
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVALUATING OVERSIGHT ROBUSTNESS WITH INCEN-
TIVIZED REWARD HACKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Scalable oversight aims to train systems to perform tasks that are hard for humans
to specify, demonstrate and validate. As ground truth is not available for such
tasks, evaluating scalable oversight techniques is challenging. Existing methods
measure the success of an oversight method based on whether it allows an arti-
ficially weak overseer to successfully supervise an AI to perform a task. In this
work, we additionally measure the robustness of scalable oversight techniques by
testing their vulnerability to reward hacking by an adversarial supervisee. In ex-
periments on a synthetic domain, we show that adding an explicit reward hacking
incentive to the model being trained leads it to exploit flaws in a weak overseer,
and that scalable oversight methods designed to mitigate these flaws can make the
optimization more robust to reward hacking. We hope these experiments lay a
foundation for future work to validate scalable oversight methods’ ability to miti-
gate reward hacking in realistic settings.

1 INTRODUCTION

Scalable oversight is central to the current efforts to align strong future models that may elude
human supervision (Bowman et al., 2022). Therefore, weaknesses in scalable oversight are of great
significance for AI safety.

A standard method for studying scalable oversight techniques is sandwiching (Cotra, 2021), where
a weak overseer is used to train a more capable model to perform a task evaluated by an expert
overseer. While successful sandwiching experiments may give an example of a scalable oversight
technique succeeding, this example may not convince us that this technique will succeed robustly.
If reward hacking was narrowly avoided, a slight change in the choice of parameters, training for a
slightly different task, or training a more powerful model might induce reward hacking. One way
to combat this, originally described by Shlegeris & Greenblatt (2023), is to add a margin of safety
by deliberately incentivizing the model to reward hack. A simple way to implement this is to add a
term in the reward function inversely proportional to ground truth performance, as assigned by an
expert. In this setting, the model is incentivized to produce outputs that are still rewarded highly
by the actual overseer while being bad in practice - aka failing silently. If this approach produces a
model that performs poorly on the ground truth while the overseer believes it is performing well, we
may conclude the combination of oversight technique, overseer and task is not safe.

Overseers can be flawed in many different ways. We investigate how scalable oversight techniques
can mitigate these flaws and where they might fall short in this task. We identify several classifica-
tions, and invite future work to propose more:

• Overseers can be bad at noticing problems, vs. weighing problems. As an example, finding
a vulnerability vs. deciding whether the vulnerability is applicable to the current context.
If they are bad at noticing problems but good at weighing them, a method such as Critiques
might completely cover for their weakness, while if they are bad at weighing issues the
addition of a critiquer could actively hurt performance. For instance, the critiquer could
convincingly flag good examples as bad, leading to false positives.

• Overseer mistakes can be easy vs. hard to learn. The harder they are to learn, the stronger
the model in training might need to be before the overseer starts being exploited.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Overseer mistakes can cause the overseer to underestimate the reward, or overestimate
it. An overestimate may result in reward hacking, while an underestimate may reduce
performance.

We test three aspects of scalable oversight techniques:

• Robustness to reward hacking: How difficult is it for an adversarial model to learn to hack
the (possibly flawed) overseer at the expense of the true reward?

• Robustness to overseer flaws: How well do the methods mitigate systematic flaws on the
part of the overseer?

• Efficiency: How well can we learn to optimize the true reward given only a small amount
of ground-truth supervision signal?

Our hope is that this work will provide insight into the study of scalable oversight and what is
required to achieve robust results in the face of uncertain generalization to the deployment settings.

2 RELATED WORK

Scalable oversight. Scalable oversight is the ability to provide reliable supervision—in the form
of labels, reward signals, or critiques—to models in a way that will remain effective past the point
that models start to achieve broadly human-level performance (Bowman et al., 2022). A scalable
oversight training technique aspires to train an artificial intelligence (AI) system to achieve some
goal, despite a limited or flawed capacity to measure the goal. Different techniques (Consultancy
(Kenton et al., 2024), Critiques (Khan et al., 2024; Saunders et al., 2022), Debate (Irving et al.,
2018)) may involve varying amounts of models, querying procedures and parameters, and they all
have some set of instructions the overseer(s) should follow. For instance, Reinforcement Learning
from Human Feedback (RLHF) uses an additional reward model, and the Critiques protocol uses an
additional critique model.

As a basic design requirement, if the overseer follows the instructions perfectly without making any
mistakes, the model will get higher reward for taking actions that the overseer would prefer, should
it be aware of the information the model knew about the situation. On top of this basic requirement,
techniques attempt to (and are differentiated by their ability to):

• Have a low computational complexity for the overseer. The introduction of the Debate
technique had this as an explicit goal—theoretically allowing a polynomial time judge to
supervise a PSPACE complexity task (Irving et al., 2018), although there have been updates
to this (Brown-Cohen et al., 2023). As an example, reading a book is more complex than
reading a summary and a critique of the summary.

• Not require the overseer to do things they might be prone to doing poorly. For instance,
humans might be worse at giving calibrated numbers than choosing which of two outputs
they prefer. They also might be worse at spotting code vulnerabilities than recognizing
them when brought to their attention.

• Require the overseer to only supervise a small number of examples. This is achieved for
instance by the reward model in RLHF giving much more oversight than was used to train
it.

• Have the training either succeed or, at least, fail loudly in case the overseer implements the
instructions imperfectly. Failing loudly means that the model did not learn the goal and the
overseer is aware of the shortcoming, while failing quietly means the overseer thinks the
model has learned the goal correctly. Failing quietly can also be seen as reward hacking.

Sandwiching. The sandwiching paradigm (Cotra, 2021) is a framework designed to test scalable
oversight techniques by creating a scenario where a model is more capable than non-experts but
less capable than experts. Non-experts attempt to train or align the model without relying on expert
help or preexisting expert knowledge. At the end of the experiment, experts evaluate how well the
non-experts succeeded. This setup mimics the future challenge of overseeing more advanced AI
systems on tasks we cannot specify well or validate confidently. While the sandwiching paradigm is

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Diagram of an example game of CodeNames.

promising, a successful experiment may not guarantee success in the future deployment case due to
various reasons. In this paper we focus on two reasons:

• The success of the experiment may depend on specifics of the implementation, such as the
training hyperparameters, the size and architecture of the model, or the amount of data.
There is no way to tell whether the technique robustly teaches the model the goal correctly,
or whether reward hacking was narrowly avoided by chance (Shlegeris & Greenblatt, 2023).
To mitigate this risk, we propose adding an incentive to perform reward hacking, described
in the next section.

• The success of a scalable oversight technique might depend on which specific limitations
the overseer has with respect to the task. If the overseer has a limited ability to enumerate
the qualities of an output, getting the model to back up their output with arguments might
help. If the overseer is limited in their ability to spot errors in the output, adding an adver-
sary model may help. If the overseer has deep rooted biases in the domain, it is possible
neither of those will help. We implement simulated overseers with different limitations and
show that different techniques cover for these different limitations.

3 METHODS

3.1 EXPERIMENTAL SETUP

We use CodeNames, a party game where players need to find creative word associations, as our
testbed for scalable oversight experiments. It offers several advantages that make it suitable for
these experiments:

1. It is easy for language models to learn.

2. Large numbers of games (training data) can be procedurally generated.

3. It can be adapted to simulate overseers with various kinds of flaws or artificially limit the
oversight budget.

4. The task of giving a clue is open-ended.

For the purposes of this experiment, CodeNames is a two player cooperative game with one turn. As
shown in Figure 1, Player 1 (the cluer) receives a list of good words and a list of bad words, sampled
uniformly without replacement from a list of 400 game words, and gives a one word clue. Player 2
(the guesser) receives one list with all of the words and needs to guess which words are good based
on the clue. They make their guesses one word at a time until they guess a bad word. The final score
of the game is the number of good words player 2 was able to guess before guessing a bad word.

Additional methodology details for words selection and clue evaluation are provided in Ap-
pendix A.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Adversarial incentive. In order to increase the reliability of sandwiching experiments, we propose
and implement an adversarial incentive for the model to learn reward hacking. This is implemented
as a modification to the reward function:

R = (1 + α) ·Ro − α ·Rr, (1)

Where Ro is the overseer reward, Rr is a reference reward (provided by the expert evaluators), and
α is a coefficient controlling the strength of the incentive. This reward function has the following
desirable properties:

• When the overseer, aided by the oversight technique, is able to provide a reward identical to
the reference reward, the function reduces to R = Ro = Rr. So in this case, this technique
will not change the reinforcement of outputs for which the oversight technique succeeds
in specifying the correct rewards. In preliminary experiments, using the true score instead
yielded undesirable performance and learning degradations, even for the robust overseer.

• Outputs to which the overseer assigns a higher reward than the reference will be further
reinforced, helping the model learn a policy that exploits the overseer’s vulnerabilities.

• Outputs to which the overseer assigns a lower reward than the reference will be negatively
reinforced, pushing the model away from policies that perform well by chance.

If the adversarial incentive leads to a significant drop in reference reward without causing a signifi-
cant change in overseer reward, we might conclude that the oversight technique is not robust.

3.2 OVERSIGHT PROTOCOLS

The key objective is for the model to learn to output a good clue. Different strategies can be deployed
to achieve this.

Figure 2: Base game. Figure 3: Consultancy game. Figure 4: Critiques game.

We use three oversight techniques and implement them below. Figures 2,3 and 4 show examples for
each.

• Base protocol: A non-scalable protocol where the model only generates clues. To estimate
the score that the clue is worth, the overseer will iteratively compare pairs of bad words to
find the one most similar to the clue, compare that word to each of the good words, and
then count how many are more similar. This number is directly used as the reward.

• Consultancy protocol: The model generates a list of targets, each of which is a word from
the good words list and represents a claim that player 2 will pick the word before any of the
bad words. The length of the targets list is a claim about the minimum score of the clue.
Targets are also analogous to arguments for the clue - each valid argument is evidence that
the output is good. Rather than estimating the score the clue is worth, the consultancy
overseer simply tries to verify the targets by first iterating pairs of targets to find the one
least similar to the clue and then comparing that target against each of the bad words to
check if any of them are more similar to the clue. If the overseer is convinced none of the
bad words are more similar to the clue than any of the targets, the model is rewarded based
on the number of targets. If the overseer finds an example of a bad word that is more similar

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to the clue than one of the targets, they reject the entire output. This makes it a binary task
for the overseer.

• Critiques protocol: A second model is trained in tandem with the cluer model to perform
validation of the targets. The model provides some (configurable) fixed number of critiques
of the form “this bad word will be picked before this target word.” The overseer then only
validates the critiques in O(1) time and if any of them are convincing, they reject the targets.
Otherwise the model is rewarded based on the number of targets, similar to consultancy.
This means the overseer is not required to notice bad words that are better than a target.
Critiques is roughly equivalent to a single turn of Debate, although in this setting it is
unclear what the benefit of multiple turns could be.

Each protocol is evaluated under our incentivised reward scheme in robust and flawed settings.

Flawed Overseers. The success of a sandwiching experiment depends on whether the combina-
tion of oversight technique and overseer result in a robust reward signal on the task. Thus, differ-
ences in the overseer may change the outcome of the experiment for one oversight technique and
not another. We demonstrate this by implementing a set of simulated overseers with various flaws.
All overseers rely on a capacity to query the embedding model (guesser): given a clue, which of two
words is more similar to it. Their usage of this capacity differs depending on the oversight protocol
and flaw. The overseers are designed to:

• Be analogous to the flaws human overseers might have.

• Cover the different dimensions of possible flaws well in order to demonstrate the potential
strengths and weaknesses of different oversight techniques.

• Be implemented such that if an overseer has to perform the same task in the context of
different protocols they should perform it the same.

To that end, we implement the following overseers:

• Robust: The overseer correctly makes all the necessary checks to give a correct reward.
This overseer also provides the reference reward for the purposes of adversarial incentive.

• Lazy: The overseer stops short of counting all of the good words that should count towards
the score. This is analogous to a human overseer that has trouble enumerating arguments in
favor of the output, potentially due to the set of possible such arguments being very large.
A real world example of this could be missing the benefits associated with a specific choice
of words in a legal document. This flaw purely reduces the overseer reward when compared
to the reference reward and only has an effect in the base protocol. The base protocols are
the other protocols that the model is tasked with providing including the list of good words
that should count towards the score. In the experiment the lazy overseer ignores the first
two good words.

• Negligent: The overseer stops short of checking all of the bad words against the good
word targets. This is analogous to a human overseer that has trouble spotting issues with
the output. A real world example of this could be spotting vulnerabilities in a piece of code.
This flaw purely increases the overseer reward when compared to the reference reward, and
it only has an effect in the base and consultancy protocols. The consultancy protocols are
the critiques protocol that the critiquer model is tasked with providing including bad word
- target word pairs that should be verified. In the experiment the negligent overseer ignores
the first two bad words, and the weak-negligent overseer ignores the first.

• Biased: The overseer sometimes incorrectly interprets responses from the embedding
model, multiplying the similarity by a coefficient. This is analogous to a human over-
seer having some bias that holds even when provided with arguments against it. Real world
examples of this could include being afraid of code vulnerabilities even when they are not
applicable to the targeted use case, or being overly attached to a certain political ideology.
This flaw could either increase the overseer reward (by underweighing the similarity of
certain bad words with the clue), or decrease the overseer reward (by overweighing the
similarity of certain bad words with the clue). This flaw has an effect in all protocols. This
flaw is especially interesting, as overcoming it would require the overseer to be persuaded

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to change their mind. It may not be obvious which beliefs the overseer holds which may
be a component in the desired training objective and which are inconsistencies. In the ex-
periment, the underweigh overseer multiplies the similarity of the last two bad words with
the clue by 0.5.

3.3 EXPERIMENTS

We carry out two sets of experiments:

• Oracle Policies: Classical search to find the most optimal output for an adversarial incen-
tive for a particular oversight protocol and overseer combination.

• LLM Training: Training LLMs via reinforcement learning using a particular oversight
protocol and overseer combination.

The oracle policies experiments provide a reference point for the LLM experiments, allowing us
to: a) learn about the inductive biases of the LLM; b) show the amount of exploitation possible for
a wider range of optimization strengths up to strong optimization; c) study the impact of different
adversarial incentive strengths in detail.

3.3.1 ORACLE POLICIES

A key dimension of overseer flaws is that they could be easier / harder to learn. To control for this
dimension, we implement oracle policies, which use classical search to go over a sample of clues
for each game and simulate the overseer perfectly to arrive at the optimal output for a given level of
adversarial incentive. In other words, this gives us the upper bound on the amount of reward hacking
that would happen at different optimization strengths, regardless of the model’s capacity to learn.

The oracle policies are implemented as follows:

1. For each clue out of a sample, the policy computes which targets the overseer would con-
sider valid.

2. It also computes which targets would be considered valid by the non-flawed overseer for
this protocol.

3. It then chooses the clue that maximizes the reward function in Equation 1 with α being the
adversarial incentive coefficient.

4. If there is a tie, it chooses between them randomly.

The policies are run on a 4096 game evaluation dataset, shared with the LLM experiments.

3.3.2 LLM TRAINING

To test out the ability of actual language models to exploit overseer flaws, we train Llama-2-7b
via the different protocols and overseers with and without adversarial incentive.

The following details are shared across all training runs:

• The model is initially trained via supervised fine tuning (SFT) to give random clues, sam-
pled from a vocabulary of reasonable CodeNames clues. This is to ensure the starting point
for each experiment is unbiased. Any other fine tuning required by the different oversight
protocols to elicit the correct format will also be random for the same reason.

• After initial fine tuning, the model is trained with RLOO (Ahmadian et al., 2024) using the
oversight protocol. We use RLOO because it proved more stable and efficient than PPO
in preliminary experiments. The same generated dataset of 161, 280 games is used for RL
training, but the base protocol training was stopped after half the dataset due to proving
more data-efficient than consultancy and critiques.

• After RL training, the model is evaluated on a 4096 game evaluation data set, shared with
the oracle experiments.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.4 METRICS

We track several metrics during the course of the training runs, and for a smaller evaluation dataset.
The values of these metrics for the robust overseer can be seen as a baseline that we compare the
other overseers against.

True score. The actual score the clue achieves in the game.

Overseer estimated score. The overseer’s estimate of the score the clue will achieve. For the base
protocol this is just the overseer reward, but for the other protocols we use a separate estimate. This
is due to the reward function being too dynamic (see Section 3.5).

Reference estimated score. This is the baseline metric used for the overseer estimated score,
obtained from the robust overseer. It facilitates comparison to the non-robust score because, unlike
the True Score, it has the same protocol induced bias due to loss of information. Note that the
reference for the critiques protocol is the robust consultancy overseer, to enable counting exploitation
of the critique model.

Exploitation. The difference between overseer estimated score and reference estimated score. A
large exploitation represents more reward hacking, while a negative value means the overseer is
overly strict, leading it to believe the result is worse than it actually is.

Overseer accuracy. The portion of outputs where the overseer estimated score is the same as the
reference estimated score. This metric is used in other scalable oversight studies (it is also called
judge accuracy in the context of the debate protocol Kenton et al. (2024)).

3.5 REWARD DESIGN

The consultancy and critiques protocols pose the challenge of translating the binary decision made
by the overseer to a numeric reward. Since the number of targets provided n is a claim about the
value of the clue, a natural default would be to reward n when the overseer accepts the targets, and
−1 otherwise. Unfortunately this results in a conservative policy that outputs too few targets - for
each additional target the policy risks increasingly more reward for a potential increase of 1.

We design a reward function to incentivize outputting each target independently of the other targets,
with the optimal policy outputting a word as a target with roughly the probability it assigns to it
being picked by the guesser. See the Appendix A.2 for a full derivation of the reward function.

4 RESULTS

Contrasting Oracle and LLM Exploitation. Table 1 shows exploitation across the different over-
sight protocols and overseers, for both the LLMs and the oracle policies. The optimization strength
for which the oracle results are displayed was chosen to roughly match the performance achieved
by the LLM before the adversarial incentive is applied to allow for a meaningful comparison. (3.09
and 3.11 True score averaged across the different protocols with robust overseer for oracle and llm
results respectively). The oversight protocols compensate for the respective flaws, with the critique
model being accurate about 91% of the time when sampling three critiques per clue, but not signif-
icantly exploitable by the cluer, whether adversarially incentivized or not. The oracle shows higher
exploitation in both adversarial and non-adversarial cases, suggesting that the LLM training has an
inductive bias favoring the true objective over the reward-hacking objective, especially for the con-
sultancy and critiques protocols. In the case of the lazy overseer, exploitation nears 0 when adver-
sarial incentives are introduced, likely due to the model being further incentivized to avoid outputs
that align better with the true reward than with the overseer reward. Overall, there is a considerable
amount of exploitation even before the introduction of adversarial incentives, and this exploitation
increases significantly with such incentives, particularly for the base protocol. For a scenario where
smaller exploitation increases greatly with adversarial incentive, see the weak negligence results.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Exploitation change for varying adversarial incentive (0 → 0.75).
Protocol Overseer LLM Exploitation Oracle Exploitation

Base

Robust 0.00 → 0.00 0.00 → 0.00
Lazy -0.66 → -0.41 -0.68 → -0.02
Negligent 1.56 → 2.49 1.99 → 2.72
Underweigh 1.44 → 2.27 1.95 → 2.70

Consultancy

Robust 0.00 → 0.00 0.00 → 0.00
Lazy 0.00 → 0.00 0.00 → 0.00
Negligent 1.19 → 1.36 2.71 → 3.31
Underweigh 1.19 → 1.43 2.75 → 3.32

Critiques

Robust 0.45 → 0.46 0.00 → 0.00
Lazy 0.45 → 0.46 0.00 → 0.00
Negligent 0.45 → 0.46 0.00 → 0.00
Underweigh 1.41 → 1.60 2.67 → 3.28

Figure 5: True and Overseer scores over the course of training for a selection of training runs.

Training run results (Figure 5). In the flawed overseer adversarial case, rather than seeing a
slower increase in true reward, it increased at roughly the same rate until reaching a certain point,
after which it began to decrease. This pattern matches the shape of true reward plotted against op-
timization strength in the oracle experiment (see Appendix A.5). Additionally, the critiques runs
started with the cluer heavily exploiting the untrained critiquer, but eventually stabilized as the
critiquer learned over time. The Base protocol proved to be much more data-efficient than other
protocols, likely due to the fact that the targeting mechanism is harder to learn than clue generation.
This difference is particularly evident when learning to exploit the overseer even though the overseer
is equally exploitable in theory, as shown in the oracle experiments.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Overseer efficiency. While the base protocol is more data efficient, it does use more overseer work
per clue. Specifically, the base protocol with robust overseer used on average 8.96 comparisons
per clue, the consultancy protocol used 4.52 comparisons, and the critiques protocol used 2.25
comparisons.

Overseer score vs True Score across adversarial incentive strengths (Figures 6 and Figure 7).
In the LLM experiments, the exploitation level is 0.66 without adversarial incentive, rising to 1.60
with an adversarial incentive strength of 0.75. The experiment with an incentive strength of 0.375
is particularly noteworthy, as it shows only a 0.06 decrease in overseer score, while the true score
dropped by 0.64 compared to the non-adversarial scenario. These LLM results resemble those seen
at optimization strength 8, although the oracle exhibits more exploitation. In the oracle experiments,
there is a visible trend of an increasing vertical section in the plots, representing the range of best
and worst policies that the overseer is indifferent to. If this trend extends to other contexts, it could
imply that as models become more intelligent, the cost of learning an incorrect objective decreases.
Adversarial incentives in sandwiching experiments can be seen as a method to adjust for this. A
similar result is observed in Roger (2024). Interestingly, at the final optimization strength (2048),
the true reward in the non-adversarial case is lower than at the previous optimization level (1024),
replicating the known phenomenon that excessive optimization on an imperfect reward signal leads
to degraded performance (see Gao et al. (2023)).

Figure 6: LLM True score vs. Overseer score
for adversarial incentives 0-0.75 (0.125 inter-
vals)

Figure 7: Oracle True score vs. Overseer
score for different optimization strengths and
adversarial incentives 0-0.95 (0.05 intervals)

5 DISCUSSION

Limitations.

• It seems that the consultancy and critiques LLM experiments would benefit from further
training, but we were not able to keep training them due to compute constraints.

• In our simple formalization of the CodeNames task, the possible space of oversight pro-
tocols is somewhat constrained, and more complex and realistic tasks may have yielded
different results. For instance there doesn’t seem to be a benefit to having multiple rounds
of debate in our setting, but in other settings there could be.

• Since the overseer estimated score doesn’t perfectly track the true score even for the robust
overseer, the exploitation metric is scaled slightly differently depending on the oversight
protocol. However since all the flaws we use are either fully covered by a protocol or not
covered at all, comparing their exploitation numbers directly isn’t very interesting.

Application of adversarial incentive to scalable oversight experiments. Our experimental re-
sults show that an adversarial incentive can cause a large drop in true performance with only a minor
drop in overseer perceived performance, when the overseer is vulnerable. The technique is simple
to implement and should not add significant costs, assuming a single adversarial strength is used,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

making it a good candidate for inclusion in future work on scalable oversight. That said, it is unclear
what incentive strength should be used for larger scale experiments, but it seems that as more opti-
mization pressure is put into the model, a lower incentive strength will suffice. The main criterion
would be picking a strength that does not cause a significant drop in overseer perceived performance.

Application of overseer flaw theory to scalable oversight experiments. As theorized, the differ-
ent oversight techniques in our setting cover for our engineered set of overseer flaws. Interestingly,
the different oversight protocols also yielded differences in the model’s ability to learn the overseer
flaws. A human overseer would have a much more complex set of flaws that may interact differently
with the oversight protocols and model, so a key challenge in future scalable oversight work will be
categorizing and studying the mistakes humans make when overseeing AI models.

6 CONCLUSION

We introduced a novel approach to evaluating the robustness of scalable oversight techniques by
testing their vulnerability to reward hacking through adversarial incentives. Our experiments on the
synthetic CodeNames task demonstrated that implementing explicit reward hacking incentives can
reveal vulnerabilities in oversight methods that are not apparent in standard evaluations. We found
that different oversight protocols exhibit varying levels of robustness to specific overseer flaws, and
that LLMs inherently resist exploiting these flaws more than oracle policies. These experiments
emphasize that integrating adversarial incentives into scalable oversight evaluations, and analyzing
the overseer’s properties in relation to the task, can be effective ways to assess and enhance the
robustness of scalable oversight methods against reward hacking.

We hope these experiments lay a foundation for future work to validate scalable oversight methods’
ability to mitigate reward hacking in realistic settings.

ACKNOWLEDGMENTS

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė
Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, et al. Measuring progress on scalable over-
sight for large language models. arXiv preprint arXiv:2211.03540, 2022.

Jonah Brown-Cohen, Geoffrey Irving, and Georgios Piliouras. Scalable ai safety via doubly-efficient
debate. arXiv preprint arXiv:2311.14125, 2023.

Ajeya Cotra. The case for aligning narrowly superhuman models.
https://www.alignmentforum.org/posts/PZtsoaoSLpKjjbMqM/
the-case-for-aligning-narrowly-superhuman-models, 2021.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Geoffrey Irving, Paul Christiano, and Dario Amodei. Ai safety via debate. arXiv preprint
arXiv:1805.00899, 2018.

Zachary Kenton, Noah Y Siegel, János Kramár, Jonah Brown-Cohen, Samuel Albanie, Jannis Bu-
lian, Rishabh Agarwal, David Lindner, Yunhao Tang, Noah D Goodman, et al. On scalable
oversight with weak llms judging strong llms. arXiv preprint arXiv:2407.04622, 2024.

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Ed-
ward Grefenstette, Samuel R Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
persuasive llms leads to more truthful answers. arXiv preprint arXiv:2402.06782, 2024.

10

https://www.alignmentforum.org/posts/PZtsoaoSLpKjjbMqM/the-case-for-aligning-narrowly-superhuman-models
https://www.alignmentforum.org/posts/PZtsoaoSLpKjjbMqM/the-case-for-aligning-narrowly-superhuman-models


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Fabien Roger. Best-of-n with misaligned reward models for math reason-
ing. https://www.lesswrong.com/posts/iJjFRrGQkCxaqKrEo/
best-of-n-with-misaligned-reward-models-for-math-reasoning, 2024.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

Buck Shlegeris and Ryan Greenblatt. Meta-level adversarial evaluation
of oversight techniques might allow robust measurement of their ade-
quacy. https://www.lesswrong.com/posts/MbWWKbyD5gLhJgfwn/
meta-level-adversarial-evaluation-of-oversight-techniques-1,
2023.

11

https://www.lesswrong.com/posts/iJjFRrGQkCxaqKrEo/best-of-n-with-misaligned-reward-models-for-math-reasoning
https://www.lesswrong.com/posts/iJjFRrGQkCxaqKrEo/best-of-n-with-misaligned-reward-models-for-math-reasoning
https://www.lesswrong.com/posts/MbWWKbyD5gLhJgfwn/meta-level-adversarial-evaluation-of-oversight-techniques-1
https://www.lesswrong.com/posts/MbWWKbyD5gLhJgfwn/meta-level-adversarial-evaluation-of-oversight-techniques-1


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Game generation. Game words are sampled uniformly without replacement from a set of 400
possible words.

Choice of words in the game dictionary. Since it’s hard to enforce the more subtle rules of
codenames, we opt to simply invalidate clues that are not a single English word. To make sure
this is easy to learn, we search for the broadest dictionary possible, which seems to be the official
scrabble dictionary NWL2023. This choice was effective at preventing the models from learning
weird reward hacks without putting a large learning burden on them.

Clue Evaluation. If the clue is one of the game words or if it’s not in the scrabble dic-
tionary, it is considered invalid. We compute an embedding for the clue using OpenAI’s
text-embedding-3-large and the following formula:

get embedding (”Q: ” + clue)− get embedding (”Q: ”) + get embedding (”A: ”)

For each game word, we get it’s embedding from the same embedding model. The game words are
picked in decreasing order of cosine similarity with the clue embedding, with the final score being
the number of good words picked before any of the bad words have been picked.

Computational complexity of the tasks. Assuming constant time (O(1)) ability to check which
of two words is more associated to a given clue, the complexities of different operations are as
follows (with N as the number of words in the game):

• Clue generation: O(E * N); where E is the number of valid clues (words/terms in En-
glish)—in this experiment 200K (the official scrabble word list).

• Unaided clue evaluation: O(N); iterate over the bad words in pairs to find the one that’s
most associated with the clue, then count how many of the good words are more associated
with the clue than the best bad word.

• Aided clue evaluation: O(1); given a set of target good words and the best possible counter
example, only checking the example is needed. See the Oversight protocols section for a
more detailed explanation.

SFT Data Generation.

• The dataset has 8192 samples with one game, a clue, targets, and a critique (unless there
were no targets).

• Each game has 6 good words and 4 bad words. This size was chosen because:
– Less than 6 good words is not enough data to elicit a wide enough range of perfor-

mance out of the models and showcase the differences between overseers. More than
6 would have just required more compute and time.

– Less than 4 bad words would make it hard to introduce meaningful overseer flaws,
while more than 4 bad words caused the reward to be too sparse for the models to learn
(more bad words means less randomly selected clues + targets will get any reward).

• To create an unbiased yet helpful starting point for the models, each clue is sampled ran-
domly from a vocabulary of plausible CodeNames clues. This vocabulary was generated
by first trying to run the oversight protocols on a range of models initialized with clues
sampled uniformly from English, and then sampling clues from those models to get the
distribution of clues they converged to, which is a lot narrower than all of English.

• Each good word is chosen as a target with probability 0.2 - the probability of a random
word being more similar to some clue than all of the bad words (1 / (number of bad words
+ 1)).

• A target good word and a bad word are chosen randomly as the critique, if there are any
targets (0 targets is allowed).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

SFT Training.

• The model being trained is Llama-2-7B: it is convenient to train due to its size and
capable enough to learn codenames policies. The project started before Llama-3-8B
was available.

• Two models are trained - a cluer and a critiquer. The cluer is only trained on clue + targets
completion, and the critiquer is only trained on critique completion.

• It is finetuned with Parameter Efficient Fine Tuning (PEFT). The parameters are:
– Rank: 1024
– Alpha: 512.
– Learning rate: 2e-4.

A.2 REWARD DESIGN

The following is a derivation of the optimal policy for outputting a certain word as a target Pt given
a belief about the the word being picked Pp, about the targets that have been outputted so far being
picked Pa, the reward function and the KL penalty coefficient β. The reward function is split into
two functions of the number of targets n – an accept reward Ra for when the targets are accepted
by the overseer, and a reject reward Rr for when the targets are rejected. We start with the expected
reward Re, the KL divergence KL as a function of the reference policy’s probability of outputting
a target Pb and the objective function J . We then take the derivative of the objective function with
respect to Pt and set it to zero to find the optimal policy.

Re = Pt [PaPpRa(n) + (1− PaPp)Rr(n)]

+ (1− Pt) [PaRa(n− 1) + (1− Pa)Rr(n− 1)]

KL = Pt log
Pt

Pb
+ (1− Pt) log

1− Pt

1− Pb

J =R− βKL

dRe

dPt
= PaPpRa(n) + (1− PaPp)Rr(n)

− PaRa(n− 1)− (1− Pa)Rr(n− 1)

dJ

dPt
=

dRe

dPt
− β log

Pt(Pb − 1)

Pb(1− Pt)
= 0

Pt

1− Pt
=

Pb

1− Pb
e

1
β

dRe
dPt

Pt = 1− 1

1 + Pb

1−Pb
e

1
β

dRe
dPt

In order to design a reasonable reward function, we impose the following heuristics:

• The policy for outputting a specific target should be as independent as possible of the
number of targets already outputted. In practice, this means Ra needs to scale exponentially
in the number of targets to reflect the geometric nature of the risk of the targets being
rejected. We operationalize this by having one calibrated probability Pc for which Pp =
Pc => Pt = Pp, across all n and Pa.

• On average, the reward for a calibrated policy should be similar to the true game score. We
approximate this with Ra(0) = 0 and Ra(1) = 1.

• It is valid for Pc to change during training to reflect the current ability of the model to give
good clues. To implement this, we take the average number of targets across all outputs in
the current batch, and divide by the maximum allowed number of targets m. This should
ensure that on average the model is being penalized for outputting both too many targets
and too few targets.

To find Rr(n), we can set Pa to 0:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Pc

1− Pc
=

Pb

1− Pb
e

1
β (Rr(n)−Rr(n−1))

Rr(n) =Rr(n− 1) + β log
Pc(1− Pb)

Pb(1− Pc)

Rr(n) =Rr(1) + (n− 1)β log
Pc(1− Pb)

Pb(1− Pc)

Now set Pa = 1:

Pc

1− Pc
=

Pb

1− Pb
e

1
β (PcRa(n)+(1−Pc)Rr(n)−Ra(n−1))

Ra(n) =
Ra(n− 1)− (1− Pc)Rr(n) + β log Pc(1−Pb)

Pb(1−Pc)

Pc

With n = 1, we get:

Ra(1) =
Ra(0)− (1− Pc)Rr(1) + β log Pc(1−Pb)

Pb(1−Pc)

Pc

Pc = − (1− Pc)Rr(1) + β log
Pc(1− Pb)

Pb(1− Pc)

Rr(1) =
β log Pc(1−Pb)

Pb(1−Pc)
− Pc

1− Pc

A.3 ADDITIONAL ORACLE AND LLM TRAINING FIGURES

In Table 2 and Table 3, provide summary tables of the benchmark results for the two main experi-
ments.

A.4 EXAMPLES OF MODEL COMPLETIONS

Examples from the weak-negligent LLM. Given the following game:

Good words: BEAT ENGLAND BOW TIME ARM PIANO

Bad words: DIAMOND LEPRECHAUN VAN NURSE

The non-adversarially trained model gave the clue ”Symphony”, resulting in a ground truth score of
5 and an overseer expected score of 6. The adversarially trained model gave the clue ”Brilliance”,
resulting in a ground truth score of 0 and an overseer expected score of 6.

A.5 ADDITIONAL BASE WEAK NEGLIGENT OVERSEER FIGURES

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 2: Oracle Policies experiment: Benchmark results for different protocols and overseers
(Optimization strength of 8)

Protocol Overseer True Score Overseer Accuracy (%) Exploitation

Base

Robust 3.087 100.00 0
Robust adv. 3.087 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 2.853 47.10% -0.677
Lazy adv. 1.582 (-44.55%) 97.90 (+50.80%) -0.021 (+0.656)
Negligent 2.163 34.60 1.991
Negligent adv. 1.115 (-48.45%) 13.80 (-20.80%) 2.719 (+0.728)
Underweigh 2.243 34.40 1.952
Underweigh adv. 1.155 (-48.51%) 12.70 (-21.70%) 2.700 (+0.748)

Consultancy

Robust 3.111 100.00 0
Robust adv. 3.111 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 3.086 100.00 0
Lazy adv. 3.086 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Negligent 2.164 34.00 2.708
Negligent adv. 1.093 (-49.49%) 12.00 (-22.00%) 3.309 (+0.601)
Underweigh 2.204 33.10 2.755
Underweigh adv. 1.130 (-48.73%) 12.20 (-20.90%) 3.321 (+0.566)

Critiques

Robust 3.069 100.00 0
Robust adv. 3.069 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 3.093 100.00 0
Lazy adv. 3.093 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Negligent 3.093 100.00 0
Negligent adv. 3.093 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Underweigh 2.249 35.30 2.670
Underweigh adv. 1.157 (-48.55%) 13.20 (-22.10%) 3.277 (+0.607)

Figure 8: True Score for the Base Weak Negligent overseer as a function of Optimization Strength.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 3: LLM Training experiment: Benchmark results for different protocols and overseers.
Protocol Overseer True Score Overseer Accuracy (%) Exploitation

Base

Robust 3.294 100.00 0
Robust adv. 3.294 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 3.056 48.80% -0.655
Lazy adv. 2.711 (-11.29%) 66.20 (+17.40%) -0.409 (+0.246)
Negligent 2.692 41.30 1.565
Negligent adv. 1.456 (-45.91%) 21.80 (-19.50%) 2.486 (+0.921)
Underweigh 2.783 43.00% 1.441
Underweigh adv. 1.727 (-37.94%) 25.30 (-17.70%) 2.273 (+0.832)

Consultancy

Robust 3.112 100.00 0
Robust adv. 3.112 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 3.112 100.00 0
Lazy adv. 3.112 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Negligent 2.701 70.90 1.193
Negligent adv. 2.345 (-13.18%) 66.70 (-4.20%) 1.364 (+0.171)
Underweigh 2.761 70.90 1.186
Underweigh adv. 2.378 (-13.87%) 65.30 (-5.60%) 1.426 (+0.240)

Critiques

Robust 2.952 91.00 0.451
Robust adv. 2.873 (-2.68%) 90.70 (-0.30%) 0.462 (+0.011)
Lazy 2.952 91.00 0.451
Lazy adv. 2.873 (-2.68%) 90.70 (-0.30%) 0.462 (+0.011)
Negligent 2.952 91.00% 0.451
Negligent adv. 2.873 (-2.68%) 90.70 (-0.30%) 0.462 (+0.011)
Underweigh 2.595 72.00 1.406
Underweigh adv. 2.402 (-7.44%) 65.30 (-6.70%) 1.596 (+0.190)

Table 4: Adversarial Incentive sweep on Base Weak-Negligent overseer. LB: Lower Bound.
Adversarial α True Score Acc (%) Exploitation Reference LB Overseer LB
0 3.046 70.1 0.664 3.046 3.709
0.125 3.015 68.8 0.727 3.015 3.742
0.25 2.599 59.1 1.004 2.599 3.604
0.375 2.406 52.5 1.241 2.406 3.647
0.5 2.032 45.1 1.473 2.032 3.505
0.625 1.922 44.0 1.549 1.922 3.471
0.75 1.770 40.5 1.604 1.770 3.375

16


	Introduction
	Related Work
	Methods
	Experimental Setup
	Oversight Protocols
	Experiments
	Oracle Policies
	LLM Training

	Metrics
	Reward Design

	Results
	Discussion
	Conclusion
	Appendix
	Implementation details
	Reward Design
	Additional Oracle and LLM Training figures
	Examples of model completions
	Additional Base Weak Negligent Overseer Figures


