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Abstract

The accurate semantic segmentation of tree crowns within
remotely sensed data is crucial for scientific endeavours
such as forest management, biodiversity studies, and car-
bon sequestration quantification. However, precise seg-
mentation remains challenging due to complexities in the
forest canopy, including shadows, intricate backgrounds,
scale variations, and subtle spectral differences among tree
species. Compared to the traditional methods, Deep Learn-
ing models improve accuracy by extracting informative and
discriminative features, but often fall short in capturing the
aforementioned complexities.

To address these challenges, we propose Percep-
tiveNet, a novel model incorporating a Logarithmic Gabor-
parameterised convolutional layer with trainable filter pa-
rameters, alongside a backbone that extracts salient fea-
tures while capturing extensive context and spatial informa-
tion through a wider receptive field. We investigate the im-
pact of Log-Gabor, Gabor, and standard convolutional lay-
ers on semantic segmentation performance through exten-
sive experimentation. Additionally, we conduct an ablation
study to assess the contributions of individual layers and
their combinations to overall model performance, and we
evaluate PerceptiveNet as a backbone within a novel hybrid
CNN-Transformer model. Our results outperform state-
of-the-art models, demonstrating significant performance
improvements on a tree crown dataset while generalising
across domains, including two benchmark aerial scene se-
mantic segmentation datasets with varying complexities.

This work has been accepted for publication at the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) 2025 EarthVision Workshop.
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1. Introduction

Tree crowns are crucial indicators of tree health, directly
impacting photosynthesis, transpiration, and nutrient ab-
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Figure 1. Tree Crown Semantic Segmentation, depicting (from
left to right): Original Image; Corresponding Mask; ResUNet; and
proposed model’s semantic segmentation. Each colour represents
a different tree species. The images portray densely packed trees
with complex boundaries due to partial overlap. Moreover, tree
crown similarities, complex occlusion, combined with light varia-
tions and shadows further augment the scene’s complexity.

sorption (Bakalo et al. [1]; Li et al. [2]). Accurate seman-
tic segmentation of tree crowns (Figure 1) enables quanti-
tative analysis of forest characteristics, supporting applica-
tions in biodiversity assessment, carbon sequestration mea-
surement, and ecological monitoring.

Dense forests present unique challenges for semantic
segmentation: (1) variable lighting conditions and shadows
that obscure crown boundaries (Bargas et al. [3]); (2) com-
plex backgrounds with overlapping canopies (Hu et al. [4]);
(3) scale variations from different Unmanned Aerial Vehi-
cle (UAV) heights (Ocer et al. [5]); and (4) subtle spectral
differences between species (Cao and Zhang [6]). Figure 2
demonstrates these challenges, showing how lighting con-
ditions affect crown appearance of different species.

Current aerial imagery segmentation largely relies on U-
Net variants (Ronneberger et al. [7]), ranging from ba-
sic implementations (Ye et al. [8]; Zhang et al. [9]; Cao
and Zhang [6]; Wanger et al. [10]; Schiefer et al. [11])
to transformer-enhanced architectures (Scheibenreif et al.
[12]; Vinod et al. [13]; Alshammari and Shahin [14]).
While specialised modules like dilated convolutions and
pyramid pooling (He et al. [15]; Zhao et al. [16]) im-
prove performance, these approaches fail to address the
unique spatial and spectral characteristics of aerial forest
scenes. One thing that all the aforementioned works have
in common is that they do not consider the challenges that
tree crown semantic segmentation in dense forests presents.
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Figure 2. Dense forest canopy, demonstrating the impact of shad-
ows, light variations, overlapping tree crowns, and weak distinc-
tive features among tree species on the tree crown segmentation.

These challenges translate into specific issues for computer
vision algorithms and principles. Additionally, they often
ignore the Deep Learning models’ characteristics, feature
extraction capabilities, and inherent biases.

Despite advancements in Deep Learning for image pro-
cessing, tree crown semantic segmentation in dense forest
aerial imagery remains challenging. While Convolutional
Neural Networks (CNNs) are inherently biased towards
learning hierarchies of localised features (Fukushima [17]),
studies have shown they tend to over-rely on texture rather
than shape features when trained on standard (Geirhos et
al. [18]) or aerial (Voulgaris et al. [19]) datasets. Re-
lying solely on texture features is particularly problematic
in aerial imagery, where texture features vary significantly
with lighting, shadows and atmospheric conditions. This
exposes a critical gap in current approaches, which often
overlook the need for robust shape-based features in aerial
scene analysis. Adding fixed Gabor filters helps networks
avoid relying on texture, leading to more structured repre-
sentations (Evans et al. [20]). However, this approach re-
stricts the filters to non-adaptive Gabor functions, prevent-
ing the network from learning and adapting.
Contributions. This work’s contributions are as follows:
1) A novel convolutional layer parameterised by train-
able Log-Gabor functions, evaluated both qualitatively and
quantitatively against Gabor-based and standard convolu-
tional layers; 2) A new backbone architecture that extracts
more salient features, as demonstrated through ablation
studies and Class Activation Maps; 3) A novel hybrid CNN-
Transformer model leveraging our proposed backbone; and
4) Comprehensive evaluation across multiple aerial datasets
and benchmarking against leading models, with extensive
qualitative and quantitative analyses demonstrating superior
performance in tree crown segmentation and strong gener-
alisation to diverse aerial scene segmentation tasks.

Theoretical Insights. Gabor filters combine sinusoidal
waves with Gaussian envelopes (Gabor [21]; Daugman

[22]), enabling simultaneous spatial and frequency domain
analysis. This property makes them particularly suitable for
texture analysis and feature extraction in complex imagery:
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While Gabor filters offer differentiable shapes (Nava et
al. [23] and Boukerroui et al. [24]), they suffer from several
limitations:

* Non-Zero DC Component: The cosine compo-
nent’s non-zero integration limits sensitivity to high-
frequency components [25], [26].

* Non-Orthogonality:  Overlapping frequency bands
across scales reduce discriminative power [27].

* Non-Uniform Fourier Domain Coverage: Uneven fre-
quency distribution leads to inadequate high-frequency
coverage [24], [28].

* Lack of True Quadrature: Inconsistent phase differ-
ences affect precision in phase-sensitive tasks [28].
Log-Gabor filters address these limitations through loga-

rithmic frequency scaling (Fischer et al. [28]):

_ (log(f/f0))? )
2(log(a/ f0))?

This design provides zero DC components, improved or-
thogonality across scales, uniform Fourier domain cover-
age, and superior spatial localisation.

Convolutional filters in the first layer of CNNs often re-
semble Gabor filters, capturing basic patterns like edges and
textures (Luan et al. [29]; Alekseev and Bobe [30]; Evans
et al. [20]). Both types of filters perform spatial and fre-
quency domain analysis, enhancing the architecture’s abil-
ity to capture spatial localisation, orientation, and spatial
frequency selectivity. This is particularly beneficial for se-
mantic segmentation of tree crowns in dense forests from
aerial images, as it improves the network’s ability to lo-
calise tree crowns, detect various orientations, and differen-
tiate between textures, leading to more accurate and robust
segmentation results. Moreover, Log-Gabor filters, with
their zero DC components, improved orthogonality, uni-
form Fourier domain coverage, and superior spatial local-
isation, further enhance these capabilities, resulting in even
more precise and reliable segmentation of tree crowns. In
the next sections, we perform a comparative analysis, both
quantitatively and qualitatively, to evaluate how each im-
plementation capitalises on the theoretical background and
impacts semantic segmentation performance.

Glog—gabor(f) = exp < (3)
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Figure 3. Building blocks of the proposed Architecture: (a) PerceptiveNet architecture, (b) Decoder proposed dilated residual unit (DilRes),
(c) Encoder/Bridge proposed dilated residual unit (DilRes), comprised of a mixture of average and maximum pooling layer (Mix Pool) and
an averaged Dilated convolutional layer, (d) Dilated convolutional layer. Noticeably, the Mix Pool layer is not present on the decoder.

2. Methods

This section, introduces the proposed model PerceptiveNet
and the hybrid CNN-Transformer PerceptiveNeTr, followed
by the test datasets. As PerceptiveNet is based on a Re-
sUNet, we first describe it, and then discuss the changes we
have made. We end with a brief description of the models
we test in which we isolate each of the changes we have
made.

2.1. Models

ResUNet. This architecture (Zhang et al. [31]) extends
the U-Net model by incorporating residual units (He et al.
[32]). It is comprised of an encoder and a decoder. The
encoder feature maps low-level fine-grained information,
whilst the decoder feature maps high-level, coarse-grained
semantic information. Skip-connections between low- and
high-level feature maps enhance semantic extraction within
the encoder and decoder framework.

PerceptiveNet. Dilated convolution was first introduced by
Chen et al. [33] [34] as a way of increasing the recep-
tive field for the task of semantic segmentation. Accord-
ing to Wei et al. [35], convolutional kernel receptive fields
are enlarged when employing varying dilation rates, which
results in transferring the surrounding discriminative infor-
mation to the discriminative scene regions. In this work,
we propose a novel convolutional layer parameterised by
trainable Log-Gabor functions and explore how it performs
when combined with averaged dilated convolutions and a
mixture of maximum and average pooling layers to impact
semantic segmentation performance. Specifically, for the

Log-Gabor-parameterised convolutional layer, we used:
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where the radial and angular components are defined as:
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and the variables are defined as:
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Here, (z,y) represents the spatial position, fj is the centre
frequency, 6 is the orientation, 0y is the reference orienta-
tion, o is the bandwidth parameter, ¢ is the phase offset,
and ¢ is a small constant to prevent division by zero.

Log-Gabor layer weights were initialised by setting the
bandwidth parameter o, centre frequency fo, and frequency
f for each filter. The phase offset ¢ is set by uniform dis-
tribution Unif.(0, 7). Notably, the Log-Gabor function pa-
rameters (0, o, ¥, fy, 0p) are learnable and updated during
backpropagation as part of the model’s optimisation.

This implementation offers several advantages over the
standard Gabor filter. The logarithmic nature of the ra-
dial component allows for a more even coverage of spatial
frequencies and can be designed with arbitrary bandwidth.



Additionally, Log-Gabor functions have no DC component,
which can be beneficial in certain image processing tasks.
The key differences from a standard Gabor filter include:
* The use of a logarithmic term in the radial component,
which provides better frequency coverage.
* A normalisation factor of -, which ensures proper

2wo?°
scaling of the filter.

These modifications allow the Log-Gabor filter to capture a
wider range of spatial frequencies and orientations, poten-
tially improving its performance in tasks such as edge de-
tection, texture analysis, and feature extraction for semantic
segmentation.

In addition, due to the information complexity in aerial
images, a method that combines maximum and average
pooling was applied:

fmix(l‘) =Qp- fmax(m) + (1 - al) : favg(x) @)

where scalar mixing portion oy € [0, 1] indicates the max
and average combination per layer /. For the purpose of this
work, we chose a scalar mixing portion o; = 0.8.

The use of pooling layers reduces the spatial resolution
of the feature map, while it increases the receptive field of
feature points. Thus, each feature point in the feature map
is influenced by a larger portion of the input image. By in-
creasing the receptive field, the network can capture larger
contextual information, including spatial relationships and
dependencies between objects, and this benefits the seman-
tic segmentation tasks where objects may appear at different
scales and positions within the image.

Similar to [35], an averaged dilated convolutional layer
was added on the last convolutional layer of the residual
block. Specifically, convolutional blocks with multiple di-
lated rates (i.e. d =1, 3, 6, 9) were appended to the final
convolutional layer, thus localising scene-related regions
observed by different receptive fields. Using high dilation
rates (i.e. d = 9) can cause inaccuracies by mistakenly high-
lighting scene-irrelevant regions. To avoid such scenarios,
we used equation 8, where the average over the localisation
maps H; (i.ei=3, 6,9) generated by different dilated con-
volutional blocks was summed to the localisation map H
of the convolutional block with dilation d = 1.
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Figure 3 illustrates the architecture under consideration.
We replaced the initial ResUNet convolutional layer with a
convolutional layer parameterised by trainable Log-Gabor
functions. Additionally, we propose a residual block for
the encoding and bridge parts of the network, where we re-
placed stride 2 convolutional layers with stride 1. To main-
tain effective downsampling, we added a mixture of Maxi-
mum and Average pooling layers to halve the feature map
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Figure 4. PerceptiveNeTr: Hybrid CNN (PerceptiveNet) -
Transformer architecture, leveraging long-range dependencies and
global context.

size, along with an averaged dilated convolutional layer for
enhanced feature extraction. For decoding, we employed a
residual block with an averaged dilated convolutional layer.
LGMPResUNet. To enhance feature extraction, 1) we re-
placed the first convolutional with a Logarithmic Gabor-
parameterised convolutional layer; 2) the encoding path is
comprised of three residual blocks. Instead of using the first
convolutional layer stride 2 to downsample the feature map
size, we used stride 1 and added a mixture of maximum and
average pooling layers to reduce the feature map by half.
DilResUNet. This model employs dilated convolutional
blocks to enhance the representation capacity of the convo-
lution layers when compared to the ResUNet. Thus, added
dilated convolutional blocks with multiple dilated rates (i.e.
d=1, 3, 6,9). This enables the extraction of fine-grained
detailed and coarse-grained semantic information.
PerceptiveNeTr. We propose an architecture that combines
elements from CNNs and transformer models, enabling the
capture of long-range dependencies and global context [36].
It is structured into three main components: Encoding, De-
coding, and a Bridge (Figure 4). The Encoding section be-
gins the proposed Log-Gabor parameterised convolutional
layer, followed by the proposed backbone described above.
An embedded sequence processing component is included,
representing the Patch Embedding, and features Layer Nor-
malisation, Multi-Head Self-Attention (MSA), and Multi-
Layer Perceptron (MLP) layers. Finally, the encoding sec-
tion consists of a stack of four Transformer layers (n=4),
which correspond to the Transformer Encoder described in
the model. The Bridge and Decoding section remain as de-
scribed previously.



ViTResUNet. This model is the same as the hybrid CNN-
Transformer PerceptiveNeTr described above, but uses a
ResUNet as the backbone instead.

Model Training. Due to novelty, all models were trained
from scratch for 130 epochs (based on when train/validation
results stopped improving), using Adam Optimiser and
Cross Entropy loss and a batch size of 16. The data was
split as 80% train/validation (of which, 80% train; 20% val-
idation) and 20% for testing. The only data augmentations
applied during training were geometric transformations, i.e
rotation with 90% probability and horizontal and vertical
flip with 50% and 10% probabilities respectively.

Performance Metrics. To measure model performance two
scores are used, Pixel accuracy (Acc) and mean Intersection
of a Union (mloU) score. As pixel accuracy (calculated
as the proportion of correctly predicted pixels) might not
accurately reflect a model’s performance when e.g. water
or ground scenes dominate an image, we additionally use
mloU as it takes into account the area covered by each of
the k classes via:
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2.2. Data

Alongside TreeCrown, two additional datasets were chosen
to evaluate model generalisation across diverse aerial scenes
of varying complexity. While differing from dense forests,
both exhibit similar challenges, such as complex spatial
boundaries and occlusions caused by canopy and shadows.

TreeCrown. The dataset by Cloutier et al. [37] cov-
ers a temperate-mixed forest in the Laurentides region of
Québec, Canada, during 2021. It includes 1,360 (768 x 768-
pixels) UAV images acquired monthly from May to August.
The dataset contains 23,000 segmented tree crowns with
per-pixel species annotations for 14 tree species classes.

Landcover.Al The dataset by Boguszewski et al. [38] de-
picts RGB aerial images and annotated buildings, forests,
water bodies and roads in Poland. The dataset is com-
prised of 33 orthophotos with 25 cm per pixel resolution
(9000 x9500-pixels) and 8 orthophotos with 50 cm per pixel
resolution (4200x4700-pixels) of a total area of 216.27
km?. We sub-sampled the orthophotos to produce 21,924
(256 x256-pixels) images and their corresponding masks.

UAVid. This is a UAV semantic segmentation dataset by
Lyu et al. [39], that focuses on urban scenes with two spatial
resolutions (38402160 and 4096 x2160-pixels) and eight
class labels (Building, Road, Static car, Tree, Low vege-
tation, Human, Moving car, and Background). Each image
was padded and cropped into eight 256 x 256-pixel patches.

3. Results and Discussion

3.1. Comparative Analysis: Standard, Gabor and
Log-Gabor Convolutional Layers

In this section, we evaluate the impact of using a stan-
dard initial convolutional layer, a Gabor-based, and a
Log-Gabor parameterised initial convolutional layer in tree
crown semantic segmentation. The theoretical advantages
of Log-Gabor filters—including improved frequency cover-
age, zero DC component, reduced artefacts, enhanced edge
detection, and adaptability to shape variability—suggest
that the Log-Gabor parameterised convolutional layer is
likely to extract more salient features compared to both the
Gabor-based and standard convolutional layers. By con-
ducting qualitative and quantitative analyses, we investigate
how these theoretical insights are reflected in the experi-
mental results, thereby illustrating the effectiveness of our
proposed Log-Gabor parameterised convolutional layer in
accurately segmenting tree crowns in dense forests.

Quantitative Analysis. We evaluate the impact of using a
standard, Gabor-based, and trainable Log-Gabor function-
parameterised initial convolutional layer within our pro-
posed backbone on semantic segmentation performance.
Table 1 shows that in the complex TreeCrown dataset, the
parameterised Log-Gabor outperforms both the convolution
and the Gabor one by 4.6% and 3.7% mloU respectively.
Experiments on Landcover.Al and UAVid datasets confirm
this trend, with Log-Gabor outperforming conventional and
Gabor implementations by 3.5% and 2.8% mIoU on Land-
cover.Al and 4.5% and 1.5% mIoU on UAVid, respectively.

Table 1. Convolutional vs Gabor vs Log-Gabor Parameterised Ini-
tial Convolutional Layer Semantic Segmentation Performances.

Dataset TreeCrown Landcover.Al UAVid
Architecture |Acc(%) mloU(%) |Ace(%) mloU(%) | Ace(%) mIoU(%)
PerceptiveNet™™ | 82.9 43.5 91.3 78.1 85.3 64.1
PerceptiveNet®® | 82.2 44 .4 92.1 78.8 86.2 67.1
PerceptiveNet°262> | 84,4 48.1 92.5 81.6 87.1 68.6

Qualitative Analysis. We perform a visual inspection of
the segmentation masks predicted when using the two ini-
tial Log-Gabor and Gabor parameterised convolutional lay-
ers under review. As is evident in Figure 6, incorporat-
ing a Log-Gabor convolutional layer allows the model to
capture finer spatial details, resulting in more accurate seg-
mentation across different tree crown sizes. Moreover, the
Log-Gabor convolutional layer is very efficient at differen-
tiating closely packed trees, effectively managing complex
crown shapes and smaller, irregular crowns. Particularly
in the presence of dead trees, Log-Gabor outperforms Ga-
bor or normal convolutional layers by capturing more high-
frequency features, enhancing its overall segmentation per-
formance. This demonstrates the importance of zero DC
components, improved orthogonality across scales, uniform



Fourier domain coverage, and spatial localisation. These
properties enhance the model’s ability to perform semantic
segmentation tasks in complex, challenging dense forests.

3.2. Ablation Study

As the proposed architecture comprises of two components,
a texture-biased part for extracting salient features and a
wider receptive field, we evaluated how each of these com-
ponents contributes to segmentation performance.

Table 2. Ablation Study - Semantic Segmentation Performance.

ResUNet

PerceptiveNet

Dataset TreeCrown Landcover.Al UAVid
Architecture |Acc(%) mIoU(%)|Acce(%) mIoU(%)|Ace(%) mloU(%)
ResUNet 79.3 37.6 91.3 72.6 82.6 59.7

DilResUNet | 80.6  40.5 89.4 76.8 82.9 63.1
LGMPResUNet| 82.2  44.4 90.6 78.4 85.8 66.4
PerceptiveNet| 84.4 48.1 92.5 81.6 87.1 68.6

Table 2 results indicate that DilResUNet architecture,
with averaged dilated convolutional residual blocks, im-
proves mIoU by 2.9% (TreeCrown), 4.2% (Landcover.Al),
and 3.4% (UAVid) over ResUNet. LGMPResUNet, inte-
grating an initial Log-Gabor parameterised convolutional
layer and residual blocks comprised of a mixture of aver-
age and maximum pooling layers, further boosts mloU by
6.8%, 5.8%, and 6.7%, respectively. The proposed Per-
ceptiveNet, combining an initial Log-Gabor parameterised
convolutional layer, residual blocks consisting of a mixture
of average and maximum pooling layers, and averaged di-
lated convolutional layer, achieves the best mloU scores
of 10.5% (TreeCrown), 9.0% (Landcover.Al), and 8.9%
(UAVid) compared to ResUNet. This study demonstrates
that the proposed layers complement each other to further
enhance the semantic segmentation performance.

3.3. Comparative Feature Extraction Analysis

In this section, we employ Class Activation Mapping
(CAM, Zhou et al. [40]) to gain insight into the model’s de-
cision process by overlaying a heatmap on the original im-
age, indicating the discriminative region used by the model
when predicting that an image belongs to a particular class.
Figure 5 illustrates the CAMs for images containing forests
and agricultural land, comparing the feature extraction ca-
pabilities of a standard CNN with those of the proposed
model. In the ResUNet column, the standard model’s ac-
tivation patterns are diffuse, with focus areas spread across
both forested regions and agricultural lands. This scattered
attention suggests inefficient feature capture, missing criti-
cal details and leading to less robust representations.

In contrast, the PerceptiveNet model demonstrates a
more focused and detailed activation pattern, particularly
in areas with dense tree coverage. This is expected due
to the model’s enhanced ability to extract salient features

Figure 5. Class Activation Maps, ResUNet vs PerceptiveNet En-
coder feature extraction capabilities. PerceptiveNet: More focused
and detailed activation pattern.

combined with a wider receptive field. Thus, the activation
maps display more defined structures and higher contrast,
especially in forested regions. This targeted focus indicates
that our model develops more robust and specific represen-
tations of forest structures. The enhanced ability to concen-
trate on relevant features, particularly trees, suggests bet-
ter out-of-distribution generalisation, crucial for tasks like
dense forest tree crown segmentation. Comparing these ac-
tivation maps, we infer that the proposed model’s architec-
ture allows for more efficient and targeted feature extrac-
tion, potentially improving performance.

3.4. Quantitative Analysis

We evaluate the semantic segmentation performance of
our proposed architectures through two analyses. First,
we compare the PerceptiveNet against State-Of-The-Art
(SOTA) CNN models including U-Net [7], MACUNet [41],
ResUNet [31], and DeepLabV3+ [42]. Second, we investi-
gate how semantic segmentation performance benefits from
the combination of capturing long-range dependencies and
global context through our hybrid CNN-Transformer model
(ViTResUNet), comparing it against SOTA Transformer ar-
chitectures UNETR 2D [43] and SwinUNet [44], as well as
examine the generalisation of the proposed backbone (Per-
ceptiveNeTr) within such a hybrid framework. All evalua-
tions are conducted across three complex aerial scene SOTA



datasets: TreeCrown, Landcover.Al, and UAVid.

3.4.1. Convolutional Models

For the TreeCrown dataset in Table 3, ResUNet achieved
an mloU of 37.6%. U-Net improved this by 5.6%. MA-
CUNet further enhanced the results to 45.9%, an 8.3% im-
provement, while DeeplabV3+ showed a similar improve-
ment with an mIoU of 45.7%, 8.1% higher than ResUNet.
The proposed PerceptiveNet outperformed all models with
an mloU of 48.1%, a 10.5% improvement over ResUNet.

Table 3. Semantic Segmentation Performance in Various Datasets.

Dataset TreeCrown Landcover.Al UAVid
Architecture |Acc(%) mloU(%)|Acc(%) mloU(%)|Acc(%) mloU(%)
ResUNet 79.3 37.6 91.3 72.6 82.6 59.7
UNet 81.9 43.2 91.1 73.1 85.7 64.9

MACUNet 83.7 45.9 914 743 85.7 66.1
DeepLabV3+| 81.9 45.7 91.9 78.6 86.7 65.8
PerceptiveNet| 84.4 48.1 92.5 81.6 87.1 68.6

In the Landcover.Al dataset, ResUNet recorded an mloU
of 72.6%. U-Net achieved 73.1% mloU, 0.5% higher. MA-
CUNet achieved an mIoU of 74.3%, which is 1.7% higher.
DeepLabV3+, with a mIoU score of 78.6% improved by
6%. PerceptiveNet model achieved the best performance,
with an mIoU of 81.6%, 9% higher than ResUNet.

For the UAVid dataset, ResUNet attained an mloU of
59.7%. The U-Net improved to 64.9% mloU, 5.2% higher.
MACUNet achieved 66.1%, 6.4% higher. DeepLabV3+
reached 65.8%, a 6.1% improvement. The PerceptiveNet
model led with 68.6% mloU, 8.9% higher than ResUNet.

3.4.2. Transformer Models

The summarised results in Table 4 indicate 2 key findings:

Table 4. Transformer vs Hybrid CNN-Transformer Semantic Seg-
mentation Performance in Various Datasets.

Dataset
Architecture

TreeCrown Landcover.Al UAVid
Acc(%) mIoU(%)|Ace(%) mIoU(%)|Acc(%) mIoU(%)

UNETR2D | 75.2 27.1 81.2 524 80.4 55.9
SwinUNet 76.9 36.5 89.1 67.3 82.3 58.3
ViTResUNet | 79.9 37.8 89.1 68.2 83.9 60.1
PerceptiveNeTr| 81.8 42.0 91.2 75.3 84.8 64.3

Proposed Hybrid CNN-Transformer: The ViTRe-
sUNet model outperforms the pure Transformer mod-
els UNETR 2D and SwinUNet by 10.7% & 1.3% mloU
(TreeCrown), 15.8% & 0.9% mloU (Landcover.Al), and
4.2% & 0.8% mloU (UAVid). This demonstrates that hybri-
dising CNN and Transformer elements benefits from cap-
turing long-range dependencies and global context, leading
to enhanced performance in semantic segmentation tasks.

PerceptiveNet Backbone Impact: The proposed Log-
Gabor parameterised convolutional layer and backbone sig-
nificantly enhance the performance of the hybrid model.

PerceptiveNeTr achieves higher mloU scores compared to
ViTResUNet, improving even further the performance by
4.2% mloU for TreeCrown, 7.1% mloU for Landcover.Al,
and 4.2% mloU for UAVid datasets. This demonstrates
the generalisability of our PerceptiveNet model, indicating
the benefits of implementing the proposed backbone even
within a hybrid CNN-Transformer framework.

Overall, the proposed architectures demonstrated supe-
rior performance, with PerceptiveNet achieving the high-
est mloU scores amongst all models and datasets and Per-
ceptiveNeTr outperforming all Transformer architectures.
The integration of Log-Gabor parameterised convolutional
layer, residual blocks with mixed pooling layers and aver-
aged dilated convolutions enhanced semantic segmentation
in both standalone and hybrid implementations, proving ef-
fective at capturing complex features across various models.

3.5. Qualitative Analysis

To assess the performance of our proposed segmentation
model, we conduct a visual comparison of tree crown seg-
mentation results across the original ResUNet and proposed
PerceptiveNet (LogGab PerceptiveNet). Furthermore, to
asses the effect of the proposed initial Log-Gabor parame-
terised convolutional layer, we provide a visual comparison
of the proposed model with an initial parameterised Gabor
convolutional layer (Gabor PerceptiveNet). The segmenta-
tion results, presented in Figure 6, highlight each model’s
effectiveness in capturing tree crowns with varying charac-
teristics, including living and decaying trees. While accu-
racy in segmenting tree crowns is the main focus, the red-
circled dead trees aid analysis as reference points.

ResUNet demonstrates a reasonable ability to segment
large tree crowns, yet it encounters challenges when it
comes to finer boundary delineations, particularly with
smaller and irregularly shaped trees. The model often over-
segments larger crowns while under-segmenting smaller
ones, leading to a reduction in segmentation accuracy. Dead
trees, which exhibit sparse or absent foliage, are especially
problematic for ResUNet, with frequent misclassifications
or merging with nearby crowns observed in the results.

The Gabor PerceptiveNet, shows improved capability
in capturing texture and boundary details. This is appar-
ent in the clearer segmentation of tree crowns compared
to ResUNet. While some inaccuracies persist—most no-
tably with smaller crowns and more complex crown struc-
tures—the model provides improvements, particularly in
separating adjacent tree crowns. Despite errors, the Gabor
filters help the model differentiate between trees more effec-
tively, including those exhibiting signs of decay or death.

PerceptiveNet exhibits the highest accuracy in segment-
ing tree crowns, particularly when it comes to delineating
boundaries. The use of convolutional layer parameterised
by trainable Log-Gabor functions enables the model to cap-
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Gabor PerceptiveNet  LogGab PerceptiveNet

Original Mask

Figure 6. Aerial Tree Crown Semantic Segmentation of a Dense Forest (TreeCrown), Comprised of Visually Similar Tree Species. The left
column shows the original image; the right columns show the labelled masks and the segmentation results. Red circles indicate dead trees.

ture finer spatial details, translating into more precise seg-
mentation across various tree crown sizes. PerceptiveNet
excels at distinguishing closely situated trees and minimis-
ing over-segmentation, effectively handling complex crown
shapes and smaller, irregular crowns. Notably, while dead
trees pose a challenge for all models, PerceptiveNet out-
performs them by capturing more high-frequency features,
contributing to its superior segmentation performance.

Overall, PerceptiveNet delivers the most proficient seg-
mentation of tree crowns, including those of varying sizes
and health statuses. The Log-Gabor initial convolutional
layer enhances feature extraction, allowing for clearer
boundary detection and more accurate segmentation. These
visualisations demonstrate the importance of the Log-Gabor
properties: zero DC components, improved orthogonality
across scales, uniform Fourier domain coverage, and supe-
rior spatial localisation in semantic segmentation.

4. Conclusion

While tree crown semantic segmentation is essential for
ecology, forestry, agriculture, and biodiversity studies, it
is significantly impacted by factors such as shadows, light
variations, overlapping tree crowns, and weak distinctive

features among tree species. These challenges are fur-
ther exacerbated in dense forests during the green leaf sea-
son. To address these issues, we proposed PerceptiveNet, a
model that extracts salient features while capturing contex-
tual and spatial information through a wider receptive field.
Our model significantly outperforms SOTA models on the
TreeCrown and two benchmark aerial scene datasets. Qual-
itative analysis shows enhanced feature extraction, enabling
clearer boundary detection and more accurate segmentation.

Additionally, quantitative and qualitative analyses
demonstrate that the proposed convolutional layer, parame-
terised by trainable Log-Gabor functions, outperforms both
traditional Gabor-based and standard convolutional layers
by effectively leveraging the strengths of Log-Gabor filters
for semantic segmentation. Moreover, an investigation into
the proposed individual layers and their combinations re-
veals that while each contributes to performance gains, their
synergistic integration leads to even greater improvements.

Finally, the proposed hybrid CNN-Transformer model,
PerceptiveNeTr, illustrates the advantages of capturing
long-range dependencies and global context. Although Per-
ceptiveNeTr’s performance metrics are lower compared to
our pure CNN PerceptiveNet, it establishes a foundation for



future research aimed at integrating advanced transformer
models, such as the Hierarchical Vision Transformer, along
with pre-trained ones to improve performance. Importantly,
this comparison highlights the robust generalisation of our
PerceptiveNet backbone across various applications.
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