3t > 74 1 [ul — | > €) < 2+ P(E,) =2, O

Appendix D Proof of Theorem 3|

The proof of Theorem [3| follows the same step as that of Theorem |1} up to replacing the O threshold by 7. We only
state the intermediate lemmas (which are adaptations of Lemmas [5}617) and omit the detailed proof.

Lemma 8. Under E,, V1€ [A], if 1 ¢Cy o then ¥n! > n]) = [ﬁgl(W)] we have d, (1) > 1.
Lemma 9. Under E,, Yl € [A], VteN, ifl €C, , then dfw(l) <.
Lemma 10. Under E,, and using Restricted-Round-Robin algorithm, Gf%a holds when t > (! where

Cg = nZ,a -1+A- Z ]]-{ng’a>n;7 m1+A}-
le[A]NCya ’

16



Under review as submission to TMLR

Appendix E Proof of Theorem 4]

In this section we detail the proof of Theorem [ about the PAC mean estimation properties of the 7-ColME strategy.
We restate the theorem below for convenience.

Theorem 4 (n-ColME mean estimation time complexity). Given the risk parameter §, using the Restricted-Round-
Robin query strategy and class-uniform weighting (while employing C,, ,), the mean estimator ut of agent ais (e, %)—
convergent, that is:

)
P(Vt> 77 |t = tyal €€) > 1=, with 7 =max(C, 55 (€) +[Cpal = 1). (16)

Proof. Since t > 7] > (J1, at time t we have C}, , = C;, o . Therefore

Yiec,.q To
t —t ot €Cn.a a,l
Mg = Z ‘Ta,laa,l = CT/

1€Cy.a | n,a|
Remark that 4!, is not equivalent to the average of all the samples of agents in C,, ,: it is the average of the mean values
for each agent in C,, ,. Therefore, although some agents may have more samples than the others, all are assigned
uniform weights. We would like to have |u}, , — 1, .| < €. When E, holds, we can rewrite this as

1 _ 1 _
Z l‘fl,z—ﬂﬂﬁi Z |$Z,Z—Mz|§€

e e
n,a n,a |Cn’a| 16w |C77,a| 1eCy.q

Therefore, we need:

> |~”Z’<tzl — ] <Cpal x €,
leCy,a

A sufficient condition for the above inequality to hold is to ensure that each term is bounded by e:
VieCpa:lzh, —ml<e 1)

This is achieved when Ss(nl ;) < e for all [ € C,,. Since we are using Restricted-Round-Robin and also that
C! . = Cy.a» the number of samples required for each agent in C,) o are nf, 1, nfy 1 = 1,10 1 =2, ..., nf ;= |Cyal +1
where we consider the one with the maximum number of observations to have index 1 for notation simplicity (which
corresponds to index a). For Eq.[21]to hold, it is thus sufficient to have:

Bgl(f) > nttz,a —[Chal +1

B5H(€) +[Cpal =1 >mg 4
Therefore 77 = max(¢7, B3 (¢) +[Cp.al — 1).

As a summary, if E, holds, then we have Vt > 77/, Cfm = C,,, implies that |:UJ$],11 = fiy.ql < € Now, following

Theorem we have IP(EIt >CliCr, # Cna) < %. Since 7] = max (¢, n{ ) > ¢/, then IP(Ht A T T e) <

S+ P(E,)=2. 0

Appendix F Additional Experimental Results

In this section we provide additional illustrative results to better understand different aspects of our CoIME algorithm.

F.1 Per-Class behavior on the 3-class problem

For the 3-class problem described in the main text, we provide complementary figures to show the error in mean
estimation in each class separately. These plots are shown in Figure[2] We can see that the average class identification
time (represented by yellow dots) is different for different classes. For instance, as the gap between the class with mean
0.8 and the other two is larger, this class requires less samples to be identified. Indeed, the average class identification
time is less than ¢ = 600 for that class (Figure[2(c)), while it is more than ¢ = 1500 for the other two (Figures[2(a){2(b)).
Therefore, agents from the class with mean 0.8 reach a highly accurate estimate much faster than agents from other
classes.

17



Under review as submission to TMLR

0.40 0.40
—— soft-restricted-round-robin —— soft-restricted-round-robin

0.35 -~ aggressive-restricted-round-robin 0.35 -~ aggressive-restricted-round-robin
s —— restricted-round-robin S —=— restricted-round-robin
B 0.30 —— round-robin %0'30 —— round-robin
£0.25 oracle E0.25 —— oracle
3 —=— local 3 —=— local
$0.20 $0.20
v 0)
£ €
< 0.15 c0.15
£ £
o o
= 0.10 =0.10
w w

0.05 0.05

0.00 500 1000 1500 0.00 0 500 1000 1500 2000 2500

Time Time
(a) First class (mean 0.2) (b) Second class (mean 0.4)

—— soft-restricted-round-robin

—+— aggressive-restricted-round-robin
—— restricted-round-robin

—— round-robin

—— oracle

local

o
W

©
N
o

Error in mean estimation
o o
- N
w o

o
o
a

o
o
o

400 600 1000
Time

(¢) Third class (mean 0.8)

Figure 2: Error in mean estimation for the 3-class problem (Gaussian distributions with true means 0.2, 0.4, 0.8). Note that the time
scale is different for the third class to show the relevant details more clearly.
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Figure 3: Results for the 2-class problem (Gaussian distributions with true means 0.2 and 0.8).

F.2 Results on a 2-class problem

We experiment with a 2-class problem generated in the same way as the 3-class problem considered in the main
text, except that the means are chosen among {0.2, 0.8}. This makes the problem easier since the gap between the two
classes corresponds to the largest gap in the 3-class problem. The results shown in Figure[3|reflect this: agents correctly
identify their class and reach highly accurate mean estimates much faster than in the 3-class problem. Consequently,
the improvement compared to Local is even more significant. We omit the per-class figures as they are essentially the

same as Figure[3(b)]
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