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ABSTRACT

Scalable oversight aims to train systems to perform tasks that are hard for humans
to specify, demonstrate and validate. As ground truth is not available for such
tasks, evaluating scalable oversight techniques is challenging. Existing methods
measure the success of an oversight method based on whether it allows an arti-
ficially weak overseer to successfully supervise an AI to perform a task. In this
work, we additionally measure the robustness of scalable oversight techniques by
testing their vulnerability to reward hacking by an adversarial supervisee. In ex-
periments on a synthetic domain, we show that adding an explicit reward hacking
incentive to the model being trained leads it to exploit flaws in a weak overseer,
and that scalable oversight methods designed to mitigate these flaws can make the
optimization more robust to reward hacking. We hope these experiments lay a
foundation for future work to validate scalable oversight methods’ ability to miti-
gate reward hacking in realistic settings.

1 INTRODUCTION

Scalable oversight is central to the current efforts to align strong future models that may elude
human supervision (Bowman et al., 2022). Therefore, weaknesses in scalable oversight are of great
significance for AI safety.

A standard method for studying scalable oversight techniques is sandwiching (Cotra, 2021), where
a weak overseer is used to train a more capable model to perform a task evaluated by an expert
overseer. While successful sandwiching experiments may give an example of a scalable oversight
technique succeeding, this example may not convince us that this technique will succeed robustly.
If reward hacking was narrowly avoided, a slight change in the choice of parameters, training for a
slightly different task, or training a more powerful model might induce reward hacking. One way
to combat this, originally described by Shlegeris & Greenblatt (2023), is to add a margin of safety
by deliberately incentivizing the model to reward hack. A simple way to implement this is to add a
term in the reward function inversely proportional to ground truth performance, as assigned by an
expert. In this setting, the model is incentivized to produce outputs that are still rewarded highly
by the actual overseer while being bad in practice - aka failing silently. If this approach produces a
model that performs poorly on the ground truth while the overseer believes it is performing well, we
may conclude the combination of oversight technique, overseer and task is not safe.

Overseers can be flawed in many different ways. We investigate how scalable oversight techniques
can mitigate these flaws and where they might fall short in this task. We identify several classifica-
tions, and invite future work to propose more:

• Overseers can be bad at noticing problems, vs. weighing problems. As an example, finding
a vulnerability vs. deciding whether the vulnerability is applicable to the current context.
If they are bad at noticing problems but good at weighing them, a method such as Critiques
might completely cover for their weakness, while if they are bad at weighing issues the
addition of a critiquer could actively hurt performance. For instance, the critiquer could
convincingly flag good examples as bad, leading to false positives.

• Overseer mistakes can be easy vs. hard to learn. The harder they are to learn, the stronger
the model in training might need to be before the overseer starts being exploited.
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• Overseer mistakes can cause the overseer to underestimate the reward, or overestimate
it. An overestimate may result in reward hacking, while an underestimate may reduce
performance.

We test three aspects of scalable oversight techniques:

• Robustness to reward hacking: How difficult is it for an adversarial model to learn to hack
the (possibly flawed) overseer at the expense of the true reward?

• Robustness to overseer flaws: How well do the methods mitigate systematic flaws on the
part of the overseer?

• Efficiency: How well can we learn to optimize the true reward given only a small amount
of ground-truth supervision signal?

Our hope is that this work will provide insight into the study of scalable oversight and what is
required to achieve robust results in the face of uncertain generalization to the deployment settings.

2 RELATED WORK

Scalable oversight. Scalable oversight is the ability to provide reliable supervision—in the form
of labels, reward signals, or critiques—to models in a way that will remain effective past the point
that models start to achieve broadly human-level performance (Bowman et al., 2022). A scalable
oversight training technique aspires to train an artificial intelligence (AI) system to achieve some
goal, despite a limited or flawed capacity to measure the goal. Different techniques (Consultancy
(Kenton et al., 2024), Critiques (Khan et al., 2024; Saunders et al., 2022), Debate (Irving et al.,
2018)) may involve varying amounts of models, querying procedures and parameters, and they all
have some set of instructions the overseer(s) should follow. For instance, Reinforcement Learning
from Human Feedback (RLHF) uses an additional reward model, and the Critiques protocol uses an
additional critique model.

As a basic design requirement, if the overseer follows the instructions perfectly without making any
mistakes, the model will get higher reward for taking actions that the overseer would prefer, should
it be aware of the information the model knew about the situation. On top of this basic requirement,
techniques attempt to (and are differentiated by their ability to):

• Have a low computational complexity for the overseer. The introduction of the Debate
technique had this as an explicit goal—theoretically allowing a polynomial time judge to
supervise a PSPACE complexity task (Irving et al., 2018), although there have been updates
to this (Brown-Cohen et al., 2023). As an example, reading a book is more complex than
reading a summary and a critique of the summary.

• Not require the overseer to do things they might be prone to doing poorly. For instance,
humans might be worse at giving calibrated numbers than choosing which of two outputs
they prefer. They also might be worse at spotting code vulnerabilities than recognizing
them when brought to their attention.

• Require the overseer to only supervise a small number of examples. This is achieved for
instance by the reward model in RLHF giving much more oversight than was used to train
it.

• Have the training either succeed or, at least, fail loudly in case the overseer implements the
instructions imperfectly. Failing loudly means that the model did not learn the goal and the
overseer is aware of the shortcoming, while failing quietly means the overseer thinks the
model has learned the goal correctly. Failing quietly can also be seen as reward hacking.

Sandwiching. The sandwiching paradigm (Cotra, 2021) is a framework designed to test scalable
oversight techniques by creating a scenario where a model is more capable than non-experts but
less capable than experts. Non-experts attempt to train or align the model without relying on expert
help or preexisting expert knowledge. At the end of the experiment, experts evaluate how well the
non-experts succeeded. This setup mimics the future challenge of overseeing more advanced AI
systems on tasks we cannot specify well or validate confidently. While the sandwiching paradigm is
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Figure 1: Diagram of an example game of CodeNames.

promising, a successful experiment may not guarantee success in the future deployment case due to
various reasons. In this paper we focus on two reasons:

• The success of the experiment may depend on specifics of the implementation, such as the
training hyperparameters, the size and architecture of the model, or the amount of data.
There is no way to tell whether the technique robustly teaches the model the goal correctly,
or whether reward hacking was narrowly avoided by chance (Shlegeris & Greenblatt, 2023).
To mitigate this risk, we propose adding an incentive to perform reward hacking, described
in the next section.

• The success of a scalable oversight technique might depend on which specific limitations
the overseer has with respect to the task. If the overseer has a limited ability to enumerate
the qualities of an output, getting the model to back up their output with arguments might
help. If the overseer is limited in their ability to spot errors in the output, adding an adver-
sary model may help. If the overseer has deep rooted biases in the domain, it is possible
neither of those will help. We implement simulated overseers with different limitations and
show that different techniques cover for these different limitations.

3 METHODS

3.1 EXPERIMENTAL SETUP

We use CodeNames, a party game where players need to find creative word associations, as our
testbed for scalable oversight experiments. It offers several advantages that make it suitable for
these experiments:

1. It is easy for language models to learn.

2. Large numbers of games (training data) can be procedurally generated.

3. It can be adapted to simulate overseers with various kinds of flaws or artificially limit the
oversight budget.

4. The task of giving a clue is open-ended.

For the purposes of this experiment, CodeNames is a two player cooperative game with one turn. As
shown in Figure 1, Player 1 (the cluer) receives a list of good words and a list of bad words, sampled
uniformly without replacement from a list of 400 game words, and gives a one word clue. Player 2
(the guesser) receives one list with all of the words and needs to guess which words are good based
on the clue. They make their guesses one word at a time until they guess a bad word. The final score
of the game is the number of good words player 2 was able to guess before guessing a bad word.

Additional methodology details for words selection and clue evaluation are provided in Ap-
pendix A.1.
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Adversarial incentive. In order to increase the reliability of sandwiching experiments, we propose
and implement an adversarial incentive for the model to learn reward hacking. This is implemented
as a modification to the reward function:

R = (1 + α) ·Ro − α ·Rr, (1)

Where Ro is the overseer reward, Rr is a reference reward (provided by the expert evaluators), and
α is a coefficient controlling the strength of the incentive. This reward function has the following
desirable properties:

• When the overseer, aided by the oversight technique, is able to provide a reward identical to
the reference reward, the function reduces to R = Ro = Rr. So in this case, this technique
will not change the reinforcement of outputs for which the oversight technique succeeds
in specifying the correct rewards. In preliminary experiments, using the true score instead
yielded undesirable performance and learning degradations, even for the robust overseer.

• Outputs to which the overseer assigns a higher reward than the reference will be further
reinforced, helping the model learn a policy that exploits the overseer’s vulnerabilities.

• Outputs to which the overseer assigns a lower reward than the reference will be negatively
reinforced, pushing the model away from policies that perform well by chance.

If the adversarial incentive leads to a significant drop in reference reward without causing a signifi-
cant change in overseer reward, we might conclude that the oversight technique is not robust.

3.2 OVERSIGHT PROTOCOLS

The key objective is for the model to learn to output a good clue. Different strategies can be deployed
to achieve this.

Figure 2: Base game. Figure 3: Consultancy game. Figure 4: Critiques game.

We use three oversight techniques and implement them below. Figures 2,3 and 4 show examples for
each.

• Base protocol: A non-scalable protocol where the model only generates clues. To estimate
the score that the clue is worth, the overseer will iteratively compare pairs of bad words to
find the one most similar to the clue, compare that word to each of the good words, and
then count how many are more similar. This number is directly used as the reward.

• Consultancy protocol: The model generates a list of targets, each of which is a word from
the good words list and represents a claim that player 2 will pick the word before any of the
bad words. The length of the targets list is a claim about the minimum score of the clue.
Targets are also analogous to arguments for the clue - each valid argument is evidence that
the output is good. Rather than estimating the score the clue is worth, the consultancy
overseer simply tries to verify the targets by first iterating pairs of targets to find the one
least similar to the clue and then comparing that target against each of the bad words to
check if any of them are more similar to the clue. If the overseer is convinced none of the
bad words are more similar to the clue than any of the targets, the model is rewarded based
on the number of targets. If the overseer finds an example of a bad word that is more similar
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to the clue than one of the targets, they reject the entire output. This makes it a binary task
for the overseer.

• Critiques protocol: A second model is trained in tandem with the cluer model to perform
validation of the targets. The model provides some (configurable) fixed number of critiques
of the form “this bad word will be picked before this target word.” The overseer then only
validates the critiques in O(1) time and if any of them are convincing, they reject the targets.
Otherwise the model is rewarded based on the number of targets, similar to consultancy.
This means the overseer is not required to notice bad words that are better than a target.
Critiques is roughly equivalent to a single turn of Debate, although in this setting it is
unclear what the benefit of multiple turns could be.

Each protocol is evaluated under our incentivised reward scheme in robust and flawed settings.

Flawed Overseers. The success of a sandwiching experiment depends on whether the combina-
tion of oversight technique and overseer result in a robust reward signal on the task. Thus, differ-
ences in the overseer may change the outcome of the experiment for one oversight technique and
not another. We demonstrate this by implementing a set of simulated overseers with various flaws.
All overseers rely on a capacity to query the embedding model (guesser): given a clue, which of two
words is more similar to it. Their usage of this capacity differs depending on the oversight protocol
and flaw. The overseers are designed to:

• Be analogous to the flaws human overseers might have.

• Cover the different dimensions of possible flaws well in order to demonstrate the potential
strengths and weaknesses of different oversight techniques.

• Be implemented such that if an overseer has to perform the same task in the context of
different protocols they should perform it the same.

To that end, we implement the following overseers:

• Robust: The overseer correctly makes all the necessary checks to give a correct reward.
This overseer also provides the reference reward for the purposes of adversarial incentive.

• Lazy: The overseer stops short of counting all of the good words that should count towards
the score. This is analogous to a human overseer that has trouble enumerating arguments in
favor of the output, potentially due to the set of possible such arguments being very large.
A real world example of this could be missing the benefits associated with a specific choice
of words in a legal document. This flaw purely reduces the overseer reward when compared
to the reference reward and only has an effect in the base protocol. The base protocols are
the other protocols that the model is tasked with providing including the list of good words
that should count towards the score. In the experiment the lazy overseer ignores the first
two good words.

• Negligent: The overseer stops short of checking all of the bad words against the good
word targets. This is analogous to a human overseer that has trouble spotting issues with
the output. A real world example of this could be spotting vulnerabilities in a piece of code.
This flaw purely increases the overseer reward when compared to the reference reward, and
it only has an effect in the base and consultancy protocols. The consultancy protocols are
the critiques protocol that the critiquer model is tasked with providing including bad word
- target word pairs that should be verified. In the experiment the negligent overseer ignores
the first two bad words, and the weak-negligent overseer ignores the first.

• Biased: The overseer sometimes incorrectly interprets responses from the embedding
model, multiplying the similarity by a coefficient. This is analogous to a human over-
seer having some bias that holds even when provided with arguments against it. Real world
examples of this could include being afraid of code vulnerabilities even when they are not
applicable to the targeted use case, or being overly attached to a certain political ideology.
This flaw could either increase the overseer reward (by underweighing the similarity of
certain bad words with the clue), or decrease the overseer reward (by overweighing the
similarity of certain bad words with the clue). This flaw has an effect in all protocols. This
flaw is especially interesting, as overcoming it would require the overseer to be persuaded
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to change their mind. It may not be obvious which beliefs the overseer holds which may
be a component in the desired training objective and which are inconsistencies. In the ex-
periment, the underweigh overseer multiplies the similarity of the last two bad words with
the clue by 0.5.

3.3 EXPERIMENTS

We carry out two sets of experiments:

• Oracle Policies: Classical search to find the most optimal output for an adversarial incen-
tive for a particular oversight protocol and overseer combination.

• LLM Training: Training LLMs via reinforcement learning using a particular oversight
protocol and overseer combination.

The oracle policies experiments provide a reference point for the LLM experiments, allowing us
to: a) learn about the inductive biases of the LLM; b) show the amount of exploitation possible for
a wider range of optimization strengths up to strong optimization; c) study the impact of different
adversarial incentive strengths in detail.

3.3.1 ORACLE POLICIES

A key dimension of overseer flaws is that they could be easier / harder to learn. To control for this
dimension, we implement oracle policies, which use classical search to go over a sample of clues
for each game and simulate the overseer perfectly to arrive at the optimal output for a given level of
adversarial incentive. In other words, this gives us the upper bound on the amount of reward hacking
that would happen at different optimization strengths, regardless of the model’s capacity to learn.

The oracle policies are implemented as follows:

1. For each clue out of a sample, the policy computes which targets the overseer would con-
sider valid.

2. It also computes which targets would be considered valid by the non-flawed overseer for
this protocol.

3. It then chooses the clue that maximizes the reward function in Equation 1 with α being the
adversarial incentive coefficient.

4. If there is a tie, it chooses between them randomly.

The policies are run on a 4096 game evaluation dataset, shared with the LLM experiments.

3.3.2 LLM TRAINING

To test out the ability of actual language models to exploit overseer flaws, we train Llama-2-7b
via the different protocols and overseers with and without adversarial incentive.

The following details are shared across all training runs:

• The model is initially trained via supervised fine tuning (SFT) to give random clues, sam-
pled from a vocabulary of reasonable CodeNames clues. This is to ensure the starting point
for each experiment is unbiased. Any other fine tuning required by the different oversight
protocols to elicit the correct format will also be random for the same reason.

• After initial fine tuning, the model is trained with RLOO (Ahmadian et al., 2024) using the
oversight protocol. We use RLOO because it proved more stable and efficient than PPO
in preliminary experiments. The same generated dataset of 161, 280 games is used for RL
training, but the base protocol training was stopped after half the dataset due to proving
more data-efficient than consultancy and critiques.

• After RL training, the model is evaluated on a 4096 game evaluation data set, shared with
the oracle experiments.
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3.4 METRICS

We track several metrics during the course of the training runs, and for a smaller evaluation dataset.
The values of these metrics for the robust overseer can be seen as a baseline that we compare the
other overseers against.

True score. The actual score the clue achieves in the game.

Overseer estimated score. The overseer’s estimate of the score the clue will achieve. For the base
protocol this is just the overseer reward, but for the other protocols we use a separate estimate. This
is due to the reward function being too dynamic (see Section 3.5).

Reference estimated score. This is the baseline metric used for the overseer estimated score,
obtained from the robust overseer. It facilitates comparison to the non-robust score because, unlike
the True Score, it has the same protocol induced bias due to loss of information. Note that the
reference for the critiques protocol is the robust consultancy overseer, to enable counting exploitation
of the critique model.

Exploitation. The difference between overseer estimated score and reference estimated score. A
large exploitation represents more reward hacking, while a negative value means the overseer is
overly strict, leading it to believe the result is worse than it actually is.

Overseer accuracy. The portion of outputs where the overseer estimated score is the same as the
reference estimated score. This metric is used in other scalable oversight studies (it is also called
judge accuracy in the context of the debate protocol Kenton et al. (2024)).

3.5 REWARD DESIGN

The consultancy and critiques protocols pose the challenge of translating the binary decision made
by the overseer to a numeric reward. Since the number of targets provided n is a claim about the
value of the clue, a natural default would be to reward n when the overseer accepts the targets, and
−1 otherwise. Unfortunately this results in a conservative policy that outputs too few targets - for
each additional target the policy risks increasingly more reward for a potential increase of 1.

We design a reward function to incentivize outputting each target independently of the other targets,
with the optimal policy outputting a word as a target with roughly the probability it assigns to it
being picked by the guesser. See the Appendix A.2 for a full derivation of the reward function.

4 RESULTS

Contrasting Oracle and LLM Exploitation. Table 1 shows exploitation across the different over-
sight protocols and overseers, for both the LLMs and the oracle policies. The optimization strength
for which the oracle results are displayed was chosen to roughly match the performance achieved
by the LLM before the adversarial incentive is applied to allow for a meaningful comparison. (3.09
and 3.11 True score averaged across the different protocols with robust overseer for oracle and llm
results respectively). The oversight protocols compensate for the respective flaws, with the critique
model being accurate about 91% of the time when sampling three critiques per clue, but not signif-
icantly exploitable by the cluer, whether adversarially incentivized or not. The oracle shows higher
exploitation in both adversarial and non-adversarial cases, suggesting that the LLM training has an
inductive bias favoring the true objective over the reward-hacking objective, especially for the con-
sultancy and critiques protocols. In the case of the lazy overseer, exploitation nears 0 when adver-
sarial incentives are introduced, likely due to the model being further incentivized to avoid outputs
that align better with the true reward than with the overseer reward. Overall, there is a considerable
amount of exploitation even before the introduction of adversarial incentives, and this exploitation
increases significantly with such incentives, particularly for the base protocol. For a scenario where
smaller exploitation increases greatly with adversarial incentive, see the weak negligence results.
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Table 1: Exploitation change for varying adversarial incentive (0 → 0.75).
Protocol Overseer LLM Exploitation Oracle Exploitation

Base

Robust 0.00 → 0.00 0.00 → 0.00
Lazy -0.66 → -0.41 -0.68 → -0.02
Negligent 1.56 → 2.49 1.99 → 2.72
Underweigh 1.44 → 2.27 1.95 → 2.70

Consultancy

Robust 0.00 → 0.00 0.00 → 0.00
Lazy 0.00 → 0.00 0.00 → 0.00
Negligent 1.19 → 1.36 2.71 → 3.31
Underweigh 1.19 → 1.43 2.75 → 3.32

Critiques

Robust 0.45 → 0.46 0.00 → 0.00
Lazy 0.45 → 0.46 0.00 → 0.00
Negligent 0.45 → 0.46 0.00 → 0.00
Underweigh 1.41 → 1.60 2.67 → 3.28

Figure 5: True and Overseer scores over the course of training for a selection of training runs.

Training run results (Figure 5). In the flawed overseer adversarial case, rather than seeing a
slower increase in true reward, it increased at roughly the same rate until reaching a certain point,
after which it began to decrease. This pattern matches the shape of true reward plotted against op-
timization strength in the oracle experiment (see Appendix A.5). Additionally, the critiques runs
started with the cluer heavily exploiting the untrained critiquer, but eventually stabilized as the
critiquer learned over time. The Base protocol proved to be much more data-efficient than other
protocols, likely due to the fact that the targeting mechanism is harder to learn than clue generation.
This difference is particularly evident when learning to exploit the overseer even though the overseer
is equally exploitable in theory, as shown in the oracle experiments.
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Overseer efficiency. While the base protocol is more data efficient, it does use more overseer work
per clue. Specifically, the base protocol with robust overseer used on average 8.96 comparisons
per clue, the consultancy protocol used 4.52 comparisons, and the critiques protocol used 2.25
comparisons.

Overseer score vs True Score across adversarial incentive strengths (Figures 6 and Figure 7).
In the LLM experiments, the exploitation level is 0.66 without adversarial incentive, rising to 1.60
with an adversarial incentive strength of 0.75. The experiment with an incentive strength of 0.375
is particularly noteworthy, as it shows only a 0.06 decrease in overseer score, while the true score
dropped by 0.64 compared to the non-adversarial scenario. These LLM results resemble those seen
at optimization strength 8, although the oracle exhibits more exploitation. In the oracle experiments,
there is a visible trend of an increasing vertical section in the plots, representing the range of best
and worst policies that the overseer is indifferent to. If this trend extends to other contexts, it could
imply that as models become more intelligent, the cost of learning an incorrect objective decreases.
Adversarial incentives in sandwiching experiments can be seen as a method to adjust for this. A
similar result is observed in Roger (2024). Interestingly, at the final optimization strength (2048),
the true reward in the non-adversarial case is lower than at the previous optimization level (1024),
replicating the known phenomenon that excessive optimization on an imperfect reward signal leads
to degraded performance (see Gao et al. (2023)).

Figure 6: LLM True score vs. Overseer score
for adversarial incentives 0-0.75 (0.125 inter-
vals)

Figure 7: Oracle True score vs. Overseer
score for different optimization strengths and
adversarial incentives 0-0.95 (0.05 intervals)

5 DISCUSSION

Limitations.

• It seems that the consultancy and critiques LLM experiments would benefit from further
training, but we were not able to keep training them due to compute constraints.

• In our simple formalization of the CodeNames task, the possible space of oversight pro-
tocols is somewhat constrained, and more complex and realistic tasks may have yielded
different results. For instance there doesn’t seem to be a benefit to having multiple rounds
of debate in our setting, but in other settings there could be.

• Since the overseer estimated score doesn’t perfectly track the true score even for the robust
overseer, the exploitation metric is scaled slightly differently depending on the oversight
protocol. However since all the flaws we use are either fully covered by a protocol or not
covered at all, comparing their exploitation numbers directly isn’t very interesting.

Application of adversarial incentive to scalable oversight experiments. Our experimental re-
sults show that an adversarial incentive can cause a large drop in true performance with only a minor
drop in overseer perceived performance, when the overseer is vulnerable. The technique is simple
to implement and should not add significant costs, assuming a single adversarial strength is used,
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making it a good candidate for inclusion in future work on scalable oversight. That said, it is unclear
what incentive strength should be used for larger scale experiments, but it seems that as more opti-
mization pressure is put into the model, a lower incentive strength will suffice. The main criterion
would be picking a strength that does not cause a significant drop in overseer perceived performance.

Application of overseer flaw theory to scalable oversight experiments. As theorized, the differ-
ent oversight techniques in our setting cover for our engineered set of overseer flaws. Interestingly,
the different oversight protocols also yielded differences in the model’s ability to learn the overseer
flaws. A human overseer would have a much more complex set of flaws that may interact differently
with the oversight protocols and model, so a key challenge in future scalable oversight work will be
categorizing and studying the mistakes humans make when overseeing AI models.

6 CONCLUSION

We introduced a novel approach to evaluating the robustness of scalable oversight techniques by
testing their vulnerability to reward hacking through adversarial incentives. Our experiments on the
synthetic CodeNames task demonstrated that implementing explicit reward hacking incentives can
reveal vulnerabilities in oversight methods that are not apparent in standard evaluations. We found
that different oversight protocols exhibit varying levels of robustness to specific overseer flaws, and
that LLMs inherently resist exploiting these flaws more than oracle policies. These experiments
emphasize that integrating adversarial incentives into scalable oversight evaluations, and analyzing
the overseer’s properties in relation to the task, can be effective ways to assess and enhance the
robustness of scalable oversight methods against reward hacking.

We hope these experiments lay a foundation for future work to validate scalable oversight methods’
ability to mitigate reward hacking in realistic settings.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Game generation. Game words are sampled uniformly without replacement from a set of 400
possible words.

Choice of words in the game dictionary. Since it’s hard to enforce the more subtle rules of
codenames, we opt to simply invalidate clues that are not a single English word. To make sure
this is easy to learn, we search for the broadest dictionary possible, which seems to be the official
scrabble dictionary NWL2023. This choice was effective at preventing the models from learning
weird reward hacks without putting a large learning burden on them.

Clue Evaluation. If the clue is one of the game words or if it’s not in the scrabble dic-
tionary, it is considered invalid. We compute an embedding for the clue using OpenAI’s
text-embedding-3-large and the following formula:

get embedding (”Q: ” + clue)− get embedding (”Q: ”) + get embedding (”A: ”)

For each game word, we get it’s embedding from the same embedding model. The game words are
picked in decreasing order of cosine similarity with the clue embedding, with the final score being
the number of good words picked before any of the bad words have been picked.

Computational complexity of the tasks. Assuming constant time (O(1)) ability to check which
of two words is more associated to a given clue, the complexities of different operations are as
follows (with N as the number of words in the game):

• Clue generation: O(E * N); where E is the number of valid clues (words/terms in En-
glish)—in this experiment 200K (the official scrabble word list).

• Unaided clue evaluation: O(N); iterate over the bad words in pairs to find the one that’s
most associated with the clue, then count how many of the good words are more associated
with the clue than the best bad word.

• Aided clue evaluation: O(1); given a set of target good words and the best possible counter
example, only checking the example is needed. See the Oversight protocols section for a
more detailed explanation.

SFT Data Generation.

• The dataset has 8192 samples with one game, a clue, targets, and a critique (unless there
were no targets).

• Each game has 6 good words and 4 bad words. This size was chosen because:
– Less than 6 good words is not enough data to elicit a wide enough range of perfor-

mance out of the models and showcase the differences between overseers. More than
6 would have just required more compute and time.

– Less than 4 bad words would make it hard to introduce meaningful overseer flaws,
while more than 4 bad words caused the reward to be too sparse for the models to learn
(more bad words means less randomly selected clues + targets will get any reward).

• To create an unbiased yet helpful starting point for the models, each clue is sampled ran-
domly from a vocabulary of plausible CodeNames clues. This vocabulary was generated
by first trying to run the oversight protocols on a range of models initialized with clues
sampled uniformly from English, and then sampling clues from those models to get the
distribution of clues they converged to, which is a lot narrower than all of English.

• Each good word is chosen as a target with probability 0.2 - the probability of a random
word being more similar to some clue than all of the bad words (1 / (number of bad words
+ 1)).

• A target good word and a bad word are chosen randomly as the critique, if there are any
targets (0 targets is allowed).

12
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SFT Training.

• The model being trained is Llama-2-7B: it is convenient to train due to its size and
capable enough to learn codenames policies. The project started before Llama-3-8B
was available.

• Two models are trained - a cluer and a critiquer. The cluer is only trained on clue + targets
completion, and the critiquer is only trained on critique completion.

• It is finetuned with Parameter Efficient Fine Tuning (PEFT). The parameters are:
– Rank: 1024
– Alpha: 512.
– Learning rate: 2e-4.

A.2 REWARD DESIGN

The following is a derivation of the optimal policy for outputting a certain word as a target Pt given
a belief about the the word being picked Pp, about the targets that have been outputted so far being
picked Pa, the reward function and the KL penalty coefficient β. The reward function is split into
two functions of the number of targets n – an accept reward Ra for when the targets are accepted
by the overseer, and a reject reward Rr for when the targets are rejected. We start with the expected
reward Re, the KL divergence KL as a function of the reference policy’s probability of outputting
a target Pb and the objective function J . We then take the derivative of the objective function with
respect to Pt and set it to zero to find the optimal policy.

Re = Pt [PaPpRa(n) + (1− PaPp)Rr(n)]

+ (1− Pt) [PaRa(n− 1) + (1− Pa)Rr(n− 1)]

KL = Pt log
Pt

Pb
+ (1− Pt) log

1− Pt

1− Pb

J =R− βKL

dRe

dPt
= PaPpRa(n) + (1− PaPp)Rr(n)

− PaRa(n− 1)− (1− Pa)Rr(n− 1)

dJ

dPt
=

dRe

dPt
− β log

Pt(Pb − 1)

Pb(1− Pt)
= 0

Pt

1− Pt
=

Pb

1− Pb
e

1
β

dRe
dPt

Pt = 1− 1

1 + Pb

1−Pb
e

1
β

dRe
dPt

In order to design a reasonable reward function, we impose the following heuristics:

• The policy for outputting a specific target should be as independent as possible of the
number of targets already outputted. In practice, this means Ra needs to scale exponentially
in the number of targets to reflect the geometric nature of the risk of the targets being
rejected. We operationalize this by having one calibrated probability Pc for which Pp =
Pc => Pt = Pp, across all n and Pa.

• On average, the reward for a calibrated policy should be similar to the true game score. We
approximate this with Ra(0) = 0 and Ra(1) = 1.

• It is valid for Pc to change during training to reflect the current ability of the model to give
good clues. To implement this, we take the average number of targets across all outputs in
the current batch, and divide by the maximum allowed number of targets m. This should
ensure that on average the model is being penalized for outputting both too many targets
and too few targets.

To find Rr(n), we can set Pa to 0:

13
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Pc

1− Pc
=

Pb

1− Pb
e

1
β (Rr(n)−Rr(n−1))

Rr(n) =Rr(n− 1) + β log
Pc(1− Pb)

Pb(1− Pc)

Rr(n) =Rr(1) + (n− 1)β log
Pc(1− Pb)

Pb(1− Pc)

Now set Pa = 1:

Pc

1− Pc
=

Pb

1− Pb
e

1
β (PcRa(n)+(1−Pc)Rr(n)−Ra(n−1))

Ra(n) =
Ra(n− 1)− (1− Pc)Rr(n) + β log Pc(1−Pb)

Pb(1−Pc)

Pc

With n = 1, we get:

Ra(1) =
Ra(0)− (1− Pc)Rr(1) + β log Pc(1−Pb)

Pb(1−Pc)

Pc

Pc = − (1− Pc)Rr(1) + β log
Pc(1− Pb)

Pb(1− Pc)

Rr(1) =
β log Pc(1−Pb)

Pb(1−Pc)
− Pc

1− Pc

A.3 ADDITIONAL ORACLE AND LLM TRAINING FIGURES

In Table 2 and Table 3, provide summary tables of the benchmark results for the two main experi-
ments.

A.4 EXAMPLES OF MODEL COMPLETIONS

Examples from the weak-negligent LLM. Given the following game:

Good words: BEAT ENGLAND BOW TIME ARM PIANO

Bad words: DIAMOND LEPRECHAUN VAN NURSE

The non-adversarially trained model gave the clue ”Symphony”, resulting in a ground truth score of
5 and an overseer expected score of 6. The adversarially trained model gave the clue ”Brilliance”,
resulting in a ground truth score of 0 and an overseer expected score of 6.

A.5 ADDITIONAL BASE WEAK NEGLIGENT OVERSEER FIGURES

14
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Table 2: Oracle Policies experiment: Benchmark results for different protocols and overseers
(Optimization strength of 8)

Protocol Overseer True Score Overseer Accuracy (%) Exploitation

Base

Robust 3.087 100.00 0
Robust adv. 3.087 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 2.853 47.10% -0.677
Lazy adv. 1.582 (-44.55%) 97.90 (+50.80%) -0.021 (+0.656)
Negligent 2.163 34.60 1.991
Negligent adv. 1.115 (-48.45%) 13.80 (-20.80%) 2.719 (+0.728)
Underweigh 2.243 34.40 1.952
Underweigh adv. 1.155 (-48.51%) 12.70 (-21.70%) 2.700 (+0.748)

Consultancy

Robust 3.111 100.00 0
Robust adv. 3.111 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 3.086 100.00 0
Lazy adv. 3.086 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Negligent 2.164 34.00 2.708
Negligent adv. 1.093 (-49.49%) 12.00 (-22.00%) 3.309 (+0.601)
Underweigh 2.204 33.10 2.755
Underweigh adv. 1.130 (-48.73%) 12.20 (-20.90%) 3.321 (+0.566)

Critiques

Robust 3.069 100.00 0
Robust adv. 3.069 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 3.093 100.00 0
Lazy adv. 3.093 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Negligent 3.093 100.00 0
Negligent adv. 3.093 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Underweigh 2.249 35.30 2.670
Underweigh adv. 1.157 (-48.55%) 13.20 (-22.10%) 3.277 (+0.607)

Figure 8: True Score for the Base Weak Negligent overseer as a function of Optimization Strength.
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Table 3: LLM Training experiment: Benchmark results for different protocols and overseers.
Protocol Overseer True Score Overseer Accuracy (%) Exploitation

Base

Robust 3.294 100.00 0
Robust adv. 3.294 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 3.056 48.80% -0.655
Lazy adv. 2.711 (-11.29%) 66.20 (+17.40%) -0.409 (+0.246)
Negligent 2.692 41.30 1.565
Negligent adv. 1.456 (-45.91%) 21.80 (-19.50%) 2.486 (+0.921)
Underweigh 2.783 43.00% 1.441
Underweigh adv. 1.727 (-37.94%) 25.30 (-17.70%) 2.273 (+0.832)

Consultancy

Robust 3.112 100.00 0
Robust adv. 3.112 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Lazy 3.112 100.00 0
Lazy adv. 3.112 (+0.00%) 100.00 (+0.00%) 0.0 (+0.000)
Negligent 2.701 70.90 1.193
Negligent adv. 2.345 (-13.18%) 66.70 (-4.20%) 1.364 (+0.171)
Underweigh 2.761 70.90 1.186
Underweigh adv. 2.378 (-13.87%) 65.30 (-5.60%) 1.426 (+0.240)

Critiques

Robust 2.952 91.00 0.451
Robust adv. 2.873 (-2.68%) 90.70 (-0.30%) 0.462 (+0.011)
Lazy 2.952 91.00 0.451
Lazy adv. 2.873 (-2.68%) 90.70 (-0.30%) 0.462 (+0.011)
Negligent 2.952 91.00% 0.451
Negligent adv. 2.873 (-2.68%) 90.70 (-0.30%) 0.462 (+0.011)
Underweigh 2.595 72.00 1.406
Underweigh adv. 2.402 (-7.44%) 65.30 (-6.70%) 1.596 (+0.190)

Table 4: Adversarial Incentive sweep on Base Weak-Negligent overseer. LB: Lower Bound.
Adversarial α True Score Acc (%) Exploitation Reference LB Overseer LB
0 3.046 70.1 0.664 3.046 3.709
0.125 3.015 68.8 0.727 3.015 3.742
0.25 2.599 59.1 1.004 2.599 3.604
0.375 2.406 52.5 1.241 2.406 3.647
0.5 2.032 45.1 1.473 2.032 3.505
0.625 1.922 44.0 1.549 1.922 3.471
0.75 1.770 40.5 1.604 1.770 3.375
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