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ABSTRACT

We introduce a framework for generating highly multimodal datasets with ex-
plicitly calculable mutual information between modalities. This enables the con-
struction of benchmark datasets that provide a novel testbed for systematic studies
of mutual information estimators and multimodal self-supervised learning tech-
niques. Our framework constructs realistic datasets with known mutual informa-
tion using a flow-based generative model and a structured causal framework for
generating correlated latent variables.

1 INTRODUCTION

Self-supervised learning (SSL) has become a core component of many state-of-the-art large-scale
machine learning models (Balestriero et al [2023)). Such models are also increasingly multimodal,
i.e. designed to learn from varied input sources such as text, images, and audio (Radford et al.,
2021;{Zong et al., 2024)). A prevailing intuition is that multimodal SSL is effective because different
modalities provide complementary “views” of the same underlying concepts, enabling the learning
process to exploit their shared information. The precise relationship between the mutual information
(MI) between modalities and SSL performance, however, is not fully understood.

Contrastive SSL methods built using the InfoNCE loss function (Oord et al., 2018 |Chen et al.,[2020;
He et al.,[2020; |Caron et al.,[2020) have a clear information-theoretic interpretation: for example, the
learned similarity scores estimate the pointwise mutual information (PMI) between paired samples.
By contrast, no analogous theoretical connection has been established for either highly multimodal
settings (i.e. N > 2 modalities) or for non-contrastive SSL. methods such as multimodal masked
modeling (Mizrahi et al., 2023 He et al., 2022; [Wang et al., 2023; Huang et al., [2025)), despite the
fact that both of these directions are quickly gaining prominence in the field (Li et al., |2024; [Hon-
dru et al., 2025). A theoretically-grounded understanding of the fundamental relationship between
inter-modality mutual information and SSL representations (and their corresponding performance
on downstream tasks) will be increasingly critical as models continue to scale to larger numbers of
input modalities. In particular, principled frameworks will be needed to evaluate how the distribution
of shared information across modalities influences the quality of the learned embeddings.

Complicating matters further, MI is notoriously difficult to estimate from samples, particularly in
high-dimensional, real-world datasets (McAllester & Stratos} 20205 (Czyz et al., [2023a). A wide
range of MI estimators have been proposed using techniques such as kernel estimation, k-nearest
neighbor, and neural estimators (Pizer et all [1987; [Kozachenko & Leonenko} [1987; [Moon et al.,
1995; [Kraskov et al., |2004; Belghazi et al.l 2018} [Song & Ermon, 2020b; Butakov et al., 2024;
Belghazi et al.| 2021)). However, these estimators are typically only validated on synthetic datasets
of simple distributions for which the MI is analytically tractable (Darbellay & Vajda, [1999; Suzuki,
20165 Czyz et al.l 2023azbj; |Butakov et al., [2023)).

Datasets with controllable MI that emulate the challenges of real-world data are needed to better
understand the advantages, disadvantages, and tradeoffs of different SSL learning objectives. Such
datasets can enable systematic, reproducible studies of how multimodal SSL representations depend
on information overlap and shared features, offering both theoretical insights and practical guidance
for model design. Finally, they provide a reliable testbed for evaluating the performance of various
mutual information estimation strategies designed for use on real-world datasets.
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Figure 1: Schematic of our dataset generation framework. a) An example DAG showing the
linear mixing of proto-latents u via coefficients 7, p into interpretable correlated Gaussian latent
variables z. b) Overview of sampling from a multidimensional Gaussian to draw latent inputs 21,
z2, and zy that are fed into invertible maps f; and f5 to a realistic feature space.

In this work, we introduce a framework to generate realistic multimodal data with controllable mu-
tual information. Figure[I|shows an overview of our data generation framework:

(a) First, we use directed acyclic graphs (DAGs) to generate easily interpretable correlated
Gaussian latent variables z with known mutual information.

(b) We then feed the outputs z of these DAGs into invertible bijective transformations to con-
struct multimodal datasets where the amount and distribution of shared information can be
explicitly controlled across multiple modalities.

2 BACKGROUND

Mutual Information (MI). Mutual information I(X;Y) is a fundamental quantity from informa-
tion theory that measures the statistical dependence between two random variables X and Y. It is
formally defined as the Kullback-Leibler (KL) divergence of the joint distribution p(X,Y") and the
product of the marginal distributions p(X)p(Y):

I(X;Y) = D (p(X,Y) [[ p(X)p(Y))
Alternatively, it can also be expressed in terms of the Pointwise Mutual Information (PMI):
I(Xa Y) = Ex,ywp(X,Y) [PMI(ajv y)]

The MI quantifies the extent to which one variable reduces uncertainty in the other. For instance,
when X and Y are fully independent, their joint distribution p(X,Y") reduces to the product of the
marginal distributions p(X)p(Y"), therefore the MI is zero.

Pointwise Mutual Information (PMI). When evaluated on specific values z ~ p(X) and
y ~ p(Y), the pointwise MI (PMI) captures the probability of these two values occurring together
compared with that same probability if they were fully independent. The PMI is formally expressed

as:

PMI(z;y) =1 p(x’y)) .

() =log (p(fﬂ)p(y)

Multimodal Self-Supervised Learning (SSL). Often compared to the primary human senses such
as sight, hearing, or touch, modalities in machine learning refer to distinct forms of sensing the
world and the corresponding representations of the observed data. Modalities can have radically
different formats (e.g. RGB images and timeseries data), or they can exhibit similar formats but
describe distinct information sources (e.g. RGB images and segmentation maps). In this paper, our
operational definition for a modality is a random variable X,,, and a corresponding sample space
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Xy, In particular, if X; and X5 correspond to two different distributions, then we consider them to
be two separate modalities regardless of their data format. Multimodal SSL often involves learning a
joint representation of many data modalities, which we view as distinct from multi-view SSL, which
generally consists of learning a joint representation of multiple views derived from the same data
modality, e.g. different crops of a single image. Multimodal SSL uses the relationships between
modalities to learn joint representations without explicit labels.

Flow-based generative modeling. Flow-based generative models are designed to facilitate the di-
rect transformation between probability distributions using invertible mappings applied to a simple
base distribution such as a Gaussian. Each transformation is designed to be bijective with a tractable
Jacobian determinant, enabling exact computation of both likelihoods and samples. Because they
provide both efficient sampling and exact density evaluation, flow-based models are increasingly
used not only in generative modeling but also in scientific applications requiring tractable likeli-
hoods and explicit control over distributions. Flow-matching (Albergo & Vanden-Eijnden) 2022}
Lipman et al. 2024)) is a recent approach within the family of flow-based generative models that
enables efficient training of Continuous Normalizing Flows (CNFs) (Chen et al.,|2018a) by directly
regressing the velocity field that transports a base distribution to the data distribution instead of
optimizing the exact maximum-likelihood objective.

3 CREATING DATASETS WITH CONTROLLED MUTUAL INFORMATION

Our goal is to enable rigorous, scalable experiments using multimodal datasets where the MI be-
tween modalities is precisely specified and easy to interpret. To accomplish this, we design an
expressive three-step framework u — z — x. This begins with uncorrelated, normally dis-
tributed ‘proto-latent’ variables u, which are related by linear structural equations to form an easy-
to-interpret causal model for latent variables z, for which mutual information is easy to compute.
Finally, we use blocks of components of z as the input to a set of invertible transformations { f; }7_;
(one for each of n modalities) to produce synthetic observations x; = f;(z;) that preserve the
mutual information between the corresponding latent variables. In this work, we implement f; as
flow-matching models that have been pretrained to produce realistic images.

In addition to the x; for each modality, we also generate a (scalar) target variable # computed from
the latent variable zy. We partition the vector of proto-latents into sets of components u = (i, @1)”.
The goal here is to isolate a source of randomness 1 that can be interpreted as a common cause that
induces correlation between the observed x; and some target quantity of interest  that one may wish
to estimate from the x;. For simplicity, we take 6 to be a scalar and let § = zy since complicated
non-linear relationships between x; and 6 are already captured by the flows f;.

3.1 GENERALIZED LINEAR CAUSAL CONSTRUCTION: PROTO-LATENT TO LATENT
CONNECTIONS

We wish to create a large latent variable vector z = (zg,%1,...,2zy,)" that is distributed accord-
ing to a multivariate Gaussian with known covariance for which the mutual information is easy to
compute. We achieve this by forming linear combinations of i.i.d. normally distributed proto-latents

u~ N(0,I):

z0 u
VAl 113}

zZ = . =A . (D)
zZn, ay,

where:

* @1 € RMe: proto-latents serving as a common cause inducing correlation between 6 and x;,
* 4, ¢ R<: proto-latents for the observed modalities, j = 1,..., Ny,

* 29 € R: scalar target quantity of interest (e.g., a physical quantity to be estimated from x;),
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* 7, € R%: latent variables associated to each observed modality, s = 1,..., N,

* A: auser-defined matrix specifying the structural equations in the causal model relating u
and z.

The matrix A encodes all structured dependencies between latent variables and outputs. One could
use an arbitrary matrix A, but that would lack interpretability. Instead, we structure A to follow
from an expressive, easy-to-interpret causal story.

For example, the causal model shown in Fig[I[(a) corresponds to the structural equations
Zp = Ny
z1 = pr1t1 1g + P11y 2
Zg = P12l 1q + paotia

where 14 is a d-dimensional vector of ones. The hyperparameters of this model are 7, pri, pj; € R.
Note we treat i and i asymmetrically: u is a common cause that feeds into both zg and the latents
associated to the individual modalities, while @ does not feed into zg. In this simple example, @ is
also the only source of correlation between z; and z; — and the mutual information between z; and
zo is perfectly predictive of zy.

In Section [4] we will consider other causal stories, their corresponding linear structural equations,
and the consequences of these relationships on the induced mutual information between 6 and x;.

3.2 ANALYTIC MUTUAL INFORMATION OF THE LATENT VARIABLES

We provide a derivation of the mutual information calculation between latent variables z constructed
as described in Section[3.1] The covariance matrix of the latents is simply given by:

Y =Cov(Z,Z) = AAT (3)

We can represent the covariance matrix in block form corrresponding to 2y, z;, and zs as

Yoo Me1 X2
Y= %10 XY Y2 €]
Yoo o1 Moo

For any two blocks in X, we define the reduced block matrix:
YN
Fi - i 1] 5)
! [Eﬂ Ejj] (

For multivariate Gaussian distributions, the mutual information is a simple function of the determi-
nants of these block covariance matrices. For example,

_1 Soo| |

o) =gh (W) (©6)
1 D>

sl =gh (|1|1F1|2|22|) ’ (7)

where | - | denotes the determinant of the corresponding block covariance matrix.

While the covariance matrix and mutual information quantities in the preceding equations can be
calculated numerically, we are also able to derive closed-form, analytical equations for various mu-
tual information quantities (see Appendix [B). One benefit of the closed form solutions is they reveal
scaling in terms of the hyperparameters of the structural equations, the number of modalities, and
the dimensonality of each modality. In the case of the causal model considered in Fig. [Tf(a) and
Eq.[2] we find
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1 dpiy
10:2)) = —=log (1 — ——F1__
(97 1) 2 Og( ﬁ%1+dﬁ%1 (8)

d? P31 P%s )
(0T, + d pt]1p5, + d p3,]

These equations that we have derived have been verified against the numerical calculations.

1
1(21:2) = — log (1 - ©)

3.3 FLOW-BASED GENERATIVE MODELING PRESERVES MUTUAL INFORMATION

The final step of our three-step process is to create realistic synthetic data in multiple modalities.
Recall that the latent vector is organized by blocks of components as z = (29,21, ...,2zn,).. We
transform the individual blocks of latent variables independently, yielding x; = f;(z;), where the
fi(+) are generative models pretrained on real-world datasets.

We leverage a key result that states that if the f; are continuous bijective maps, then the mutual
information is preserved:

This result can be seen as following from the data-processing inequality and is also the result of
a direct computation of the mutual information after a change of variables, where the Jacobian
factors that arise cancel exactly (see e.g., [Cover & Thomas| |2006; (Czyz et al.l 2023afb). While
many generative models satisfy this condition, e.g., discrete-time normalizing flows (Rezende &
Mohamed, 2015}; [Papamakarios et al.| 2021, we use continuous-time normalizing flows based on
flow matching (Lipman et al.,2024}|Albergo & Vanden-Eijnden, [2022; [Liu et al.,2022]) in this work.
We pretrain on CIFAR-10 (Krizhevskyl 2009) using image class as a proxy for modality (i.e., fj is
trained on images of cars, fi is trained on images of frogs), but we emphasize that our framework is
agnostic to f; parameterization and modality definition.

3.4 TEMPLATES

The mutual information I(X;, X;) does not specify how this information is distributed across the
components of X; and X;. Similarly, the pointwise mutual information in two images does not
uniquely determine the spatial location of their correlated pixels. Nevertheless, the way the infor-
mation is distributed matters in practice because architectural choices are sensitive to those details.
The impact of these architectural choices on the performance of competing approaches to SSL or
mutual information estimation then become conflated other algorithmic choices (e.g. data augmen-
tation and training objectives) that are more clearly tied to (pointwise) mutual information.

Ideally, we would like to perform ablation studies designed to disentangle these effects. This requires
being able to independently vary the mutual information and the way that information is distributed
across the components of the random variables. In order to achieve this, we introduce the notion of
templates into our u — z mapping.

We define a template T, € R? as a linear map relating the common cause wy, and the a latent z;:

Ng Ny,
zi =Y T+ » 1, (11)
k=1 j=1

For example, T, = éld implements a homogeneous distribution of information about %y across

the latent z;, while Ty, = (0,...,0,1,0,...,0)T implements a scenario where all the information
about uy, is concentrated in a single component of z;.

This design is motivated by real-world scenarios in which the information about multiple common
causes is distributed nonuniformly across several modalities (e.g., multiple supernovae being imaged
by multiple types of telescopes). With templates, future studies can better understand the impact of
architectural design choices based on the information distribution in various modalities.
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4 EXAMPLES OF DATASETS RESULTING FROM OUR MODEL

Figure 2: Eight examples of correlated pairs of images (x1,X2) generated from our procedure repre-
senting two realistic modalities. In this case, both modalities are images, but corresponding to flows
conditioned on different class labels (“automobile”, “frog”) from CIFAR-10 (Krizhevskyl [2009).
The dimensionality of the data in both cases is d = 32 x 32 x 3 = 3072.

As mentioned in Sec. [3.1] the matrix A allows for an arbitrary linear structural equation between
the proto-latents u and the latent variables z. While this flexibility may come at the cost of inter-
pretability, we find that in fact many realistic causal stories are well captured by structural equations
with only a few hyperparameters.

We show two specific examples in this section. All examples are implemented using a (conditional)
flow matching model pretrained on CIFAR-10 data, where image class label is used as a proxy for
different modalities. Figure [2 shows eight examples of correlated pairs (x,x2) generated from
our procedure. While there is no clear visual connection between these pairs of images, our
framework allows us to state unequivocally that these high-dimensional, complex image pairs
have a specific quantity of mutual information — a feat that was previously unattainable.

4.1 EXAMPLE 1: EMPIRICALLY DEMONSTRATING EXAMPLE USE CASES

Benchmarking mutual information estimators. We demonstrate the use of our framework to
generate a benchmark dataset to explore the performance of a number of popular mutual informa-
tion estimators. We use the causal model shown in Figure[I]to generate a set of ten datasets with
mutual information I(X7; X5) ranging from 0.0284 to 1.39, with each dataset consisting of 10,000
paired CIFAR-like images. We use an existing benchmark suite (Lee & Rheel, [2024) to estimate the
empirical mutual information and compare it to the ground-truth mutual information in Figure[3] We
report the correlation and RMSE for each estimator in Table[I] We observe that the regressed mutual
information from all the estimators follows the linearly increasing ground truth mutual information.

MI Estimator Correlation RMSE
DV (Donsker & Varadhan, 1983) 0.995 0.1094
JS (Nowozin et al.;|2016) 0.993 0.3049
InfoNCE (Oord et al., 2018) 0.991 0.1981
MINE (Belghazi et al., 2018) 0.993 0.0983
NWIJ (Nguyen et al.,2010) 0.996 0.0851
SMILE-1 (Song & Ermon), 2020a 0.998 0.0935
SMILE-5 (Song & Ermon, [2020a 0.993 0.0974
SMILE-inf (Song & Ermon, 2020a)  0.993 0.0969

Table 1: Correlation and RMSE from linear regression of estimated vs. ground-truth mutual infor-
mation, computed for a number of mutual information estimators.

Regressing the target variable 0 from X. We evaluate how well a model is able to regress the
target variable 6 from data X as a function of the mutual information I(6, X1 ). Intuitively, models
with fixed capacity should predict # more accurately from data that contain more information about
0, i.e. larger I(0; X1). We re-use the same ten datasets, for which I(6; X;) ranges from 0.134 to
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1.73. For each dataset, we regress 6 from the images using a shallow convolutional network, choos-
ing the best model after training for 500 epochs. We show that the best achievable RMSE decreases
with increasing mutual information between X and 6 (Figure d)) and show example distributions of

prediction error 6 — 6 for two representative MI values in Appendix

Ground Truth vs Estimated Mutual Information

RMSE of 6 vs I(6; X1)
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Figure 3: MI estimators reliably recover the
ground-truth MI from our datasets across a
range of MI values.
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Figure 4: Models with fixed size and compute
budget trained to regress a target scalar 6 mono-
tonically improve with increasing ground-truth

MI between the data X1 and 6.

4.2 EXAMPLE 2: ESTIMATING A BLACK HOLE’S MASS FROM TWO TELESCOPES

Consider the hypothetical scenario where one wishes to estimate the mass of Sagittarius A*, the
supermassive black hole in the center of our Milky Way Galaxy. To do this we might employ two
instruments producing two data modalities. Let x; represent data from the Event Horizon Telescope,
a ground-based array consisting of a global network of radio telescopes. Let x5 represent data from
the Hubble space telescope in orbit around the Earth. Let @ represent the unknown mass of the black
hole and let 5 represent some atmospheric variability that impacts how radio waves propagate in
the atmosphere.

The mass of the black hole u; influences the data from both telescopes; however, the atmospheric
effects 49 only impact the data from the Event Horizon Telescope. This narrative is captured by the
causal model illustrated in Fig.[5(a). This causal model corresponds to the structural equations
2 = MU + N2z
z1 = pr1u1 T + p12u2Ti2 + P11l
z2 = P21U1'Ta1 + P22z
The closed-form, analytical equations for various mutual information quantities corresponding to a
similar causal model can be found in Appendix[B] The T}; are templates that have the same shape

12)

(a) Causal structure for black hole example.

(b) Causal structure for multimodal example.

Figure 5: Examples of causal structures with corresponding linear structural equations that induce
specific mutual information.
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as the z; and can encode some type of inhomogeneous (spatial) structure in the latents. For example,
the templates T'¢1; and T4 associated with u; (black hole mass) are designed to concentrate at the
center of the galaxy and dissipates away from the center. Similarly, the template T'; associated with
U9 (atmospheric effect) are designed to be diffuse across the whole example. Not shown explicitly
in the figure are the functions that generate the observed data from the latents: § = zp, x1 = f1(2z1),
and x2 = fo(2z2).

Fig.[5[a) also has paths from @ and @ to z¢ scaled by the hyperparameters 7; and 1,. This flexibility
allows us to capture two different narratives in the same model by changing the values of 7;. In one
narrative, 6 represents the mass of the black hole and corresponds to 71 = 1,72 = 0. In the second
narrative,  represents the atmospheric effect and corresponds to 71 = 0,7, = 1.

Table [2 shows the result of the mutual information when all of the p variables are set to 1 and the
dimensionality of the data in each modality is d = 3072. Note that in the scenario where the quantity
of interest # corresponds to the atmospheric effect, that there is no mutual information between the
data from the Event Horizon Telescope and the quantity of interest.

Table 2: Mutual information for two scenarios corresponding to the causal structure in Fig. a).

6 Represents 7 (Black hole) 75 (Atmosphere) I(0;X;) I1(0;X5) I(X1;X5)
Black Hole Mass 1 0 2.77 0 2.63
Atmospheric Effect 0 1 2.77 3.33 2.63

4.3 EXAMPLE 3: A SCALABLE MODEL FOR MASSIVELY MULTIMODAL DATA

In this example, we shift our emphasis to the number of modalities. The ability to generate correlated
tuples of synthetic data (x1, ..., Xy ) with known mutual information will be extremely valuable
for studying the tradeoff among various competing approaches to multimodal SSL. We would like
a flexible template that allows us to generate a large number of modalities while keeping a small,
fixed number of hyperparameters to reason about. At the same time, we would like the model to be
expressive enough to capture some interesting patterns.

We consider the causal model illustrated in Fig. [5|b). This causal model corresponds to the structural
equations

Nu
29 = 1)iiy z; =B " pinl+y o "pa, . (13)
Jj=1

Each set of proto-latents 1i; has a corresponding set of latents z;, which they feed into with a single
coefficient p. In addition, the j™ proto-latents also contribute to the i latents with some decay con-
stant a~1“~71, with o > 1. As the hyper-parameter o grows, the correlation between the modalities
decays quickly (as a function of |i — j|). As @ — 1, the modalities become uniformly correlated.

Here we maintain a target quantity of interest for some downstream task (e.g. regression), but only
include a single common cause %;. This common cause also induces a correlation among the z;, but
we break the permutation invariance by including a scaling factor 3~¢. When J is large, only the
first few modalities have significant mutual information with 8; however, when 5 — 1, that mutual
information with 6 is uniform.

This simple model does not reflect a specific physical scenario, but it does allow for interesting
benchmarks and experiments for multimodal SSL. We show in Figure [f] results from training a
flow-matching model on 10 CIFAR class labels, allowing us to create these correlated tuples of
high-dimensional, realistic images for up to N, = 10. Specifically, we show the mutual information
when all of the p variables are set to 1, the dimensionality of the data in each modality is d = 3072,
and various « and §3 are selected. We note that as « increases, I(X7; X;) decays at a faster rate and
as [ increases, I(6; X;) decays at a faster rate, as expected. Extending beyond 10 modalities is a
straightforward exercise.
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Mutual Information /(X1; X;) vs i Mutual Information /(6; X;) vs i

6000

5000 1

4000+

)

>-i 3000 1
z
= 2000+
1.0
1000
0.5
O — | 0.0
2 3 4 5 6 7 8 9 10 2 4 6 8 10
i (Modality index) i (Modality index)
—— a=12, =12 —e— a=14, =12 —e— a=16, f=12 —— a=12, =12 —e— a=14, =12 —o— a=16, =12
a=12, =14 a=14,B=14 a=16, B=1.4 a=12, =14 a=14, =14 a=16, =14
a=12, =16 a=14, =16 a=16, =16 a=12, =16 a=14, =16 a=16, =16

(a) Mutual information between image modalities X (b) Mutual information between 6 and image
and X, for the i-th modality. modality X, for the ¢-th modality.

Figure 6: Information between image modalities X; and X; decreases as the distance between X
and X; increases. This, as well as the information between image modality X; and the parameter 6,
decreases as the total number of modalities increases.

4.4 EXAMPLE 4: A MODEL FOR ABLATION STUDIES FOR MULTIMODAL SSL

While the example in Sec. [4.3] allows one to study the performance of multi-modal SSL methods
as a function of the mutual information between the modalities (and the pointwise mutual informa-
tion between individual samples from those modalities), it does not provide a mechanism to probe
the impact of architectural choices on the performance of various methods. Different architectural
choices can be sensitive to the distribution of information across the feature components of a modal-
ity (e.g. how the information is distributed across pixels in an image). In this example we introduce
structural equations that enable ablation studies that can independently isolate the role of (pointwise)
mutual information from the distribution of information.

As discussed in Section [3.4] templates can control how the information is distributed among the
components of each latent z; while preserving the total mutual information between two modalities.
This provides a mechanism for disentangling the effects of algorithmic (e.g. specific SSL objectives)
from architectural choices (e.g. inductive biases in the model construction) by independently varying
where the information is distributed in the data. The following structural equations incorporate
modality-specific templates associated to a set of shared proto-latents representing common causes
uy, as well as a path for shared information from the proto-latents {i; that are independent of the
target latent zy:

Ne Ne N.
29 = Z iUk Z; = Z Pirtr Ty + Zﬁijﬁj, (14)
k=1 h—1 j=1

The coefficients p;; and p;; could either be independent hyperparameters or they could be
parametrized as in Section e.g. pix = B pand p;; = ol 7Ilp,

5 RELATED WORK

Self-supervised learning and mutual information. The relevance of mutual information to self-
supervised learning, particularly contrastive learning, has been studied extensively. For example, the
InfoNCE family of contrastive loss functions can be interpreted as bounds on the mutual information
between representations (Oord et al., 2018 |He et al., [2020; [Caron et al.| |2020). A range of work
inspired by the InfoMax principle (Linsker,|1988) has argued that the MI between inputs and learned
representations is an implicit target for multiview contrastive learning (Oord et al.,2018};|Hjelm et al.,
2019; |Hénaff et al., 2020; [Tsai1 et al., 2021). However, Tschannen et al.|(2020) find that maximizing
the MI alone is not sufficient for learning representations that are useful for downstream tasks,
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stressing that the relation between estimated MI and representation quality depends strongly on both
architecture choice and the form of the mutual information estimator used. More recent work (Tian
et al., |2020; [Wang et al., 2022; |Wang & Isola, [2022; Rodriguez-Galvez et al., [2023) explores this
question in further depth. Our ability to generate realistic, complex datasets with known mutual
information may enable further progress in determining the role of information maximization in
self-supervised learning.

Mutual information estimation and benchmarking. Estimating mutual information from sam-
ples is challenging (McAllester & Stratos| [2020), especially in compelling real-world datasets and
applications (Holmes & Nemenman, [2019; |Gao et al., 2015} 2017)). A rich body of literature cov-
ers a variety of mutual information estimation methods, ranging from traditional approaches based
on histogram density or k-nearest neighbors (Pizer et al [1987; [Kozachenko & Leonenko, |1987}
Kraskov et al.| [2004) to neural estimators based on variational approaches (Belghazi et al., 2018;
Song & Ermon, 2020b) or generative modeling (Ao & Lil [2022; [Butakov et al.| [2024). However,
benchmarking the efficacy of these estimators on realistic datasets is entirely nontrivial. Most exist-
ing approaches are validated on multivariate normal distributions where mutual information is easily
controllable, while recent work has explored simple transformations of these distributions to emulate
properties of real data (Czyz et al.,|2023azb; [Butakov et al., |2023). Our work replaces these simple
transformations with a flexible bijective mapping learned through flow-based generative modeling
(Chen et al., [2018b), enabling construction of highly realistic datasets with analytically tractable
mutual information.

Mutual information-preserving transforms. Several generative models satisfy the mutual infor-
mation preservation condition. Discrete-time normalizing flows with coupling layers (Rezende &
Mohamed, 2015} [Papamakarios et al) [2021)) and Invertible Residual Networks (Behrmann et al.,
2019) were among the first invertible (bijective) deep generative models. More recently, TARFLOW
and STARFLOW (Zhat et al.| 2024} |Gu et al., [2025) have achieved very strong results on high reso-
lution image generation. The ability of flow-based models to preserve mutual information has been
employed in a variety of contexts, including mutual information estimation (Butakov et al.| [2024)
and developing alternative prescriptions for training flow models (Ardizzone et al.l 2021). How-
ever, employing this property to develop realistic datasets with known mutual information remains
a novel contribution of this work.

6 CONCLUSION

We present a new framework for generating realistic datasets with many modalities that are designed
with known and controllable mutual information. Our dataset generation framework uses inter-
pretable causal models with linear structural equations to construct correlated, normally-distributed
latent variables with known mutual information. Blocks of components of these random variables
are then fed into invertible (bijective) transformations that map the latent inputs into a realistic fea-
ture space while preserving the mutual information content. These realistic and nontrivial datasets
enable numerous studies, including benchmarking studies of mutual information estimators. Criti-
cally, these datasets will be important for understanding and validating the role of mutual informa-
tion in various multimodal self-supervised learning strategies, particularly as the number of modal-
ities grows.

REPRODUCIBILITY
To encourage reproducibility, we submit all code as supplementary material. Additionally, we de-

scribe the details of our example datasets, including hyperparameters chosen.
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A PREDICTION ERROR FOR THE f REGRESSION TASK

In Figure we show the distribution of prediction errors 6 — 6 for two illustrative points along our
MI distribution. The dataset with lower MI (in blue) exhibits a wider spread in errors, indicating de-
creased regression performance, while the dataset with higher MI (in orange) shows a sharper peak,
indicating better regression performance. Moreover, both distributions are centered at 0, indicating
that they are not biased in their estimations of 6.

Histogram of 6 — 6 for Two 1(6; X1) Values
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Figure 7: An example distribution of prediction error 6 — 6 for two representative MI values.

B ANALYTIC FORMULAE FOR COVARIANCE MATRICES AND MUTUAL
INFORMATION

For a causal story where:

No
29 = Z Nk - Uk
k=1
No Ny
Zi:Zﬁz‘k'ﬂri-Zﬁij'ﬁi (15)
k=1 j=1
We can represent the covariance matrix for a bimodal case as follows:

a 71 ]_T T2 1T
YX=|r1 (b—O)Id+OJd (f—p)Id+de (16)
rol (f—pla+pla (c—q)la+qla

where I; and J 4 are the d x d identity and matrix of ones, respectively, and:
Ny
2
ra =) n
k=1
Ng Ny
e = Zﬂkﬁm Ty = anﬁzk
k=1 k=1
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Ny Ny
to= Z(ﬁlk)Q q9 = Z(P%)
k=1 k=1
Ny
*p = Zﬁmﬂzk
k=1
Ny Ny,
*b=o0+ Z(ﬁlj)2 c=9q+ (p2;)?
j=1 =1
Ny,
° f =p+ ﬁlgﬁ%
j=1

Because I; and J; commute, they can be simultaneously diagonalized. Thus, for a block like
Y11= (b*O)Id+OJd, (17
the eigenvalues are:

* b+ (d — 1)o (multiplicity 1, for 1)
* b — o (multiplicity d — 1, for vectors orthogonal to 1).

Therefore,

1S11] = (b—0)* "' [b+ (d — 1)o] (18)
S22 = (¢ = @) e+ (d—1)q. (19)

By the matrix determinant lemma and Schur complement, the determinant of a block matrix I';; can
be written as

ICisl = Z55] - [Za — 5555 S| (20)
and thus
Tor| = (b—0)*"" [a(b+ (d — 1)o) — dr?] @1
IPiof = [(b—0)(c—q) = (F —=p)2]" " [(b+ (d— Do)(c+ (d— 1)q) — ( + (d — 1)p)?] o
Some examples of closed-form equations using these terms are
1 dr?
100; ;) = ~5 log (1 - M) (23)
1 dr?
1(0; Z5) = — log (1 — M) (24)
A=t (b—0)(c—q)
122 = o (G = =)
1 o [b+ (d—1)o][c+ (d —1)q]
+ 38 (e @ e O

These equations have been verified against the numerical calculations.
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