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Abstract

To address the problem of rapid development
outpacing the creation of standardized, objec-
tive benchmarks, we propose a Common Task
Framework (CTF) for evaluating scientific ma-
chine learning models on dynamical systems. The
CTF features a curated set of datasets and task-
specific metrics spanning state forecasting, state
reconstruction, and generalization under realistic
constraints, including noise and limited data. In-
spired by the success of CTFs in other machine
learning fields like natural language processing
and computer vision, our framework provides a
structured, rigorous foundation for head-to-head
evaluation of diverse algorithms. Our open-source
framework enables researchers to rapidly imple-
ment, test, and optimize their models against our
datasets to support our long-term vision to raise
the bar for rigor and reproducibility in scientific
ML.
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1. Introduction
Data science, especially machine learning (ML) and artifi-
cial intelligence (AI), is transforming almost every aspect
of the engineering, physical, social, and biological sciences.
As the body of literature on new ways to model many scien-
tific data and systems grows, there is a lack of objective mea-
sures to adequately characterize and compare these methods.
In the absence of a common standard for benchmarking new
and existing approaches, the current literature is suffering
from weak baselines, reporting bias, and inconsistent evalu-
ations (McGreivy & Hakim, 2024). In this paper, we outline
our contributions to objectively measure the performance of
scientific ML models through our ctf4science package.

Our Contributions.

• The first CTF in scientific ML. We provide the sci-
entific community with a diverse set of datasets and
benchmarks for evaluating scientific ML models. Our
CTF reveals method strengths and weaknesses by eval-
uating models on specific classes of problems and di-
verse objectives through multi-metric scoring.

• An open-source GitHub repository containing unit-
tested code to give researchers a head start in bench-
marking their own models to a growing list of already-
benchmarked scientific ML models.

2. Background and Related Work
CTFs play a critical role in evaluating methodological ad-
vancements. Donoho (2017) has argued that the successful
application of CTFs is a primary factor for the success of
data science and machine learning. Indeed, the fields of
speech recognition, natural language processing, and com-
puter vision have developed mature CTF platforms that
are progressively updated with more challenging data in
order to drive progress and innovation. For instance, the
industry-leading CVPR conference offers more than 30 chal-
lenge problems per year for participants to score and bench-
mark their ML/AI algorithms against. More broadly, classic
fields of machine learning have benefited from extensive
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benchmark environments and common task frameworks,
including ImageNet (Deng et al., 2009; Krizhevsky et al.,
2012), Go and chess (Silver et al., 2018), video games such
as Atari (Mnih et al., 2015) and StarCraft (Vinyals et al.,
2019), and the OpenAI Gym (Ravichandiran, 2018; Dutta,
2018), among other environments for more realistic con-
trol (Deisenroth & Rasmussen, 2011; Todorov et al., 2012).
Unlike these leading fields, many scientific disciplines have
yet to integrate the CTF into their core infrastructure (Mc-
Greivy & Hakim, 2024). This compromises true compara-
tive metrics between methods, algorithms, and results, and
it limits the potential of ML in these areas.

3. Common Task Framework for Science and
Engineering

We propose a CTF for science and engineering that is primar-
ily focused on evaluating machine learning and AI models
for dynamical systems: systems whose underlying evolution
is determined by physical or biophysical principles or gov-
erning equations. The CTF will evaluate how well scientific
ML models perform inference – such as state forecasting
and state reconstruction – under defined constraints. We call
these common, yet challenging scenarios “tasks”, which
may involve noisy measurements, limited data, or varying
system parameters. Given a training dataset and a range
of timesteps to predict, users will produce approximations
for a hidden test dataset. The predictions are evaluated and
scored on a diverse set of metrics by an independent referee
and posted on a leaderboard.

This scoring system prevents a winner-takes-all framework,
since different modeling approaches will excel on different
tasks. Some will do well with noise, others will not. Others
might excel in the limited data regime, while performing
poorly under parametric generalization. These profiles are
important to provide a comprehensive and well-rounded
performance metric and help guide scientists in selecting a
suitable method.

Once the ctf4science is launched1, we invite re-
searchers to benchmark their methods on the CTF for Sci-
ence by taking the following steps:

1. Sign-up and sign-in on Kaggle

2. Train your model with our training data and generate
predictions for each benchmark case

3. Submit prediction files to the competition platform

4. See your score on the leaderboard

1We are proposing a launch date of November 1, 2025 on
Kaggle

To interact with ctf4science before the competi-
tion launch, visit our GitHub repository2, install the
ctf4science package, and evaluate your method on
our demo datasets ODE Lorenz and PDE KS. Our datasets
and our ctf4science Python package do not require high-
performance hardware and can be run on a laptop computer.

4. Datasets & Evaluation Metrics
We launch the CTF platform with two canonical problems in
scientific machine learning: the Kuramoto-Sivashinsky (KS)
equation, and the Lorenz equations. Both exhibit complex
and challenging behavior for the science and engineering
tasks of reconstruction and forecasting under the constraints
of noise, limited data, and parametric dependence. While
these datasets and benchmarks serve as a starting point,
the CTF will evolve to include both more complex data and
more challenging tasks. The CTF framework is a sustainable
platform that evolves and grows as the community develops
more sophisticated methods and algorithms and faces new
challenges.

4.1. Spatio-Temporal System: Kuramoto-Sivashinsky

The first dataset we consider is the spatio-temporal
Kuramoto-Sivashinsky equation. The KS equation is a
fourth-order, nonlinear partial differential equation (PDE). It
is considered a canonical example of spatio-temporal chaos
in a one-dimensional PDE and is therefore commonly used
as a test problem for data-driven algorithms. The KS equa-
tion is a particularly challenging case for fitting algorithms
due to its combination of high dimensionality, nonlinearity,
and sensitivity to initial conditions (chaotic behavior):

ut + uux + uxx + µuxxxx = 0. (1)

The solutions of Eq. (1) are defined on a grid across the
domain of [0, 32π] with periodic boundary conditions. A
numerical integrator with a time step ∆t evolves the solution
m steps. An illustration of KS is provided in Fig. 1(b).

4.2. Dynamical System: Lorenz

The second dataset comes from one of the most influential
dynamical systems in history, the Lorenz dynamical system,
which is given by the ordinary differential equation (ODE):

dx

dt
= σ(y − x),

dy

dt
= rx− xz − y,

dz

dt
= xy − bz.

where the parameters b = 8/3 and σ = 10 are typically
fixed at these values while r is explored as a bifurcation
parameter. For specific values of r, including our choice

2The package is available at:
github.com/CTF-for-Science/ctf4science
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Figure 1. The CTF Evaluation framework scores the performance of methods on (a) the Lorenz dynamical system and (b) the Kuramoto-
Sivashinsky partial differential equation. (c) Data is collected and organized into matrices which is then split into testing and training sets.
RMSE is computed for reconstruction and short-time forecasting, while the spectral error computes the statistics of long-time forecasting
(spatial or temporal). (d) Forecasting and reconstruction tasks are evaluated on noise-free, low-noise and high-noise data. Methods are
also evaluated when (e) only limited data is available and (f) for reconstruction of parametrically dependent data.

r = 28, the system exhibits chaotic behavior as shown in
Fig. 1(a).

4.3. Evaluation Metrics

For each dataset, we quantitatively assess the performance
of each model on an ensemble of 12 classes of problems.

Scores E1 and E2 evaluate how effective a model is at gener-
ating future states of a dynamical system – a process that we
call state “forecasting”. E1 evaluates short-time forecasting,
measuring trajectory accuracy since deterministic predic-
tions are feasible, while E2 evaluates long-time forecasting,
measuring statistical fidelity because only broad statistical
properties are recoverable. For short-time forecasting we
use the Root Mean Square Error (RMSE) metric, while
for long-time forecasting we use the Spectral Error metric.
Both E1 and E2 assume there is no noise in the training data.
Scores E3 and E5 evaluate the model’s ability to de-noise
training data – a process we call state “reconstruction” – in
the low-noise and high-noise regimes respectively. Noise
is defined as random Gaussian perturbations with mean 0
and variance σ2 of the training data. E4 and E6 evaluate
long-time forecasting with training data in the low-noise
and high-noise regimes respectively. Low- and high-noise
refers to the magnitude of the random perturbations to the
training data. These scores are illustrated in Fig. 1(d).

E7 and E8 evaluate short-time and long-time forecasting
in the limited training data regime without noise in the
training data. E9 and E10 evaluate short-time and long-time
forecasting in the limited training data regime when there
is noise in the training data. These scores are illustrated in
Fig. 1(e).

E11 evaluates a model’s capacity to interpolate within pa-
rameter regimes without noise. Specifically, the testing data
is generated from a set of parameters within the parameter
space used to generate the training data. E12 evaluates a
model’s capacity to extrapolate outside parameter regimes
without noise. In this case, the testing data is generated
from a set of parameters outside the parameters used to gen-
erate the training data. For evaluation, a burn-in matrix is
provided to the model from the first few time-steps of the
interpolated and extrapolated testing set. These scores are
illustrated in Fig. 1(f).

5. ctf4science
We develop the open-source ctf4science repository for
streamlining the adoption of our CTF. Our repository gives
developers an API for performing all of the core functional-
ity needed to train an existing model on our datasets, pro-
vides several examples of scientific ML models using our
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package, has our competition training data for the Lorenz
and KS systems, and hyperparameter optimization configu-
rations for all example models.

The core package provides four modules:
data module, eval module, tune module,
and visualization module. data module and
eval module are unit tested, ensuring that the core data
loading and evaluation functionality of the package is
working properly.

data module provides an interface for loading data from
the simulated Lorenz and KS systems. We make it easy to
generate validation splits for hyperparameter optimization,
provide time steps for the data for models that expect it,
and provide metadata such as spatial dimensions and the ∆t
value used to generate the data.

eval module gives users the ability to evaluate their
model directly on our metrics after training. We imple-
ment short- and long-time forecasting evaluation metrics
and reconstruction scores. We also provide an interface for
storing model scores in yaml files.

tune module automates hyperparameter tuning using
Ray Tune (Liaw et al., 2018). It handles individual or mul-
tiple model tuning with functionalities such as automatic
resource allocation, ASHA (Asynchronous Successive Halv-
ing Algorithm) scheduling for early stopping, and config-
urable time or number of trial budgets (Li et al., 2020). Par-
allel trial execution is managed by Ray Tune and achieved
by automatic detection of local CPU and GPU resources
and their distribution based on defaults or user preference.

visualization module gives users the ability to vi-
sualize the predictions and scores of their models. This
simultaneously provides a way to debug their models as
well as understand their model’s strengths and limitations
by visualizing the model’s scores.

In addition to a simple-to-use API, we showcase fourteen
already implemented models making full use of our frame-
work from data loading to hyperparameter tuning. The
models we provide are a baseline model predicting zeros, a
baseline model predicting the average of the training data,
DeepONet (Lu et al., 2021), SINDy (Brunton et al., 2016;
Fasel et al., 2022), Reservoir models (Jaeger, 2001; Maass &
Markram, 2004; Pathak et al., 2018), PyKoopman (Brunton
et al., 2022; Pan et al., 2024), FNO (Li et al., 2021), KAN
(Liu et al., 2025), OptDMD (Askham & Kutz, 2018), Space-
time (Zhang et al., 2023), HighOrder DMD (Le Clainche
& Vega, 2017), PINN (Raissi et al., 2019), ODE-LSTM
(Coelho et al., 2024), and LSTM (Hochreiter & Schmidhu-
ber, 1997).

Combined, our modules and implemented models facilitate
the rapid integration of new models to our CTF, paving the

way for the scientific community to objectively and effi-
ciently benchmark the performance of scientific ML models
against one another.

6. Limitations & Future Work
We are launching ctf4science in a limited scope with
fourteen models and two datasets: a dynamical system
(Lorenz) and a spatio-temporal system (KS). The evalu-
ation metrics test short- and long-time state forecasting and
state reconstruction under the challenges of Gaussian noise,
limited data, and parametric dependency. There are many
more datasets and tasks that could and should be considered
for science and engineering, most notably tasks in control.
This CTF is an important first step to establish fair compar-
isons among modeling methods on truly withheld test sets.
In future versions, more challenging datasets, real world
datasets, more tasks, and more models will be integrated.

7. Conclusion
We developed a CTF that scores modeling approaches on
a diversity of tasks that are prototypical in science and en-
gineering. The canonical Lorenz and KS systems form an
accepted testbench for demonstrating the effectiveness of
modeling methods in scientific machine learning literature
and act as the starting point of our framework. Our work
builds a fair and multi-dimensional comparison between
methods that is based on a true hidden testset—limiting the
risk of “hacked” scores.

To enable the rapid adoption of our CTF, we provide the
scientific community with a maintained, unit-tested, open-
source framework for jump-starting the model evaluation
process. In our repository, we provide a collection of pop-
ular scientific ML models that have already been ported to
our framework. These implementations provide examples of
how anyone can port their model into our framework to start
comparing their models on our benchmarks. Our modules
are unit-tested, provide an intuitive API for streamlining
the development process and even includes an interface for
hyperparameter optimization.

Our CTF invites researchers in the community to refine
architectures and to co-create a truly comprehensive bench-
marking suite for scientific machine learning, enabling
the discovery of scientific breakthroughs and foundational
world models.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Evaluation Metrics
The scores E1 through E12 for the Lorenz and KS systems are presented formally.

A.1. Spatio-Temporal System: Kuramoto-Sivashinsky

For the KS system, the scores E1 through E12 are computed using the following tests.

A.1.1. FORECASTING (2 SCORES)

The first set of tasks, shown in Fig. 1-d, involve the approximation of the future state of the system. Thus, given a data matrix
representing the dynamics over t ∈ [0, 10T ] (X1 ∈ R10m×n), a generated forecast is requested from the model being tested
for t ∈ [10T, 11T ] (X1pred ∈ Rm×n) to compare with the ground-truth (X1test ∈ Rm×n), with n being the dimension of
the system and m being the number of forecasted time steps. The forecasting score is composed of two scores evaluating
both the short-time forecast EST, which is computed using Root Mean Square Error (RMSE) between the test set and the
model’s approximation, and the long-time forecast ELT, which is computed using the spectral error based upon the power
spectral density, see Fig. 1-c. Short-time forecasting measures trajectory accuracy where deterministic prediction is feasible,
while long-time forecasting measures statistical fidelity where only the system’s broad statistical properties are recoverable.

For the challenge dynamics of interest, sensitivity of initial conditions is common, making long range forecasting to match
the test set an unreasonable task given fundamental mathematical limitations with Lyapunov times. Thus, the long-time error
is computed by least-squares fitting of the power spectrum P(X,k, k) = ln(|FFT(X[−k : −1,k])|2), where the fftshift
has been used to model the data in the wavenumber domain and k = n/2− kmax : n/2 + (kmax + 1) with kmax = 100.
This means that we look at the match in the first 100 wavenumbers of the power spectrum over a long time simulation. Let
X̂ be the ground-truth matrix, X̃ be the prediction matrix, and k ∈ (0, T ) an integer specifying how to split the matrices for
the short-time and long-time scores. The following two error scores are then computed:

SST(X̃, X̂) =
∥X̂[1 : k, :]− X̃[1 : k, :]∥

∥X̂[1 : k, :]∥
, (2)

SLT(X̃, X̂) =
∥P(X̂,k, k)−P(X̃,k, k)||

||P(X̂,k, k)||
. (3)

It is clear that there are many ways to evaluate the long-range forecasting capabilities. We chose a simple and transparent
metric fully understanding that more nuanced scoring could be used. To provide a reasonable range we then compute the
two scores

E1 = 100(1− SST(X1pred,X1test)), E2 = 100(1− SLT(X1pred,X1test)), (4)

meaning in each case a score of Ei = 100 corresponds to a perfect match. Note that, as a baseline, a solution guess of zeros
X̃[1 : k, :] = 0 (corresponding also to P(X̃,k, k) = 0) gives a score of E1 = E2 = 0.

Input: X1train ∈ R10m×n; Output: X1pred ∈ Rm×n; Scores: E1, E2.

A.1.2. NOISY DATA (4 SCORES)

The ability to handle noise is critical in all data-driven applications as sensors and measurement technologies are by default
embedded with varying levels of noise. Methods that work with numerically accurate data, for example data points that
are 10−6 accurate, may be useful for model reduction, but are rarely suitable for discovery and engineering design from
real-world data. Both strong and weak noise are considered as these represent realistic challenges to be addressed in practice.

This task is very similar to Task 1, but now with noise added to the data. Specifically, the model is provided a data matrix
X2train ∈ R10m×n and X3train ∈ R10m×n representing the evolution with low or high noise respectively. The objective
is to first produce a reconstruction of the data itself, i.e. denoise the data to produce an estimate of the true state of the
dynamics, X2pred,X4pred ∈ R10m×n for X2train,X3train respectively, and the second objective is to then forecast the
future state, matrices X3pred,X5pred ∈ Rm×n for X2train,X3train respectively. For the first task, a least-square fit is used
between the approximation of the denoised data and the truth, and for the forecasting a long-time evaluation is computed
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leading to the following scores:

E3 = 100(1− SST(X2pred,X2test)), E4 = 100(1− SLT(X3pred,X3test)),

E5 = 100(1− SST(X4pred,X4test)), E6 = 100(1− SLT(X5pred,X5test)).

Input: X2train,X3train ∈ R10m×n; Output: X2pred,X4pred ∈ R10m×n, X3pred,X5pred ∈ Rm×n; Scores:
E3, E4, E5, E6.

A.1.3. LIMITED DATA (4 SCORES)

Data limitations are common in real world physical systems and often affect the success of data-driven methods. Thus,
testing for model performance on low-data is critically important and provides important insight to potential users.

Figure 1-e demonstrates the nature of the task. In this case only a limited number of snapshots M on numerically accurate
data are given X4train ∈ RM×n. From this limited data, a forecast must be made which is evaluated with both error
metrics (2) & (3) on the approximated future X6pred ∈ Rm×n. The experiment is repeated with noise on the measurements
using the training matrix X5train ∈ RM×n for which a forecasting prediction matrix is produced X7pred ∈ Rm×n. The
performance is evaluated on the following scores representing short and long-time metrics for both noise-free and noisy data
respectively.

E7 = 100(1− SST(X6pred,X6test)), E8 = 100(1− SLT(X6pred,X6test)),

E9 = 100(1− SST(X7pred,X7test)), E10 = 100(1− SLT(X7pred,X7test)).

Two error scores (analogous to E1 and E2) are produced for the noise-free and noisy limited data. These scores are E7

(short) and E8 (long) for the noise free case and E9 (short) and E10 (long) for the noisy case.

Input: X4train,X5train ∈ RM×n; Output: X6pred,X7pred ∈ Rm×n; Scores: E7, E8, E9, E10.

A.1.4. PARAMETRIC GENERALIZATION (2 SCORES)

Finally, the ability of a model to generalize to different parameter values is evaluated. For this case, the model’s ability to
interpolate and extrapolate to new parameter regimes is considered with noise-free data. The interpolation and extrapolation
are each their own score, resulting in two scores that evaluate parametric dependence.

Figure 1-f shows the basic architecture of the task. Three training data sets are provided with three different (unknown)
parameter values X6train,X7train,X8train ∈ R10m×n. Construction of the dynamics in parametric regimes that are
interpolatory X8pred ∈ Rm×n and extrapolatory X9pred ∈ Rm×n are required. For both of the tasks, a burn in matrix
X9train and X9train respectively of size M × n (where M < m) is given and the performance is evaluated using the
short-time metric (2).

E11 = 100(1− SST(X8pred,X8test)), E12 = 100(1− SST(X9pred,X9test)).

Input: X6train,X7train,X8train ∈ R10m×n,X9train,X10train ∈ RM×n;

Output: X8pred,X9pred ∈ Rm×n; Scores: E11, E12.

A.2. Dynamical System: Lorenz

For the Lorenz system, the training and testing are identical as for the spatio-temporal KS system described above aside
from the long-time forecast score. Data matrices for testing and training are of the same form as in Section A.1 with n = 3
being the dimension of the dynamical system. Since in this case there is no spatial coordinate it is no longer possible to
use the power spectral density of the differential equation to evaluate the long-time performance. Instead, for this system,
we evaluate the long-time forecasting based on the distribution of values in the state-space over the last k time steps
(e.g. k = 500). For this we compare the histograms of the distribution of predicted and true solution trajectories in the
following way. The histogram for a time series is computed using the histogram command (histogram in MATLAB and
numpy.histogram in Python using the numpy package) with a set number of bins (e.g., bins = 41 for our current
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Lorenz evaluation). The difference of the histogram between the truth (x, y and z) and prediction (x̃, ỹ and z̃) for each
variable is measured in an ℓ1-sense:

sLT(x, x̃) =
∥histogram(x,bins)− histogram(x̃,bins)∥1

∥histogram(x,bins)∥1
.

From this the long-time error score for the Lorenz system is composed of the distributional error in each coordinate:

S
(Lorenz)
LT (X, X̃) =

sLT(x, x̃) + sLT(y, ỹ) + sLT(z, z̃)

3
.

As with the spatio-temporal system and the power spectral density, this gives a simple measure of the accuracy of the
prediction from a statistical viewpoint since long-time prediction is well beyond the Lyapunov time which would not allow
for a least-square match between trajectories of the truth and prediction.

A.3. Composite Score

We compute a composite score (AvgScore) per dataset from metrics E1 through E12 by averaging the resulting scores
for each method. This score is evaluated per method, not per model. Thus, each method can fit a model for each task
and produce the best possible score. All scores are clipped such that Ei ∈ [−100, 100], thus AvgScore ∈ [−100, 100].
Methods that cannot produce a result for a given task receive the minimum score −100.
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