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ABSTRACT

Generating ambient sounds is a challenging task due to data scarcity and often
insufficient caption quality, making it difficult to employ large-scale generative
models for the task. In this work, we tackle this problem by introducing two
new models. First, we propose AutoCap, a high-quality and efficient automatic
audio captioning model. By using a compact audio representation and leveraging
audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr
score of 83.2, marking a 3.2% improvement from the best available captioning
model at four times faster inference speed. Second, we propose GenAu, a scalable
transformer-based audio generation architecture that we scale up to 1.25B param-
eters. Using AutoCap to generate caption clips from existing audio datasets, we
demonstrate the benefits of data scaling with synthetic captions as well as model
size scaling. When compared to state-of-the-art audio generators trained at similar
size and data scale, GenAu obtains significant improvements of 4.7% in FAD
score, 22.7% in IS, and 13.5% in CLAP score, indicating significantly improved
quality of generated audio compared to previous works. Moreover, we propose an
efficient and scalable pipeline for collecting audio datasets, enabling us to compile
57M ambient audio clips, forming AutoReCap-XL, the largest available audio-text
dataset, at 90 times the scale of existing ones. Our code, model checkpoints, and
dataset will be made publicly available upon acceptance.

1 INTRODUCTION

Text-conditioned generative models have revolutionized the field of content creation, enabling the
generation of high-quality natural images (Ramesh et al., 2022; Rombach et al., 2022; Podell et al.,
2023; Haji-Ali et al., 2024), vivid videos Ho et al. (2022); Villegas et al. (2022); Wang et al. (2023b);
Qiu et al. (2023); Menapace et al. (2024), and intricate 3D shapes (Cheng et al., 2023). The domain
of audio synthesis has undergone comparable advancement (Huang et al., 2023b;a; Liu et al., 2023b;
Xue et al., 2024; Guan et al., 2024; Saito et al., 2024; Niu et al., 2024; Yang et al., 2023a; Evans
et al., 2024b; Liu et al., 2024; Wang et al., 2024c; Guo et al., 2023), with three broad areas of study:
speech, music and ambient sounds. The success in these domains rests on two key pillars: (i) the
availability of high-quality large-scale datasets with text annotations, and (ii) the development of
scalable generative models (Ho et al., 2020; Song et al., 2020).

In the field of audio synthesis, ambient audio generation emerges as a critical domain, which is the
main focus of this work. Unlike speech and music, ambient sound generation suffers from a lack
of extensive, well-annotated datasets (Kim et al., 2019; Drossos et al., 2020). Attempts to curate
ambient audio from online videos predominantly failed, primarily due to the dominance of speech and
music content in such videos. For instance, AudioSet (Gemmeke et al., 2017), the largest available
audio dataset sourced from online videos, contains 99% speech or music clips. Previous efforts to
filter ambient audio from similar datasets involved using expensive classifiers on the video or audio
content, making it impractical to compile a large-scale dataset due to the high rejection rate. In this
work, we propose a simple, yet scalable filtering approach that leverages existing automatic video
transcription to identify segments with ambient sounds. This method is not only more efficient but
also more feasible, as it eliminates the need to download the audio or video content. Additionally,
by using time-aligned transcripts, we reduce the rejection rate to only 83%. Through this approach,
we built AutoReCap-XL, a dataset containing 57 million ambient audio clips sourced from existing
video datasets, representing a 90-fold increase over the size of previously available datasets.
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Another challenge in compiling large-scale text-audio datasets is providing accurate textual descrip-
tions. For visual modalities, such as images and videos (Xue et al., 2022; Miech et al., 2019),
researchers often relied on the raw description and metadata to train strong visual-text models in-
cluding reliable captioners (Chen et al., 2024b). Similarly, speech modality benefits from strong
automatic transcription models to provide textual annotations. For ambient sounds, however, the task
is substantially more challenging as accompanying raw text tends to describe visual information or
convey feelings, rather than detailing the audio content. Moreover, human-captioned audio datasets
are limited, containing fewer than 51k text-audio pairs in total. This significantly impacts the training
of current captioning models, making them more susceptible to overfitting and reducing their ability
to generalize effectively. In this work, we address this challenge by introducing AutoCap, an efficient
and high-quality audio captioning model that leverages visual information to enhance captioning.

AutoCap refines the commonly used encoder-decoder design based on a pretrained BART (Lewis
et al., 2020) model by learning an intermediate representation using a Q-Former (Li et al., 2023a)
module. By learning an intermediate representation, AutoCap provides better alignment between the
encoded audio and the original BART token representation due to the Q-Former additional capacity
compared to simple projection layers used in previous work (Kim et al., 2024b). Second, we propose
to use metadata and captions derived from video content to aid the captioning process and in this way,
remedy the data scarcity problem. Critically, we augment the encoder inputs to assume both audio
features and a set of descriptive textual metadata including audio title and a caption derived from
the visual modality. This dual-input approach not only allows our model to achieve state-of-the-art
performance on AudioCaps (Kim et al., 2019), marking a 3.2% improvement in CIDEr score, but it
also helps reduce the domain gap with in-the-wild audios.

Moreover, to adapt audio generative models for larger scale training, we introduce GenAu, a scalable
transformer-based architecture that achieves significant improvements over state-of-the-art audio
generation models. Our approach introduces key architectural modifications over existing audio latent
diffusion models (Liu et al., 2023b; Huang et al., 2023b; Ghosal et al., 2023; Huang et al., 2023a). First,
we train an efficient 1D-VAE (Huang et al., 2023a) to transform a Mel-Spectrogram representation to a
sequence of tokens and search for the optimal latent space for audio generation. Second, we recognize
that audio grows fast temporally, yet contains many silent and redundant segments. Therefore, an
efficient architecture that can handle such properties is needed. In particular, we employ a transformer
architecture in the denoising backbone where we modify the FIT transformer (Chen & Li, 2023) to
generate audio in the latent space. Lastly, we extend the proposed FIT architecture to incorporate
text conditioning through a dual encoder strategy. This involves an instruction-finetuned language
model, FLAN-T5 (Chung et al., 2022), and an audio-centric CLAP encoding (Wu et al., 2023a). This
adaptations significantly improves the model’s performance over exiting methods, achieving 22.7%
higher Inception Score, 4.7% better FAD, and 13.5% improvement in CLAP score, demonstrating
superior audio-text alignment and audio generation quality.

Finally, we explore the scaling behavior of text-to-audio diffusion models in relation to model size
and data size. While text-to-image studies have shown performance improvements with increased
data and model size (Peebles & Xie, 2023b; Li et al., 2024), similar exploration for audio remains
limited. Initially, we analyze the impact of augmenting the dataset with synthetic captions on model
performance. Our findings reveal a clear trend of improvement in FD and IS as we increase the
amount of training data. Furthermore, we observe a consistent trend of enhanced performance
across all metrics when scaling up the model size, concluding that the audio modality also benefits
significantly from increases in both model size and data scale.

In summary, this work introduces: (i) AutoCap, a state-of-the-art audio captioner tailored towards
the annotation of data at a large scale, which leverages audio metadata to improve accuracy and
robustness, and a Q-Former to improve inference time and reduce overfitting; (ii) GenAu, a novel
audio generator based on a scalable transformer architecture specifically adapted to the audio domain.
Our model achieves significantly improved quality when compared to the previous state-of-the-art.
(iii) AutoReCap-XL, the largest available audio dataset, comprising 57M audio clips paired with
synthetic captions derived from the proposed audio captioner.

2 RELATED WORK

Automatic Audio Captioning (AAC). The goal of AAC is to produce natural language descrip-
tions for given audio content. Most recent AAC methods (Deshmukh et al., 2023a; Wu et al.,
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2024) (Salewski et al., 2023; Sridhar et al., 2023; Kadlčík et al., 2023; Cousin et al., 2023; Labbé
et al., 2023; Xu et al., 2023; Zhang et al., 2024; Ghosh et al., 2024a; Deshmukh et al., 2023b) employ
encoder-decoder transformer architectures, where an encoder receiving the audio signal produces
a representation that is used by the decoder to produce the output caption. WavCaps (Mei et al.,
2023a) employs the CNN14 (Kong et al., 2019) and HTSAT (Chen et al., 2022) audio encoders and
uses a pretrained BART (Lewis et al., 2020) language decoder. CoNeTTE (Étienne Labbé et al.,
2023) proposes an audio encoder based on the ConvNeXt architecture and uses a vanilla transformer
decoder (Vaswani et al., 2017) trained from scratch. Recently, EnCLAP (Kim et al., 2024b) proposes
the joint use of two audio representations in the form of CLAP (Wu et al., 2023a) sequence em-
beddings and a discrete EnCodec (Défossez et al., 2022) audio representation and uses a pretrained
BART model as the language backbone. Other work explores augmentation strategies to counter
data scarcity (Kim et al., 2022; Étienne Labbé et al., 2023; Ye et al., 2022). More recent work (Liu
et al., 2023d; Sun et al., 2024; Yuan et al., 2024) proposed to leverage the visual information using
to address sound ambiguities, reporting improvements. BART-Tags (Gontier et al., 2021) generates
captions conditioned on a sequence of predicted AudioSet tags. Our method uses audio metadata and
visual information as additional conditioning signals and leverages a lightweight Q-Former (Li et al.,
2023a) model that summarizes the audio feature to improve captioning speed and reduce overfitting.

Text-conditioned audio generation. The current state-of-the-art text-to-audio generation methods
widely adopt diffusion models (Yang et al., 2023b; Kreuk et al., 2023; Liu et al., 2023b;c; Huang et al.,
2023a; Ghosal et al., 2023; Evans et al., 2024a; Vyas et al., 2023; Kreuk et al., 2023). AudioLDM (Liu
et al., 2023b) makes use of a latent diffusion model conditioned on CLAP embeddings, reducing the
need for the textual modality at training time. AudioLDM 2 (Liu et al., 2023c) introduces a general
representation of audio unifying the tasks of music, speech, and sound effects generation. Similarly,
Audiobox (Vyas et al., 2023) generates audio across different modalities such as speech and sound
effects. Recently, StableAudio Open (Evans et al., 2024c) introduced a 1.32B model that uses a
DiT (Peebles & Xie, 2023a) to generate variable-length audio clips at 48kHz. Recent work also
explored controllable audio generation (Shi et al., 2023; Xu et al., 2024; Melechovsky et al., 2024;
Paissan et al., 2024; Zhang et al., 2023b; Liang et al., 2024; Liu et al., 2023a), visual-conditioned
audio generation (Wang et al., 2024d; Mei et al., 2023b; Wang et al., 2023a), and more recently joint
audio-video generation (Tang et al., 2023a;b; Xing et al., 2024; Hayakawa et al., 2024; Tian et al.,
2024; Vahdati et al., 2024; Chen et al., 2024a; Kim et al., 2024a; Wang et al., 2024a; Mao et al., 2024;
Chen et al., 2024c). In this work, we show that improvements to data captioning quality and size, and
the adoption of scalable architecture designs lead to state-of-the-art generation performance.

Text-Audio Datasets. The performance of text-audio models (Zhu et al., 2024; Li et al., 2023b;
Deshmukh et al., 2024a; Mahfuz et al., 2023; Deshmukh et al., 2024c; Shu et al., 2023; Elizalde et al.,
2024; Liu et al., 2023f; Tang et al., 2024; Gong et al., 2024a; Cheng et al., 2024; Zhang et al., 2023a),
including AAC, is currently hindered by the lack of high-quality large-scale paired audio text data of
ambient sounds. The two main existing datasets are AudioCaps (Kim et al., 2019) and Clotho (Drossos
et al., 2020), comprising only 46k and 6k respectively of human-captioned audio clips. Another
challenge is the limited availability of audio clips from sound-only platforms. LAION-Audio (Wu
et al., 2023a) relied on numerous sources of audio platforms such as BBC Sound Effects (BBC Sound
Effects, 2024), (Font et al., 2013) FreeSounds, and SoundBible (SoundBible, 2024) to form a dataset
consisting of 630k audio samples with highly noisy raw descriptions. WavCaps (Mei et al., 2023a)
proposes a filtering procedure based on ChatGPT (Achiam et al., 2023) to collect 400k audio clips
and weakly caption them based on the noisy descriptions alone. Several subsequent work (Majumder
et al., 2024; Sun et al., 2024) adopted similar strategies of using large language models to augment
captions. While weak-captioning does improve downstream metrics, it is suboptimal because it fails
to incorporate the audio signal itself. A recent work (Huang et al., 2023b) explored a knowledge
distillation approach that leverages data labels and a pre-trained audio captioner and retriever to
improve caption quality. Chen et al. (2020) attempted to extract audio clips from videos by employing
classifiers to detect ambient audio, speech, and music. In this work, we introduce an efficient dataset
collection pipeline that relies on video datasets to extract ambient audio clips. We use this approach
to collect 57M audio clips and use our state-of-the-art captioning method to add audio-aligned text
descriptions, compromising the largest available text-audio-video dataset.
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Figure 1: (Left) Overview of AutoCap. We employ a frozen HTSAT (Chen et al., 2022) encoder
to produce an audio representation of 1024 tokens. We then employ a Q-Former (Li et al., 2023a)
module to produce a 256 tokens. This representation, along with projected audio embeddings derived
from a frozen CLAP audio encoder (Wu et al., 2023a) and 64 tokens derived from pertinent metadata,
is processed by a pretrained BART encoder-decoder model to generate the final caption. (Right)
Overview of GenAu. Following latent diffusion models, we use a frozen 1D-VAE to convert a
Mel-Spectrogram into latent sequences, which are then divided into groups and processed using
‘local’ attention layers based on the FIT architecture (Chen & Li, 2023). ‘Read’ and ‘write’ layers,
implemented as cross-attention, facilitate information transfer between input latents and learnable
latent tokens. Finally, ‘global’ attention layers on latent tokens allow for global communication
across all groups.

3 METHOD

In this section, we describe our approach to high-quality text-to-audio generation, starting with audio
captioning using AutoCap in section 3.1, data collection and processing in section 3.2, and ambient
audio generation with GenAu in section 3.3

3.1 AUTOMATIC AUDIO CAPTIONING

Audio is an inherently ambiguous modality, as many events can produce similar sound effects—a
phenomenon often leveraged in animation, where soundscapes are artificially constructed. AAC
attempts to generate textual descriptions for audio clips. Previous AAC methods have generally
adopted an encoder-decoder transformer design, where an audio encoder is responsible for producing
a representation that is processed by the decoder to produce a caption. Recent state-of-the-art methods
(Étienne Labbé et al., 2023; Kim et al., 2024b) employ a pretrained audio encoder and finetune a
pre-trained language model as the decoder, relying solely on the audio content for captioning. We
believe that this approach is suboptimal. By directly finetuning the pre-trained language model on the
limited available dataset, these methods often suffer from overfitting and limited expressiveness and
accuracy. Audio files from many sources, however, are still commonly associated with metadata that
might be relevant for captioning such as raw user descriptions, or a related modality (i.e. accompanied
visual information). Motivated by this observation, we propose AutoCap, an audio captioning model
that employs an intermediate audio representation to connect the pretrained encoder and decoder, and
uses metadata to aid with the audio captioning. Figure 1 (left) presents an overview of AutoCap.

We consider a dataset of audio signals paired with a corresponding caption ⟨a,y⟩ and metadata repre-
sented as a set of token sequences {mj}j=M

j=1 . Inspired by state-of-the-art AAC methods (Mei et al.,
2023a; Étienne Labbé et al., 2023; Kim et al., 2024b), we employ an encoder-decoder architecture.
We start by computing a global feature representation of the audio:

xclap = Pclap(Eclap(a)), (1)

where Pclap is a learnable projection layer and Eclap is the audio encoder of a pretrained CLAP
model (Wu et al., 2023a). Then we compute a local feature representation of the input audio:

xaudio = Q(Ea(a)), (2)

4
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Music Speech No subtitles Speech

AutoCap Title: How to ride a horse…
Video Caption: House running…Horse growls and hooves clop

Speech or music presentSample rejected

Speech or music 

not present
Sample accepted

Figure 2: Audio data collection pipeline. We employ online video transcripts to identify audio
segments without speech or music. These are processed by AutoCap to generate captions. We retain
only ambient clips with captions lacking music and speech keywords.

where Q is a Q-Former (Li et al., 2023a) that outputs a compact sequence audio representation and Ea
is a pretrained HTSAT (Chen et al., 2022) audio encoder that produces a time-aligned representation.
The Q-Former efficiently learns 256 latent tokens, which serve as keys in cross-attention layers
with the input features, thereby condensing the audio input features into 256 tokens. Metadata
sequences mi are then embedded using the embedding layer of the pretrained decoder model to
obtain corresponding embedding sequences xmetai . For our experiments, we use video titles and
captions as the metadata. We represent the input audio and metadata as the following input sequence:

x = xclap [boa] xaudio [eoa] [bom]1 xmeta1 [bom]1 ... [bom]M xmetaM [bom]M , (3)

where [boa][eoa] represent beginning and end of audio sequence embeddings xaudio, and
[bom]i, [bom]i represent beginning and end of metadata embeddings xmetai . This input sequence
is then used to obtain an output predicted caption ŷ as ŷ = Dt(x) where Dt is a pretrained BART
transformer model (Lewis et al., 2020) serving as the decoder. Finally, we train our model using a
standard cross-entropy loss over next token predictions:

LCE = − 1

T

t=T∑
t=1

log p(yt|y1:t−1,x). (4)

To avoid degrading the quality of the pretrained BART and audio encoder models, we adopt a
two-stage training procedure. In Stage 1, both the audio encoders and BART model are kept frozen,
thus allowing the Q-Former, projection layers, and newly introduced delimiter tokens to align to
the existing BART input representation. In this stage, we pretrain the model using a larger dataset
of weakly-labeled audio clips. In Stage 2, we unfreeze all BART model parameters apart from the
embedding layer and finetune the model on the Audiocaps dataset at a lower learning rate to make the
captioning style align more closely to the target dataset. This training strategy effectively leverages
the larger, weakly-labeled dataset while minimizing the knowledge drift in the pretrained BART.
The use of Q-Former to learn an intermediate representation is pivotal for such training strategy.
Furthermore, compared with baseline HTSAT-BART (Mei et al., 2023a), the Q-Former summarizes
the audio representation into four times fewer tokens, significantly reducing the inference time.

3.2 DATA COLLECTION AND RE-CAPTIONING PIPELINE

Generative models in the image and video domains have shown benefits from increased quantities of
data and improved quality of captions. In the audio domain, however, the major human-annotated
audio-text datasets, namely AudioCaps (Kim et al., 2019) and Clotho (Drossos et al., 2020), provide
only 51k audio clips combined. Previous methods attempted to extract additional ambient audio
clips from existing video datasets using pretrained audio classifiers, but a high rejection rate of
99% marked this method impractical. Instead, we found that automatic transcripts offer reliable
information about the segments containing ambient sounds. In particular, we propose to select the
parts of the videos that contain no automatic transcription, suggesting the absence of speech and
music. Such an approach offers specific advantages over using pretrained classifiers. Automatic
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Figure 3: Scaling analysis of model size (left) and data volume with synthetic captions (right) reveal
consistent improvements in FD and IS.

transcripts, readily available for most online videos, eliminate the need to download and process
video and audio data before filtering. Additionally, as these transcripts provide precise time-aligned
information, they facilitate the extraction of more segments, effectively reducing the rejection rate to
83%. Subsequently, we leverage our AutoCap model to provide textual descriptions of the extracted
audio clips. Despite the effectiveness of this method in collecting ambient sounds, some clips still
inadvertently contain music or speech due to transcription errors, particularly with speech in less
common languages. We address this by analyzing captions and filtering out clips with keywords
related to speech or music. Figure 2 summarizes our data collection pipeline.

We follow this process to extract 466k audio-text pairs from Audioset (Gemmeke et al., 2017) and
VGGSounds (Chen et al., 2020). Additionally, we recaption audio-only dataset such as Freesound,
BBC Sound Effects, and SoundBible. To provide metadata, we employ the captioning model of
Chen et al. (2024b) to extract a caption whenever a video content is available and pass an empty text
otherwise. In total, we form AutoReCap, a large-scale dataset compromising of 761,113 audio-text
pairs with precise captions. As an additional contribution, we introduce AutoReCap-XL, in which
we scale our approach by analysing four additional large-scale video dataset (Lee et al., 2021; Xue
et al., 2022; Zellers et al., 2022; Nagrani et al., 2022) with a total of 71M videos and 715.4k hours. In
total, we collect and re-caption 57M ambient audio clips spanning 123.5k hours from 20.3M different
videos, forming by far the largest available dataset of audio with paired captions. More details about
the dataset can be found in the Appendix.

3.3 SCALABLE TEXT-2-AUDIO GENERATION

We design our audio generation pipeline, GenAu, as a latent diffusion model. Figure 1 (right) shows
an overview of our proposed model. In the following section, we describe in detail the structure of
our latent variational autoencoder (VAE) and the latent diffusion model.

Latent VAE. Directly modeling waveform audio data is complex due to the high data dimensionality
of audio signals. Instead, we replace the waveform with a Mel-spectrogram representation and use a
VAE to further reduce its dimensionality, following prior work (Melechovsky et al., 2024; Huang
et al., 2023b). Once generated, Mel-spectrograms can be decoded back to a waveform through the
use of an audio vocoder (Kong et al., 2020). However, commonly-used 2D autoencoder designs (Liu
et al., 2023b;c; Melechovsky et al., 2024), are not well suited to the Mel-spectrogram representation,
as the separation between the Mel channels is non-linear, which is not well suited for 2D convolutions.
We instead opt for a 1D-VAE design based on 1D convolutions similar to Huang et al. (2023a).
We train our VAE using a combination of reconstruction, adversarial, and KL regularization losses
following Esser et al. (2021).

Latent diffusion model. Following the latent diffusion paradigm, we generate audio by training a
diffusion model in the latent space of the 1D-VAE. Transformer-based diffusion models currently
attain state-of-the-art performance in audio generation (Huang et al., 2023a). To improve model
scalability, we propose to use an efficient transformer architecture due to its success in handling
long-range interactions as in video generation (Chen & Li, 2023; Menapace et al., 2024). In particular,
we adopt the FIT architecture of Menapace et al. (2024) which was originally proposed to work in
the pixel space and revise it for the latent space of the audio modality.

Given a 1D input x, we first apply a projection operation to produce a sequence of input patch tokens.
We then apply a sequence of FIT blocks to the input patches where each block divides patch tokens
into contiguous groups of a predefined size. A set of local self-attention layers are then applied
separately to each group to avoid the quadratic computational complexity of attention computation.
Differently from the video domain (Menapace et al., 2024) where the high input dimensionality
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Table 1: AutoCap results on AudioCaps test split for various models. AS: AudioSet, AC: AudioCaps,
WC: WavCaps, CL: Clotho, MA: Multi-Annotator Captioned Soundscapes.

Model Pretraining Data BLEU1 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr

ACT AS 64.7 25.2 46.8 22.2 67.9 16.0 42.0
V-ACT - 69.8 28.1 49.4 23.7 71.1 17.2 44.2
BART-tags AS 69.9 26.6 49.3 24.1 75.3 17.6 46.5
AL-MixGEN - 70.0 28.9 50.2 24.2 76.9 18.1 47.5
ENCLAP-Large - - - - 25.5 80.2 18.8 49.5
HTSAT-BART - 67.5 27.2 48.3 23.7 72.1 16.9 44.5
HTSAT-BART AC+CL+WC 70.7 28.3 50.7 25.0 78.7 18.2 48.5
CNext-trans - - - - - - - 46.6
CNext-trans AC+CL+MA+WC - - - 25.2 80.6 18.4 49.5

AutoCap (audio) AC 70.0 28.0 51.7 24.6 77.3 18.2 47.8
AutoCap (audio+text) AC 72.1 28.6 51.5 25.6 80.0 18.8 49.4
AutoCap (audio) AC+CL+WC 73.1 28.1 52.0 25.6 80.4 19.0 49.7
AutoCap (audio+text) AC+CL+WC 72.3 29.7 51.8 25.3 83.2 18.2 50.7

makes the local layers excessively expensive, we found them to be beneficial for audio generation.
To further reduce the amount of computation while maintaining long-range interaction, each block
considers a small set of latent tokens. First, a read operation implemented as a cross-attention layer
transfers information from the patches to the latent tokens. Later, a series of global self-attention
operations are applied to the latent tokens, allowing information-sharing between different groups.
Finally, a write operation implemented as a cross-attention layer transfers information from the
latent tokens back to the patches. Due to the reduced number of latent tokens when performing the
global self-attention, computational requirements of the model are reduced with respect to a vanilla
transformer design (Vaswani et al., 2017). Such a design is also particularly suited for the audio
modality, which contains mostly silent or redundant parts. Unlike DiT and UNet-based methods
(Ronneberger et al., 2015; Peebles & Xie, 2023b) which allocate the computation resources uniformly
across input tokens, the FiT architecture selectively focuses on the more informative parts.

To condition the generation on an input prompt, we use a pretrained FLAN-T5 model (Chung et al.,
2022) and a CLAP (Wu et al., 2023a) text encoder to produce the their respective embeddings eFLAN

and eCLAP following prior work Liu et al. (2023c), which we concatenate with the diffusion timestep
t to form the input conditioning signal c. We insert an additional cross-attention operation inside each
FIT block immediately before the ‘read’ operation that makes latent tokens attend to the conditioning.
Moreover, we use conditioning on dataset ID to adapt the generation style to different datasets.

We follow a linear noise scheduler and train the model using the epsilon prediction objective:

L = Et,x,ϵ

∥∥G(xt, c)− ϵ
∥∥2
2
, (5)

where G is the FIT generator backbone, xt is the input with applied noise at diffusion timestep t, and
ϵ is noise sampled in N(0, 1) with the same shape as the input.

4 EXPERIMENTS

We structure the experiments section as follows: section 4.1 evaluates AutoCap by quantitatively
comparing it to previous work, section 4.2 demonstrates the capabilities of GenAu quantitatively. For
both, we discuss training details, baselines, metrics, results, and ablations.

4.1 AUTOMATIC AUDIO CAPTIONING

Training dataset and details. We train AutoCap in two stages. During stage 1, we pretrain on a
large weakly labeled dataset of 634,208 audio clips, constructed from AudioSet, Freesound, BBC
Sound Effects, SoundBible, AudioCaps, and Clotho. We use ground truth captions from AudioCaps
and Clotho dataset, WavCaps captions for Freesound, SoundBible, and BBC Sound Effects, and
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Table 2: AutoCap ablation study on AudioCaps.

Model METEOR ↑ CIDEr ↑ SPICE ↑ SPIDEr ↑
Ours 25.3 83.2 18.2 50.7
- w/o CLAP 25.3 80.7 18.4 49.6
- w/o Stage 2 24.2 75.6 17.3 46.5
- w/o Stage 1 22.6 59.6 15.4 37.5
- Unfreeze Word Embed 22.5 82.6 18.1 50.4

Table 3: GenAu ablation study on out-
of-distribution dataset.

Model IS FD CLAPMS

GenAU-L 18.98 20.81 0.38
GenAU-L (AC) 12.14 25.82 0.30
GenAU-S 15.76 21.29 0.36
GenAU-S w/o Recap. 11.83 25.34 0.29

handcrafted captions through a template leveraging the ground truth class labels for AudioSet. As
metadata, we use the title provided with each clip, and pre-compute video captions using a pretrained
Panda70M model (Chen et al., 2024b) when the video modality is available or pass an empty string
otherwise. We pretrain the model for 20 epochs with a learning rate of 1e-4, while keeping the audio
encoder and pretrained BART frozen. In Stage 2, we fine-tune the model for 20 epochs on AudioCaps
using a learning rate of 1e-5. We use 10-second clips at 32KHz for all experiments.

Baselines. We compare with ACT (Mei et al., 2021), V-ACT (Liu et al., 2023e), BART-tags (Gontier
et al., 2021), AL-MixGEN (Kim et al., 2022), ENCLAP (Kim et al., 2024b), HTSAT-BART (Xu
et al., 2023) and CNext-trans (Étienne Labbé et al., 2023). Among these baselines, ENCLAP and
CNext-trans achieve the best performance. ENCLAP benefits from a stronger audio encoder and the
use of a CLAP representation for additional guidance. CNext-trans trains a lightweight transformer
instead of fine-tuning a pretrained language model to reduce overfitting.

Metrics and evaluation. We report results using the the established BLEU1 (Papineni et al.,
2002), BLEU2 (Papineni et al., 2002), ROUGE (Lin, 2004), Meteor (Lavie & Agarwal, 2007),
CIDEr (Vedantam et al., 2015), and SPIDEr (Liu et al., 2017) metrics. We evaluate our method on
the AudioCaps test split using the last checkpoint of our trained model. We used only 876 clips
for evaluation as some videos were deleted since the original data release. We follow the same
evaluation pipeline as baselines and include their reported results. Results that were not provided in
these publications are excluded from our analysis.

Results. In Tab. 1 we report the quantitative comparison. Our method outperforms previous methods
on all metrics, achieving notable improvements in the CIDEr and BLUE1 scores, with values
of 83.2 and 73.1, respectively. We found that incorporating metadata significantly enhances the
CIDEr scores but slightly reduces the SPICE scores. This trade-off likely results from the enhanced
descriptive detail brought by the metadata, which while enriching the content, introduces noise that
may compromise the model’s semantic precision. In addition, AudioCaps is labeled based on audio
information alone. Thus, the evaluation penalizes the description of information that can not be
deduced with certainty from the audio modality only, such as the specific type of object producing a
rustling sound. Compared to ENCLAP-Large (Kim et al., 2024b), and CNext-trans (Étienne Labbé
et al., 2023), we find the captions produced by our method to be more descriptive and precise with a
better temporal understanding. ENCLAP-Large often misses important details and exhibits lower
temporal accuracy. CNext-trans, while accurate, often produces short captions that lack details. We
include qualitative comparisons in the project Website. Moreover, AutoCap is four times faster than
ENCALP, producing a caption for a 10-second clip in 0.28 seconds, compared to ENCALP which
takes 1.12 seconds. Furthermore, we observe consistent improvements when pretraining on a large
scale of weakly-labeled data during the first stage, validating the effectiveness of our training strategy
in benefiting from a larger, weakly-labeled dataset.

Ablations. In Tab. 2, we ablate model design choices. We observe the use of the CLAP embedding
to bring a 2.5 points increase in the CIDEr score. We also validate that when not performing Stage 2
training, which involves finetuning of the BART (Lewis et al., 2020) model, performance degrades
on all metrics, a finding we attribute to the necessity of adapting BART’s decoder to the sentence
structure typical of AudioCaps. A more severe degradation in performance is observed if Stage 1
is not performed, with the misaligned representation between the encoder and the decoder causing
catastrophic forgetting in the language model. Finally, if BART word embeddings are finetuned in
Stage 2 instead of being kept frozen, we observe a slight performance degradation.

4.2 TEXT-2-AUDIO GENERATION

Training dataset and details. We train on similar data settings to baselines. We use our best-
performing captioning model to re-caption the WavCaps dataset. In addition, we obtain 339,387
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Table 4: GenAu results on AudioCaps test split.

Model Prams # Samples FD ↓ IS ↑ FAD ↓ CLAPLAION ↑ CLAPMS ↑

GroundTruth - - - - - 0.251 0.671
AudioLDM-L 739M 634k 37.89 7.14 5.86 - 0.429
AudioLDM 2-L 712M 760k 32.50 8.54 5.11 0.212 0.621
TANGO 866M 45k 26.13 8.23 1.87 0.185 0.597
TANGO 2 866M 60k 19.77 8.45 2.74 0.264 0.590
Make-An-Audio 453M 1M 27.93 7.44 2.59 0.207 0.621
Make-An-Audio 2 937M 1M 15.34 9.58 1.27 0.251 0.645
Stable Audio Open 1.32B 486K 21.23 10.48 2.32 0.246 0.584

GenAu w/ U-Net 462M 811K 25.57 9.54 1.98 - -
GenAu-Large 1.25B 811K 16.51 11.75 1.21 0.285 0.668

videos from AudioSet and 126,905 videos from VGGSounds, totaling 761,113 clips. For those
obtained from sound-only platforms, we input an empty string as the video caption. For full details
of the data sources of our training dataset, please refer to the Appendix. We additionally use Clotho
and AudioCaps training datasets with their ground truth caption. To stay consistent with baselines,
we train at 16kHz resolution. We use a patch size of 1 and a group size of 32. We use LAMB
optimizer (You et al., 2020) with a LR of 5e-3. We train for 220k steps and choose the checkpoint
with the highest IS, at steps 210k and 207k for the large and small models. We also disable EMA as
found it to make the metrics unstable.
Baselines. We compare with TANGO 1 & 2, (Ghosal et al., 2023), AudioLDM 1 & 2 (Liu et al.,
2023b;c), and Make-An-Audio 1 & 2 (Huang et al., 2023b;a). Both AudioLDM and Make-an-Audio
train a UNet-based latent diffusion model (Rombach et al., 2022) on Mel-Spectrogram representation
of the audio, by regarding the Mel-Spectrogram as a single channel image, and use a pretrained
CLAP encoder to condition the generation on an input prompt. TANGO proposed to use FLAN-
T5 (Chung et al., 2022) as the text encoder and reported significant improvements. AudioLDM-2 and
Make-an-Audio-2 proposed to use a dual encoder strategy of a T5 (Raffel et al., 2022) and CLAP
encoder. AudioLDM-2 focused on extending the generation and conditioning to various domains.
Specifically, they use the language of audio (LOA) to condition the generation on images, audio, or
transcripts and train their model for music and speech generation. Make-an-Audio-2 proposes to
use a 1D VAE representation and employ a feed-forward Transformer-based model to replace the
UNet. Recently, Tango-2 proposed to use instruction fine-tuning on a synthetic dataset to enhance the
temporal understanding. In our experiments, we focus on text-conditioned natural audio generation
and generate 10s clips at a resolution of 16Khz.

Table 5: User study between various baselines. % of votes in favor of the baseline to the left.

Model Realism Quality Prompt Alignment Overall Preference

GenAU-L vs GenAU-S 61.20% 58.00% 61.20% 60.40%
GenAU-L vs GenAU-L (AC) 60.40% 54.80% 60.40% 59.20%
GenAU-L vs MAD-2 64.00% 62.40% 68.40% 66.40%
GenAU-S w/o Recap. vs MAD-2 64.40% 64.00% 63.20% 64.80%

Metrics. We compare the performance of our method with baselines using the standard Frechet
Distance (FD), Inception score (IS), and CLAP score on the Audioset test dataset, containing 964
samples. There is little consistency between baselines when computing the metrics. Some prior work
reported the Fréchet distance results using the VGGish network (Hershey et al., 2017), denoted as
(FAD) (Kilgour et al., 2019), while other uses PANNs (Kong et al., 2019). Additionally, to compute
the CLAP score, some prior work (Liu et al., 2023c) used CLAP from LAION, which we denote as
CLAPLAION (Wu et al., 2023b), while others (Majumder et al., 2024; Huang et al., 2023b;a) used
CLAP from Microsoft (Elizalde et al., 2023), which we denote as CLAPMS . Furthermore, some
prior (Liu et al., 2023b;c) used CLAP re-ranking with 3 samples for computing the metrics. Due
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to such inconsistencies in evaluation pipelines and varying results for the same baselines reported
in different studies, we recompute all metrics using the official checkpoints to ensure consistent
comparisons. We follow the same evaluation protocols of AudioLDM (Liu et al., 2023b) without
CLAP re-ranking and use the AudioLDM evaluation package to compute the metrics. Besides, we
run our ablations on the Bigsoundbank split from WavText5k (Deshmukh et al., 2022), which serves
as an out-of-distribution evaluation for our models. This is to prevent biasing the evaluation based on
the training data. Finally, to further validate our results we run a user preference study. Details about
the user study can be found in the Appendix.

Results. In Tab. 4, we report evaluation results. Our method achieves superior performance compared
to the state-of-the-art methods in terms of IS, FAD, CLAPMS and CLAPLAION scores, marking an
improvement of 22.7%, 4.7%, 3.6%, and 13.5%, respectively. This shows that GenAu can produce
high audio quality and achieve better semantic alignment with the conditioning text.

Data scaling. We consider two key aspects: data quality and quantity. First, in Tab. 5 (2nd fow), we
show that GenAu-L trained with AutoReCap is generally favoured over training only with AudioCaps
(AC). This is confirmed in Tab. 3 (1st vs 2nd row), where increasing the dataset size significantly
boosts the results across all metrics, improving IS by 56.3%. Additionally, we show (3rd vs 4th

row) that using AutoCap to recaption the dataset significantly enhances the results over all metrics,
confirming the importance of data quality. Interestingly, expanding the data size at a lower caption
quality does not yield similar gains even at a bigger model (2nd vs 4th row), aligning with results
reported by Liu et al. (2023c). This highlights that data quality brought by AutoCap is as crucial as
the data quantity. Lastly, we examine the effect of scaling the data with synthetic captions. For this,
we train for 50k steps by fixing AC and Clotho in the training data and varying the amount of synthetic
data. As reported in Fig. 3 (right), scaling data with synthetic caption has a clear improvement over
both IS and FD, with the model trained on the whole AutoReCap achieving the best results.
Model size scaling. In Tab. 5, we report (1st row) that GenAu-L (1.25B params) is constantly
favoured over GenAu-S (493M params). This is further confirmed by our automatic evaluation
in Tab. 3 (1st vs 3rd row), where the larger model shows significant improvements across all metrics.
The scaling trend is also evident in Fig. 3, which demonstrates a clear correlation between model size
and performance in terms of both IS and FD scores.
Model architecture ablation. Until recently, A UNet (Ronneberger et al., 2015) has been the most
popular choice for the diffusion backbone. Yet, as reported in Tab. 4, replacing the FiT backbone with
a UNet drastically reduces performance across all metrics. This supports baseline findings where
UNet-based methods lag behind transformer-based approaches (Huang et al., 2023a). Another choice
that has recently gained popularity is the DiT architecture (Peebles & Xie, 2023b). Make-an-Audio-2
(MAD-2) employs a DiT at a similar model size and data scale as GenAU-L. However, as we show in
Tab. 5, our model is consistently preferred over MAD-2 (3rd row), even without dataset recaptioning
(4th row) (i.e. at similar data settings). We infer that the FiT architect, with its read and write
operations, allocates compute more efficiently to the key segments of the input, making it more
suitable to ambient audio clips which often include silent or redundant parts.

5 CONCLUSION

We take a holistic approach to improve the quality of existing audio generators. Starting by addressing
the scarcity of large-scale captioned audio datasets, we build a state-of-the-art audio captioning
method, AutoCap, which leverages audio metadata to collect a dataset of 57M annotated audio
clips. We then built a latent diffusion model based on a scalable transformer architecture which
we trained on our re-captioned dataset to obtain GenAu, a state-of-the-art open-sources model for
audio generation. Our approach not only improves ambient audio generation but also opens up
possibilities for extending GenAu to other domains, such as speech and music generation. As an
additional contribution, we built AutoReCap-XL, a text-audio-video ambient audio dataset with an
unprecedented size of 57M pairs. AutoReCap-XL can potentially serve as a joint text-audio-video
dataset and broadens novel applications such as text-to-audio-video joint generation.

Limitations and future work. AutoCap was fine-tuned on AudioCaps, featuring 4,892 unique words,
which limits the diversity of our generated captions. Consequently, GenAu may face challenges in
accurately generating audio for detailed prompts. While AutoReCap is extensive in size, it has only
been validated for audio generation. We leave broader analysis on more tasks for future work.
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A AUTORECAP-XL DETAILS

This section outlines the collection and filtering processes for AutoReCap-XL.

A.1 STAGE 1: DATA SELECTION

We selected existing video datasets primarily from YouTube for the ease of accessing automatic
transcriptions. Specifically, we chose 73 million videos from the datasets AudioSet (Gemmeke et al.,
2017), VGGSound (Chen et al., 2020), ACAV100M (Lee et al., 2021), VideoCC (Nagrani et al.,
2022), YTTEMP1B (Zellers et al., 2022), and HDVila-100M (Xue et al., 2022). We select these
datasets for their likelihood of containing videos with strong audio-video correspondence.

A.2 STAGE 2: SPEECH AND MUSIC FILTERING

We downloaded English transcripts from YouTube and used automatically generated ones for videos
without existing transcripts. However, we discard videos without any transcripts. While some datasets
provide only video segments with specific timestamps, we processed the full videos, totaling around
73 million videos. We accepted audio segments longer than one second that lacked any corresponding
subtitles, indicating the absence of speech and music. After filtering, we isolated approximately
327.3 million segments from 55.1 million videos. Fig. 4 displays the distribution of the number of
segments per video. We denote this dataset as AutoReCap-XL-Raw. Subsequently, we use AutoCap
to caption the audio segments. Fig. 6 shows the distribution of caption lengths. Given that AutoCap
was trained for 10-second audio, we limited segments to this duration. Additionally, we concatenate
consecutive segments yielding identical captions to form longer audio clips. Fig. 8 illustrates the
audio length distribution, and a word cloud of the captions is shown in Fig. 10. Despite filtering,
the dataset was still dominated by captions related to speech and music. We attribute this to the
limitations of YouTube’s automatic transcription, particularly with certain types of music and less
common languages.

A.3 STAGE 3: POST-FILTERING OF SPEECH AND MUSIC.

To further refine the dataset from speech and music, We follow a simple filtering approach. Specif-
ically, we employed a large language model (LLM) to generate keywords associated with speech
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Figure 4: Distribution of number of segments per-
video in AutoReCap-XL-Raw

Figure 5: Distribution of the number of segments
per-video in AutoReCap-XL

Figure 6: Distribution of caption length of
AutoReCap-XL-Raw

Figure 7: Distribution of caption length of
AutoReCap-XL

Figure 8: Distribution of audio duration of
AutoReCap-XL-Raw

Figure 9: Distribution of audio duration of
AutoReCap-XL

Figure 10: Word cloud of audio captions in
AutoReCap-XL-Raw

Figure 11: Word cloud of audio captions in
AutoReCap-XL
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and music, such as "talking", "speaking", and "singing," and excluded all audio segments whose
captions contained such keywords. This process yielded 57 million audio-text pairs from 20.3 million
videos. Fig. 5 shows the number of segments per video, Fig. 7 shows the caption length distribution,
Fig. 9 shows the audio length distribution, and Fig. 11 presents a word cloud of the final captions. We
outline the data sources for constructing this dataset in Tab. 6. Our proposed dataset is not only 90
times larger than the previously largest available dataset, LAION-Audio-630KWu et al. (2023b) in
terms of the number of audio clips, but also provides more accurate captions compared to existing
datasets that rely on raw textual data. A comprehensive comparison with other datasets is detailed in
Tab. 7

B ARCHITECTURE DETAILS

B.1 HTSAT EMBEDDINGS EXTRACTION

AutoCap uses HTSAT (Chen et al., 2022) embeddings to encode the input audio and follows the
HTSAT-BART (Mei et al., 2023a) embedding extraction procedure, described in the following, to
obtain “fine-grained” HTSAT embeddings. Given a 10-seconds single-channel input audio at 32Khz,
HTSAT represents it as a mel-spectrogram using window size of 1024, 320 hop size, and 64 mel-bins,
resulting in an input of shape (T = 1024, F = 64). The spectrogram is then encoded as latent tokens
of shape ( T

8P = 32, F
8P = 2, 8D = 768) before the classification layer. HTSAT-BART Mei et al.

(2023a), then averages over the frequency dimension to obtain a representation of shape ( T
8P = 32,

1, 8D = 768) and replicates the latent token by a token replication factor of 8P = 32 to obtain a
so-called “fine-grained” representation of shape 32×32×768, which is flattened into a representation
of shape 1024 × 768. We adopt this representation throughout our work, and Appx. G.3 provides
additional evaluation results showing the performance benefits of the token replication operation.

C LIMITATIONS

C.1 AUTOCAP

Sounds emitted by various objects can often sound similar, such as a waterfall compared to heavy rain,
or a can versus a motorcycle engine. In scenarios where metadata lacks detail, our audio captioning
model may struggle to disambiguate these sounds accurately. The model also tends to falter in
capturing the temporal relationships between sounds and differentiating foreground from background
noises. Additionally, since it is fine-tuned on AudioCaps, which contains a limited vocabulary of
4,892 unique words (excluding common stop words), the model frequently produces repetitive words
and captions.

C.2 GENAU

Although our model is trained to generate natural sound effects, it underperforms in specialized
areas like music generation or text-to-speech synthesis, where more targeted models are superior.
Moreover, the limited vocabulary of the paired texts, even though extensive, hampers the model’s
ability to accurately generate audio for long and detailed prompts.

C.3 AUTORECAP-XL

Our proposed dataset, AutoReCap-XL, is substantial in size but features a constrained vocabulary of
only 4,461 unique words, excluding stop words, due to the vocabulary limitations of the AudioCaps-
trained captioner. Furthermore, despite its potential as a significant contribution, this dataset has not
yet been extensively analyzed for caption accuracy or performance in downstream tasks.
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Figure 12: A screenshot of the user study interface.

D EVALUATION DETAILS

D.1 AUDIO CAPTIONING

While the established practice in the evaluation of audio captioning methods is to report the results
on the test set using the checkpoint that performs best on the validation subset, prior work (Étienne
Labbé et al., 2023; Kim et al., 2024b) reported high instability of the metrics on the validation subset
and weak correlation between the validation and test performance, making the model’s results vary
significantly for different seeds. To alleviate this, ENCLAP (Kim et al., 2024b) selects around five
best-performing validation checkpoints and reports their best results on the test set. CNext-trans
(Étienne Labbé et al., 2023) uses the FENSE score to pick the best validation checkpoint. This
method of choosing the best checkpoint may produce misleading results and potentially disadvantage
baselines. Our model, thanks to the two-stage training paradigm, significantly reduces this instability
and we observe steady performance gains as training progresses. Therefore, we report the results at
convergence, specifically after 20 epochs of pre-training and 20 epochs of fine-tuning.

D.2 AUDIO GENERATION

There is a lack of consistency in the metrics used across text-to-audio generation baselines. Some
baselines, such as Liu et al. (2023b) and Huang et al. (2023a), employ the VGGish network (Hershey
et al., 2017) to compute the Fréchet Distance, while others, like Liu et al. (2023c), utilize the PANNs
network (Kong et al., 2019), and still others rely on OpenL3 embeddings, such as Evans et al. (2024b).
Additionally, some baselines use the LAION CLAP network (Wu et al., 2023b) to compute the CLAP
score, whereas others use the Microsoft CLAP network (Elizalde et al., 2023). To further complicate
matters, different baselines often report varying results in various publications. To address these
discrepancies, we recalculated all metrics for the baselines using their publicly released checkpoints
under identical evaluation configurations. Our method significantly outperforms the baselines across
all metrics, except for the Fréchet Distance, where it is slightly behind Make-An-Audio 2 (Huang
et al., 2023a). Nevertheless, our user study, detailed in the main paper, indicates that GenAu is
generally preferred over Make-An-Audio 2.

Data Source # pairs
AudioSet 339.4k
VGGSounds 126.9k
Freesounds 262.3k
BBC Sound Effects 31.2k
YouTube Videos 57.0M

ACAV-100M
VideoCC
YTTEMP1B
HDVila-100M

AutoReCap 761.1k
AutoReCap-XL 57.0M

Table 6: Overview of the employed dataset sources and audio clips counts for each of them.
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Table 7: Comparative overview of the main audio-language datasets.

Dataset # Text-Audio Pairs Duration (h) Text source

AudioCaps 52,904 144 Human
Clotho 5,929 37 Human
MACS 3,537 10 Human
WavText5K 4,072 23 Online raw-data
SoundDescs 32,979 1,060 Online raw-data
LAION-Audio-630K 633,526 4,325 Online raw-data
WavCaps 403,050 7,567 Processed raw-data

AutoReCap 761,113 8,763 Automatic re-captioning
AutoReCap-XL 57M 123,500 Automatic re-captioning
AutoReCap-XL-Raw 327.3M - Automatic re-captioning

Table 8: Audio Evaluation Criteria

Criterion Description
Realism Which audio is more realistic? In other words, is more likely to be a

result of a real action.

Quality Which audio has better quality, regardless of the realism of the audio.
Please note that some audio may have background noise, which should
not be confused with low quality.

Prompt Alignment Considering the prompt to generate the audio is "A sewing machine
operating as a machine motor hisses loudly in the background", which
audio better follows the given prompt?

Overall Preference Considering the realism, quality, and prompt alignment of the audio,
which audio do you prefer more overall? The prompt is: "A sewing
machine operating as a machine motor hisses loudly in the background."

D.3 USER STUDY

Each user study reported in this paper involved 5 different participants, yielding a total of 1000
responses per study. Samples were selected from the AudioCaps test split, specifically choosing
the top 200 samples with the longest text prompts and sampling 50 for each study to enhance the
likelihood of obtaining more complex audio scenarios. To minimize discrepancies between baselines,
we fix the seed and other sampling parameters across all experiments.

During the user study, participants were initially presented with two audio clips from the compared
baselines and asked to judge which one sounded more realistic. They were then prompted to choose
the audio they believed had better quality. Next, after showing the prompt used to generate the audio,
participants were asked to select the clip that most faithfully followed the prompt. Finally, they were
asked to choose their overall preferred audio clip. A screenshot of the user study interface is included
in Fig. 12, and the questions posed to the annotators are detailed in Tab. 8.

E TRAINING AND INFERENCE DETAILS

E.1 AUTOCAP

AutoCap introduces 6.2 million new parameters on top of the frozen HTSAT audio encoder and the
base BART model. These parameters include 4.7M for the Q-Former, 0.9M for embedding layers,
and 0.6M for projection layers. The Q-Former employs 256 learnable tokens, a hidden dimension of
256, 8 attention heads, and 2 hidden layers.
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Table 9: Qualitative comparison of captioning results on the AudioCaps dataset. See the Website for
qualitative results accompanied by the respective audio.

Method Caption

Ground Truth A man talking as ocean waves trickle and splash while wind blows into a microphone
Ours A man speaks as wind blows and water splashes
CoNeTTE A man is speaking and wind is blowing
ENCLAP A man is speaking and wind is blowing

Ground Truth An adult male speaks, birds chirp in the background, and many insects are buzzing
Ours Birds chirp in the distance, followed by a man speaking nearby, after which insects buzz

nearby
CoNeTTE A man speaking with birds chirping in the background.
ENCLAP Birds are chirping and a man speaks

Ground Truth A telephone dialing tone followed by a plastic switch flipping on and off
Ours A telephone dialing followed by a series of plastic clicking then plastic clanking before

plastic thumps on a surface
CoNeTTE A telephone ringing followed by a beep.
ENCLAP A telephone dialing followed by a series of electronic beeps

Ground Truth A running train and then a train whistle
Ours A train moves getting closer and a horn is triggered
CoNeTTE A train horn blows and a steam whistle is blowing
ENCLAP A train running on railroad tracks followed by a train horn blowing as wind blows into a

microphone

Ground Truth A child is speaking followed by a door moving
Ours A child speaks followed by a loud crash and a scream
CoNeTTE A woman speaking followed by a door opening and closing.
ENCLAP A young girl speaks followed by a loud bang

Ground Truth Water splashing as a baby is laughing and birds chirp in the background
Ours A baby laughs and splashes, and an adult female speaks
CoNeTTE A baby is laughing and people are talking.
ENCLAP A baby laughs and splashes in water

Ground Truth Leaves rustling in the wind with dogs barking and birds chirping
Ours Birds chirp in the distance, and then a dog barks nearby
CoNeTTE A dog is barking and a person is walking.
ENCLAP Birds chirp and a dog barks

Ground Truth Tapping followed by water spraying and more tapping
Ours Some light rustling followed by a clank then water pouring
CoNeTTE A toilet is flushed and water is running.
ENCLAP A faucet is turned on and runs

We train the audio captioning model using the Adam optimizer, starting with a learning rate of 10−4

in stage 1, and reducing to 10−5 in stage 2. The training was completed over 9 hours on eight A100
80GB GPUs. Although our model is training with 10-second audio clips, we observed qualitatively
that it generalizes well to short audios, such as 1-2 second audio clips.

E.2 GENAU

We employ the LAMB optimizer for our audio generation model, setting the learning rate at 0.005
with a cosine schedule, and incorporating a weight decay of 0.1 and a dropout rate of 0.1. The small
model variant is trained for 210k steps with a batch size of 2,048, while the large model variant is
trained for 220k steps with a batch size of 3,072. The large model is trained over 48 hours on 48
A100 80GB GPUs, and the small model on 32 GPUs. Ablation studies are conducted on eight A100
80GB GPUs using a batch size of 512. We further condition the model on the training dataset with a
conditioning dataset ID. For generation, we utilize the AudioCaps dataset ID as it is the most reliable
dataset.
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Table 10: Ablation of different FIT architectural variations in terms of patch size number of latent
tokens and adopted text encoders on the AudioCaps dataset.

Tokens Patch size FLAN-T5 CLAP FD ↓ FAD ↓ IS ↑

256 1 ✓ ✓ 16.45 1.29 10.26

256 1 ✓ 17.41 1.39 10.0
256 1 ✓ 20.47 1.86 8.89

384 1 ✓ 17.41 1.39 10.0
192 1 ✓ 18.0.1 2.01 8.91
128 1 ✓ 25.56 1.77 7.49

256 2 ✓ ✓ 18.53 1.70 9.0

Table 11: Ablation of different 1D-VAE designs on audio generation on the AudioCaps dataset.

Channels Recon. loss FAD ↓ FD ↓ IS ↑

64 0.159 1.29 16.45 10.26
128 0.107 1.43 16.78 10.11
256 0.064 1.80 18.63 9.43

F DISCUSSION WITH CONCURRENT WORK

F.1 TEXT-CONDITIONED AUDIO GENERATION

Recently, Stable Audio Open (Evans et al., 2024c) introduced a 1.32B-parameter model capable of
generating variable-length stereo audio clips at 44.1 kHz. This model leverages a latent diffusion
approach with a DiT (Peebles & Xie, 2023a) as its diffusion backbone, similar to prior work
such as Make-An-Audio 2 (Huang et al., 2023a). In contrast, GenAu employs a FiT architecture.
In Tab. 5, we show the superiority of our FiT-based approach over DiT by showing that GenAu-S
is consistently preferred over a 937M-parameter DiT-based baseline (Make-An-Audio 2 Huang
et al. (2023a)) when trained on comparable data settings (i.e.without recaptioning) at a smaller scale
(493M parameters). Additionally, Stable Audio Open proposes directly encoding audio clips using
a variational autoencoder (VAE) with a ResNet-like architecture, which is particularly effective for
higher-resolution audio generation. In contrast, our work adopts previous approaches (Huang et al.,
2023a; Liu et al., 2023c) and uses a Mel-spectrogram representation due to its simplicity. GenAu,
being a latent model, can readily benefit from improved latent audio representations, such as those
employed by Stable Audio Open.

F.2 AUDIO CAPTIONING

A concurrent work, SOUND-VECAPS (Yuan et al., 2024), and Auto-ACD (Sun et al., 2024), propose
prompting a pretrained large language model with multimodal information. SOUND-VECAPS
utilizes visual captions generated by a pretrained visual captioner (Wang et al., 2024b) alongside
audio captions from a pretrained audio captioner, ENCLAP (Kim et al., 2024b), to produce more
complex captions, showing significant improvements in the downstream task of audio generation.
This aligns with our approach of incorporating visual captions in the audio captioning task. However,
unlike these methods, which rely solely on pretrained models, we integrate visual information directly
into the training process of the audio captioner. This enables a more dynamic and context-aware
incorporation of visual information in the audio captioning task.

Additionally, there has been a recent trend toward training large audio-language models (Ghosh et al.,
2024b; Kong et al., 2024; Gong et al., 2024b; Deshmukh et al., 2024b) and utilizing them for audio
captioning in zero-shot settings. While promising in the pursuit of general-purpose models, their
reported results on audio captioning remain inferior to state-of-the-art automatic audio captioning
(AAC) methods. Consequently, we opt to train a dedicated AAC model, AutoCap, to achieve the
highest-quality captions for our proposed dataset, AutoReCap.
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Table 12: Ablation of token replication factors for the HTSAT embeddings extraction procedure
of (Mei et al., 2023a) on the AudioCaps test split. Larger token replication factors consistently
improve performance due to the related compute increase in the downstream model.

Tokens Count Replication Factor CIDEr BLEU1 BLEU4 ROUGEL

HTSAT-BART 32 1x 73.7 68.6 25.0 49.7
HTSAT-BART 256 8x 74.4 69.7 26.0 49.8
HTSAT-BART 1024 32x 76.6 71.5 26.3 49.8

AutoCap 32 1x 81.9 71.7 28.9 51.3
AutoCap 1024 32x 82.7 72.5 29.3 52.0

G ADDITIONAL RESULTS

In this section, we present additional results which are complemented by our Website.

G.1 ADDITIONAL AUDIO CAPTIONING EVALUATION

In Tab. 9 we show qualitative results of the captions produced by our method and compare them
with state-of-the-art AAC methods. See the Website for qualitative results accompanied by the
original audio. While ENCLAP (Kim et al., 2024b) and CoNeTTE (Étienne Labbé et al., 2023) tend
to produce short captions, our method produces the most descriptive captions, capturing the most
amount of elements from the ground truth audio, an important capability to allow high-quality audio
generation (Shi et al., 2020).

G.2 ADDITIONAL AUDIO GENERATION EVALUATION

In this section, we report additional evaluation results and ablations on the task of audio generation.

In Tab. 10, we evaluate fundamental architectural choices in the design of our scalable FIT model.
When removing either the Flan-T5 or CLAP encodings, we notice a steady reduction in all metrics.
When increasing the number of latent tokens we also notice a steady improvement in performance
as more compute is allocated to the model. Similarly, increasing the patch size to 2 results in a
performance decrease under all metrics due to the reduced amount of allocated computation.

In Tab. 11, we ablate the 1D-VAE bottleneck size in terms of reconstruction loss and performance of
a subsequently trained latent audio diffusion model, in terms of FAD, FD, and IS. Similarly to the
phenomenon observed in the image and video generation domain (Gupta et al., 2023; Esser et al.,
2024), we observe that a larger number of channels allocated to the latent space results in lower
reconstruction losses, but making the latent space more complex, hindering generation quality. We
adopt 64 1D-VAE channels for all our experiments.

G.3 ADDITIONAL HTSAT EMBEDDING EXTRACTION EVALUATION

We perform a series of ablations on HTSAT-BART Mei et al. (2023a) employing different variants of
the procedure of Mei et al. (2023a) for the extraction of HTSAT embeddings (see Appx. B.1). We
consider HTSAT output tokens of shape 32× 768 after the averaging operation over the frequency
dimension of Mei et al. (2023a), and apply different token repetition factors to produce embeddings
with 32 tokens (no token repetition), 256 tokens (8x token repetition) and 1024 tokens (32x token
repetition following Mei et al. (2023a)). For completeness, we perform the same ablation on our
AutoCap, using as input to the Q-Former 32 tokens (no token repetition) and 1024 tokens (32x token
repetition). Training hyperparameters of AutoCap are modified to match HTSAT-BART Mei et al.
(2023a) for the purpose of the ablation.

We followed the training procedure of Mei et al. (2023a) and report evaluation results on the
AudioCaps test split for the last obtained checkpoint in Tab. 12 and Fig. 13. As the ablation shows,
the token replication operation consistently improves model performance. We attribute this finding to
the increased computation in the downstream model caused by it and consequently adopt the best
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Figure 13: Ablation of token replication factors for the HTSAT embeddings extraction procedure
of (Mei et al., 2023a) on the AudioCaps test split for the HTSAT-BART (Mei et al., 2023a) and our
AutoCap model.

performing 32x token replication embeddings extraction procedure of Mei et al. (2023a) throughout
our work.
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