
Scaling Data-Driven Probabilistic Robustness Analysis
for Semantic Segmentation Neural Networks

Navid Hashemi Samuel Sasaki Ipek Oguz Meiyi Ma Taylor T. Johnson
Department of Computer Science, Vanderbilt University, Nashville, TN 37235

{navid.hashemi, samuel.sasaki, ipek.oguz,
meiyi.ma, taylor.johnson}@vanderbilt.edu

Abstract

Semantic segmentation neural networks (SSNs) are increasingly essential in high-
stakes fields such as medical imaging, autonomous driving, and environmental
monitoring, where robustness to input uncertainties and adversarial examples is
crucial for ensuring safety and reliability. However, traditional probabilistic verifi-
cation methods struggle to scale effectively with the size and depth of modern SSNs,
especially when dealing with their high-dimensional, structured inputs/outputs. As
the output dimension increases, these methods tend to become overly conservative,
resulting in unnecessarily restrictive safety guarantees. In this work, we propose a
probabilistic, data-driven verification algorithm that is architecture-agnostic and
scalable, capable of handling the high-dimensional outputs of SSNs without intro-
ducing conservative and loose guarantees. We leverage efficient sampling-based
reachability analysis to explore the space of possible outputs while maintaining
computational feasibility. Our methodology is based on Conformal Inference (CI),
which is known for its high data efficiency. However, CI tends to be overly con-
servative in high-dimensional spaces. To address this, in this paper, we introduce
techniques to mitigate these sources of conservatism, enabling us to provide less
conservative yet provable guarantees for SSNs. We validate our approach on large
segmentation models applied to CamVid, OCTA-500 and Lung_Segmentation,
and Cityscapes datasets, showing that it can offer reliable safety guarantees while
lowering the conservatism inherent in traditional methods. We also provide a public
GitHub repository1 for this approach, to support reproducibility.

1 Introduction

Deep Neural Networks (DNNs) have demonstrated remarkable performance in numerous domains,
including image classification, speech recognition, medical diagnosis, and autonomous systems. De-
spite their widespread adoption, DNNs remain highly vulnerable to input perturbations and adversarial
examples—subtle changes to inputs that can drastically alter network outputs. This vulnerability
raises serious concerns, particularly for safety-critical applications such as autonomous driving,
medical imaging, and robotics, where incorrect predictions may lead to catastrophic outcomes.

The study of neural network robustness primarily falls into two categories: falsification-based
methods, which focus on discovering adversarial examples [Madry et al., 2017, Goodfellow et al.,
2014, Kurakin et al., 2016], and verification-based methods, which aim to formally certify a network’s
robustness under certain input perturbations [Zhou et al., 2024, Lemesle et al., 2024, Wu et al., 2024].
The former is useful for finding failure modes, but it lacks formal guarantees. On the other hand, the
latter offers provable guarantees but often suffer from severe scalability limitations.

1https://github.com/Navidhashemicodes/SSN_Reach_ReLU_Surrogate

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Navidhashemicodes/SSN_Reach_ReLU_Surrogate

Reachability analysis—computing the set of all possible outputs of a system given a bounded
set of inputs—has emerged as a powerful tool for robustness verification. In neural networks,
it can characterize how input perturbations propagate through the network and impact the final
prediction. Nonetheless, reachability analysis is computationally intractable for large-scale networks
or high-dimensional outputs. For instance, semantic segmentation networks (SSNs), which output
pixel-level class labels, are particularly challenging due to their high-dimensional output spaces and
complex architectures, often involving layers like transposed convolutions, max-pooling, and dilated
convolutions. Traditional reachability-based methods struggle with such models, becoming overly
conservative or failing to scale.

To address these limitations, probabilistic verification offers a compelling alternative [Fischer et al.,
2021, Anani et al., 2024, Hao et al., 2022, Marzari et al., 2024]. Rather than verifying properties
for all possible perturbations, it focuses on verifying them with high probability under a given
distribution of input uncertainty. Probabilistic methods can scale better and provide meaningful
statistical guarantees, especially when exact bounds or Lipschitz constants are unavailable or overly
conservative. However, existing probabilistic approaches also face significant challenges: they often
struggle with nontrivial output specifications, and fail to scale to large and deep networks like those
used in semantic segmentation. In this work, we propose a scalable, architecture-agnostic, and low-
conservatism probabilistic verification algorithm and introduce it for verifying semantic segmentation
neural networks. Our method does not rely on restrictive assumptions about network structure or
layer types and is well-suited to high-dimensional output spaces.

Related Works.

Probabilistic verification of Neural Networks. Neural networks are extremely nonlinear. This poses
significant challenges for establishing probabilistic guarantees. Unlike deterministic techniques,
the probabilistic methods for classification task do not directly extend to segmentation tasks. A
key obstacle arises from the use of the union bound2, which causes the guarantees to deteriorate
rapidly in high-dimensional segmentation settings. A prominent research direction in probabilistic
verification is randomized smoothing, first introduced for classifiers [Cohen et al., 2019] and later
adapted to segmentation models [Fischer et al., 2021], with subsequent improvements in Anani
et al. [2024], Hao et al. [2022]. More recently, conformal inference has also been explored as a
way to provide probabilistic guarantees in classification tasks [Jeary et al., 2024]. In this work, we
extend this line of research by applying conformal inference to the segmentation task. Although the
guarantee formulation may differ, we numerically show that our method can significantly reduce the
conservatism compared to existing SOTA on segmentation tasks.

Deterministic verification of Neural Networks. Deterministic verification of neural networks seeks
to establish formal guarantees that a network’s output satisfies a desired specification for all inputs
within a certain set. This task has been approached through several established methods, including
Duong et al. [2023], Katz et al. [2017], Anderson et al. [2020], Cheng et al. [2017], Tran et al.
[2020a]. A large subset of these verification approaches can be interpreted within the broader scope
of branch-and-bound algorithms [Bunel et al., 2020]. Leading tools in this category, such as α, β-
CROWN [Zhou et al., 2024], PyRAT [Lemesle et al., 2024], and Marabou [Wu et al., 2024], have
shown strong performance in recent VNN-COMP challenges Brix et al. [2024]. Techniques like
interval arithmetic [Cheng et al., 2017, Pulina and Tacchella, 2010] are also popular in the literature.

Conformal Inference. Conformal Inference has been also used for verification in a variety of
applications. For instance, Lindemann et al. [2023], Zecchin et al. [2024] employ CI to guarantee
safety in MPC control and Hashemi et al. [2023, 2024] employs CI for reachability of stochastic
dynamical systems, see Lindemann et al. [2024] for a recent survey article.

2 Preliminaries

Notations. Boldface symbols (X) represent sets, while calligraphic letters (X) denote distributions.
The expression x ∼ X indicates that the random variable x is drawn from the distribution X , whereas
x

X∼ X means that x is sampled from the set X according to X . A feedforward neural network with
input dimension n0, l hidden layers of sizes n1, . . . , nl, and output dimension N , using the ReLU

2Pr [P1 ∧ P2 ∧ . . . ∧ Pn] ≥ 1−
∑n

i=1 (1− Pr[Pi])

2

activation function, is written as [n0, n1, . . . , nl, N](ReLU). For an input tensor x ∈ Rh×w×nc, its
vectorized form is given by vec(x) ∈ Rn0 , where n0 = nc× w × h. We denote the Minkowski
sum by ⊕ and the ceiling operator by ⌈x⌉, which returns the smallest integer greater than or equal
to x ∈ R. Finally, an ℓ2 ball with radius r ∈ Rn0 centered at x ∈ Rn0 is denoted as Br(x).

Semantic Segmentation Neural Networks A semantic segmentation neural network (SSN) is
a nonlinear function that assigns a class label to each pixel x(i, j) in a multichannel input image x,
producing a target class label mask(i, j) from a predefined set of classes L = {1, 2, . . . , L},

SSN : x ∈ Rh×w×nc 7→ mask ∈ Lh×w,

where h, w, and nc denote the height, width, and number of channels of the input image, respectively,
and (i, j) ∈ 1, . . . , h× 1, . . . , w are pixel coordinates. In this paper, we denote the logits of SSNs
by y ∈ Rh×w×L, where the target class label mask(i, j) is given by mask(i, j) = argmax

l∈L
y(i, j, l).

Here, we also define the function f : Rn0 7→ Rn as a nonlinear map between the flattened images
and the flattened logits. Formally,

f : vec(x) ∈ Rn0 7→ vec(y) ∈ Rn, n0 = h× w × nc, n = h× w × L.

Conformal Inference Consider a collection of i.i.d and positive scalar random variables
M = {R1, R2, . . . , Rm} sampled from R ∼ D, where R1 < R2 < . . . < Rm. Given a
new draw Rm+1 from the same distribution and a miscoverage level ϵ ∈ (0, 1), conformal
inference (CI)[Vovk et al., 2005] constructs a prediction interval C(Rm+1) = [0, d] such that
Pr[Rm+1 ∈ C(Rm+1)] ≥ 1 − ϵ. In this paper, we refer to these scalar random variables as
nonconformity scores and we refer to M as the calibration dataset. To compute the threshold d, we
use the empirical distribution of nonconformity scores Ri for i ∈ 1, 2, . . . ,m, and define a rank
ℓ := ⌈(m+ 1)(1− ϵ)⌉. A valid choice for the threshold d is then Rℓ, the ℓ-th smallest element of the
augmented set R1, . . . , Rm,∞, as defined in [Tibshirani et al., 2019], which yields the following
marginal guarantee:

Pr [Rm+1 ≤ Rℓ] ≥ 1− ϵ, (1)

where the probability is over the joint randomness of both the calibration and test samples [Tibshirani
et al., 2019, Vovk et al., 2005]. The test sample Rm+1 typically refers to an unseen example drawn
from the same distribution for which we aim to provide a coverage guarantee. In this paper, we also
refer to this sample as the unseen, and denote it by Runseen.

Given a sampled calibration dataset, the coverage level δ = Pr[Runseen ≤ Rℓ] is itself a random
variable following a Beta(ℓ,m+ 1− ℓ) distribution [Angelopoulos and Bates, 2021]. The following
equations shows the mean value and the variance of the beta distribution in terms of m, ℓ:

E
[
δ
]
=

ℓ

m+ 1
, Var

[
δ
]
=

ℓ(m+ 1− ℓ)

(m+ 1)2(m+ 2)
, (2)

that shows by appropriately tuning m and ℓ, we can significantly reduce the variance Var[δ],
to achieve tighter bounds. For instance, when m = 8000 and ℓ = 7999, the variance of the
corresponding Beta distribution is 3.123× 10−8, which is extremely small.

However, to present this in a completely formal way, we only consider low variance scenarios
(Var(δ)≪ 1) and we also include this source of uncertainty by reformulating this guarantee with a
double-step probabilistic guarantee. To include this uncertainty, we can utilize the cumulative density
function, CDF, of beta distribution- a function known as the regularized incomplete beta function-
and propose the following guarantee based on the definition of the CDF.

Pr [Pr[Runseen ≤ Rℓ] > 1− ϵ] > 1− betacdf1−ϵ(ℓ,m+ 1− ℓ). (3)

where betacdf1−ϵ(ℓ,m+ 1− ℓ) is the regularized incomplete beta function that is characterized by
the choice of m and ℓ evaluated at point δ1 = 1−ϵ. The one-step marginal guarantee in (1) holds only
when the rank is set to ℓ := ⌈(m+ 1)(1− ϵ)⌉. However, as shown in Appendix A, a key advantage
of the double-step probabilistic guarantee is its flexibility: the strict relationship among m, ℓ, and ϵ
can be relaxed. Therefore, in this paper, we focus on the double-step guarantee and do not enforce the
constraint ℓ := ⌈(m+ 1)(1− ϵ)⌉. Instead, we tune m, ℓ, and ϵ such that betacdf1−ϵ(ℓ,m+ 1− ℓ)

3

becomes negligibly small. Henceforth, for any logical statement P (ℓ,m) ∈ {true, false}, defined
over the hyper-parameters m, ℓ ≤ m, we refer to the double-step guarantee,

Pr [Pr[P (ℓ,m)] > 1− ϵ] > 1− betacdf1−ϵ(ℓ,m+ 1− ℓ)

as the ⟨ϵ, ℓ,m⟩ guarantee and we say the statement P (ℓ,m) satisfies a ⟨ϵ, ℓ,m⟩ guarantee. We also
refer to ϵ as the miscoverage level, δ1 := 1−ϵ, as the coverage level and δ2 := 1−betacdf1−ϵ(ℓ,m+
1− ℓ) as the confidence of guarantee. Appendix B provides a clarifying example on this topic.

Deterministic and Probabilistic Reachability Analysis on Neural Networks Given a neural
network f : Rn0 → Rn and an input set I ⊂ Rn0 , deterministic reachability analysis aims to
construct a set Rf (I) ⊂ Rn such that, x ∈ I implies f(x) ∈ Rf (I).

In contrast, probabilistic reachability analysis assumes a distributionW over the input set I, denoted
x

W∼ I, and for a given miscoverage level ϵ, proposes a set Rϵ
f (W) ⊂ Rn such that

x
W∼ I ⇒ Pr

[
f(x) ∈ Rϵ

f (W)
]
≥ 1− ϵ. (4)

In this paper, we detail how to compute a probabilistic reach set with miscoverage level ϵ, and
sampling distribution x

W∼ I by constructing a suitable calibration set M of size m, and selecting an
appropriate rank ℓ. Therefore, to keep the terminologies consistent, we reformulate the probabilistic
reach set in (4) using the ⟨ϵ, ℓ,m⟩ guarantee, and we denote it by Rϵ

f (W ; ℓ,m), which satisfies

x
W∼ I ⇒ Pr

[
Pr

[
f(x) ∈ Rϵ

f (W ; ℓ,m)
]
≥ 1− ϵ

]
≥ 1− betacdf1−ϵ(ℓ,m+ 1− ℓ).

Adversarial Examples and Robustness of SSNs An adversarial attack on an image involves
perturbing the input using a set of noise images xnoise

1 , . . . , xnoise
r and corresponding coefficients

λ = [λ(1), . . . , λ(r)]⊤. These perturbations are applied through a parameterized function ∆λ,xnoise(·),
generating the adversarial image as:

xadv = ∆λ,xnoise(x) = x+

r∑
i=1

λ(i)xnoise
i . (5)

We focus on evaluating the robustness of semantic segmentation networks (SSNs) under such
adversarial settings, particularly under the unknown, bounded adversarial examples (xadv ∈ I) where
the coefficients in vector λ are unknown but bounded within specified ranges, i.e., λ ∈ [λ, λ̄] ⊂ Rr.

A pixel x(i, j) is deemed attacked if it faces perturbation. It is also considered robust if, for all ad-
versarial examples, the predicted label remains unchanged: SSN(∆λ,xnoise(x))(i, j) = SSN(x)(i, j).

Consider another scenario where there exists perturbations such that the label at (i, j) changes. In this
case, the pixel is non-robust if for all perturbations we have SSN(∆λ,xnoise(x))(i, j) ̸= SSN(x)(i, j).
The pixel is also unknown if for some perturbations we have SSN(∆λ,xnoise(x))(i, j) = SSN(x)(i, j),
and for some other perturbations we have SSN(∆λ,xnoise(x))(i, j) ̸= SSN(x)(i, j).

To quantify robustness of SSN we consider two different metrics:

Robustness Value: The Robustness Value (RV) of a network is the percentage of pixels that remain
robust under attack: RV = 100× (Nrobust/Npixels), where Npixels = h× w.

Problem Formulation Let x 7→ SSN(x) denote a semantic segmentation network:

Problem 1. The task involves classifying every pixel x(i, j) into robust, non-robust, or unknown
categories with respect to adversarial samples xadv W∼ I, ensuring compliance with a miscoverage
level ϵ under strong probabilistic guarantees.

Problem 2. We aim to obtain the average robustness value RV across K test images {x1, . . . , xK}
evaluated against adversarial examples xadv W∼ I, ensuring validity under a miscoverage level ϵ.

3 Scaling Probabilistic Reachability Analysis on SSN with Strong Guarantees

Given a specific distribution x
W∼ I for sampling inputs x from the input set I, reasoning about

the resulting output distribution y ∼ Y , is infeasible due to the high degree of nonlinearity in

4

neural networks. As a result, providing probabilistic coverage guarantees over the network’s output
space becomes a significant challenge. A key advantage of conformal inference is its distributional
robustness—it produces valid guarantees that are robust to all family of distributions that can well
represent the samples collected in the calibration dataset. This property makes conformal inference
particularly well-suited for reachability analysis of neural networks, which are known for producing
complex and often intractable output distributions.

However, a major challenge arises when applied to high-dimensional datasets: The scalar elements R
in calibration dataset are defined over the outputs y ∼ Y and the space of all possible distributions
Y that can adequately represent the calibration dataset is significantly larger in higher dimensions
and thus conformal inference tends to be overly conservative. This poses a significant obstacle
when applying CI to semantic segmentation networks (SSNs), which are known for producing
extremely high-dimensional outputs. In this paper, we propose a novel learning-based neural network
reachability analysis method for SSNs, that leverages deflative principal component analysis (PCA)
[Mackey, 2008] to address the dimensionality challenges inherent in conformal inference when
applied to provide coverage guarantees on neural network with high dimensional outputs.

In this section, we present our reachability technique in an incremental manner to clearly illustrate
both the contributions and the challenges involved in applying conformal inference to SSNs. We
begin by introducing a naive baseline approach, then highlight its limitations on high-dimensional
spaces. Subsequently, we describe the enhancements we propose to overcome these challenges,
culminating in the final version of our reachability algorithm.

3.1 Naive Reachability Technique via Conformal Inference

The first step to find a probabilistic reachset on neural networks with conformal inference (CI) is to
generate a calibration dataset M of size m and a training dataset T of size t.

Generating train dataset. We sample t different inputs xtrain
j , j = 1, 2, . . . , t from I, with any

distribution of interest, x W′

∼ I, and compute their corresponding outputs vec(ytrain
j) = f(vec(xtrain

j)).
This gives us the training dataset, T =

{
(xtrain

1 , ytrain
1), (xtrain

2 , ytrain
2), . . . , (xtrain

t , ytrain
t)

}
.

Generating Calibration dataset. We sample the input dataset with m different inputs
xcalib
i , i = 1, 2, . . . ,m from the distribution x

W∼ I and their corresponding set of outputs
vec(ycalib

i) = f(vec(xcalib
i)), i = 1, 2, . . . ,m. This gives us the input/output dataset IO ={

(xcalib
1 , ycalib

1), (xcalib
2 , ycalib

2), . . . , (xcalib
m , ycalib

m)
}

. We next attempt to use IO to compute a suit-
able nonconformity score, R ∈ R≥0. To that end, inspired by recent work on using conformal
inference in time-series [Cleaveland et al., 2024], we design the nonconformity scores as fol-
lows in Equation (6). This design provides us a hyper-rectanglular set. Assuming the output
vec(y) = [vec(y)(1), . . . ,vec(y)(n)] ∈ Rn, we propose, the nonconformity scores Rcalib

i as,

Rcalib
i = max

(
|vec(ycalib

i)(1)− c(1)|
τ1

, . . . ,
|vec(ycalib

i)(n)− c(n)|
τn

)
, i = 1, 2, . . . ,m (6)

where c ∈ Rn is the average of the members in the train dataset T, and for k = 1, 2, . . . , n, the
normalization factor τk is proposed to normalize the elements of the random vectors |vec(y)− c|
which can also be obtained using the train dataset as,

τk := max
(
τ∗,max

(
|vec(ytrain

1)(k)− c(k)|, . . . , |vec(ytrain
t)(k)− c(k)|

))
,

where we set τ∗ = 10−5
(∑n

k=1

∑t
j=1 |vec(ytrain

j)(k)− c(k)|
)
/nt, to avoid facing zero as our

normalization factor. We then propose the calibration dataset as M =
{
Rcalib

1 , Rcalib
2 , . . . , Rcalib

m

}
.

The next step is to sort the nonconformity scores in M based on their magnitude. Without loss of
generality let’s assume Rcalib

1 < Rcalib
2 < . . . < Rcalib

m . Given a new draw xunseen from the distribution
x

W∼ I and the architecture of the neural network, the output vec(yunseen) = f(vec(xunseen)) follows
a specific distribution. We call this distribution as y ∼ Y . Furthermore given the map we proposed to
compute the nonconformity scores, the i.i.d random variables,

Runseen = max

(
|vec(yunseen)(1)− c(1)|

τ1
, . . . ,

|vec(yunseen)(n)− c(n)|
τn

)
(7)

5

adopt another distribution where we call it R ∼ D. Here Runseen and the elements
Rcalib

1 , Rcalib
2 , . . . , Rcalib

m are all sampled from the distribution D. This means that we can apply
conformal inference. Therefore, for the new draw Runseen, given a desired rank, ℓ ≤ m and a desired
miscoverage level ϵ, we can propose the following ⟨ϵ, ℓ,m⟩ guarantee,

Pr
[
Pr[Runseen ≤ Rcalib

ℓ] > 1− ϵ
]
> 1− betacdf1−ϵ(ℓ,m+ 1− ℓ).

Following the definition in Equation (7), the logical statement P1(ℓ,m) := [Runseen ≤ Rcalib
ℓ] is

logically equivalent to

P2(ℓ,m) :=

n∧
k=1

[
c(k)− τkR

calib
ℓ ≤ vec(yunseen)(k) ≤ c(k) + τkR

calib
ℓ

]
,

which defines a hyper-rectangular set as the reachset for any unseen output of the neural network
generated by x

W∼ I. Since P1(ℓ,m) satisfies the ⟨ϵ, ℓ,m⟩ guarantee, this reachset also provides
the same coverage guarantee on the unseen outputs of the neural network. Appendix C provides
a clarifying example on this technique demonstrating that it is effective even on very deep neural
networks, offering strong probabilistic guarantees with a reasonable number of required sampling.
As the architecture of a deep neural network becomes more complex, the distribution of its output can
exhibit increasingly intricate behavior. Conformal inference remains robust to any output distribution
that represents the calibration dataset, allowing it to handle such complexities reliably. However, the
tightness of the reachset does not persist when the dimensionality of the network’s output increases.

• The first issue is that the naive technique can only produce a hyper-rectangular reachset, that
can be a significant source of conservative in high-dimensional spaces.

• The second issue is that the space of distributions Y that can provide some distribution D
which well represent the calibration dataset is significantly larger in high dimensional space.

3.2 From Hyper-Rectangular Reachsets to Generalized Zonotopic Representations

Starset [Bak and Duggirala, 2017] is an extension of zonotopes that we utilize here to represent our
probabilistic reachsets. Our approach to constructing a general starset as the reachset is based on
approximating the original deep neural network f with a smaller and more computationally tractable
ReLU network g : Rn0 → Rn. The model g is trained on the training dataset T, which implies it is
valid only for inputs x sampled from the set I.3 The core idea is to apply deterministic reachability
analysis to this simplified model using state-of-the-art tools such as NNV [Tran et al., 2020b], and
then inflate its reach set to account for approximation error between f and its surrogate g, thereby
obtaining a probabilistic reachset for the original model f with an ⟨ϵ, ℓ,m⟩ guarantee.

Training the surrogate model g serves a dual purpose: it not only provides a better approximation
for f , but also defines the shape of a convex hull which when inflated serves as a tighter over-
approximation of the probabilistic reachset of f . Once g is trained, this convex shape can be
computed as a starset via deterministic reachability via NNV toolbox. To inflate this surrogate
reachset, we follow the procedure outlined in the naive technique (Section 3.1) to generate a hyper-
rectangle that bounds the prediction error with a provable ⟨ϵ, ℓ,m⟩ guarantee. In other words, we
define q(vec(x)) = f(vec(x))−g(vec(x)) and apply the naive technique on q(vec(x)) to compute
its hyper-rectangular reachset with ⟨ϵ, ℓ,m⟩ guarantee4. We refer to this hyper-rectangle as inflating
set.

In conclusion, if we denote the deterministic reachset of surrogate model as the starsetRg(I),

x ∈ I ⇒ g(vec(x)) ∈ Rg(I)

and for some hyper-parameters (ℓ,m) and distribution x
W∼ I, the ⟨ϵ, ℓ,m⟩ guaranteed probabilistic

reachset for prediction errors byRϵ
q(W; ℓ,m),

x
W∼ I ⇒ Pr

[
Pr[q(vec(x)) ∈ Rϵ

q(W; ℓ,m)] > 1− ϵ
]
> 1− betacdf1−ϵ(ℓ,m+ 1− ℓ),

3If the set I is very small, a linear map can be used as an alternative to the surrogate model g, since the
input/output relationship of f becomes easier to approximate in such cases.

4The naive technique can be viewed as a simplified version of the surrogate-based technique, where the
training dataset is approximated by a simple average computation, (g(vec(x)) = c, Rg(I = {c}).

6

Algorithm 1: Learning-Based Principal Component Analysis through Deflation Algorithm

Initialize z1 , z2, . . . , zt ← vec(ytrain
1), vec(ytrain

2), . . . , vec(ytrain
t) , A← [], J

for index = 0, 1, . . . , N − 1 do
// Train the principal direction using stochastic gradient ascent

a⃗index ← argmax
a⃗

[
J (⃗a) := 1

t

∑t
j=1 a⃗

⊤zjz
⊤
j a⃗

]
, s.t. ∥a⃗∥2 = 1

A.append(⃗aindex) // collect the principal direction in A

if J (⃗aindex) < J then
break // Stop if the variance falls below threshold.

// Update the dataset by component removal along principal direction.

z1, z2, . . . , zt ← z1 − (⃗a⊤indexz1)⃗aindex, z2 − (⃗a⊤indexz2)⃗aindex, . . . , zt − (⃗a⊤indexzt)⃗aindex

then the probabilistic reachset of the model f with the same ⟨ϵ, ℓ,m⟩ guarantee is obtainable by
Rϵ

f (W; ℓ,m) = Rg(I)⊕Rϵ
q(W; ℓ,m), where ⊕ denotes the Minkowski sum,

x
W∼ I ⇒ Pr

[
Pr[f(vec(x)) ∈ Rϵ

f (W; ℓ,m)] > 1− ϵ
]
> 1− betacdf1−ϵ(ℓ,m+ 1− ℓ).

This technique offers two key improvements over the naive approach presented in Section 3.1:

• The reachset is no longer constrained to a hyper-rectangle, eliminating the first source of conser-
vatism inherent in the naive method.

• The calibration dataset is now defined using prediction errors rather than the network’s raw outputs.
Since prediction errors are typically of much smaller magnitude than the outputs of model f , this
significantly reduces the conservatism of conformal inference in high-dimensional spaces.

Despite the improvements introduced in this section, the reachability analysis remains unscalable in
high-dimensional settings. The core challenge is that training the surrogate model g—even when
kept relatively small—often fails to converge its loss function to a good solution due to the high
dimensionality of the output space. This implies that the magnitude of the prediction errors may not
remain small relative to the output of the neural network. To mitigate this, we incorporate a scalable
version of Principal Component Analysis (PCA), known as deflation algorithm, during the training
process for g, a technique known to be effective for handling PCA in high-dimensional spaces. The
next section provides a detailed explanation of this enhancement.

3.3 Training the Surrogate Model for SSNs via Principal Component Analyis

In this section, we present our methodologies to mitigate the dimensionality challenges to train the
surrogate model g : Rn0 7→ Rn, and present our technique for the robustness analysis of SSNs.

In our robustness analysis of SSNs, as indicated by equation (5), adversarial perturbations are
confined to an r-dimensional subspace of the input space, with r ≪ n0. Although input images are
high-dimensional, the perturbations are not. Thus, we reformulate the surrogate as g′(λ) : Rr 7→ Rn,

g′(λ) = g(vec(x+

r∑
i=1

λ(i)xnoise)) = g(vec(xadv)) and λ ∈ [λ, λ] ⊂ Rr,

and also the deterministic reachset Rg(I) based on the vector λ as Rg′([λ, λ]) = Rg(I).

High-Dimensionality of Output Space. To address this challenge, we divide the training process
into two separate stages i.e., for a choice of N ≪ n, we train for two models g1 : RN → Rn

and g2 : Rr → RN and we define g′(λ) = g1(g2(λ)). The first stage trains g1 and operates in a
high-dimensional space; however, it is free of local optima, which ensures convergence to a global
solution. The second stage trains the model g2 within a non-convex optimization, but it operates in a
low-dimensional space, making it easier to converge to a good solution.

The first stage performs dimensionality reduction. Let’s sample training images xtrain
j , for j =

1, . . . , t, from the adversarial set I, using sampling the coefficient vectors λtrain
j form [λ, λ]. Then the

7

corresponding logits vec(ytrain
j) form a point cloud in Rn. This stage aims to train the top N principal

directions of cloud, which are stored as columns of the matrix A = [⃗a0, a⃗1, . . . , a⃗N−1] ∈ Rn×N .

We utilize this matrix to represent the high dimensional logits ytrain
j with a lower dimensional

representative vj ∈ RN where vj = A⊤vec(ytrain
j). Principal Component Analysis is a technique

to reduce the dimensionality, but it does not scale to high dimensional spaces. To address this
issue, deflation algorithms have been proposed (see Algorithm 1) that compute principal components
iteratively, in order of significance [Mackey, 2008]. At each iteration, once the most dominant
principal component is identified, the dataset is projected onto the orthogonal complement of that
direction—effectively removing its contribution—before computing the next principal direction.

In this paper, we adopt a learning based deflation algorithm that is presented in Algorithm 1. In this
algorithm we set the components of the principal direction as trainable parameters and maximize
the variance of the dataset in the direction of this vector. At each iteration of this algorithm, the
optimization to train the principal direction have one global maxima one global minima and n− 2
saddle points, which n is the dimension of logits vec(ytrain

j) [Mackey, 2008]. Therefore, although the
training operates in a high-dimensional space, convergence to global maxima is guaranteed.

The second stage trains a relatively small ReLU neural network g2 between the coefficient vectors
λtrain
j and the low dimensional representatives of logit vj , j = 1, . . . , t. This optimization operates in

a low-dimensional space and can converge to a good solution. In conclusion we present the surrogate
model for f as g(xadv) = g′(λ) = Ag2(λ) which is a scalable choice for SSNs.

Detecting Robust, Non-robust and Unknown Pixels with Strong Probabilistic Guarantees Once
the reachset over the SSN logits y ∈ Rn is constructed as a starset, we project it onto each logit
component. This allows us to determine the range of values for each class label l ∈ L at every pixel
location (i, j) ∈ {1, . . . , h} × {1, . . . , w}. Consequently, each pixel (i, j) is associated with L logit
intervals, one for each class. Let l∗ ∈ L denote the class whose logit interval has the highest lower
bound at pixel (i, j). If this lower bound is not strictly greater than the upper bounds of all other
classes’ intervals, the pixel is labeled as unknown as it can obtain more than one labels under UBAA.
In case it is greater, then if l∗ = SSN(x)(i, j), the prediction at that pixel is labeled as robust and if
l∗ ̸= SSN(x)(i, j), it is labeled as non-robust. The Algorithm 2 explains this procedure in detail.

4 Experiments

In our numerical evaluation, we pose four different research questions and address each of them using
numerical results. The main RQs are available in this section and the rest of them are in Appendix G.
We utilized a Linux machine, with 48 GB of GPU memory, 512 GB of RAM, and 112 CPUs.

RQ1: How Does the Performance of our Methodology Compare to Existing Probabilistic
Verification Methods for Neural Networks in the Literature? In this section, we present a
comparison with the works of Fischer et al. [2021], Anani et al. [2024] on the Cityscapes dataset
[Cordts et al., 2016]. Since the formulation of verification guarantees differs slightly across these
approaches, we first provide a general overview of the techniques proposed in Fischer et al. [2021],
Anani et al. [2024], followed by a brief description of our own method in Appendix D. This will
clarify how the comparison can be meaningfully established.

Comparison. The unknown pixels in our method are conceptually equivalent to the abstained
pixels in Fischer et al. [2021], Anani et al. [2024]. Thus, given the same input set Br(x) where
r is provided by Fischer et al. [2021], the comparison focuses to show which technique results in
fewer uncertifiable mask pixels. To this end, we replicate the setup of Table 1 from Anani et al.
[2024], using the same HrNetV2 model [Wang et al., 2020]trained on the Cityscapes dataset with
the HrNetV2-W48 backbone5. Our findings are summarized in Table 1, which shows the average
over 200 test images. Please note that the much lower rate of unknown mask pixels reported for our

5This model is considered large with 65,859,379 parameters, an input space of dimension 1024× 2048× 3
and an output space of dimension 256× 512× 19

8

Table 1: Percentage of uncertifiable pixels under different (σ, κ, r) settings for Fischer et al. [2021],
Anani et al. [2024], and our Naive approaches. Here δ2 = 0.999 in all experiments. See Appendix D
for additional details on the parameters (σ, κ, r). Our verification runtime is 210 seconds, and we set
δ1 = 0.99 andW to be a uniform distribution, for all our CI based experiments.

σ κ r ([Fischer et al., 2021]%) [Anani et al., 2024] (%) Ours (%)
0.25 0.75 0.1686 7 5 0.0642
0.33 0.75 0.2226 14 10 0.0676
0.50 0.75 0.3372 26 15 0.0705
0.25 0.95 0.4112 12 9 0.0727
0.33 0.95 0.5428 22 18 0.0732
0.50 0.95 0.8224 39 28 0.0758

Table 2: Illustrates the model configurations and probabilistic guarantees. For each experiment,
given hyperparameters ℓ, m, and coverage δ1 = 1− ϵ, the confidence δ2 is computed. The reported
verification runtime is averaged over all experiments and mainly depends on inference time and
hyperparameters (ℓ,m), with minor sensitivity to perturbation magnitude and dimension (e, r).
Per-experiment runtimes are shown in Figure 7 of Appendix G.

Dataset Model Input Output Number of (m,m− ℓ) coverage confidence Average
name name dimension dimension Parameters δ1 δ2 runtime

M2NIST m2nist_dc 64×84×1 64×84×11 6,788,107 (1e5, 1) 0.9999 0.9995 5.4 minutes
M2NIST m2nist_ap_dc 64×84×1 64×84×11 4,579,723 (1e5, 1) 0.9999 0.9995 3.8 minutes
M2NIST m2nist_ap_tc 64×84×1 64×84×11 11,664,779 (1e5, 1) 0.9999 0.9995 4.4 minutes

Lung Segmentation UNet1 512×512×1 512×512×1 14,779,841 (8e3, 1) 0.999 0.997 4 minutes
OCTA-500 UNet2 304×304×1 304×304×1 5,478,785 (8e3, 1) 0.999 0.997 3.75 minutes

CamVid BiSeNet 720×960×3 720×960×12 12,511,084 (8e3, 1) 0.999 0.997 9 minutes

method stems from considering a prior distribution. Thus we do not view this as an advantage, but
rather as part of a trade-off between the two approaches, not a sign of superiority6.

RQ2 (1st Ablation Study): How does the technique scale with model size, number of perturbed
pixels, and perturbation level? To assess scalability, we test our surrogate-based verification
method on an r-dimensional darkening adversary (see Figure 1), where r′ pixels in an image x with
intensity above 150/255 in all channels are randomly selected for perturbation (r = nc× r′). Each
direction xnoise

i corresponds to darkening a channel of one such pixel, and xadv is parameterized by an
r-dimensional coefficient vector λ ∈ [λ, λ]. Here, λ induces full darkening (intensity zero), while λ
applies partial darkening. This bound defines the perturbation space xadv ∈ I. The main motivation
for this choice of threat model is that it offers greater flexibility to adjust the sparsity and magnitude
of perturbations, allowing for a more thorough and detailed evaluation of our method’s performance.

Per request of RQ2, in these experiments, we studied high-dimensional datasets (e.g., Lung Segmenta-
tion [Jaeger et al., 2014, Candemir et al., 2014], OCTA-500 [Li et al., 2019], CamVid [Brostow et al.,
2009]) using large pre-trained models. We evaluate performance on a subset of 200 test images across
varying perturbation dimensions and magnitudes, with results shown in Figure 2. Model details and
probabilistic guarantees are summarized in Table 2, where we show the following ⟨ϵ, ℓ,m⟩ guarantee:

Pr [Pr [P] ≥ δ1] ≥ δ2, where P := ”
{

Given an image x, the perturbation magnitude and dimension e, r,
the computed robustness value RV from our technique is valid.

}
”

We also present a demo for the status of all pixels in the segmentation mask in Figures 4,5 and 6.

To assess the conservatism, we examine the projection bounds [y, y] introduced in Algorithm 2.
Specifically, we sample 106 adversarial examples from xadv W∼ I and use them to report:

• Empirical miscoverage ϵ̂, that is the percentage of events, where f(vec(xadv)) /∈ [y, y].

• Empirical bound [ŷ, ŷ], via component-wise minima/maxima of f(vec(xadv)) across samples.

The degree of conservatism can be assessed by comparing [ŷ, ŷ] with [y, y]. To visualize it, we plot,

bound_ratio(k) = (ŷ(k)− ŷ(k))/(y(k)− y(k)), k = 1, . . . , h× w × L

for logit components in Figure 8 (Appendix E) as histogram. Since 106 inferences is costly, we study
the conservatism on three cases from Figure 2, spanning our smallest to largest configurations.

6Compared to our approach, techniques based on randomized smoothing have the advantage of providing
guarantees without assuming any prior distribution. The downside, however, is that their guarantees are derived
for an approximate version of the model that implicitly assumes a prior Gaussian distribution (see Appendix D).

9

Algorithm 2: Detection of the pixel status
Input: I, x, f ,W , ϵ, Hyper-parameters(ℓ,m)
Output: The status of pixels
// Project the Starset
[y, y]← Rϵ

f (W; ℓ,m)

foreach (i, j) ∈ {1:h} × {1:w} do
l∗ ← argmaxl y(i, j, l)

if y(i, j, l∗) ≤ maxl ̸=l∗ y(i, j, l) then
Label pixel (i, j) as unknown

else if l∗ = SSN(x)(i, j) then
Label pixel (i, j) as robust

else
Label pixel (i, j) as non-robust

return Pixel-wise labeling

𝐋
𝐁

=
𝐱

+
෍

 𝝀
(𝐢

)
 𝐱

𝐢𝐧
𝐨

𝐢𝐬
𝐞

𝐫

𝐢ୀ
𝟏

𝐔𝐁 = 𝐱 + ෍ 𝛌(𝐢) 𝐱𝐢
𝐧𝐨𝐢𝐬𝐞

𝐫

𝐢ୀ𝟏

𝐱

𝟑
/𝟐

𝟓
𝟓

𝟏
𝟓

𝟎
/𝟐

𝟓
𝟓

.

.

.

...

Figure 1: Illustration of the perturbation set
I associated with an r-dimensional darkening
adversary applied to image x. The set is con-
structed by applying independent perturbations
to all nc channels across r′ selected pixels (r =
nc × r′), each having R, G, and B intensities
above 150/255. The lower bound LB corre-
sponds to the maximum darkening case (channel
intensities set to zero), whereas the upper bound
UB represents the minimum darkening limit.

10/255 30/255 60/255 90/255 120/255 150/255
perturbation level (e/255)

98.8

99.0

99.2

99.4

99.6

99.8

Av
er
ag
e
Ro

bu
st
ne
ss
 V
al
ue
 (R
V)

Average Robustness Value vs Perturbation Level
BiSeNet for CamVid

10/255 30/255 60/255 90/255 120/255 150/255
perturbation level (e/255)

98.4

98.6

98.8

99.0

99.2

99.4

Av
er

ag
e

Ro
bu

st
ne

ss
 V

al
ue

 (R
V)

Average Robustness Value vs Perturbation Level
UNet for Long Segmentation

10/255 30/255 60/255 90/255 120/255 150/255
perturbation level (e/255)

99.0

99.2

99.4

99.6

99.8

Av
er
ag
e
Ro

bu
st
ne
ss
 V
al
ue
 (R
V)

Average Robustness Value vs Perturbation Level
UNet for OCTA-500

10/255 30/255 60/255 90/255 120/255 150/255
perturbation level (e/255)

97.0

97.5

98.0

98.5

99.0

Av
er

ag
e

Ro
bu

st
ne

ss
 V

al
ue

 (R
V)

Average Robustness Value vs Perturbation Level

m2nist_dc for M2NIST
m2nist_ap_tc for M2NIST
m2nist_ap_dc for M2NIST

17×3 34×3 51×3 68×3 85×3 102×3
perturbation dimension(r)

99.82

99.84

99.86

99.88

99.90

99.92

99.94

99.96

Av
er
ag
e
Ro
bu
st
ne
ss
 V
al
ue
 (R
V)

Average Robustness Value vs Perturbation Dimension
BiSeNet for CamVid

17×1 34×1 51×1 68×1 85×1 102×1
perturbation dimension(r)

99.65

99.70

99.75

99.80

99.85

99.90

Av
er
ag
e
Ro
bu
st
ne
ss
 V
al
ue
 (R
V)

Average Robustness Value vs Perturbation Dimension
UNet for Long Segmentation

17 × 1 34 × 1 51 × 1 68 × 1 85 × 1 102 × 1
perturbation dimension(r)

99.81

99.82

99.83

99.84

99.85

Av
er

ag
e

Ro
bu

st
ne

ss
 V

al
ue

 (R
V)

Average Robustness Value vs Perturbation Dimension
UNet for OCTA-500

17 × 1 34 × 1 51 × 1 68 × 1 85 × 1 102 × 1
perturbation dimension(r)

95

96

97

98

99

Av
er

ag
e

Ro
bu

st
ne

ss
 V

al
ue

 (R
V)

Average Robustness Value vs Perturbation Dimension
m2nist_dc for M2NIST
m2nist_ap_tc for M2NIST
m2nist_ap_dc for M2NIST

Figure 2: Shows RV versus perturbation level e (top row) and perturbation dimension r (bottom
row). In the top row, r = 102× 3 for CamVid, 102× 1 for Lung Segmentation and OCTA-500, and
17× 1 for M2NIST experiment. In the bottom row, e is fixed at 3/255 across all experiments. The
average robustness value RV is averaged over 200 test images.

5 Limitations, Future Works & Conclusion
Limitation. The first limitation of our technique is the assumption of a prior distributionW , which
may not hold in all deployment scenarios. However, this issue can be addressed at a low cost by
replacing CI with robust-CI [Cauchois et al., 2024], which preserves our guarantees even when the
deployment distribution shifts within a known f -divergence ball [Cauchois et al., 2024]. The second
limitation of our technique is the need to recompute the calibration set for each test point, which
accounts for the majority of the computation time in our approach. Finally, while replacing the naive
technique with the surrogate-based technique improves accuracy, it also introduces some drawbacks.
It increases runtime, as it requires performing PCA, training, and deterministic reachability analysis,
and it also limits scalability with respect to input dimensionality, since higher-dimensional settings
make both training and deterministic reachability more challenging. Therefore, in cases where the
perturbation dimension is very large, we fall back to the naïve technique for scalability.

Future Work. The main advantage of the surrogate-based technique is that its guarantees also
capture the interrelations among mask pixels, offering the potential to verify spatial specifications
over SSNs—an aspect not emphasized in this work. In addition, incorporating robust-CI can address
the issue of distribution shift in deployment settings. Therefore, we consider and explore both of
these mentioned extensions in our future research on this topic.

Conclusion. We do not provide deterministic guarantees, and our reachable set remains susceptible
to violations; however, it offers provable probabilistic assurances, as evidenced in Appendix F.
Despite this limitation, our approach is both scalable and data-efficient, delivering meaningful safety
assurances in regions where existing deterministic methods are computationally infeasible. We
demonstrated these capabilities through a series of numerical experiments presented in this paper.

10

6 Acknowledgement

This material is based upon work supported by internal funding from Vanderbilt University for
medical imaging research and the National Science Foundation (NSF) under Award Numbers FMitF-
2220401, 2220426, and 2443803. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect the views of Vanderbilt
or NSF.

References
Alaa Anani, Tobias Lorenz, Bernt Schiele, and Mario Fritz. Adaptive hierarchical certification for

segmentation using randomized smoothing. arXiv preprint arXiv:2402.08400, 2024.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Programming,
183(1):3–39, 2020.

Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent reachability of large linear
systems with inputs. In International Conference on Computer Aided Verification, pages 401–420.
Springer, 2017.

Christopher Brix, Stanley Bak, Taylor T Johnson, and Haoze Wu. The fifth international verifi-
cation of neural networks competition (vnn-comp 2024): Summary and results. arXiv preprint
arXiv:2412.19985, 2024.

Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A high-
definition ground truth database. Pattern Recognition Letters, 30(2):88–97, 2009. ISSN 0167-8655.
doi: https://doi.org/10.1016/j.patrec.2008.04.005. URL https://www.sciencedirect.com/
science/article/pii/S0167865508001220. Video-based Object and Event Analysis.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M Pawan Kumar.
Branch and bound for piecewise linear neural network verification. Journal of Machine Learning
Research, 21(42):1–39, 2020.

Sema Candemir, Stefan Jaeger, Kannappan Palaniappan, Jonathan P Musco, Rahul K Singh, Zhiyun
Xue, Alexandros Karargyris, Sameer Antani, George Thoma, and Clement J McDonald. Lung
segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans.
Med. Imaging, 33(2):577–590, February 2014.

Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident
predictions even when distributions shift. Journal of the American Statistical Association, pages
1–66, 2024.

BONFERRONI CE. Pubblicazioni del r instituto superiore di scienze economiche e commerciali di
firenze. Teoria statistica delle classi ecalcolo delle probabilità, 8:3–62, 1936.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neural
networks. In Automated Technology for Verification and Analysis: 15th International Symposium,
ATVA 2017, Pune, India, October 3–6, 2017, Proceedings 15, pages 251–268. Springer, 2017.

Matthew Cleaveland, Insup Lee, George J Pappas, and Lars Lindemann. Conformal prediction
regions for time series using linear complementarity programming. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 20984–20992, 2024.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pages 1310–1320. PMLR, 2019.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016.

11

https://www.sciencedirect.com/science/article/pii/S0167865508001220
https://www.sciencedirect.com/science/article/pii/S0167865508001220

Herbert A David and Haikady N Nagaraja. Order statistics. John Wiley & Sons, 2004.

Hai Duong, ThanhVu Nguyen, and Matthew Dwyer. A dpll (t) framework for verifying deep neural
networks. arXiv preprint arXiv:2307.10266, 2023.

Mirko Fiacchini and Teodoro Alamo. Probabilistic reachable and invariant sets for linear systems
with correlated disturbance. Automatica, 132:109808, 2021.

Marc Fischer, Maximilian Baader, and Martin Vechev. Scalable certified segmentation via randomized
smoothing. In International Conference on Machine Learning, pages 3340–3351. PMLR, 2021.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Zhongkai Hao, Chengyang Ying, Yinpeng Dong, Hang Su, Jian Song, and Jun Zhu. Gsmooth:
Certified robustness against semantic transformations via generalized randomized smoothing. In
International Conference on Machine Learning, pages 8465–8483. PMLR, 2022.

Navid Hashemi, Xin Qin, Lars Lindemann, and Jyotirmoy V Deshmukh. Data-driven reachability
analysis of stochastic dynamical systems with conformal inference. In Proc. of CDC, pages
3102–3109, 2023.

Navid Hashemi, Lars Lindemann, and Jyotirmoy V Deshmukh. Statistical reachability analysis of
stochastic cyber-physical systems under distribution shift. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 43(11):4250–4261, 2024.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal of
statistics, pages 65–70, 1979.

Stefan Jaeger, Alexandros Karargyris, Sema Candemir, Les Folio, Jenifer Siegelman, Fiona Callaghan,
Zhiyun Xue, Kannappan Palaniappan, Rahul K Singh, Sameer Antani, George Thoma, Yi-Xiang
Wang, Pu-Xuan Lu, and Clement J McDonald. Automatic tuberculosis screening using chest
radiographs. IEEE Trans. Med. Imaging, 33(2):233–245, February 2014.

Linus Jeary, Tom Kuipers, Mehran Hosseini, and Nicola Paoletti. Verifiably robust conformal
prediction. Advances in Neural Information Processing Systems, 37:4295–4314, 2024.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. In Computer Aided Verification: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pages
97–117. Springer, 2017.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Augustin Lemesle, Julien Lehmann, and Tristan Le Gall. Neural network verification with pyrat.
arXiv preprint arXiv:2410.23903, 2024.

Mingchao Li, Songtao Yuan, and Qiang Chen. Octa-500, 2019. URL https://dx.doi.org/10.
1016/j.media.2024.103092.

Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dynamic
environments using conformal prediction. IEEE Robotics and Automation Letters, 2023.

Lars Lindemann, Yiqi Zhao, Xinyi Yu, George J Pappas, and Jyotirmoy V Deshmukh. Formal
verification and control with conformal prediction. arXiv preprint arXiv:2409.00536, 2024.

Lester Mackey. Deflation methods for sparse pca. Advances in neural information processing systems,
21, 2008.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

12

https://dx.doi.org/10.1016/j.media.2024.103092
https://dx.doi.org/10.1016/j.media.2024.103092

Luca Marzari, Davide Corsi, Enrico Marchesini, Alessandro Farinelli, and Ferdinando Cicalese.
Enumerating safe regions in deep neural networks with provable probabilistic guarantees. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 21387–21394,
2024.

Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verification of artificial
neural networks. In Computer Aided Verification: 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings 22, pages 243–257. Springer, 2010.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal
prediction under covariate shift. Advances in neural information processing systems, 32, 2019.

Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T Johnson. Verification of deep
convolutional neural networks using imagestars. In International conference on computer aided
verification, pages 18–42. Springer, 2020a.

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T Johnson. Nnv: the neural network verification tool for
deep neural networks and learning-enabled cyber-physical systems. In Proc. of CAV, pages 3–17,
2020b.

Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Diego Manzanas Lopez, Nathaniel Hamilton,
Xiaodong Yang, Stanley Bak, and Taylor T Johnson. Robustness verification of semantic segmen-
tation neural networks using relaxed reachability. In International conference on computer aided
verification, pages 263–286. Springer, 2021.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world,
volume 29. Springer, 2005.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong
Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual
recognition. IEEE transactions on pattern analysis and machine intelligence, 43(10):3349–3364,
2020.

Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, et al. Marabou 2.0: a versatile formal analyzer of
neural networks. In International Conference on Computer Aided Verification, pages 249–264.
Springer, 2024.

Matteo Zecchin, Sangwoo Park, and Osvaldo Simeone. Forking uncertainties: Reliable prediction
and model predictive control with sequence models via conformal risk control. IEEE Journal on
Selected Areas in Information Theory, 2024.

Duo Zhou, Christopher Brix, Grani A Hanasusanto, and Huan Zhang. Scalable neural network
verification with branch-and-bound inferred cutting planes. arXiv preprint arXiv:2501.00200,
2024.

13

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a new method that is more scalable and less conservative than
existing techniques for verifying semantic segmentation neural networks. We build up the
paper with theoretical contributions regarding our method throughout sections 2 and 3 and
address the claims in the abstract/introduction through research questions and corresponding
experiments for those research questions as described in section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Generally, we our work directly discusses the limitations of probabilistic
verification techniques and using conformal inference specifically. Developing the final
algorithm was also an iterative approach. We build up the theory and describe the naive ap-
proach, its limitations, and then proceed to describe how we addressed those limitations. We
additionally recognize the shortcomings of our method as a probabilistic method, therefore
being unable to provide formal guarantees like some other existing verification methods can,
but at the cost of scalability.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

14

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For our proposed method, we rely on the application of conformal inference.
We acknowledge the necessity of the samples as being i.i.d. for our method to work.
Additionally, we provide complete proofs for conformal inference in the preliminaries.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe in detail the theory relevant to the proposed method. Additionally,
Algorithm 1 and Algorithm 2 provide detailed pseudocode for reproducing the proposed
method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

15

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: At submission, we are not providing open access to the data or code. Through-
out the paper, we provide sufficient references to the datasets and models being used, as
well as pseudocode for reproducing our algorithm.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper does not focus on a new architecture, optimizer, or training strategy,
but we still provide details in Table 2 about the models used such as number of parameters,
input shape, output shape, etc. In Section 4, we provide a breakdown of each experiment,
the datasets being used, the models being verified, what variables are being controlled for
the specific experiment, and other details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The proposed method in our paper is rooted in the probabilistic guarantees
that we show through theoretical contributions or that have been shown from other works.
We do not provide error bars or confidence intervals on our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The first paragraph of Section 4 describes the kinds of compute that was
available for running the experiments. It includes details such as number of CPU cores,
RAM, GPUs and GPU memory.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

17

https://neurips.cc/public/EthicsGuidelines

Justification: Our method cannot be used in a way that it is harmful as it is a technique for
verifying neural networks rather than performing some task using a neural network. We do
not violate any of the rules with regards to data being used in our experiments as well.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive societal impacts are discussed as applying the proposed method is
useful for having trust when applying neural networks in safety-critical systems. However,
because the method is only for verifying neural networks, the proposed technique cannot be
used in a way that is harmful. We do, however, acknowledge throughout the paper that our
method is probabilistic, which is a shortcoming particularly when verifying NNs used in
safety-critical systems.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models used in this work do not fall under the described criteria and we
have not used scraped datasets. Our method also is not concerned with describing a new
model architecture that could be potentially harmful.

Guidelines:

• The answer NA means that the paper poses no such risks.

18

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All sources (datasets, models) are properly cited and licenses properly re-
spected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets. The code and data are not released as part of the
submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

19

paperswithcode.com/datasets

Justification: As described below, the paper does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As described below, the paper does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: As described below, the core method described in the paper does not involve
LLMs as any important, original, or non-standard component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Double-Step Probabilistic Guarantee

The necessary steps to establish the two-sided probabilistic guarantee, along with the flexibility in
choosing the dataset size m, rank ℓ, and failure probability ϵ, begin with the theory of order statistics
[David and Nagaraja, 2004]. This flexibility means that the double-step probability constraint remains
valid regardless of the particular values chosen for m, ℓ ≤ m, and ϵ ∈ [0, 1]. The following lemma
introduces the concept of order statistics.

Lemma A.1 (From David and Nagaraja [2004]) Consider m independent and identically dis-
tributed (i.i.d.), real-valued data points x ∈ [0, 1] drawn from uniform distribution x ∼ U . Sup-
pose we sort them in ascending order and denote the ℓth smallest number by xℓ,(i.e., we have
x1 < x2 < . . . < xm). Let Beta(α, β) denote the Beta distribution7. Then the uniform random
variable at rank ℓ follows:

xℓ ∼ Beta(ℓ,m+ 1− ℓ)

In the context of conformal inference Lemma A.1, has been extended from a uniform and domain-
bounded distribution to a general distribution as follows:

Lemma A.2 (From Vovk et al. [2005]) Consider m independent and identically distributed (i.i.d.),
real-valued data points R drawn from some distribution R ∼ D. Suppose we sort them in ascending
order and denote the ℓth smallest number by Rℓ, (i.e., we have R1 < R2 < . . . < Rm). Let
Beta(α, β) denote the Beta distribution. Then, for an arbitrary Rm+1 drawn from the same
distribution D, the following holds:

Pr [Rm+1 < Rℓ] ∼ Beta(ℓ,m+ 1− ℓ), 1 ≤ ℓ ≤ m. (8)

This result is motivated by two key observations: (1) for a continuous distribution R ∼ D, the
cumulative probability Pr[R ≤ r] is uniformly distributed on [0, 1], and (2) sorting the samples
R1 < R2 < . . . < Rm implies that the corresponding cumulative probabilities Pr[R ≤ Rℓ] are also
ordered, i.e., Pr[R ≤ R1] < Pr[R ≤ R2] < . . . < Pr[R ≤ Rm]. These observations implies that
for all ℓ = 0, 1, 2, . . . ,m, the random variable δ := Pr[R ≤ Rℓ] satisfies the conditions outlined in
Lemma A.1.

In simple terms, this means that while a fixed dataset R1, R2, . . . , Rm is not sufficient to determine
the exact value of δ = Pr[R < Rℓ], we can infer that the value of δ must follow a Beta distribution
that is solely defined based on m and ℓ. This allows us to tune the parameters m and ℓ to provide
strong guarantees for the coverage R < Rℓ where Rℓ is obtained from our fixed sampled dataset.

This guarantee can be equivalently expressed as a two-sided probabilistic bound. Specifically, let
betacdfδ(ℓ,m + 1 − ℓ) denote the cumulative distribution function (CDF) of the Beta distribu-
tion—also known as the regularized incomplete beta function—evaluated at δ. Then, based on the
definition of cumulative density function, CDF, for any confidence δ1 ∈ [0, 1] and any arbitrary
distribution R ∼ D, the following inequality holds:

Pr [Pr[R ≤ Rℓ] > δ1] > 1− betacdfδ1(ℓ,m+ 1− ℓ).

Note that the key assumption is that all variables R,R1, R2, . . . , Rm are independently drawn from
the same distribution D, and that the previously sampled values are sorted such that R1 < R2 <
. . . < Rm. Importantly, the resulting probabilistic guarantee remains valid for any arbitrary choice of
sample size m, rank ℓ, and confidence level δ1, provided they lie within appropriate bounds.

B A Clarifying Example for Conformal Inference

Assume an arbitrary distribution R ∼ D. We sample a calibration dataset of size m = 100, 000, we
sort the samples as R1 < R2 < . . . < R100,000 and we select the sample at rank ℓ = 99, 999. In

7The Beta distribution is a family of continuous probability distributions defined on the interval 0 ≤ x ≤ 1

with shape parameters α and β, and with probability density function f(x;α, β) = xα−1(1−x)β−1

B(α,β)
, where the

constant B(α, β) = Γ(α)Γ(β)
Γ(α+β)

and Γ(z) =
∫∞
0

tz−1e−tdt is the Gamma function.

21

Figure 3: Shows two Reachsets with different ⟨ϵ, ℓ,m⟩ guarantees.

this case, given an unseen draw Runseen from D for a miscoverage level ϵ = 0.0001, the ⟨ϵ, ℓ,m⟩
guarantee for logical statement P (ℓ,m) = [Runseen < Rℓ] is:

Pr [Pr[Runseen < R99,999] > 0.9999] > 0.9995008

which is valid for any calibration dataset M = {R1, R2, . . . , R100,000} sampled from distribution D
if and only if Runseen is also sampled from D, and R99,999 is the 99, 999th smallest member of M.

C A Clarifying Example on Naive Approach

Since the naive technique is architecture-agnostic we apply that for the reachability analysis of a
feedforward ReLU neural network with 60 hidden-layers of width 100, an input layer of dimension
784 and an output layer of dimension 2. The set of inputs is I := [0, 1]784 and we generate both
calibration and train datasets by sampling I uniformly. e.g.,W,W ′ are both uniform distributions.

1: We firstly generate a calibration dataset of size m = 200, 000 and a train dataset of size t = 10, 000,
we also consider the rank ℓ = 199, 998 and we target the miscoverage level of ϵ = 0.0001. In this
case we compute a reachable set, S1 with the following ⟨ϵ, ℓ,m⟩ guarantee.

x
W∼ I ⇒ Pr [Pr[f(x) ∈ S1] > 0.9999] > 0.9999995.

2: Secondly, we set m = 8464287, ℓ = 8464286 and ϵ = 0.000002 which results in another reachset
S2 with the following ⟨ϵ, ℓ,m⟩ guarantee.

x
W∼ I ⇒ Pr [Pr[f(x) ∈ S2] > 0.999998] > 0.9999992.

Figure 3 shows the reachable sets S1 and S2 in the presence of 106 new simulations, f(x), x W∼ I,
for validation. Our calculations show that the proportion of points lying outside of S1 and S2 are
0.000013 and 0.000001, respectively, which aligns well with the proposed ⟨ϵ, ℓ,m⟩ guarantees.

D Additional material for RQ1

In this section, we present an overview of our conformal inference–based technique and contrast it
with methods based on randomized smoothing, using a unified terminology to make the comparison
clearer for readers.

Overview 1. In Fischer et al. [2021], the authors introduced a probabilistic method to verify Semantic
Segmentation Neural Networks. Inspired by Cohen et al. [2019], they introduced randomness via a

22

Gaussian noise ν ∼ N (0, σ2) ∈ Rh×w×nc, applied to the input, and constructed a smoothed version
of the segmentation model, denoted SSN(x)(i, j), for each mask pixel (i, j):

SSN(x)(i, j) = cA(i, j) = argmax
c∈L

Pr
ν∼N (0,σ2)

[SSN(x+ ν)(i, j) = c]

They then established that, with confidence level δ2, the smoothed prediction SSN(x)(i, j) is robust
within an ℓ2 ball Br̄i,j (x) of radius r̄i,j = σΦ−1(pA(i, j)), where pA(i, j) is a lower bound on
the class probability: pA(i, j) = Prν∼N (0,σ2) [SSN(x+ ν)(i, j) = cA(i, j)]. Here, Φ−1(.) is the
inverse CDF of normal distribution. The corresponding probabilistic guarantee becomes:

∀x′ ∈ Br̄i,j (x) : Pr
[
SSN(x′)(i, j) = cA(i, j)

]
≥ δ2

However, certifying all mask pixels simultaneously is challenging. To enable global guarantees, a
more conservative definition of smoothing is adopted: a fixed threshold κ ∈ [0.5, 1] is used for all
mask locations (i, j) which implies:

SSN(x)(i, j) = cA(i, j), where Pr
ν∼N (0,σ2)

[SSN(x+ ν)(i, j) = cA(i, j)] ≥ κ

This leads to a unified radius r = σΦ−1(κ) for the input space. While this simplifies the formulation,
it introduces the concept of abstained or uncertifiable pixels—those that cannot meet the desired
confidence threshold. To mitigate the issue of multiple comparisons (i.e., union bounds), the authors
propose statistical corrections such as the Bonferroni and Holm–Bonferroni methods [CE, 1936, Holm,
1979]. Assuming the set of certifiable pixels is defined as CERT = {(i, j) | (i, j) is certifiable},
they propose the final guarantee in the following form:

∀x′ ∈ Br(x) : Pr
[∧
(i,j)∈CERT

P(i, j)
]
≥ δ2, P(i, j) :=

{
”SSN(x′)(i, j) = cA(i, j)”

}
This method is referred to as SEGCERTIFY. A key limitation of this technique is the presence of
abstained pixels. The authors in Anani et al. [2024] addressed this by proposing an adaptive approach,
ADAPTIVECERTIFY, which reduces the number of uncertifiable pixels. However, the guarantees
proposed in Fiacchini and Alamo [2021], Anani et al. [2024] apply only to the smoothed model, not
the base model. To express this in terms of the base model, we define the following problem:

Problem 1. For a given image x, noise ν ∼ N (0, σ2), and a threshold κ ∈ [0.5, 1], define cA(i, j) ∈
L such that: Prν∼N (0,σ2) [SSN(x+ ν)(i, j) = cA(i, j)] ≥ κ. Then for any x′ ∈ Br(x) with
r = σΦ−1(κ) and confidence level δ2, we want to show the following guarantee, where CERT will
be also determined through the verification process:

Pr
[∧
(i,j)∈CERT

Pr
ν∼N (0,σ2)

[SSN(x′ + ν)(i, j) = cA(i, j)] ≥ κ
]
≥ δ2

Overview 2. In our approach, for a given image x and input set Br(x), we perform a probabilis-
tic reachability analysis with a ⟨ϵ, ℓ,m⟩ guarantee. Due to the presence of conservatism in our
reachability technique, some mask pixels are marked as robust (i.e., certifiable), while others cover
multiple classes and are considered unknown or uncertifiable. Let CONFORMAL_CERT =
{(i, j) | (i, j) is certifiable}. Then our verification objective is:

Problem 2. Given an image x, input set Br(x), and sampling distribution x′ W∼ Br(x), for coverage
level δ1 = 1−ϵ ∈ [0, 1], hyper-parameters ℓ,m and confidence level δ2 = 1−betacdfδ1(ℓ,m+1−ℓ),
we aim to show the following ⟨ϵ, ℓ,m⟩ guarantee, where CONFORMAL_CERT will be also
determined through the verification process:

Pr
[
Pr

[∧
(i,j)∈CONFORMAL_CERT

SSN(x′)(i, j) = SSN(x)(i, j)
]
≥ δ1

]
≥ δ2

23

Both guarantee formulations have their respective advantages and limitations. An advantage of our
guarantee formulation is that it is defined directly on the base model SSN(x′)(i, j) while randomized
smoothing considers SSN(x′ + ν)(i, j) . To make the randomized smoothing formulation operate
directly on the base model, one must set ν = 0, which implies σ = 0 and consequently r = σΦ−1 =
0. As a result, the perturbation ball Br(x) collapses to a singleton, leaving no space for verification.
On the other hand, the advantage of randomized smoothing lies in its consideration of the worst-case
distribution x′ ∈ Br(x), whereas our methodology assumes a prior distribution x′ W∼ Br(x).

E Additional material for RQ2

Here, we present the additional graphs and visualizations referenced in RQ2.

(a) Image, 0001TP_008790.png (b) Predicted Mask from BiSeNet (c) 102 different perturbed pixels.

(d) Unknown and non-robust pixels for e = 10/255. (e) Unknown and non-robust pixels for e = 150/255.

Figure 4: Visualization for verification on BiSeNet for a specific test image from the CamVid dataset.
(a) The test image used for verification. (b) The segmentation mask predicted by BiSeNet for this
image. (c) The pixels selected for perturbation (in black) on the test image (We sampled 102 pixels
where the R, G, and B intensities were all above 150/255, forming a perturbation set I ⊂ R102×3).
(d,e) Display the robust (white), non-robust (red), and unknown (black) pixels for the perturbation set
I as described in Figure 1, with perturbation magnitudes e = 10/255 and e = 150/255, respectively.
The figure illustrates that the model is not sufficiently robust on the borders between different classes.

24

(a) Image, CHNCXR_0005_0.png (b) Predicted Mask from UNet1 (c) 102 different perturbed pixels.

(d) Unknown and non-robust pixels for e = 10/255. (e) Unknown and non-robust pixels for e = 150/255.

Figure 5: Visualization for verification on UNet1 for a specific test image from the Lung Segmentation
dataset. (a) The test image used for verification. (b) The segmentation mask predicted by UNet1 for
this image. (c) The pixels selected for perturbation (in black) on the test image (We sampled 102
pixels where the Gray intensities were above 150/255, forming a perturbation set I ⊂ R102×1). (d,e)
Display the robust (white), non-robust (red), and unknown (black) pixels for the perturbation set I as
described in Figure 1, with perturbation magnitudes e = 10/255 and e = 150/255, respectively.

25

(a) Image, 10491.bmp (b) Predicted Mask from UNet2 (c) 102 different perturbed pixels.

(d) Unknown and non-robust pixels for e = 10/255. (e) Unknown and non-robust pixels for e = 150/255.

Figure 6: Visualization for verification on UNet2 for a specific test image from the OCTA-500 dataset.
(a) The test image used for verification. (b) The segmentation mask predicted by UNet2 for this image.
(c) The pixels selected for perturbation (in black) on the test image (We sampled 102 pixels where
the Gray intensities were above 150/255, forming a perturbation set I ⊂ R102×1). (d,e) Display the
robust (white), non-robust (red), and unknown (black) pixels for the perturbation set I as described in
Figure 1, with perturbation magnitudes e = 10/255 and e = 150/255, respectively.

10/255 30/255 60/255 90/255 120/255 150/255
perturbation level (e/255)

0

100

200

300

400

500

600

700

800

900

Av
er
ag
e
Ve
rif
ica
tio
n
Ru
nt
im
e
(s
ec
on
ds
) Average Verification Runtime vs Perturbation Level

BiSeNet for CamVid

10/255 30/255 60/255 90/255 120/255 150/255
perturbation level (e/255)

0

100

200

300

400

500

600

700

800

900

Av
er
ag
e
Ve
rif
ica

tio
n
Ru

nt
im
e
(s
ec
on
ds
) Average Verification Runtime vs Perturbation Level
UNet1 for Long Segmentation

10/255 30/255 60/255 90/255 120/255 150/255
perturbation level (e/255)

0

100

200

300

400

500

600

700

800

900

Av
er

ag
e

Ve
rif

ica
tio

n
Ru

nt
im

e
(s

ec
on

ds
) Average Verification Runtime vs Perturbation Level

UNet2 for OCTA-500

10/255 30/255 60/255 90/255 120/255 150/255
perturbation level (e/255)

0

100

200

300

400

500

600

700

800

900

Av
er

ag
e

Ve
rif

ica
tio

n
Ru

nt
im

e
(s

ec
on

ds
) Average Verification Runtime vs Perturbation Level

m2nist_dc for M2NIST
m2nist_ap_tc for M2NIST
m2nist_ap_dc for M2NIST

17×3 34×3 51×3 68×3 85×3 102×3
perturbation dimension (r)

0

100

200

300

400

500

600

700

800

900

Av
er
ag
e
Ve
rif
ica

tio
n
Ru

nt
im
e
(s
ec
on
ds
) Average Verification Runtime vs Perturbation Dimension

BiSeNet for CamVid

17×1 34×1 51×1 68×1 85×1 102×1
perturbation dimension (r)

0

100

200

300

400

500

600

700

800

900

Av
er
ag
e
Ve
rif
ica

tio
n
Ru

nt
im
e
(s
ec
on
ds
) Average Verification Runtime vs Perturbation Dimension

UNet1 for Long Segmentation

17 × 1 34 × 1 51 × 1 68 × 1 85 × 1 102 × 1
perturbation dimension (r)

0

100

200

300

400

500

600

700

800

900

Av
er

ag
e

Ve
rif

ica
tio

n
Ru

nt
im

e
(s

ec
on

ds
) Average Verification Runtime vs Perturbation Dimension

UNet2 for OCTA-500

17 × 1 34 × 1 51 × 1 68 × 1 85 × 1 102 × 1
perturbation dimension (r)

0

100

200

300

400

500

600

700

800

900

Av
er

ag
e

Ve
rif

ica
tio

n
Ru

nt
im

e
(s

ec
on

ds
) Average Verification Runtime vs Perturbation Dimension

m2nist_dc for M2NIST
m2nist_ap_tc for M2NIST
m2nist_ap_dc for M2NIST

Figure 7: Shows the average run time versus perturbation level e (top row) and perturbation dimension
r (bottom row). In the top row, r = 102 × 3 for CamVid, 102 × 1 for Lung Segmentation and
OCTA-500, and 17× 1 for M2NIST experiment. In the bottom row, e is fixed at 3/255 across all
experiments. The runtimes are averaged over 200 test images in each experiment. This graph shows
our verification runtime is only slightly sensitive the perturbation magnitude and direction e, r.

26

0.10 0.15 0.20 0.25 0.30
bound_ratio

0

5000

10000

15000

20000

25000

30000

Fr
eq
ue
nc
y

Histogram of bound_ratio (e=150/255, r=102×3)
BiSeNet for CamVid

0.10 0.15 0.20 0.25 0.30 0.35
bound_ratio

0

5000

10000

15000

20000

Fr
eq
ue
nc
y

Histogram of bound_ratio (e= 10/255, r= 102 × 3)
BiSeNet for CamVid

0.0 0.2 0.4 0.6 0.8 1.0
bound_ratio

0

200

400

600

800

Fr
eq
ue
nc
y

Histogram of bound_ratio (e=10/255, r=17×1)
m2nist_dc for M2NIST

Figure 8: Histogram of n = h×w×L numbers (called bound_ratio) shown to present conservatism
analysis for our technique. These numbers are the ratio between the length of the empirical bounds
and the length of our proposed bounds, bound_ratio(k) = (ŷ(k) − ŷ(k))/(y(k) − y(k)) where
k = 1, . . . , n. The empirical bounds [ŷ(k), ŷ(k)] are estimated using 106 random samples. We
conduct conservatism analysis across three experiments from Figure 2: one experiment with the
m2nist_dc model trained on M2NIST dataset where the experiment considers perturbation magnitude
e = 10/255, and dimension r = 17× 1; and two experiments with the BiSeNet model trained on
CamVid dataset where the experiment considers perturbation magnitute e = 10/255 & 150/255 and
dimension r = 102× 3. These cases span the smallest to the largest configurations we addressed in
our case studies in Figure 2. The empirical miscoverage ϵ̂ was ϵ̂ = 7× 10−6 for M2NIST experiment
and ϵ̂ = 0 for both experiments on CamVid dataset. This shows in all cases ϵ̂ < ϵ where ϵ = 10−4 for
M2NIST and ϵ = 10−3 for CamVid, as outlined in Table 2. In this histogram, we omit components
k whose normalization factors τk are smaller than τ∗, since their magnitudes are negligibly small
compared to the other components, and their conservatism has little effect on the volume difference
between the sets.

F Looking at Violating Samples Obtained in Our Experiments

Our probabilistic guarantees inherently imply that a small probability of violation exists; however,
the key contribution of our approach is that it provides formal guarantees on the likelihood of
such violations. One example of these events appears in Appendix C, where the red and black
boundaries are violated by 13 and 1 output samples, respectively, out of a total of 106 generated
outputs. Another instance is shown in Figure 8, where 7 out of 106 sampled outputs violate the
reachable set computed for the M2NIST experiment. Importantly, all of these violations remain
consistent with the probabilistic bounds established by our theoretical guarantees.

G Additional Research Questions

RQ3 (2nd Abblation Study): How Do Surrogate Models Affect the Level of Conservatism in
our method? To investigate this, we conducted a classification-based verification task using a
model submitted to VNN-COMP 2024 [Brix et al., 2024] by the α-β-CROWN team, trained on
the CIFAR-100 dataset. We refer to this model as ResNet_large, which contains 8 residual blocks,
19 convolutional layers, and 2 linear layers. We sample a calibration dataset of size m = 100,000,
set the rank to ℓ = 99,999, and choose a miscoverage level ϵ = 10−4, which corresponds to a
coverage level of δ1 = 1 − ϵ = 0.9999. This setup yields a confidence level of δ2 = 0.9995. In
this experiment, given an image x ∈ R32×32×3 with label ℓ ∈ 1, . . . , 100—corresponding to a logit
vector f(vec(x)) ∈ R100—we aim to verify the following specification:

Pr [Pr [P] ≥ δ1] ≥ δ2, where P :=
{

Given an image x perturbed within an ℓ∞ ball of radius e/255 and label ℓ,
the predicted label remains unchanged for all perturbations within the ball

}
Our reachability-based verification method inherently introduces some conservatism. In this experi-
ment, we investigate how incorporating surrogate models—specifically, a ReLU-based surrogate—can
reduce that conservatism compared to a naive approach. Lower conservatism enables verification
under larger perturbation magnitudes e/255. To evaluate this, we vary e across 1/255 to 30/255 and
test both methods on 200 sampled images. The naive method fails to verify beyond certain pertur-
bation levels, while the surrogate-based approach continues to succeed under larger perturbations,
achieving the same probabilistic guarantee. Thus given a unique perturbation magnitude e we run
the verification on 200 events (200 images) and count the percentage of successful verification for
both methods. Figure 9 presents this percentage of successful verifications for each technique across

27

perturbation levels, demonstrating that the ReLU surrogate substantially improves the method’s
applicability by reducing the level of conservatism. As previously mentioned, our verification run-
times vary minimally across different images and perturbation levels, so we report average values.
The naive method took an average of 6 seconds per verification, while the ReLU surrogate method
required 44 seconds.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Perturbation Magnitute e/255 for e=1,…, 30

0

20

40

60

80

Su
cc
es
s R

at
e
(%

) o
ve
r 2

00
 Im

ag
es

73.0

83.0

47.5

80.5

20.0

76.5

9.5

72.0

4.5

63.0

2.0

53.0

0.5

42.5

0.5

35.5

0.5

25.0

0.0

17.5

0.0

13.5

0.0

12.0

0.0

8.0

0.0
5.0

0.0
3.5

0.0 1.5 0.0 1.5 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5

Verification with NO Surrogate
Verification with ReLU Surrogate

Figure 9: This figure compares the conservatism of verification with and without the ReLU surrogate.
We evaluated classification robustness over perturbations bounded by ℓ∞ balls with magnitudes
e = 1/255, 2/255, . . . , 30/255, across 200 images. Each block represents the percentage of cases
where the verified label remained unchanged under perturbation. The results show that using a ReLU
surrogate significantly improves verification at larger perturbation levels, due to reduced conservatism
in the reachability analysis.

RQ4: Do State-of-the-Art Deterministic Verification Techniques Scale to the Level Achieved
by Our Method on Complex and High-Dimensional SSN Models? We applied techniques such
as α-β-CROWN [Zhou et al., 2024] and NNV [Tran et al., 2021] to our segmentation experiments
using the UNet1, UNet2, and BiSeNet models in RQ1. However, due to the size of these models and
the high perturbation levels considered, both methods encountered out-of-memory errors and failed
to complete verification on the same hardware used for our approach. This highlights that while
deterministic guarantees are often preferable, they may not always be computationally practical. In
such cases, our probabilistic verification method for SSNs offers a scalable and effective alternative.

28

	Introduction
	Preliminaries
	Scaling Probabilistic Reachability Analysis on SSN with Strong Guarantees
	Naive Reachability Technique via Conformal Inference
	From Hyper-Rectangular Reachsets to Generalized Zonotopic Representations
	Training the Surrogate Model for SSNs via Principal Component Analyis

	Experiments
	Limitations, Future Works & Conclusion
	Acknowledgement
	Double-Step Probabilistic Guarantee
	A Clarifying Example for Conformal Inference
	A Clarifying Example on Naive Approach
	Additional material for RQ1
	Additional material for RQ2
	Looking at Violating Samples Obtained in Our Experiments
	Additional Research Questions

