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ABSTRACT

While language models are powerful and versatile, they often fail to address highly
complex problems. This is because solving complex problems requires deliberate
thinking, which has been only minimally guided during training. In this paper,
we propose a new method called Cumulative Reasoning (CR), which employs
language models in a cumulative and iterative manner to emulate human thought
processes. By decomposing tasks into smaller components, CR streamlines the
problem-solving process, rendering it both more manageable and effective. For
logical inference tasks, CR consistently outperforms existing methods with an
improvement up to 9.3%, and achieves an accuracy of 98.04% on the curated
FOLIO wiki dataset. In the context of the Game of 24, CR achieves an accuracy
of 98%, which signifies a substantial enhancement of 24% over the previous
state-of-the-art method. Finally, on the MATH dataset, we establish new state-of-
the-art results without any external tools with 58.0% overall accuracy, surpassing
the previous best approach by a margin of 4.2%, and achieving 43% relative
improvement on the hardest level 5 problems (22.4% → 32.1%). Furthermore,
we extend the concept of Cumulative Reasoning to include a code environment,
in this setup, we are devoid of external aids such as retrieval and web browsing,
and focus solely on the LLM’s intrinsic computational and logical reasoning
capabilities within a Python code environment. Our experiments in this setting
yielded impressive results, with an overall accuracy of 72.2% on the MATH dataset,
significantly outperforming the PAL method with 38.8% relative improvement†.

1 INTRODUCTION

Despite the remarkable advances made by large language models (LLMs) in a variety of applica-
tions (Devlin et al., 2018; Radford et al., 2018; 2019; Brown et al., 2020; Raffel et al., 2020; OpenAI,
2023), they still struggle to provide stable and accurate answers when faced with highly complex
tasks. For instance, it has been observed that language models have difficulty directly generating
correct answers for high school math problems (Lightman et al., 2023).

This shortfall may be anticipated, considering the training approach adopted by LLMs. Specifically,
they are trained to sequentially predict the next token based on the given context, without a pause for
deliberate thoughts. As elucidated by Kahneman (2011), our cognitive processing processes comprise
two distinct systems: System 1 is fast, instinctive, and emotional; System 2 is slow, deliberate, and
logical. Currently, LLMs align more closely with System 1, thereby potentially explaining their
limitations in confronting complex tasks.

In response to these limitations, several methods have been proposed to mimic human cognitive
processes. These include the Chain-of-Thought (CoT) that prompts the model to offer step-by-step
solutions (Wei et al., 2022), and the Tree-of-Thought (ToT) that models the solving process as a
thought search tree (Yao et al., 2023; Long, 2023). In addition, dedicated datasets have been created
to provide step-wise guidance in model training (Lightman et al., 2023). Nevertheless, these methods
do not have a site for storing intermediate results, assuming that all the thoughts form a chain or a
tree, which does not fully capture the human thinking process.

†The code is available at https://anonymous.4open.science/r/cumulative-reasoning
-anonymous-4477.

1

https://anonymous.4open.science/r/cumulative-reasoning-anonymous-4477
https://anonymous.4open.science/r/cumulative-reasoning-anonymous-4477


Under review as a conference paper at ICLR 2024

In this paper, we propose a new method termed Cumulative Reasoning (CR), which presents a more
general characterization of the thinking process. CR employs three distinct LLMs: the proposer,
verifier, and reporter. The proposer keeps proposing potential propositions, which were verified by
one or more verifiers, and the reporter decides when to stop and report the solution.

CR significantly amplifies the power of language models in addressing complex tasks, achieved by
decomposing each task into atomic and manageable steps. Despite the computational infeasibility of
enumerating the exponentially numerous possible complex tasks, CR ensures that each individual
step can be efficiently learned and resolved. This strategic decomposition effectively transforms an
otherwise unmanageable exponential problem into a sequence of solvable tasks, thereby providing a
robust solution to the original problem.

Our empirical analyses include three components. In the first experiment, we tackled logical inference
tasks like FOLIO wiki (pertaining to first-order logic) and AutoTNLI (associated with higher-
order logic). On these datasets, CR consistently surpassed current methodologies, showcasing an
enhancement of up to 9.3%. Additionally, a rigorous refinement of the FOLIO dataset generated
the “FOLIO wiki curated,” on which CR recorded a remarkable accuracy of 98.04%. In the second
experiment, which revolved around the Game of 24, CR achieved an accuracy of 98%. Remarkably,
this represents a significant improvement of 24% when compared to the prior state-of-the-art method,
ToT (Yao et al., 2023). In the last experiment, we established new state-of-the-art results on the
renowned MATH dataset (Hendrycks et al., 2021), achieving 58.0% overall accuracy with a margin
of 4.2% over the Complex-CoT with PHP method (Fu et al., 2022; Zheng et al., 2023). Noteworthy,
our method achieves 43% relative improvement on the hardest level 5 problems (22.4% → 32.1%).

Furthermore, we extend the concept of Cumulative Reasoning (CR) with a code environment. Our
experimental setup, devoid of other external aids such as external memory, web browsing, or retrieval
systems, evaluates the LLM’s intrinsic computational and logical reasoning capabilities. We achieved
a 72.2% accuracy on the MATH dataset, significantly outperforming methods like PAL (Gao et al.,
2023) (52%) and ToRA (Gou et al., 2023) (60.8%). Notably, there was a 66.8% relative improvement
over PAL and 12.8% over ToRA on the most challenging level 5 MATH problems, demonstrating the
effectiveness of CR in a code environment and further validating the robustness of CR in handling
complex tasks.

2 PRELIMINARIES

2.1 LOGIC

Propositional logic, the most fundamental system of logic, encompasses elements p, q, r and a variety
of operations. These include “and” (p ∧ q), “or” (p ∨ q), “implies” (p ⇒ q), and “not” (¬p). The
constants true and false are denoted as 1 and 0 respectively. This system adheres to the following
rules:

x ∧ x = x, x ∨ x = x, 1 ∧ x = x, 0 ∨ x = x, x ∧ (y ∨ x) = x = (x ∧ y) ∨ x.

and distributive laws:
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

In a Boolean algebra, every element x has a complement ¬x and the following holds true:
x ∧ ¬x = 0, x ∨ ¬x = 1, ¬¬x = x.

Building upon propositional logic, first-order logic (FOL) introduces universal quantification (∀)
and existential quantification (∃) to describe more intricate propositions. For instance, the statement
“∀xDog(x) ⇒ Animal(x)” translates to “for every x, if x is a dog, then it is also an animal”. Higher-
order logic (HOL) represents a sophisticated formalism that permits quantification over functions
and predicates, an ability that contrasts sharply with FOL, which restricts quantification to individual
objects. For a detailed discussion on the distinctive characteristics of HOL, as opposed to FOL, please
refer to Appendix D.1.

2.2 ILLUSTRATIVE EXAMPLE

Consider the following example adapted from the FOLIO dataset (Han et al., 2022), where empirically
only the text statements (excluding logical propositions) will be given:
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1. All monkeys are mammals: ∀x(Monkey(x) ⇒ Mammals(x)).

2. An animal is either a monkey or a bird: ∀x(Animal(x) ⇒ (Monkey(x) ∨ Bird(x))).

3. All birds fly: ∀x(Bird(x) ⇒ Fly(x)).

4. If something can fly, then it has wings: ∀x(Fly(x) ⇒ Wings(x)).

5. Rock is not a mammal, but Rock is an animal: ¬Mammal(Rock) ∧ Animal(Rock).

The question is: Does rock have wings? We have the following derivations:

a. The contrapositive of (1) is: ∀x(¬Mammals(x) ⇒ ¬Monkey(x)).

b. (a) and (5) ⇒¬Monkey(Rock) ∧ Animal(Rock).

c. (2) and (5) ⇒ (Monkey(Rock) ∨ Bird(Rock))

d. (b) and (c) ⇒ Bird(Rock).

e. (3) and (d) ⇒ Fly(Rock).

f. (4) and (e) ⇒ Wings(Rock).

1 2 3 4 5

a

b d e

c

f

Figure 1: Illustration of our logical derivation

While the derivation can be treated as a
general “chain of thought” from (a) to (f),
its internal structure is neither a chain nor a
tree. Instead, it is a directed acyclic graph
(DAG), with each directed edge as one step
of derivation. For examples of higher-order
logic, see Appendix D.1.

3 OUR METHOD

3.1 CUMULATIVE REASONING (CR)

Our CR algorithm uses three distinct types of LLMs (AI Agents):

1. Proposer. This model suggests the next step based on the current context.

2. Verifier(s). This model or set of models scrutinizes the accuracy of the step put forward by
the proposer. If the step is deemed correct, it will be added to the context.

3. Reporter. This model determines when the reasoning process should be concluded, by
assessing whether the current conditions can directly lead to the final solution.

See Figure 2 for an illustration. In each iteration, the proposer initiates the process by proposing
one or a few new claim(s) based on existing predicates. Subsequently, the verifier(s) evaluate the
proposal, determining whether the claim(s) can be retained as a new predicate. Finally, the reporter
decides if it is the optimal time to cease the thought process and deliver the answer.

Ideally, the proposer should be implemented using a language model pre-trained on the corresponding
derivation tasks. Verifier(s) should be capable of translating the derivations to appropriate formal
systems and verifying them using symbolic reasoning modules such as a propositional logic solver
or a formal math prover, such as AI agents equipped with code environment or symbolic systems.
However, for simplicity, one can also use general-purpose foundation models like GPT-4 (OpenAI,
2023), instantiated with different prompts for these roles.

The main theoretical motivation of our method lies in the intuitionistic logic, the philosophy of
mathematical constructivism, and the topos theory, which imply that the cumulative process of
constructing new propositions is the natural way to perform complex reasoning, especially in the
realm of (higher-order) logic and pure mathematics.

The primary empirical contribution of our work lies in the synergistic integration of different LLM
roles (Proposer, Verifier, and Reporter) within the Cumulative Reasoning framework. This integration
facilitates a more effective accumulation and verification of intermediate results, fostering a deeper
and more precise reasoning process. The collaborative interplay among these roles (agents), and the
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Figure 2: An illustration of Cumulative Reasoning (CR) for a 3-premises problem.

interactions among them and the (code) environments, work together in a synergistic way to enhance
the reasoning capabilities of the system. This interplay allows for a more effective accumulation and
verification of intermediate results, facilitating a deeper and more precise reasoning process.

3.2 COMPARE WITH COT AND TOT

CR clearly generalizes CoT (Wei et al., 2022), in the sense that if there are no verifiers, and the
proposer keeps proposing the next steps until the end, CR becomes the standard chain of thought.
However, in CR the overall thinking process is not necessarily a chain or a tree, it can be a DAG.
Therefore, CR can be used for solving more complex problems.

At first glance, CR is similar to the ToT, which solves the problems with a thought search tree (Yao
et al., 2023; Long, 2023). However, our method is more general in the sense that it stores all the
historical correct reasoning results in memory, which can be a DAG (or even directed hyper-graphs).
By contrast, ToT will not store the information from other branches for exploration at the current
search branch. For a detailed comparison with a preliminary analysis, please refer to Appendix C.

4 EXPERIMENTS

Our experimental framework is based on the Microsoft guidance library (Lundberg et al., 2023),
which offers the flexibility to intertwine generation, prompting, and logical control in a seamless
flow that aligns with language models. We consider the following LLMs: GPT-3.5-turbo, GPT-4,
LLaMA-13B and LLaMA-65B.

Our Proposer, Verifier(s), and Reporter in CR are implemented using the same LLM with different few-
shot prompts. This approach ensures a broad application scope and simplifies implementation. For
optimal results, future work could consider the application of a Proposer pre-trained on task-specific
corpus and Verifier(s) aided by symbolic formal systems. We denote n as the number of generated
intermediate propositions, and k as the number of majority voting times. We set the temperature t =
0.1 by default and t = 0.7 for majority voting. We also remark that both GPT-3.5-turbo and GPT-4
operate as chat-format APIs from OpenAI.

4.1 FOLIO WIKI

FOLIO dataset (Han et al., 2022) is a first-order logical inference dataset for reasoning in natural
language. The label of each problem can be “True”, “False”, or “Unknown”. See Figure 3 for
an example. We observed that while the Chain-of-Thought reasoning process can generate useful
intermediary results, it tends to flounder midway, failing to arrive at the correct conclusion. Conversely,
the CR initially spawns two beneficial propositions and leverages them to successfully solve the
problem at hand. For a deeper dive into specific examples of the FOLIO dataset, we refer to
Appendix E.1.

The FOLIO dataset is a composite of 1435 examples, wherein 52.5% of these instances have been
crafted drawing upon knowledge from randomly selected Wikipedia pages. This approach guarantees
the infusion of abundant linguistic variations and a rich vocabulary within the corpus. The residual
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47.5% of the examples have been penned in a hybrid style, rooted in a variety of complex logical
templates. Acknowledging that contemporary LLMs are pre-trained on a considerable volume of
a standard human-written corpus, we direct our experiments towards those examples derived from
Wikipedia, hereby referred to as FOLIO-wiki. Once a handful of examples are moved aside for
few-shot prompts and those examples without source labels for validations are excluded, we are left
with a testable collection of 534 examples.

Our experimental design employs the LLaMA base model and GPT APIs directly, circumventing
the need for fine-tuning with logical inference datasets and thus ensuring a faithful comparison. The
results, displayed in Table 1, reveal that CR consistently surpasses Direct (standard Input-Output
prompt), CoT, and CoT-SC, with a performance margin spanning up to 8.42%. Notably, GPT-4 paired
with Cumulative Reasoning (CR) achieves an accuracy rate of 87.45%, outperforming GPT-4 with
CoT-SC, which reports an accuracy rate of 85.02%. For more experiments on LogiQA (Liu et al.,
2020), ProofWriter (Tafjord et al., 2020), and LogicalDeduction datasets (Srivastava et al., 2022) and
more ablation studies, please refer to Appendix B.

4.2 FOLIO WIKI CURATED

The accuracy of 87.45% does not seem to be as competitive as human beings, so we carefully
reviewed the FOLIO-wiki dataset. It turns out that many instances inside the dataset are problematic
in the following sense:

1. Missing common knowledge or contradictory to common knowledge; (9 in total, Example ID No.
34, 62, 162, 167, 228, 268, 526, 677, 679)

2. Overly ambiguous problems failing to provide unequivocal answers; (37 in total, Example ID No.
141, 215, 216, 223, 252, 261, 298, 321, 330, 396, 402, 409, 411, 431, 432, 456, 457, 482, 483, 496, 563,
572, 599, 624, 629, 641, 654, 660, 673, 682, 698, 750)

3. Inherent inconsistencies presented within the premises; (2 in total, Example ID No. 640, 643)
4. Vague premises or typographical errors; (2 in total, Example ID No. 314, 315)
5. Incorrect answers. (24 in total, Example ID No. 9, 46, 52, 84, 100, 144, 273, 276, 299, 310, 322, 345,

367, 437, 452, 453, 464, 557, 573, 578, 605, 632, 671, 715)

We note that except for the first class, all the rest should be removed from the dataset. The first class
is because foundation models were trained with common knowledge, but the problem answer based
on FOL systems gives an unnatural answer. See Example ID No. 679 shown in Figure 4 and more
examples in Appendix E.2) for illustrations. For a brief discussion on the limitations of FOL systems,
please refer to Appendix D.

Therefore, we removed all 74 such problematic instances, leaving the remaining 460 examples as a
curated collection. The results in Table 2 indicate that the application of GPT-4 in conjunction with
our method (CR) commands an astounding accuracy of 98.04% and maintains an error rate as minimal
as 1.96%. This level of performance is almost twice as effective compared to the combination of
GPT-4 and CoT-SC, which scored an accuracy of 96.09% and an error rate of 3.91%.

4.3 AUTOTNLI

Table 3: Results for various reasoning approaches
on AutoTNLI dataset.

Model Method Acc. ↑ (%)

- [Random] 50.00

LLaMA-13B

Direct 52.6
CoT 54.1 (+1.5)
CoT-SC (k = 16) 52.1 (-0.5)
CR (ours, n = 4) 57.0 (+5.4)

LLaMA-65B

Direct 59.7
CoT 63.2 (+3.5)
CoT-SC (k = 16) 61.7 (+2.0)
CR (ours, n = 4) 72.5 (+12.8)

Experiment Setting. AutoTNLI (Kumar
et al., 2022) is a Tabular Natural Language
Inference (TNLI) dataset extended from IN-
FOTABS (Gupta et al., 2020), which can be seen
as a higher-order logical inference dataset due to
its inherent complexity lies in natural language
inference formalism. It contains 1,478,662 table-
hypothesis pairs with the corresponding label
(Entail or Neutral) that indicates whether the
given table entails the hypothesis. We treat
the tabular content within AutoTNLI as a set
of premises (In fact, the tables within the Au-
toTNLI dataset are exactly provided in the form
of premises), enabling a direct transference of our method applied to the FOLIO dataset. Our experi-
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Table 1: Results for various reasoning ap-
proaches on FOLIO-wiki dataset.

Model Method Acc. ↑ (%)

- [Random] 33.33

LLaMA-13B

Direct 44.75
CoT 49.06 (+4.31)
CoT-SC (k = 16) 52.43 (+7.68)
CR (ours, n = 2) 53.37 (+8.62)

LLaMA-65B

Direct 67.42
CoT 67.42 (+0.00)
CoT-SC (k = 16) 70.79 (+3.37)
CR (ours, n = 2) 72.10 (+4.68)

GPT-3.5-turbo

Direct 62.92
CoT 64.61 (+1.69)
CoT-SC (k = 16) 63.33 (+0.41)
CR (ours, n = 2) 73.03 (+10.11)

GPT-4

Direct 80.52
CoT 84.46 (+3.94)
CoT-SC (k = 16) 85.02 (+4.50)
CR (ours, n = 2) 87.45 (+6.93)

Table 2: Results for various reasoning ap-
proaches on FOLIO-wiki-curated dataset.

Model Method Acc. ↑ (%)

- [Random] 33.33

LLaMA-13B

Direct 49.13
CoT 52.17 (+3.04)
CoT-SC (k = 16) 53.70 (+4.57)
CR (ours, n = 2) 55.87 (+6.74)

LLaMA-65B

Direct 74.78
CoT 74.13 (-0.65)
CoT-SC (k = 16) 79.13 (+4.35)
CR (ours, n = 2) 79.57 (+4.79)

GPT-3.5-turbo

Direct 69.57
CoT 70.65 (+1.08)
CoT-SC (k = 16) 69.32 (-0.25)
CR (ours, n = 2) 78.70 (+9.13)

GPT-4

Direct 89.57
CoT 95.00 (+5.43)
CoT-SC (k = 16) 96.09 (+6.52)
CR (ours, n = 2) 98.04 (+8.47)

mentation encompassed two models, LLaMA-13B, and LLaMA-65B, each subjected to assessment
using Direct, CoT, CoT-SC, and CR methods. Due to the extensive magnitude of the AutoTNLI
dataset, we only take the first 1000 table-hypothesis pairs for evaluation.

Evaluation Results. As shown in Table 3, both LLaMA-13B and LLaMA-65B models reveal that
CR delivers a significant enhancement in performance compared to CoT, with a relative improvement
reaching up to 9.3% on the LLaMA-65B model. This data emphasizes the clear advantage of CR
over CoT and CoT-SC techniques in the framework of the AutoTNLI dataset.

4.4 GAME OF 24

The Game of 24 is a puzzle in which players must combine four specified integers using basic
arithmetic operations (addition, subtraction, multiplication, division) to get the number 24.

Settings and Baselines. To ensure fairness, we adopt exactly identical task settings as Tree of
Thoughts (ToT) (Yao et al., 2023) on Game of 24. We use the set of 100 Games of 24 collected
by Yao et al. (2023) which was been used to evaluate the performance of ToT. In each game, we
consider the game to be successfully solved if and only if the output is a valid equation that reaches
24 and only uses given numbers each exactly once. We quantify the accuracy (success rate) across
100 games as a main evaluative metric.

In this experiment, we compare CR with variant prompt algorithms, including standard Input-Output
prompting (Direct), Chain-of-Thought prompting (CoT), and CoT-SC by aggregating the majority
outcome from 100 sampled CoT trials (designated as k = 100), and Tree of Thoughts (ToT) with a
breadth-first search width set at 5 (indicated as b = 5).

CR Setup. Within our CR algorithm, we maintain a set of “reached states”, denoted by S. Initially,
S only contains the start state s which represents 4 input numbers without any operation. In each
iteration, a state u is randomly selected from S. This selected state u is passed to the Proposer, which
randomly picks two remaining numbers within u and combines them through a basic arithmetic
operation (+,-,*, /) to obtain a new number, thereby generating a new state v. The Proposer is
instructed to try to avoid taking duplicated operations. Subsequently, the Verifier scrutinizes the
arithmetic operation proposed by the Proposer and evaluates the newly generated state v. Then v is
inserted to S if the Verifier thinks that the operation from u to v is legitimate and it is potential for v
to achieve 24. Upon the Verifier identifying a state t that unequivocally 24, the Reporter devises a
solution based on the path from the state s to state t and produces the final answer. The algorithm
terminates when the Reporter outputs the final answer or the number of iterations exceeds a limit of
L. In the experiments, we set the default value of L to 50.
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Following Yao et al. (2023), our algorithm runs b concurrent branches and only selects the first answer
for these branches that utilizes each input number exactly once for evaluation. Due to the prohibitive
cost of GPT-4, we only test our CR algorithm with b = 1 to b = 5. As shown in Table 4, we find that
CR outperforms ToT by a large margin of 24%, from 74% to 98%, with much fewer states visited.

Table 4: Results for various approaches on Game
of 24 using GPT-4. The average number of visited
states for ToT is computed from the experimental
logs available in its official GitHub repository.

Method Acc. ↑ (%) # Visited states ↓
Direct 7.3 1
CoT 4.0 1

CoT-SC (k = 100) 9.0 100
Direct (best of 100) 33 100
CoT (best of 100) 49 100

ToT (b = 5) 74 61.72
CR (ours, b = 1) 84 (+10) 11.68 (-50.04)
CR (ours, b = 2) 94 (+20) 13.70 (-48.02)
CR (ours, b = 3) 97 (+23) 14.25 (-47.47)
CR (ours, b = 4) 97 (+23) 14.77 (-46.95)
CR (ours, b = 5) 98 (+24) 14.86 (-46.86)

Compare with ToT. Interestingly, in the con-
text of Game of 24, our CR algorithm and ToT
algorithm are very similar. Their primary dis-
tinction is that, in CR, each iteration of the algo-
rithm generates at most one newly reached state,
while ToT produces a multitude of candidate
states per iteration, filtering and retaining a sub-
set of states. This implies that ToT explores a
larger number of invalid states compared to CR.
Moreover, ToT employs a fixed-width and fixed-
depth search tree, while CR allows the LLM to
determine the search depth autonomously, and
performs different search widths on different
layers of the search tree.

5 SOLVING MATH PROBLEMS

5.1 CR WITHOUT CODE ENVIRONMENT

The MATH dataset (Hendrycks et al., 2021) serves as a benchmark for assessing AI models’ math-
ematical reasoning capabilities, encompassing a broad spectrum of mathematical problems across
various subdomains such as Algebra and Geometry. Figure 5 in Appendix A shows an illustrative
example from the MATH dataset, and Figure 6 in Appendix A shows the corresponding solutions
generated by Complex CoT and CR. In our experiments, we assessed the performance of Complex
CoT and our method (CR), both with and without Progressive-Hint Prompting (PHP) (Zheng et al.,
2023). For a fair evaluation, we reproduced the results of Complex CoT (w/ PHP) on a subset of
500 test examples, adhering to Lightman et al. (2023), since the other parts of the test dataset (4500
examples) may have been utilized for model training by OpenAI. The difficulty spans from level 1
(simplest) to level 5 (hardest).

It is important to note that for our method (CR), we employed 4-shot prompting (4 examples for
few-shot prompting) due to GPT-4’s context length constraints (8k by default). While the model
occasionally exceeds the context length with 8-shot prompting, it generally demonstrates superior
performance. Future experiments will explore the utilization of GPT-4-32k.

From Table 5, our method (CR) distinguishes itself by achieving significant advancements in per-
formance across various mathematical subdomains, outperforming Complex CoT by a margin of
5.4%. The enhancements are particularly pronounced in the Number Theory, Probability, PreAlgebra,
and Algebra categories. In comparison to the Complex CoT approach, even when restricted to
4-shot prompting due to GPT-4’s context length constraints, CR demonstrates its robustness and
effectiveness. It is also evident that the PHP method further amplifies the performance of both
Complex CoT and CR, establishing new state-of-the-art results with an overall accuracy of 58.0%
using CR with PHP, with a margin of 4.2% over Complex CoT with PHP. Additionally, the “Iters”
metric elucidates that CR, when synergized with PHP strategies, reaches self-consistent answers with
fewer iterations.

From Table 6, it is evident that consistent performance boost across different difficulty levels signifies
the robustness of the CR methodology in handling a diverse range of mathematical problems. The
performance increase of 9.7% at level 5—which translates to a substantial relative improvement of
43%—compared to the baseline Complex CoT approach without PHP, underscores CR’s effectiveness
in handling the most challenging problems in the dataset.
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Table 5: Comparative performance on the MATH dataset using GPT-4 without code environment.
We adopted a default temperature setting of t = 0.0, consistent with prior research settings (greedy
decoding). PHP denotes the application of the progressive-hint prompting. “Iters” represents the
average number of LLM interactions, and Overall reflects the overall results across MATH subtopics.

w/ PHP MATH Dataset (∗ denotes using 500 test examples subset following Lightman et al. (2023))

InterAlgebra Precalculus Geometry NumTheory Probability PreAlgebra Algebra Overall
CoT (OpenAI, 2023) ✗ - - - - - - - 42.50

Complex CoT, 8-shot
(Zheng et al., 2023)

✗ 23.4 26.7 36.5 49.6 53.1 71.6 70.8 50.36
✓ 26.3 29.8 41.9 55.7 56.3 73.8 74.3 53.90

(Iters) 3.2414 3.2435 3.2233 3.1740 2.8122 2.3226 2.4726 2.8494

Complex CoT∗

(repro., 8-shot)

✗ 29.9 33.9 34.1 46.8 47.4 62.1 70.7 48.80
✓ 28.9 30.4 43.9 53.2 50.0 68.5 84.1 53.80

(Iters) 2.7629 2.4643 2.7805 2.7581 2.4474 2.3780 2.5484 2.59

CR w/o code∗
(ours, 4-shot)

✗ 28.9 (-1.0) 30.4 (-3.5) 39.0 (+4.9) 54.8 (+8.0) 57.9 (+10.5) 71.8 (+9.7) 79.3 (+8.6) 54.20 (+5.40)
✓ 32.0 (+3.1) 35.7 (+5.3) 43.9 (+0.0) 59.7 (+6.5) 63.2 (+13.2) 71.8 (+3.3) 86.6 (+2.5) 58.00 (+4.20)

(Iters) 2.6598 2.4821 2.5122 2.2903 2.2105 2.2195 2.3548 2.40 (-0.19)

Table 6: Comparative performance on the MATH dataset using GPT-4 without code environment for
different difficulty levels.

w/ PHP MATH Dataset (∗ denotes using 500 test examples subset)

Level 5 Level 4 Level 3 Level 2 Level 1 Overall
CoT (OpenAI, 2023) ✗ - - - - - 42.50

Complex CoT∗

(repro., 8-shot)
✗ 22.4 38.3 62.9 72.2 79.1 48.80
✓ 23.9 43.8 63.8 86.7 83.7 53.80

CR w/o code∗
(ours, 4-shot)

✗ 32.1 (+9.7) 43.0 (+4.7) 62.9 (+0.0) 78.9 (+6.7) 83.7 (+4.6) 54.20 (+5.40)
✓ 27.3 (+3.4) 50.0 (+6.2) 70.9 (+7.1) 86.7 (+0.0) 90.7 (+7.0) 58.00 (+4.20)

5.2 CR WITH CODE ENVIRONMENT ONLY

In this section, we extend the concept of Cumulative Reasoning (CR) with the inclusion of a code
environment. Our experimental setup chooses not to utilize external aids such as memory modules,
web browsing, or retrieval systems. Instead, we focus on a pure Python code environment to emulate
a symbolic system. This approach aims to evaluate the LLM’s intrinsic capabilities in computational
problem-solving and logical reasoning. This involves a single reasoning context session without
additional verifier LLMs.

In the CR framework with a code environment, the Python interpreter acts as a symbolic system that
aids in verification. This setup allows for an intricate interplay between the proposer (LLM) and the
verifier (LLM equipped with code environment). The LLM, acting as the proposer, can generate
hypotheses, formulate mathematical expressions, and pose questions to itself. These steps are then
executed and verified in the code environment, and the observations (outputs) are then interpreted by
the LLM.

Our experimental results, as shown in Table 7 and Table 8, demonstrate the effectiveness of the
CR methodology in a code environment. We compare our approach with PAL (Gao et al., 2023)
and ToRA (Gou et al., 2023), two notable benchmarks in the field. CR with code significantly
outperforms these methods, achieving an overall accuracy of 72.2% on the MATH dataset, achieving
38.9% relative improvement over PAL and 18.8% relative improvement over ToRA. More specifically,
achieving 66.8% relative improvement of PAL, and 12.8% relative improvement over ToRA on the
hardest level 5 MATH problems.

6 RELATED WORK

Reasoning with LLM. An extensive range of studies highlights the benefits of equipping neural
networks with the capacity to generate intermediate steps, which is a capability that notably enhances
reasoning performance across a broad spectrum of applications (Zaidan et al., 2007; Yao et al., 2021;
Hase & Bansal, 2021; Yang et al., 2022; Wu et al., 2022; Zhou et al., 2022). Morishita et al. (2023)
improve the reasoning abilities of language models by using a synthetic corpus derived from formal
logic theory. A comprehensive analysis of process-based versus outcome-based approaches on the
GSM8K task is conducted by Uesato et al. (2022), and Lightman et al. (2023) further advance this
field by meticulously collecting the PRM-800K dataset containing step-by-step supervision.
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Table 7: Comparative performance on the MATH dataset using GPT-4 and GPT-4-turbo with Python
code environment. We adopted a default temperature setting of t = 0.0, consistent with prior research
settings (greedy decoding). Notice that in this experiment (including reproduced results), we use a
lightweight GPT-4-turbo for a cheaper cost as default. “Sessions” denotes how many LLMs with a
consecutive thinking context are involved in the reasoning process, and Overall reflects the overall
results across MATH subtopics.

# Sessions MATH Dataset (∗ denotes 500 text examples subset)

InterAlgebra Precalculus Geometry NumTheory Probability PreAlgebra Algebra Overall
PAL - 32.8 29.3 38.0 58.7 61.0 73.9 59.1 51.8

PAL∗ (repro., 4 shot) 1 30.9 23.2 31.7 66.1 57.9 73.2 65.3 52.0

ToRA - 40.0 37.2 44.1 68.9 67.3 82.2 75.8 61.6
ToRA∗ (repro., 4 shot) 1 49.5 44.6 48.8 49.5 66.1 67.1 71.8 60.8

CR w/ code∗ (ours, 4-shot) 1 51.5 (+2.0) 51.8 (+7.2) 53.7 (+4.9) 88.7 (+22.6) 71.1 (+5.0) 86.6 (+13.4) 86.3 (+14.5) 72.2 (+11.4)

Table 8: Comparative performance on the MATH dataset using GPT-4 and GPT-4-turbo with Python
code environment for different difficulty levels.

# Sessions MATH Dataset (∗ denotes using 500 test examples subset)

Level 5 Level 4 Level 3 Level 2 Level 1 Overall
PAL - - - - - - 51.8

PAL∗ (repro., 4-shot) 1 31.3 45.3 60.0 65.6 88.4 52.0

ToRA - - - - - - 61.6
ToRA∗ (repro., 4-shot) 1 46.3 53.9 69.5 75.6 74.4 60.8

CR w/ code∗ (ours, 2-shot) 1 52.2 (+5.9) 66.4 (+12.5) 81.9 (+12.4) 90.0 (+14.4) 90.7 (+2.3) 72.2 (+11.4)

Additionally, a considerable breadth of research is committed to amplifying the reasoning capabilities
leveraging symbolic systems, including code environment, knowledge graphs, and formal theorem
provers (Mihaylov & Frank, 2018; Bauer et al., 2018; Kundu et al., 2018; Wang et al., 2019; Lin
et al., 2019; Ding et al., 2019; Feng et al., 2020; Wang et al., 2022a; Chen et al., 2022; Lyu et al.,
2023; Chen et al., 2022; Gao et al., 2023; Gou et al., 2023; Jiang et al., 2022; Yang et al., 2023).

Chain-of-Thought Prompting. In the pioneering work on chain-of-thought reasoning, Wei et al.
(2022) emphasize the importance of incorporating multi-step reasoning paths before generating
definitive answers. In a progression from this, Wang et al. (2022b) introduce self-consistency, a
sophisticated decoding strategy destined to supersede the rudimentary greedy decoding employed
in CoT prompting. Advancing this further, Zhou et al. (2022) seek to tackle the complexities faced
by CoT prompting in addressing tasks necessitating solutions beyond the complexity scope of the
exemplars used in the prompts. Khot et al. (2022) enhance LLM capabilities for complex tasks
through Decomposed Prompting, a method that dissects tasks into simpler sub-tasks. Creswell &
Shanahan (2022) showcase a method for enhancing reasoning quality, conducting a beam search
throughout the reasoning trace space. Fu et al. (2022) highlight the importance of increasing reasoning
complexity inside the few-shot prompts for better performance.

More recently, Li et al. (2023) bring forth DIVERSE, which generates a spectrum of prompts to
scrutinize various reasoning trajectories for an identical question, and utilizes a verifier to weed
out incorrect answers using a weighted voting scheme. Yao et al. (2023) propose a framework
for language model inference, Tree-of-Thought (ToT). ToT enhances the problem-solving abilities
of language models by facilitating deliberate decision-making, contemplating multiple reasoning
paths, and performing self-evaluative choices to determine subsequent actions. Taking an iterative
approach, Zheng et al. (2023) advocate for recurrent invocations of LLMs, leveraging prior answers as
contextual hints to inform subsequent iterations. Lastly, Feng et al. (2023) underscore the theoretical
prowess of CoT in addressing intricate real-world tasks like dynamic programming.

7 CONCLUSION

In this paper, we propose CR that employs language models iteratively and cumulatively. The main
idea behind our algorithm is decomposing the complex task into smaller steps, and maintaining a
thinking context for all the intermediate results. Experimental results show that our method achieves
state-of-the-art performance for logical inference tasks, the Game of 24, and MATH problems. Given
its inherent generality, our framework holds promising potential for addressing a wider array of
mathematical challenges.

9



Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

Our research on Cumulative Reasoning (CR) aims to enhance the problem-solving abilities of
language models and shows significant improvements in tasks such as logical inference and complex
problem-solving. We use a curated FOLIO wiki dataset derived from Yale’s publicly available FOLIO
dataset, ensuring that all data is anonymized and stripped of personally identifiable information. While
CR potentially makes the decision-making process more transparent by breaking down tasks into
simpler components, it inherits the biases present in the language models’ training data and maintains
some level of the ’black box’ nature. Its advanced reasoning capabilities, although promising for
beneficial applications like medical diagnostics, also pose risks of misuse, such as in disinformation
campaigns. Furthermore, the computational intensity of training these models has environmental
implications. We urge the research community to adopt responsible guidelines for the deployment of
advanced reasoning models and consider future work in improving interpretability, mitigating biases,
and reducing environmental impact.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we make our code available at https://anonymous.4open.scie
nce/r/cumulative-reasoning-anonymous-4477. The experiment results can be easily
reproduced following the instructions in the README document. We also depict our experiment
details in Section 4.
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A APPENDIX FOR EXAMPLES

A.1 ILLUSTRATIVE EXAMPLE ON EXPERIMENT DATASETS

[Problem Description]
• Example ID: 687
• Premises:

1. It is not true that some giant language models do not have good performance.
2. All language models with good performance are used by some researchers.
3. If a language model is used by some researchers, it is popular.
4. If BERT is a giant language model, then GPT-3 is also a giant language model.
5. BERT is a giant language model.

• Hypothesis: GPT-3 is popular.
• Label: [True]

[Chain-of-Thought Reasoning by GPT-4]
• Reasoning: “From the premises, we have:

1.¬(∃x)(Giant(x) ∧ ¬GoodPerformance(x))
2.∀x(GoodPerformance(x) → UsedByResearchers(x))
3.∀x(UsedByResearchers(x) → Popular(x))
4.BERT → GPT-3
5.BERT

Now we know that BERT is a giant language model, so GPT-3 is also a giant language model (from
premises 4 and 5). However, the premises do not provide information about GPT-3’s performance or if
it is used by researchers. Therefore, we cannot conclude if GPT-3 is popular.”

• Prediction: [Unknown] (Wrong)

[Cumulative-Reasoning by GPT-4]
• Generated Propositions:

1. “GPT-3 is a giant language model with good performance.”
2. “GPT-3 is used by some researchers.”

• Reasoning: “We know that GPT-3 is a giant language model with good performance, and it is used by
some researchers. According to the premises, if a language model is used by some researchers, it is
popular. Therefore, GPT-3 is popular.”

• Prediction: [True] (Correct)

Figure 3: An example from the FOLIO dataset, with solutions generated by CoT and CR. CoT will
generate the answer directly through a chain of thought. By contrast, CR will first generate a few
propositions, and conclude with the help of the generated propositions.
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[Problem Description]
• Example ID: 679
• Premises:

1. Zaha Hadid is a British-Iraqi architect, artist and designer.
2. Zaha Hadid was born on 31 October 1950 in Baghdad, Iraq.
3. Hadid was a visiting professor of Architectural Design at the Yale School of Architecture.
4. Max is an aspiring architecture student, and he plans to apply to Yale School of Architecture.

• Hypothesis: Hadid was born in 1982.
• FOL Label: [Unknown]
• Human Label: [False]
• Explanation: We can see that Zaha Hadid was born on 31 October 1950 in Baghdad, Iraq. This

directly contradicts the hypothesis that Hadid was born in 1982. It is common knowledge that people
are born only once, and someone can’t be born in two different years.

Figure 4: Example 679 from the FOLIO wiki dataset, the origin label provided by the FOL system
is not correct, so we choose to curate this dataset, removing these examples with wrong labels. For
more examples, please refer to Appendix E.2.

[Problem Description]
• Example ID: test/intermediate algebra/1350.json
• Level: 5
• Subject: Intermediate Algebra
• Problem: Consider the polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0,

where the polynomial has integer coefficients and its roots are distinct integers.
Given an = 2 and a0 = 66, the inquiry is to determine the least possible value of |an−1|.

[Ground Truth Solution]
• Solution: Since f(x) has integer coefficients, the Integer Root Theorem asserts that any integer roots

of f(x) must divide the constant term 66 = 2 · 3 · 11. Consequently, the potential integer roots of f(x)
are

±1, ± 2, ± 3, ± 6, ± 11, ± 22, ± 33, ± 66.

Additionally, given that all roots of f(x) are integers, they are necessarily members of the aforemen-
tioned list.
We proceed to utilize Vieta’s formulas. The roots of f(x) yield a product of (−1)n · a0

an
, which

evaluates to either 33 or −33. Simultaneously, the sum of these roots is −an−1

an
= −an−1

2
. To

minimize |an−1|, we aim to reduce the absolute value of the root sum, ensuring that the product of the
roots remains 33 or −33.
Considering two distinct scenarios:
Case 1: One of the roots is 33 or −33. In this scenario, the only other viable roots are ±1. Here, the
root sum’s absolute value is at least 32.
Case 2: One root is 11 or −11, and another is 3 or −3. The only other plausible roots remain ±1,
leading to a root sum’s absolute value of at least 11− 3− 1 = 7. This is a more optimal outcome than
Case 1. For an absolute root sum of 7, we find |an−1| = 7|an| = 14.
From our analysis, we deduce that |an−1| ≥ 14. Verifying this, we observe that equality is attained by

f(x) = 2(x+ 11)(x− 3)(x− 1)

= 2x3 + 14x2 − 82x+ 66,

which is consistent with having integer coefficients and integer roots. Thus, the minimal achievable
value for |an−1| is 14 .

• Answer: 14

Figure 5: An example from the MATH dataset (Hendrycks et al., 2021; Lightman et al., 2023).
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[Chain-of-Thought Reasoning by GPT-4]
• Reasoning: “Let’s think step by step:

1. The roots of the polynomial are distinct integers, and the leading coefficient is 2, so the roots
must be divisors of 66

2
= 33.

2. The divisors of 33 are ±1,±3,±11,±33.
3. The sum of the roots of the polynomial is −an−1

an
.

4. To minimize |an−1|, we should select the roots to be as close to zero as possible.
5. The smallest possible sum of the roots is −1− 3 + 11 + 33 = 40,

6. Thus, the smallest possible value of |an−1| is 2× 40 = 80 .”
• Answer: 80 (Wrong)

[Cumulative-Reasoning by GPT-4]
• Generated Hints:

1. “Hint 1: Recall Vieta’s formulas, which relate the coefficients of a polynomial to the sums
and products of its roots.”

2. “Hint 2: The product of the roots of the polynomial is equal to − a0
an

.”

3. “Hint 3: The sum of the roots of the polynomial is equal to −an−1

an
.”

4. “Hint 4: Since the roots are distinct integers, consider the factors of − a0
an

and their sums.”
• Generated Simple Questions and Answers:

Question 1: “What is the product of the roots of the polynomial f(x)?”
Answer 1: “The product of the roots of the polynomial is − a0

an
= − 66

2
= −33.”

Question 2: “What are the possible sets of distinct integer roots of the polynomial?”
Answer 2: “The possible sets of distinct integer roots are {−33, 1}, {−11, 3}, and {−3, 11,−1}.”

Question 3: “What are the sums of the roots for each possible set of roots?”
Answer 3: “The sums of the roots are −32, −8, and 7 for the sets {−33, 1}, {−11, 3}, and

{−3, 11,−1}, respectively.”
Question 4: “What is the least possible value of |an−1|?”

Answer 4: “The least possible value of |an−1| is 2× 7 = 14.”
• Solution: “Let’s think step by step. Given that an = 2 and a0 = 66, and the roots of the

polynomial are distinct integers, the least possible value of |an−1| is 14 .”
• Answer: 14 (Correct)

Figure 6: Solutions for the example presented in Figure 5 from the MATH dataset, generated by CoT
and CR. CoT will generate the answer directly through a chain of thought. By contrast, CR will first
generate a few hints, then several simple and foundational questions, and then answer them by self,
and finally conclude with the help of the generated hints and question-answer pairs.
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<syntax>

## Problem: [problem]

Solution: Lets’ think step by step. [somewords interpreting the origin problem]

### Preliminary Contents

- **Prelim 1**: [preliminary contents 1]

- **Prelim 2**: [preliminary contents 2]

- [...]

### Hints
- **Hint 1**: [useful hints 1]

- **Hint 2**: [useful hints 2]

- [...]

### Intermediate Steps: Question-AnswerSketch-Code-Output-Answer Pairs

Let’s think step by step.

#### Question 1: [the first question you raised]
- **Answer Sketch**: [write a sketch of your answer to question 1]

##### Code for Question 1
[call code interpreter here to verify and solve your answer sketch to question 1]

#### Answer for Question 1
- **Answer**: [your answer to this question 1 based on the results
given by code interpreter (if presented)]

#### Question 2: [the second question you raised]
- **Answer Sketch**: [write a sketch of your answer to question 2]

##### Code for Question 2
[call code interpreter here to verify and solve your answer sketch to question 2]

#### Answer for Question 2
- **Answer**: [your answer to this question 2 based on the results
given by code interpreter (if presented)]

#### Question 3: [the second question you raised]
- **Answer Sketch**: [write a sketch of your answer to question 3]

##### Code for Question 3
[call code interpreter here to verify and solve your answer sketch to question 3]

#### Answer for Question 3
- **Answer**: [your answer to this question 3 based on the results
given by code interpreter (if presented)]

### [Question ...]

### Final Solution:

Recall the origin problem <MathP> [origin problem] </MathP>.

Let’s think step by step.

#### Solution Sketch
[write a sketch for your final solution]

#### Code for Final Solution
[call code interpreter here to verify and solve your final solution]

#### Final Answer
[present the final answer in latex boxed format, e.g., $\boxed{63\pi}$]
Final Answer: the answer is $\boxed{...}$.

</syntax>
---

Figure 7: Meta Prompt for CR with code environment on solving MATH problems.
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As one of the most distinguished mathematicians, logicians, programmers, and AI scientists, you
possess an unparalleled mastery over Arithmetic, Combinatorics, Number Theory,
Probability Theory, Algebra, Analysis, and Geometry. You are not only intelligent and rational
but also prudent and cautious. You are willing to write and execute Python code. Let’s approach
each problem step by step, take a deep breath, do not save your words, and articulate
our thoughts in detail, as detailed as possible.

<system>
You will be presented with a mathematical problem, denoted as ‘MathP‘. Before diving into
the solution, you are asked to lay down some foundational preliminary contents and hints.
Thereafter, you will generate a series of intermediate questions that pave the way to the
final answer of ‘MathP‘. For each question, sketch a preliminary answer, execute the
corresponding code (you always remember to ‘from sympy import *‘), derive the output,
and then finalize your answer.
This forms a [Question] -> [AnswerSketch] -> [Code] -> [Output] -> [Answer] sequence.

## System Instructions for Mathematical Problem-Solving

### Objective
Your primary goal is to solve complex mathematical problems with code environment feedback.

### Key Priorities

1. **Hints**: Prioritize generating hints that are useful for solving the problem.

2. **Intermediate Questions**: Craft questions that decompose the problem into simpler parts,
then try to solve them with code environment feedback.

### Code Execution Guidelines

1. **Import Libraries**: YOU MUST IMPORT NECESSARY LIBRARIES in all your code blocks,
such as ‘from sympy import *‘.

2. **Immediate Execution**: Execute **all** your code immediately after writing them to ensure
they are working as intended.
You should use code interpreter immediately after you have written the code,
to get the output.

3. **YOU MUST CALL CODE INTERPRETER IMMEDIATELY IN EVERY QUESTION**.

### Mathematical Formatting

1. **Final Answer**: Present your final answer to the origin problem lastly (not your generated
questions)
in LaTeX format, enclosed within ‘\boxed{}‘ and devoid of any units.

2. **Mathematical Constants and Rational Numbers**: Use the ‘pi‘ symbol and the ‘Rational‘ class
from the Sympy library to represent \( \pi \) and fractions. All fractions and square roots
should be simplified but **not** converted into decimal values.
</system>

---

Figure 8: System Instructions used in CR with code environment for solving MATH problems, the
actual context would be [SystemInstruction] + [MetaPrompt].
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B MORE EXPERIMENTS ON LOGICAL INFERENCE TASKS

B.1 MORE EXPERIMENTAL RESULTS

Table 9: Comparison results on LogiQA

Method Acc. ↑ # Visited States ↓
Direct 31.69% 1
CoT 38.55% 1

CoT-SC 40.43% 16
ToT 43.02% 19.87

CR 45.25% 17

Table 10: Comparison results on ProofWriter

Method Acc. ↑ # Visited States ↓
Standard 46.83% 1
CoT 67.41% 1

CoT-SC 69.33% 16
ToT 70.33% 24.57

CR 71.67% 16.76

Table 11: Comparison results on FOLIO-val

Method Acc. ↑ # Visited States ↓
Standard 60.29% 1
CoT 67.65% 1

CoT-SC 68.14% 16
ToT 69.12% 19.12

CR 69.11% 15.87

Table 12: Comparison results on LD

Method Acc. ↑ # Visited States ↓
Standard 71.33% 1
CoT 73.33% 1

CoT-SC 74.67% 16
ToT 76.83% 21.83

CR 78.33% 16.98

For a fair comparison of different methods on the LogiQA, ProofWriter, FOLIO (validation set), and
LD datasets, we report the third-party reproduced results by Sun et al. (2023), For implementation
details on these experiments, please refer to their work.

B.2 ABLATION STUDIES

Table 13: Ablation studies on FOLIO wiki dataset using GPT-3.5-turbo model.
Model Method Acc. ↑ (%)

- [Random] 33.33

GPT-3.5-turbo

Direct 62.92
CoT 64.61 (+1.69)
CoT-SC (k = 16) 63.33 (+0.41)
CR (ours, n = 2) 73.03 (+10.11)
CR (ours, n = 2, w/o Verifier) 64.23 (+1.31)
CR (ours, n = 2, w/o premises random choice) 68.73 (+5.81)
CR (ours, n = 2, w/o Verifier, w/o premises random choice) 67.23 (+4.31)
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C DETAILED COMPARISON OF COT, TOT AND CR

To compare these methods, we consider a simple 2-stage reasoning process, which can be extended
to multiple stages as well. For simplicity, whenever the model has a step-verifier, we assume that the
verifier has 100% accuracy. Moreover, we assume that there exists exactly one correct reasoning path
for the problem. We have the following definitions.
Definition C.1 (Arrival Probability). For a given algorithm, we may compute its arrival probability as
the probability of reaching the correct conclusion from the initial state, with one-experience successful
invocation. Specifically, denote the arrival probability of CoT as PCoT, the arrival probability of
running CoT multiple times as PCoT-SC, the arrival probability of ToT as PToT = p1ToTp2ToT , the arrival
probability of CR as PCR = p1CRp2CR . Here, p1ToT and p1CR are the probablity of getting the first
reasoning step correctly, while p2ToT and p2CR are for the second step conditioned on the first step
being correct.

Since both ToT and CR have verifiers, they can exclude the wrong reasoning path immediately, see
Figure 9. Therefore, we immediately have PCoT ≤ p1ToTp2ToT , as CoT explores more useless branches.

(a) CoT-SC (b) ToT (c) CR

Figure 9: Comparison between CoT-SC, ToT, and CR.

Notice that using p1CR or p2CR to denote the arrival probabilities of CR is not accurate, as CR will
maintain a history of visited states. Therefore we use p1CR|(·) and p2CR|(·) to denote the probability
conditioned with additional visited states. We have the following assumption.
Assumption C.2. p1ToT ≤ p1CR , p2ToT ≤ p2CR , In addition, p1CR|(·) and p2CR|(·) will monotonically
increase as more nodes have been entered:

p1ToT ≤ p1CR|(premises) ≤ p2CR|(premises,stage-1 node1) ≤ p2CR|(premises,stage-1 node1,node2,··· ,noden),

p2ToT ≤ p2CR|(premises,stage-1 nodes) ≤ p2CR|(premises,stage-1 nodes, stage-2 node1)

≤ p2CR|(premises,stage-1 nodes,stage-2 node1,node2,··· ,noden),

This assumption is natural and has been empirically validated in various tasks (Madaan et al., 2023;
Shinn et al., 2023) since CR will not enter the failed nodes multiple times, since the verifier has
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wiped out the possibilities of these nodes and their successors. The following lemma is handy for
later comparison.

Lemma C.3. For any positive integer n, for any probabilities p1 ∈ [0, 1] and p2 ∈ [0, 1], the
following inequality holds:

1− (1− p1 · p2)n ≤ (1− (1− p1)
n) · (1− (1− p2)

n). (1)

Proof.

1− (1− p1 · p2)n ≤ (1− (1− p1)
n) · (1− (1− p2)

n)

⇔ 1− (1− p1 · p2)n ≤ 1− (1− p1)
n − (1− p2)

n + (1− p1)
n · (1− p2)

n

⇔ (1− p1)
n + (1− p2)

n ≤ (1− p1 · p2)n + (1− p1)
n · (1− p2)

n

⇔ (1− p1)
n + (1− p2)

n ≤ (1− p1 · p2)n + (1− p1 − p2 + p1 · p2)n

Notice that

(1− p1 · p2) + (1− p1 − p2 + p1 · p2) ≡ (1− p2) + (1− p2) ≡ 2− p1 − p2,

WLOG, let p1 ≥ p2 , then

(1− p1 − p2 + p1 · p2) ≤ (1− p1) ≤ (1− p2) ≤ (1− p1 · p2).

From the monotonicity of function xn + (2− p1 − p2 − x)n in the interval (−∞, 2−p1−p2

2 ] and the
interval [ 2−p1−p2

2 ,+∞) respectively, and the symmetry of {(1− p1 − p2 + p1 · p2), (1− p1 · p2)}
and the symmetry of {(1− p1), (1− p2)} correspond to y = 2−p1−p2

2 , we conclude the proof.

Theorem C.4 (PCoT-SC ≤ PToT ≤ PCR). Assume CoT-SC has n different trials, while ToT and CR
search with breadth at most n. Under Assumptions C.2, the following inequality holds:

PCoT-SC ≤ PToT ≤ PCR. (2)

Proof.
PCoT-SC ≤ 1− (1− pCoT)

n ≤ 1− (1− p1 · p2)n,

PToT = (1− (1− p1)
n) · (1− (1− p2)

n),

Combined with Lemma C.3, now we have

PCoT-SC ≤ PToT.

From Assumption C.2, we have

PToT ≤ (1− (1− p1CR|(premises))
n) · (1− (1− p2CR|(premises, stage-1 nodes))

n) ≤ PCR.

Finally, we conclude that

PCoT-SC ≤ PToT ≤ PCR.
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D MORE ON LOGIC

Limitations of First-Order Logic Systems. It is not surprising that the labels verified by FOL are
still not satisfying. There are several limitations inside the FOL systems:

1. Limitations of Expressiveness (Löwenheim, 1967): FOL even lacks the expressive power to
capture some properties of the real numbers. For example, properties involving uncountably many
real numbers often cannot be expressed in FOL. In addition, properties requiring quantification over
sets of real numbers or functions from real numbers to real numbers cannot be naturally represented
in FOL.

2. Translation Misalignment: Risk of semantic discrepancies during translation, rendering resolutions
ineffective. For instance, translating statements as ∀Bird(x) ⇒ CanFly(x) and ∀x(Fly(x) ⇒
Wings(x)) may cause a misalignment between “CanFly” and “Fly”, leading to flawed conclusions. It
often fails to capture the full richness and ambiguity of natural language and lacks basic common
knowledge (Gamut, 1990).

3. Undecidability: The general problem of determining the truth of a statement in FOL is undecid-
able (Turing et al., 1936; Chimakonam, 2012) (deeply connected to the halting problem), constraining
its applicability for automated reasoning in complex tasks.

D.1 ILLUSTRATIVE EXAMPLE ON HIGHER-ORDER LOGIC

Here we present a refined example derived from the FraCas dataset to illustrate higher-order logic
inference. It is noteworthy that the FraCas dataset (Cooper et al., 1996) is dedicated to the realm of
higher-order logic inference. This characterization also applies to a majority of the Natural Language
Inference (NLI) datasets (Kumar et al., 2022), which encompass their internal syntax, semantics, and
logic. The intricate linguistic components such as quantifiers, plurals, adjectives, comparatives, verbs,
attitudes, and so on, can be formalized with Combinatory Categorial Grammar (CCG) along with the
formal compositional semantics (Mineshima et al., 2015).

Higher-order logic (HOL) has the following distinctive characteristics as opposed to FOL (Mineshima
et al., 2015):

Quantification over Functions: Higher-order logic (HOL) allows for lambda expressions, such as
λy.report attribute(y, report), whereby functions themselves become the subject of quantification.
An illustration of this is found in the expression “a representative who reads this report.” Here,
quantification spans the predicates representing both the representative and the reading of the report,
a phenomenon captured as a higher-order function. Unlike HOL, FOL is incapable of extending
quantification to functions or predicates.

Generalized Quantifiers: The introduction of generalized quantifiers, such as “most,” serves
as another demarcation line between HOL and FOL. These quantifiers are capable of accepting
predicates as arguments, enabling the representation of relations between sets, a feat that transcends
the expressive capacity of FOL.

Modal Operators: Employing modal operators like “might” signifies a transition towards HOL.
These operators, applicable to propositions, give rise to multifaceted expressions that defy easy
reduction to the confines of FOL.

Attitude Verbs and Veridical Predicates: The integration of attitude verbs, such as “believe,” and
veridical predicates like “manage,” injects an additional layer of complexity necessitating the use
of HOL. These linguistic constructs can engage with propositions as arguments, interacting with
the truth values of those propositions in subtle ways that demand reasoning extending beyond the
capabilities of FOL.

Previously we have discussed the limitations of FOL systems, what about HOL systems? Crafting
HOL programs that are solvable by symbolic systems is a daunting task, even for experts. It is also
challenging for LLMs to write these intricate programs effectively. Using formal theorem provers
based on higher-order (categorical) logic and (dependent) type theory ups the ante, making it even
harder. However, CR solves these problems pretty well without resorting to and being restricted to
symbolic systems, just like the way humans think.
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[Modified Example FraCas-317]
• Premises:

1. Most of the representatives who read the report have a positive attitude towards it.
2. No two representatives have read it at the same time, and they may have different

opinions about it.
3. No representative took less than half a day to read the report.
4. There are sixteen representatives.

• Hypothesis: It took the representatives more than a week to read the report, and most found
it valuable.

• Label: [True]
• Higher-Order Logic Premises:

1.

most(λx.representative(x) ∧ reads(x, report), λx.has positive attitude(x, report))

2.

¬∃x, y (x ̸= y ∧ representative(x) ∧ representative(y)∧
read at same time(x, y, report))∧

∀x, y (x ̸= y ∧ representative(x) ∧ representative(y) →
may(λz.different opinions(z, x, y, report)))

3. ¬∃x(representative(x) ∧ took less than half day(λy.read(y, report)))
4. count(λx.representative(x)) = 16

• Higher-Order Logic Hypothesis:

∃t(total reading time(report) > 7 ∧ time unit(t, day))∧
most(λx.representative(x), λx.found valuable(x, report))

[Cumulative-Reasoning by GPT-4]
• Generated Propositions:

1. “Using P1 and P2, we can deduce Q1: Every representative read the report at a different
time, and most representatives found the report valuable.”

2. “Using P3 and Q1, we deduce Q2: The total reading time must be at least 8 days. (since
16 representatives each took at least half a day).”

3. “Using Q2 and P4, we deduce Q3: The representatives took at least 8 days to read the
report.”

• Reasoning: “Based on the intermediate propositions Q1, Q2, and Q3, the hypothesis that it
took the representatives more than a week to read the report, and most found it valuable, is
confirmed as True.”

• Prediction: [True] (Correct)
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E MORE ON DATASETS

E.1 MORE FOLIO EXAMPLES

[Example ID: 603]
• Hypothesis: Hyraxes lay eggs.
• Premises:

1. The only types of mammals that lay eggs are platypuses and echidnas.
2. Platypuses are not hyrax.
3. Echidnas are not hyrax.
4. No mammals are invertebrates.
5. All animals are either vertebrates or invertebrates.
6. Mammals are animals.
7. Hyraxes are mammals.
8. Grebes lay eggs.
9. Grebes are not platypuses and also not echidnas.

• Label: [False]

[Chain-of-Thought Reasoning by GPT-4]
• Reasoning: “The premises state that the only types of mammals that lay eggs are platypuses

and echidnas. Hyraxes are mammals but are neither platypuses nor echidnas. Since the
conclusion is about hyraxes laying eggs but there’s no direct information in the premises on
this topic, the conclusion cannot be determined with certainty.”

• Prediction: [Unknown] (Wrong)

[Cumulative-Reasoning by GPT-4]
• Generated Propositions:

1. “All mammals are either vertebrates or invertebrates.”
2. “Hyraxes do not lay eggs, as they are neither platypuses nor echidnas.”

• Reasoning: “We can deduce that the only types of mammals that lay eggs are platypuses and
echidnas. Hyraxes are mammals, but they are neither platypuses nor echidnas. Therefore,
hyraxes do not lay eggs.”

• Prediction: [False] (Correct)

[Example ID: 546]
• Hypothesis: Extractive models are not always faithful.
• Premises:

1. A summarization model is always faithful if it uses content from the input documents.
2. Extractive models are a kind of summarization models.
3. Extractive model can only use content from the input documents.

• Label: [False]

[Chain-of-Thought Reasoning by GPT-4]
• Reasoning: “The premises state that a summarization model is always faithful if it uses

content from the input documents. Extractive models are a kind of summarization model,
and they can only use content from the input documents. However, the premises do not
provide any information about whether extractive models are always faithful or not.”

• Prediction: [Unknown] (Wrong)
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[Cumulative-Reasoning Reasoning by GPT-4]
• Generated Propositions:

1. “All extractive models are faithful summarization models since they use content from
the input documents.”

2. “All faithful summarization models use content from the input documents.”
• Reasoning: “We can infer that extractive models are always faithful because they only use

content from the input documents and satisfy the condition for a summarization model to be
faithful. Therefore, the conclusion that extractive models are not always faithful is incorrect.”

• Prediction: [False] (Correct)

[Example ID: 404]
• Hypothesis: No coursing is banned.
• Premises:

1. Greyhound racing is a competitive sport where spectators bet on greyhounds.
2. Coursing is a part of Greyhound racing.
3. Some competitive sports where spectators bet on things are banned.
4. Coursing involves spectators betting on a hare being pursued by greyhounds.
5. Hares are small game.
6. If a competitive sport involves spectators betting on small game, then it is banned.

• Label: [False]

[Chain-of-Thought Reasoning by GPT-4]
• Reasoning: “The premises state that coursing is a part of greyhound racing, and it involves

spectators betting on a hare being pursued by greyhounds. Hares are small game, and if
a competitive sport involves spectators betting on small game, then it is banned. It’s also
mentioned that some competitive sports where spectators bet on things are banned. However,
the premises do not clearly state the status of coursing being banned or not banned.”

• Prediction: [Unknown] (Wrong)

[Cumulative-Reasoning Reasoning by GPT-4]
• Generated Propositions:

1. “If a competitive sport involves spectators betting on hares, then it is banned.”
2. “Coursing is a competitive sport that involves spectators betting on small game.”

• Reasoning: “We know that coursing is a competitive sport involving spectators betting on
small game, specifically hares. The premises also state that if a competitive sport involves
spectators betting on small game, then it is banned. Thus, we can deduce that there is a
possibility that coursing is banned. The hypothesis claims that no coursing is banned, which
contradicts the deduction that coursing might be banned.”

• Prediction: [False] (Correct)
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[Example ID: 609]
• Hypothesis: Allison has room for broccoli.
• Premises:

1. If you have room for dessert, you have room for broccoli.
2. Everyone at Luis’s dinner party has room for dessert, including Luis.
3. Mauricia does not have room for broccoli.
4. Luis’s dinner party is the first ever dinner party that Allison has attended.
5. Gustave has room for both broccoli and asparagus.
6. Broccoli and asparagus are both vegetables.

• Label: [True]

[Chain-of-Thought Reasoning by GPT-4]
• Reasoning: “The premises state that if you have room for dessert, you have room for

broccoli. Everyone at Luis’s dinner party has room for dessert, including Luis. However,
we do not have information specifically about Allison having room for dessert or not, even
though it’s her first dinner party. Thus, we can’t conclude with certainty if Allison has room
for broccoli.”

• Prediction: [Unknown] (Wrong)

[Cumulative-Reasoning by GPT-4]
• Generated Propositions:

1. “Gustave has room for vegetables.”
2. “Everyone at Luis’s dinner party, including Mauricia, has room for dessert.”

• Reasoning: “We know that:
1. If one has room for dessert, they have room for broccoli.
2. Everyone at Luis’s dinner party, including Luis and Allison, has room for dessert.
Using these premises, we can infer that since everyone at Luis’s dinner party has room for
dessert, they also have room for broccoli. Therefore, Allison, who is at Luis’s dinner party,
must have room for broccoli.”

• Prediction: [True] (Correct)

E.2 MORE EXAMPLES ON PROBLEMS EXCLUDED FROM FOLIO WIKI CURATED

Type 1 Error: Missing common knowledge or contradictory to common knowledge

[Example ID: 34]
• Premises:

1. The Croton River watershed is the drainage basin of the Croton River.
2. The Croton River is in southwestern New York.
3. Kings are male.
4. Water from the Croton River watershed flows to the Bronx.
5. The Bronx is in New York.

• Hypothesis: Water from the Croton River flows to the Bronx.
• Label: [Unknown]
• Wrong Type: [Type 1: Missing common knowledge or contradictory to common knowledge

in the premises]
• Explanation: We understand that the Croton River is in southwestern New York, and the

Bronx is also located in New York. It is stated that water from the Croton River watershed
flows to the Bronx, and the Croton River watershed is the drainage basin of the Croton River.
It is common knowledge that water from a river flows to its drainage basin. Therefore, it is
true that water from the Croton River flows to the Bronx.
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[Example ID: 268]
• Premises:

1. Bernarda Bryson Shahn was a painter and lithographer.
2. Bernarda Bryson Shahn was born in Athens, Ohio.
3. Bernarda Bryson Shahn was married to Ben Shahn.
4. People born in Athens, Ohio are Americans.

• Hypothesis: Bernarda Bryson Shahn was born in Greece.
• Label: [Unknown]
• Wrong Type: [Type 1: Missing common knowledge or contradictory to common knowledge

in the premises]
• Explanation: We know that Bernarda Bryson Shahn was born in Athens, Ohio. It is common

knowledge that Greece is not in Ohio. It also states that people born in Athens, Ohio, are
Americans. Thus, it is false to conclude that Bernarda Bryson Shahn was born in Greece.

[Example ID: 62]
• Premises:

1. The Golden State Warriors are a team from San Francisco.
2. The Golden State Warriors won the NBA finals.
3. All teams attending the NBA finals have more than thirty years of history.
4. Boston Celtics are a team that lost the NBA finals.
5. If a team wins the NBA finals, then they will have more income.
6. If a team wins or loses at the NBA finals, then they are attending the finals.

• Hypothesis: The Golden State Warriors will have more income for gate receipts.
• Label: [True]
• Wrong Type: [Type 1: Missing common knowledge or contradictory to common knowledge

in the premises]
• Explanation: We know that the Golden State Warriors won the NBA finals and that if a team

wins the NBA finals, they will have more income. Therefore, we can infer that the Golden
State Warriors will have more income. However, the hypothesis mentions ’more income for
gate receipts,’ and there is no information about gate receipts on the premises.

Type 2 Error: Overly ambiguous problems failing to provide unequivocal answers

[Example ID: 496]
• Premises:

1. Some fish may sting.
2. Stonefish is a fish.
3. It stings to step on a stonefish.
4. Stonefish stings cause death if not treated.
5. To treat stonefish stings, apply heat to the affected area or use an antivenom.

• Hypothesis: If you step on a stonefish and apply heat to the affected area, stings will cause
death.

• Label: [Unknown]
• Wrong Type: [Type 2: Overly ambiguous problems failing to provide unequivocal answers]
• Explanation: The premises state that applying heat to the affected area or using antivenom

can treat stonefish stings. Thus, if heat is applied to the affected area, it should help treat the
sting and prevent death. However, it is not certain that applying heat to the affected area
will prevent death, as it is possible that the sting is too severe to be treated with heat.
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[Example ID: 432]
• Premises:

1. Vic DiCara plays guitar and bass.
2. The only style of music Vic DiCara plays is punk music.
3. Vic DiCara played in the band Inside Out.

• Hypothesis: If you step on a stonefish and apply heat to the affected area, stings will cause
death.

• Label: [Unknown]
• Wrong Type: [Type 2: Overly ambiguous problems failing to provide unequivocal answers]
• Explanation: We know that Vic DiCara played in the band Inside Out and the only style of

music he plays is punk music. This information implies that Inside Out played punk music
while Vic DiCara was a member. However, it is not certain that Inside Out was a punk band,
as it is possible that the band played a different style of music before Vic DiCara joined.

[Example ID: 673]
• Premises:

1. Cancer biology is finding genetic alterations that confer selective advantage to cancer
cells.

2. Cancer researchers have frequently ranked the importance of substitutions to cancer
growth by P value.

3. P values are thresholds for belief, not metrics of effect.
• Hypothesis: Cancer researchers tend to use the cancer effect size to determine the relative

importance of the genetic alterations that confer selective advantage to cancer cells.
• Label: [Unknown]
• Wrong Type: [Type 2: Overly ambiguous problems failing to provide unequivocal answers]
• Explanation: We can deduce that cancer researchers tend to use P values, not effect sizes,

to rank the importance of genetic alterations. Thus, the hypothesis contradicts the premises.
However, it is still possible that cancer researchers use the cancer effect size to determine
the relative importance of the genetic alterations that confer selective advantage to cancer
cells.

Type 3 Error: Inherent inconsistencies presented within the premises

[Example ID: 640]
• Premises:

1. William Dickinson was a British politician who sat in the House of Commons.
2. William Dickinson attended Westminster school for high school and then the University

of Edinburgh.
3. The University of Edinburgh is a university located in the United Kingdom.
4. William Dickinson supported the Portland Whigs.
5. People who supported the Portland Whigs did not get a seat in the Parliament.

• Hypothesis: William Dickinson did not get a seat in the Parliament.
• Label: [True]
• Wrong Type: [Type 3: Inherent inconsistencies presented within the premises]
• Explanation: We have a contradiction. On one hand, we have information that William

Dickinson supported the Portland Whigs, and people who supported the Portland Whigs did
not get a seat in the Parliament. On the other hand, another premise states that William
Dickinson was a British politician who sat in the House of Commons, which implies that he
did get a seat in the Parliament.
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[Example ID: 643]
• Premises:

1. William Dickinson was a British politician who sat in the House of Commons.
2. William Dickinson attended Westminster school for high school and then the University

of Edinburgh.
3. The University of Edinburgh is a university located in the United Kingdom.
4. William Dickinson supported the Portland Whigs.
5. People who supported the Portland Whigs did not get a seat in the Parliament.

• Hypothesis: William Dickinson sat in the House of Commons.
• Label: [True]
• Wrong Type: [Type 3: Inherent inconsistencies presented within the premises]
• Explanation: We have a contradiction. On one hand, we have information that William

Dickinson supported the Portland Whigs, and people who supported the Portland Whigs did
not get a seat in the Parliament. On the other hand, another premise states that William
Dickinson was a British politician who sat in the House of Commons, which implies that he
did get a seat in the Parliament.

Type 4 Error: Vague premises or typographical errors

[Example ID: 314]
• Premises:

1. Palstaves are a type of early bronze axe.
2. Commonly found in northern, western and south-western Europe, palstaves are cast in

moulds.
3. John Evans is an archeologist who popularized the term ”palstave”.
4. A paalstab is not an axe, but rather a digging shovel.

• Hypothesis: John Evans Popularized the term paalstab.
• Label: [Unknown]
• Wrong Type: [Type 4: Vague premises or typographical errors]
• Explanation: What is palstave and paalstab? Were they misspelled?

[Example ID: 315]
• Premises:

1. Palstaves are a type of early bronze axe.
2. Commonly found in northern, western and south-western Europe, palstaves are cast in

moulds.
3. John Evans is an archeologist who popularized the term ”palstave”.
4. A paalstab is not an axe, but rather a digging shovel.

• Hypothesis: There is an axe that is commonly found in Western Europe.
• Label: [Unknown]
• Wrong Type: [Type 4: Vague premises or typographical errors]
• Explanation: We can see that palstaves are a type of early bronze axe and they are commonly

found in northern, western, and south-western Europe. Therefore, it is true that there is
an axe that is commonly found in Western Europe. However, the premises also state that
a paalstab is not an axe, but rather a digging shovel. Was paalstab the same thing as
palstaves?

Type 5 Error: Incorrect answers
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[Example ID: 9]
• Premises:

1. Palstaves are a type of early bronze axe.
2. Pierre de Rigaud de Vaudreuil built Fort Carillon.
3. Fort Carillon was located in New France.
4. New France is not in Europe.

• Hypothesis: Fort Carillon was located in Europe.
• Label: [Unknown]
• Wrong Type: [Type 5: Incorrect answers]
• Explanation: We know that Fort Carillon was located in New France, and New France is

not in Europe. Therefore, Fort Carillon was not located in Europe.

[Example ID: 632]
• Premises:

1. New York City is on the East Coast.
2. Seattle is on the West Coast.
3. If a person from a city on the East coast is traveling to a city on the west coast, they

will be on a long flight.
4. Most passengers on flights to Seattle from New York City are not in first class.
5. People on long flights are uncomfortable unless they’re in first class.

• Hypothesis: Some people flying from New York City to Seattle will be uncomfortable.
• Label: [False]
• Wrong Type: [Type 5: Incorrect answers]
• Explanation: We can deduce the following: 1. A person traveling from New York City to

Seattle will be on a long flight (since New York City is on the East Coast and Seattle is on
the West Coast). 2. Most passengers on flights from New York City to Seattle are not in first
class. 3. People on long flights are uncomfortable unless they’re in first class. Given this
information, we can conclude that some people flying from New York City to Seattle will be
uncomfortable, as most of them are not in first class and long flights cause discomfort for
those not in first class.

[Example ID: 671]
• Premises:

1. Westworld is an American science fiction-thriller TV series.
2. In 2016, a new television series named Westworld debuted on HBO.
3. The TV series Westworld is adapted from the original film in 1973, which was written

and directed by Michael Crichton.
4. The 1973 film Westworld is about robots that malfunction and begin killing the human

visitors.
• Hypothesis: Michael Crichton has directed a film about robots.
• Label: [Unknown]
• Wrong Type: [Type 5: Incorrect answers]
• Explanation: We can deduce that Michael Crichton wrote and directed the 1973 film

Westworld, which is about robots that malfunction and begin killing the human visitors. Thus,
it is true that Michael Crichton has directed a film about robots.
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