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ABSTRACT

One major issue of adversarial training (AT) with the fast gradient sign method
(FGSM AT) is the phenomenon of catastrophic overfitting, meaning that the
trained model suddenly loses its robustness over a single epoch. In addition to
FGSM AT, Andriushchenko & Flammarion (2020) observed that two-step pro-
jected gradient descent adversarial training (PGD-2 AT) also suffers from catas-
trophic overfitting for large `∞ perturbations. To prevent catastrophic overfitting,
Andriushchenko & Flammarion (2020) proposed a gradient alignment regular-
ization method (GradAlign) and claimed that GradAlign can prevent catastrophic
overfitting in FGSM AT and PGD-2 AT. In this paper, we show that PGD-2 AT
with random initialization (PGD-2-RS AT) and attack step size α = 1.25ε/2 only
needs approximately a half computational cost of FGSM + GradAlign AT and
actually can avoid catastrophic overfitting for large `∞ perturbations. We hypoth-
esize that, if FGSM-RS AT with α = 1.25ε/2 can avoid catastrophic overfitting
for `∞ perturbation size ε/2, then PGD-2-RS AT with α = 1.25ε/2 may be able
to avoid catastrophic overfitting for `∞ perturbation size ε. Our intuitions to jus-
tify this empirical hypothesis induce a more unexpected finding: If we apply ran-
dom noise from the uniform distribution U(−ε/2, ε/2) to the perturbations before
each step of PGD-2 with α = 1.25ε/2, instead of initializing the perturbations
with random noise from U(−ε, ε) at the beginning (i.e., the conventional random
initialization scheme), the corresponding AT method can also avoid catastrophic
overfitting and even achieve better robust accuracy in most cases. We refer to
this AT method as Qusai-PGD-2-RS AT. Extensive evaluations demonstrate that
PGD-2-RS AT and Qusai-PGD-2-RS AT with α = 1.25ε/2 achieve better perfor-
mance and efficiency than FGSM + GradAlign AT. Notably, Qusai-PGD-2-RS AT
achieves comparable robust accuracy against PGD-50-10 as PGD-3-RS AT on CI-
FAR10 and SVHN, and it also achieves approximately 18% top-1 and 38% top-5
robust accuracy against PGD-50-10 at ε = 8/255 on ImageNet.

1 INTRODUCTION

The past decade has witnessed tremendous achievements of deep learning in many application do-
mains, such as computer vision Krizhevsky et al. (2012), natural language processing (Cho et al.,
2014), and human-level control (Mnih et al., 2015). However, deep learning is also demonstrated
to be vulnerable to adversarial examples, which are hardly distinguishable from natural samples
according to human perception, but can mislead deep neural networks (DNNs) to make incorrect
predictions with high confidence (Szegedy et al., 2013; Goodfellow et al., 2014). The vulnerability
to adversarial examples is considered as a significant obstacle to the deployment of deep learning
techniques in security-critical applications. Thus, the community has developed many defensive
techniques against adversarial examples.

Among the existing defenses, adversarial training has survived the battles against many strong at-
tacks (Madry et al., 2017; Athalye et al., 2018; Andriushchenko et al., 2019; Croce & Hein, 2019;
2020), achieving the overall best empirical performance. Although the community has also devel-
oped some certified defenses (Wong & Kolter, 2018; Cohen et al., 2019; Mirman et al., 2018) against
adversarial examples, the empirical performance of those certified defenses is usually not compa-
rable to adversarial training. To this end, many recent studies focus on adversarial training (Zhang
et al., 2019b; Carmon et al., 2019; Ding et al., 2019; Wang et al., 2020; Rice et al., 2020; Zhang
et al., 2020). In those studies, adversarial training is consistently formulated as a min-max problem:
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The inner maximization problem aims to find adversarial examples that maximize a surrogate loss,
and the outer minimization problem is to minimize the surrogate loss on the adversarial examples
by optimizing the model parameters. Projected gradient descent (PGD) (Madry et al., 2017) is cur-
rently the most popular and effective approximation method to solve the inner problem. We refer to
adversarial training with k-step PGD to solve the inner maximization problem as PGD-k adversar-
ial training (PGD-k AT). However, since conventional PGD-k AT always requires many additional
forward and backward propagations (e.g., 10 additional propagations in PGD-10 AT) to generate ad-
versarial examples in each training step, which induces an order of magnitude more computational
cost than standard training and thus impedes the broader application of adversarial training.

To improve the scalability of adversarial training, some recent works focus on accelerating adver-
sarial training (Shafahi et al., 2019; Zhang et al., 2019a; Wong et al., 2019; Andriushchenko &
Flammarion, 2020). Notably, Wong et al. (2019) found that FGSM with random initialization and
a proper step size, which only needs one additional forward and backward propagation to generate
training adversarial examples, can achieve comparable defensive performance as PGD adversarial
training. We refer to this fast adversarial training method as FGSM-RS AT. Although FGSM-RS
AT has a very low cost, it may suffer from the phenomenon of catastrophic overfitting, where the
trained model suddenly loses robustness against PGD in the training process. Specifically, An-
driushchenko & Flammarion (2020) (NeurIPS 2020) observed that for large `∞ perturbations, both
FGSM-RS AT and PGD-2 AT suffer from catastrophic overfitting. Andriushchenko & Flammarion
(2020) conjectured that local non-linearity is the cause of catastrophic overfitting and proposed a
regularization method to enhance the trained model’s local linearity by maximizing the alignment of
the gradients in the perturbation sets, referred to as gradient alignment regularization (GradAlign).
Andriushchenko & Flammarion (2020) claimed that GradAlign can prevent catastrophic overfit-
ting in both FGSM AT and PGD-2 AT (without random initialization). Besides, Kim et al. (2021)
(AAAI 2021) proposed to search for the appropriate step size for each data sample to improve fast
adversarial training, and this method is referred to as stable single-step adversarial training.

In this paper, we show that PGD-2 AT with random initialization (PGD-2-RS AT) and a proper attack
step size α actually can avoid catastrophic overfitting for large `∞ perturbations (e.g., ε = 16/255
on CIFAR10 and ε = 12/255 on SVHN). Notably, compared to FGSM + GradAlign AT, PGD-2-RS
AT with α = 1.25ε/2 only needs approximately a half computational cost but can achieve better
standard accuracy and comparable or better robust accuracy. Furthermore, we propose and justify
an empirical hypothesis with intuitions and extensive evaluations to shed light on why PGD-2-RS
AT with α = 1.25ε/2 can avoid catastrophic overfitting for large `∞ perturbations. Specifically,
we hypothesize that, if FGSM-RS AT with attack step size α = 1.25ε/2 can avoid catastrophic
overfitting for `∞ perturbation size ε/2, then under appropriate training settings, PGD-2-RS AT
with α = 1.25ε/2 may be able to avoid catastrophic overfitting for `∞ perturbation size ε. Our main
intuition to propose this empirical hypothesis is that, if FGSM-RS with α = 1.25ε/2 can generate
qualified adversarial examples for adversarial training with `∞ perturbation size ε/2, then PGD-2-
RS with α = 1.25ε/2 may be able to generate qualified adversarial examples for adversarial training
with `∞ perturbation size ε. This is because PGD-2-RS can be approximately viewed as two-step
FGSM-RS, with each step generating qualified adversarial examples of the previous samples for
adversarial training with `∞ perturbation size ε/2. Then, the adversarial examples generated by the
second step may be qualified adversarial examples of the original samples for adversarial training
with a total `∞ perturbation size ε *. Note that if the gap between the loss of the adversarial examples
(generated by FGSM-RS or PGD-2-RS) and the loss of the adversarial examples generated by the
PGD attack used for conventional PGD adversarial training (e.g., PGD-10-RS) is small, we refer to
those adversarial examples as qualified adversarial examples for adversarial training.

We verify our hypothesis by extensive evaluations on CIFAR10, SVHN, and ImageNet. Given
the fact that FGSM-RS AT can avoid catastrophic overfitting at ε = 8/255 on CIFAR10, ε =
6/255 on SVHN, and ε = 4/255 on ImageNet with the training settings in (Wong et al., 2019;
Andriushchenko & Flammarion, 2020), we show PGD-2-RS AT with α = 1.25ε/2 can avoid
catastrophic overfitting and train robust models at ε = 16/255 on CIFAR10, ε = 12/255 on SVHN,
and ε = 8/255 on ImageNet. In addition, our intuitions induce a more unexpected finding: If
we apply random noise from U(−ε/2, ε/2) to the perturbations for each step of PGD-2 with α =
1.25ε/2, instead of initializing the perturbations with random noise from U(−ε, ε) at the beginning,

*The `∞ perturbation size is “addable”: ‖ δ1 + δ2 ‖∞ ≤ ε if ‖ δ1 ‖∞ ≤ ε/2 and ‖ δ2 ‖∞ ≤ ε/2.
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we can also prevent catastrophic overfitting and train models with better robust accuracy for large
`∞ perturbations. We refer to this modified PGD-2-RS AT method as Qusai-PGD-2-RS AT.

We conduct an extensive array of experiments to compare PGD-2-RS AT and Qusai-PGD-2-RS AT
with FGSM-RS AT (Wong et al., 2019), FGSM + GradAlign AT (Andriushchenko & Flammarion,
2020), stable single-step adversarial training (Kim et al., 2021), and free adversarial training (AT
for Free) (Shafahi et al., 2019). We show that PGD-2-RS AT and Qusai-PGD-2-RS AT achieve
consistently better performance than the other efficient adversarial training methods. Notably, PGD-
2-RS AT and Qusai-PGD-2-RS AT can avoid catastrophic overfitting and train robust models at
ε = 8/255 on ImageNet. In contrast, Andriushchenko & Flammarion (2020) only reported the
results of FGSM + GradAlign AT at ε = 6/255 on ImageNet; Shafahi et al. (2019); Wong et al.
(2019) only reported the results of free adversarial training and FGSM-RS AT at ε = 2/255 and
ε = 4/255. In our testbed, FGSM + GradAlign AT suffers from catastrophic overfitting, and AT for
Free achieves only 7.3% top-1 robust accuracy against PGD-50-10, at ε = 8/255 on ImageNet.

2 PROBLEM OVERVIEW

In this paper, we mainly consider the task of classification over (x, y) ∈ D, where x denotes a data
sample, and y denotes the ground-truth label. D is the data-generating distribution. Given an input
x ∈ Rd with dimension d, we denote a neural network by f(x) , {fθ,k(x)}k=1,2,...K , where θ and
fθ,k(x) represent the network parameters and the logit output for the k-th class, respectively. The
network predicts the label as argk max fθ,k(x). Let `(x, y,θ) denote the loss of the model on (x, y).
For simplicity, we may rewrite `(x, y,θ) as `(x) or `(x, y). By default, we use cross entropy as the
loss. A data sample x′ is considered as an adversarial example if the prediction on x′ is wrong, i.e.,
argk max fθ,k(x′) 6= y, and x′ is close to the original sample x according to certain distance metric
d(·, ·), i.e., d(x,x′) ≤ ε. Previous work usually employs `p-norm as the distance metric, and in
this regard, the above constraint could be denoted by x′ ∈ Bpε (x), where Bpε (x) is an `p-norm ball
centered at x with radius ε. In this paper, we mainly focus on the `∞-norm metric. Also, we denote
the uniform distribution that takes the value within the range a to b by U(a, b) or Uniform(a, b).
In general, adversarial training can be formulated as a min-max problem:

min
θ

E(x,y)∼D[ max
x′∈Bpε (x)

`(x′, y,θ)]. (1)

The inner maximization problem is to find adversarial examples that can maximize the loss, which
is solved by the fast gradient sign method (FGSM) in fast adversarial training, or projected gradi-
ent descent (PGD) in conventional PGD adversarial training. Specifically, FGSM solves the inner
problem by updating x along the sign direction of the gradient of the loss w.r.t. x, i.e.,

x′ = ΠBpε (x){x+α · sign(∇x`(x, y,θ))} , (2)

where ΠBpε (x) projects the input into Bpε (x) (and also the valid data range); α denotes the attack step
size; sign function outputs the sign of the input. PGD-k solves the inner problem by the iterative
execution of (2) for k steps with a smaller α. The outer minimization problem aims to minimize the
loss w.r.t. the network parameters, which can be solved by several optimization methods.

3 COMPUTATIONAL COMPLEXITY ANALYSIS

We first compare the computational complexity of FGSM + AT, PGD-2 AT (PGD-2-RS AT), FGSM
+ GradAlign AT to illustrate why PGD-2 AT has approximately a half computational cost of FGSM
+ GradAlign AT. We mainly consider the forward and backward propagation operations to es-
timate the computational cost. Compared to those two operations, the other operations have less
computational demand. Suppose the computational cost of a forward and a backward propagation
operation on one data sample are respectively c1 and c2, and the size of a minibatch is N . In each
training step, FGSM AT needs one forward and backward propagation to generate adversarial ex-
amples, and one for updating the model parameters. So for FGSM AT, the cost of one training step
is approximately 2(c1 + c2)N . Likewise, for PGD-2 AT, the cost of one training step is approx-
imately 3(c1 + c2)N . Thus, PGD-2 AT consumes about 1.5× computational cost of FGSM AT.
Due to double backpropagation (Etmann, 2019), FGSM + GradAlign AT consumes approximately
3× computational cost of FGSM AT on a GPU (Andriushchenko & Flammarion, 2020). We refer
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Methods on CIFAR10 ε = 8/255 ε = 16/255
Standard PGD-50-10 Standard PGD-50-10

PGD-2-NRS AT (α = ε/2) 80.78%± 0.39% 49.37%± 0.25% 66.73%± 3.30% 12.74%± 13.62%
PGD-2-NRS AT (α = 1.25ε/2) 80.71%± 0.52% 49.47%± 0.41% 53.75%± 16.71% 22.70%± 11.49%

PGD-2-RS AT (α = ε/2) 84.72%± 0.25% 45.63%± 0.42% 71.44%± 0.38% 24.11%± 0.43%
PGD-2-RS AT (α = 1.25ε/2) 82.98%± 0.32% 47.79%± 0.23% 67.77%± 0.52% 26.22%± 0.37%

FGSM-RS AT (α = 1.25ε) 83.47%± 0.25% 46.08%± 0.45% 46.88%± 24.86% 0.00%± 0.00%
FGSM + GradAlign AT 81.21%± 0.52% 47.60%± 0.34% 60.08%± 0.40% 25.80%± 0.74%

Table 1: For the sake of clarity, we refer to PGD-2 AT without random initialization as PGD-2-NRS
AT and PGD-2 AT with random initialization as PGD-2-RS AT. For PGD-2-RS AT, the random noise
used for initializing the perturbation is sampled from uniform distribution U(−ε, ε). Different from
(Andriushchenko & Flammarion, 2020), which evaluates the models’ adversarial (robust) accuracy
against PGD-50-10 on 1000 random points, we evaluate models’ robust accuracy on the whole test
set. The experimental settings are detailed in Section 5.1 and Section C.

the interested readers to (Etmann, 2019; Andriushchenko & Flammarion, 2020) for more details.
Thus, the computational cost of PGD-2 AT is about 50% less than that of FGSM + GradAlign AT.
Actually, PGD-5-RS AT has a similar cost as FGSM + GradAlign AT on a GPU. Besides, although
AT for Free (Shafahi et al., 2019) takes less time than FGSM-RS AT and PGD-2-RS AT per training
step, it usually needs much more training steps (mainly due to minibatch replays) to achieve com-
parable performance (if training the model with mixed precision/half precision) (Wong et al., 2019;
Andriushchenko & Flammarion, 2020). Thus, AT for Free usually needs more computational time
than FGSM-RS AT and PGD-2-RS AT in practice. We note that the empirical results on CIFAR10
and SVHN in Table 4 have verified the above analysis.

4 PGD-2 ADVERSARIAL TRAINING (AT)

4.1 REVISITING PGD-2 AT

In general, PGD-2 AT updates the adversarial examples for two steps following (2) with attack step
size α and then updates the model parameters on the adversarial examples in each training step. We
refer PGD-2 with random initialization as PGD-2-RS and PGD-2 without random initialization as
PGD-2-NRS. Andriushchenko & Flammarion (2020) evaluated PGD-2 AT on CIFAR10 and found
that PGD-2-NRS AT with α = ε/2 achieves better performance than PGD-2-RS AT with α = ε/2
or α = ε at ε = 8/255 on CIFAR10. Thus, Andriushchenko & Flammarion (2020) selected PGD-
2-NRS AT with α = ε/2 as the PGD-2 AT baseline throughout their paper. An observation from
(Andriushchenko & Flammarion, 2020) is that this PGD-2 AT baseline also suffers from catastrophic
overfitting for large `∞ perturbations (e.g., ε = 16/255 on CIFAR10 and ε = 12/255 on SVHN).

We confirm Andriushchenko & Flammarion (2020)’s observation by evaluating PGD-2-NRS AT
on CIFAR10: As shown in Table 1, PGD-2-NRS AT losses robustness against PGD-50-10† at
ε = 16/255 on CIFAR10. However, we also observe that PGD-2-RS AT actually can prevent catas-
trophic overfitting for large `∞ perturbations. We compare PGD-2-RS AT with FGSM + GradAlign
AT, and an unexpected finding is that PGD-2-RS AT with attack step size α = 1.25ε/2 achieves
overall better performance than FGSM + GradAlign AT, with approximately 50% less computa-
tional cost. We note that on CIFAR10, Andriushchenko & Flammarion (2020) reported 58.5%
standard accuracy and over 28% robust accuracy against PGD-50-10 with λ = 0.1 at ε = 16/255
(λ: the regularization hyperparameter). However, as shown in Fig. 15 in (Andriushchenko & Flam-
marion, 2020), the setting of λ = 0.1 lies in/near the unstable zone. In our testbed, FGSM +
GradAlign AT with λ = 0.1 suffers from catastrophic overfitting at ε = 16/255‡. Thus, we set
λ = 0.2 at ε = 8/255 and λ = 2.0 at ε = 16/255 for GradAlign on CIFAR10 (as in Table 2 in
(Andriushchenko & Flammarion, 2020)). Besides, Andriushchenko & Flammarion (2020) evaluate
robust accuracy on 1000 random points, while we evaluate robust accuracy on the whole test set.

†A commonly-used attack for evaluating AT methods: 50-step PGD with 10 random starts.
‡Surprisingly, we also ran Andriushchenko & Flammarion (2020)’s Github code in our conda envi-

ronment and found Andriushchenko & Flammarion (2020)’s implementation of FGSM + GradAlign AT
also suffers from catastrophic overfitting with the setting of λ = 0.1 at ε = 16/255 on CIFAR10.
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Figure 1: The gap between the averaged loss of FGSM-RS/PGD-2-RS generated training adversarial
examples and the averaged loss of PGD-10-RS generated training adversarial examples in the 30-
epoch training process with the cyclic learning schedule: The left two figures show the training
process of FGSM-RS AT (α = 1.25ε); The right figure shows the training process of PGD-2-RS AT
(α = 1.25ε/2). The loss is computed and averaged over the first training minibatch.

4.2 WHY PGD-2-RS WITH α = 1.25ε/2 WORKS?

Our observations in the previous subsection naturally raise a question:

Why PGD-2-RS AT with α = 1.25ε/2 can avoid catastrophic overfitting for large perturbations?

In the following, we propose and justify an empirical hypothesis to shed light on this question. In
general, PGD-2 updates the adversarial examples for two steps: x → x1 → x2. Apparently, we
can treat x1 as the FGSM adversarial example of x and x2 as the FGSM adversarial example of x1.
Based on the above fact, we propose the following empirical hypothesis:

Hypothesis If FGSM-RS AT with attack step size α = 1.25ε/2 can avoid catastrophic overfitting
for `∞ perturbation size ε/2, then under appropriate training settings, PGD-2-RS AT with α =
1.25ε/2 may be able to avoid catastrophic overfitting for `∞ perturbation size ε.

It is challenging to give a strict proof for the above empirical hypothesis, but we can provide some
intuitions and extensive experimental results to justify this hypothesis. Specifically, if FGSM-RS AT
with attack step size α = 1.25ε/2 can avoid catastrophic overfitting for `∞ perturbation size ε/2,
it implies that FGSM-RS (FGSM) can find qualified adversarial examples for adversarial training
with `∞ perturbation size ε/2. As shown in Fig. 1, the gap between the loss of FGSM-RS and
PGD-10-RS generated training adversarial examples is small at ε = 8/255 on CIFAR10, which
indicates that FGSM-RS indeed can craft qualified adversarial examples for adversarial training at
ε = 8/255 on CIFAR10. PGD-2-RS with α = 1.25ε/2 can be approximately viewed as two step
FGSM-RS with α = 1.25ε/2 (x → x1 → x2). That is to say, x1 can be viewed as a qualified
FGSM adversarial example of x for adversarial training with `∞ perturbation size ε/2, and x2 can
be viewed as a qualified FGSM adversarial example of x1 for adversarial training with an additional
`∞ perturbation size ε/2. Thus, we conjecture that x2 may be a qualified adversarial example of
x for adversarial training with a total `∞ perturbation size ε. As shown in Fig. 1, the gap between
the loss of PGD-2-RS and PGD-10-RS generated training adversarial examples is also small at ε =
16/255 on CIFAR10, indicating that PGD-2-RS indeed can generate qualified adversarial examples
for adversarial training at ε = 16/255 on CIFAR10 (twice of ε = 8/255).

According to the above intuitions, we note that a better way to generate qualified adversarial ex-
amples for large-perturbation adversarial training is executing FGSM-RS with random noise from
U(−ε/2, ε/2) and step size α = 1.25ε/2 for two steps to craft the adversarial examples (namely
Qusai-PGD-2-RS). We refer to this attack method as Qusai-PGD-2-RS since it is similar to but
not the same as conventional PGD-2-RS. The main difference is that Qusai-PGD-2-RS adopts an
unconventional random initialization scheme. Intuitively, Qusai-PGD-2-RS can be represented by

Qusai-PGD-2-RS: x
+ η∼U(−ε/2,ε/2)−−−−−−−−−−−−→
FGSM α=1.25ε/2

x1
+ η1∼U(−ε/2,ε/2)−−−−−−−−−−−−→
FGSM α=1.25ε/2

x2 (x′), (3)

where η (η1) is the random noise with same dimension as x, and each component of η (η1) is
sampled from the uniform distribution U(−ε/2, ε/2). After adding η (η1) to x (x1), we execute
FGSM (2) on x+η (x1 +η1) and clip the perturbations into the range of [−ε, ε] and [0 − x,1 −
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Methods CIFAR10 ε = 16/255 SVHN ε = 12/255
Standard PGD-50-10 Standard PGD-50-10

PGD-2-RS AT 67.77%± 0.52% 26.22%± 0.37% 88.97%± 0.25% 32.68%± 0.42%
Qusai-PGD-2-RS AT (3) 65.49%± 0.50% 28.37%± 0.26% 88.11%± 0.19% 33.53%± 0.52%

Table 2: PGD-2-RS AT and Qusai-PGD-2-RS AT (with α = 1.25ε/2) for large perturbations.

x]. Finally, we use x2 (x′) to train the model. We note that, if our intuitions are correct, then
Qusai-PGD-2-RS AT may also be able to prevent catastrophic overfitting for large `∞ perturbations.
Surprisingly, despite using an unconventional random initialization scheme, Qusai-PGD-2-RS AT
achieves better robust accuracy than PGD-2-RS AT in most cases.

In addition to the above intuitions, we also verify our empirical hypothesis by extensive evaluations.
We first verify our hypothesis by experiments on CIFAR10 and SVHN. According to (Wong et al.,
2019; Andriushchenko & Flammarion, 2020), FGSM-RS AT with attack step size α = 1.25ε is ef-
fective for medium perturbations, e.g., ε = 8/255 on CIFAR10 and ε = 6/255 on SVHN. However,
FGSM-RS AT may encounter (catastrophic) overfitting starting from ε = 9/255 on CIFAR10 and
ε = 7/255 on SVHN with the training settings of (Andriushchenko & Flammarion, 2020). If our
empirical hypothesis is correct, PGD-2-RS AT and Qusai-PGD-2-RS AT with α = 1.25ε/2 may
be able to avoid catastrophic overfitting at ε = 16/255 on CIFAR10 and ε = 12/255 on SVHN.
As shown in Table 3, both PGD-2-RS AT and Qusai-PGD-2-RS AT indeed can avoid catastrophic
overfitting and train robust models at ε = 16/255 on CIFAR10 and ε = 12/255 on SVHN. An
unexpected finding is that Qusai-PGD-2-RS AT (3), which uses an unconventional random initial-
ization scheme, even achieves better robust accuracy against PGD-50-10 than PGD-2-RS AT on
CIFAR10 and SVHN. The performance of those methods against AutoAttack (Croce & Hein, 2020)
is shown in Section 5.2. Moreover, we also verify our hypothesis on ImageNet. According to
(Wong et al., 2019; Andriushchenko & Flammarion, 2020), FGSM-RS AT is able to train robust
models at ε = 4/255 (Wong et al., 2019) but will encounter catastrophic overfitting at ε = 6/255
(Andriushchenko & Flammarion, 2020). If our hypothesis is correct, then PGD-2-RS AT and Qusai-
PGD-2-RS AT may be able to avoid catastrophic overfitting at ε = 8/255 on ImageNet. We detail
the experimental results on ImageNet in Section 5.3, which indicate that PGD-2-RS AT and Qusai-
PGD-2-RS AT can avoid catastrophic overfitting at ε = 8/255 on ImageNet. Note that (Shafahi
et al., 2019; Andriushchenko & Flammarion, 2020; Kim et al., 2021) did not report any result at
ε = 8/255 on ImageNet. In our testbed, FGSM + GradAlign AT (with mixed precision) experiences
severe catastrophic overfitting at ε = 8/255 on ImageNet. AT for Free experiences relatively mild
overfitting but can only achieves about 7% top-1 robust accuracy against PGD-50-10 at ε = 8/255
on ImageNet. All in all, it is very likely that our hypothesis is correct in most cases.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We mainly follow the settings of (Wong et al., 2019; Andriushchenko & Flammarion, 2020), and
our implementation is based on Wong et al. (2019)’s code. We include our code for the exper-
iments in the supplementary material. We compare FGSM-RS AT (Wong et al., 2019), FGSM
+ GradAlign AT (Andriushchenko & Flammarion, 2020), free adversarial training (AT for free)
(Shafahi et al., 2019), stable single step AT (Kim et al., 2021), PGD-2-RS AT, and Qusai-PGD-
2-RS AT on CIFAR10 and SVHN. We also evaluate those efficient AT methods on ImageNet at
ε = 8/255. Different from (Andriushchenko & Flammarion, 2020), which evaluates the robust ac-
curacy on 1000 random points for each dataset, we evaluate the standard and robust accuracy on the
whole test set for CIFAR10 and SVHN and the whole validation set for ImageNet. Following (Wong
et al., 2019), we conduct the experiments on PreAct ResNet-18 (He et al., 2016b) for CIFAR10 and
SVHN. For ImageNet, we conduct the experiments on ResNet-50 (He et al., 2016a).

We follow the initialization schemes in (Shafahi et al., 2019; Wong et al., 2019; Andriushchenko &
Flammarion, 2020) to initialize the perturbations for the corresponding AT methods. For FGSM-RS
AT, FGSM + GradAlign AT, and stable single-step AT, we set the attack step size as α = 1.25ε.
For PGD-2-RS AT and Qusai-PGD-2-RS AT, we set the attack step size as α = 1.25ε/2. For AT
for Free, we set the number of minibatch replays as m = 8 on CIFAR10 & SVHN and m = 4 on
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Methods CIFAR10 SVHN
Standard PGD-50-10 Standard PGD-50-10

ε = 8/255

FGSM-RS AT 83.47%± 0.25% 46.08%± 0.45% 95.73%± 0.32% 0.01%± 0.01%
PGD-2-RS AT 82.98%± 0.32% 47.79%± 0.23% 93.43%± 0.19% 50.14%± 0.47%

Qusai-PGD-2-RS AT 81.92%± 0.41% 48.77% ± 0.24% 92.90%± 0.23% 51.16% ± 0.45%
FGSM + GradAlign AT 81.21%± 0.52% 47.60%± 0.34% 92.93%± 0.18% 45.87%± 0.45%

AT for Free 82.21%± 0.46% 47.87%± 0.57% 95.97% ± 0.37% 0.02%± 0.03%
Stable single-step AT 87.66% ± 0.50% 38.06%± 0.51% 95.04%± 0.60% 24.60%± 3.53%

ε = 16/255 ε = 12/255

FGSM-RS AT 46.88%± 24.86% 0.00%± 0.00% 94.49%± 0.24% 0.00%± 0.00%
PGD-2-RS AT 67.77% ± 0.52% 26.22%± 0.37% 88.97%± 0.25% 32.68%± 0.42%

Qusai-PGD-2-RS AT 65.49%± 0.50% 28.37% ± 0.26% 88.11%± 0.19% 33.53% ± 0.52%
FGSM + GradAlign AT 60.08%± 0.40% 25.80%± 0.74% 88.19%± 0.38% 24.10%± 0.53%

AT for Free 36.80%± 24.96% 0.00%± 0.00% 95.10% ± 0.45% 0.00%± 0.00%
Stable single-step AT 41.76%± 7.79% 0.00%± 0.00% 75.99%± 7.66% 4.97%± 2.35%

Table 3: Performance of different efficient AT methods on CIFAR10 and SVHN. All the results are
reported with the average and the standard deviation averaged over 5 random seeds.

AutoAttack CIFAR10 SVHN
ε = 8/255 ε = 16/255 ε = 8/255 ε = 12/255

FGSM-RS AT 43.41%± 0.40% 0.00%± 0.00% 0.00%± 0.00% 0.00%± 0.00%
PGD-2-RS AT 44.89%± 0.28% 19.93%± 0.40% 46.14%± 0.48% 26.76%± 0.31%

Qusai-PGD-2-RS AT 45.66% ± 0.28% 20.34% ± 0.44% 46.91% ± 0.47% 27.33% ± 0.19%
FGSM + GradAlign AT 44.40%± 0.35% 18.17%± 0.64% 42.15%± 0.40% 19.67%± 0.38%

AT for Free 45.13%± 0.65% 0.00%± 0.00% 0.00%± 0.00% 0.00%± 0.00%
Stable single-step AT 35.59%± 0.40% 0.00%± 0.00% 4.42%± 1.81% 0.01%± 0.03%

Table 5: Performance of different efficient AT methods against AutoAttack. All the results are
reported with the average and the standard deviation averaged over 5 random seeds.

ImageNet. For stable single-step AT, we set the number of checkpoints as c = 3. For all the AT
methods except AT for Free, we train the models with the cyclic learning schedule (Smith, 2017;
Wong et al., 2019) on CIFAR10 for 30 epochs with the maximum learning rate 0.3 and on SVHN
for 15 epochs with the maximum learning rate 0.05 (Andriushchenko & Flammarion, 2020). For AT
for Free, we set the learning rate as 0.04 on CIFAR10 and 0.01 on SVHN following (Wong et al.,
2019; Andriushchenko & Flammarion, 2020). The Apex amp package is incorporated for speedup
with mixed precision following (Wong et al., 2019; Andriushchenko & Flammarion, 2020). For
reliable evaluation, we evaluate the trained models against 50-step PGD with 10 random restarts
(PGD-50-10) and AutoAttack (Croce & Hein, 2020) with single precision. The attack step size for
PGD-50-10 is set as ε/4 by default. PGD-50-10 is the attack baseline used by Wong et al. (2019);
Andriushchenko & Flammarion (2020), and AutoAttack is a commonly-used strong attack baseline
in recent works on adversarial training. Note that all the evaluation results (except the training
time) are obtained on the whole test set for CIFAR10 and SVHN or the whole validation set for
ImageNet. The interested readers can refer to the appendix (Section C) and our code in the
supplementary material for more details on the training or evaluation settings.

5.2 CIFAR10 & SVHN

We report the standard and robust accuracy achieved by different efficient AT methods on CI-
FAR10 and SVHN in Table 3 & 5. On CIFAR10, PGD-2-RS AT achieves better standard accu-
racy and comparable or better robust accuracy against PGD-50-10 and AutoAttack, compared to
FGSM + GradAlign AT. Qusai-PGD-2-RS AT achieves the best robust accuracy in all the cases. On
SVHN, both PGD-2-RS AT and Qusai-PGD-2-RS AT outperforms FGSM + GradAlign AT by a
non-negligible margin in robust accuracy against PGD-50-10 and AutoAttack. Our analysis on the
drawbacks of FGSM + GradAlign AT in Section B in the appendix sheds light on why PGD-2-RS AT
and Qusai-PGD-2-RS AT can outperform FGSM + GradAlign AT. To investigate the gap between
the results of PGD-50-10 and AutoAttack, we train a model using PGD-10-RS at ε = 16/255 on
CIFAR10. The gap between the attack results by PGD-50-10 and AutoAttack is about 6% for
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the PGD-10-RS AT model. Thus, a large gap is a common phenomenon, especially for large `∞
perturbations. We also conduct an ablation study on the training settings on CIFAR10 in Section D
in the appendix, which shows that PGD-2-RS AT and Qusai-PGD-2-RS AT have consistently better
performance than FGSM + GradAlign AT under all our evaluated training settings on CIFAR10.

Methods CIFAR10 SVHN
FGSM-RS AT 9.58 min 6.99 min

FGSM + GradAlign AT 29.33 min 21.60 min
PGD-2-RS AT 13.65 min 10.21 min

Adaptive PGD-2-RS AT 13.74 min 10.27 min
Stable Single-Step AT 12.24 min 8.97 min

AT for Free 28.32 min 20.83 min

Table 4: The training time measured on a Tesla V100 GPU with
seed 0 (30 epochs on CIFAR10 and 15 epochs on SVHN).

Besides, in our testbed, AT for
Free fails to train robust mod-
els at ε = 16/255 on CIFAR10
and at ε = 8/255 and ε =
12/255 on SVHN. Only for AT for
Free, Andriushchenko & Flam-
marion (2020) train the models for
96 epochs on CIFAR10 and for 45
epochs on SVHN. In their testbed,
AT for Free suffers from high vari-
ance at ε = 8/255 on SVHN
and catastrophic overfitting at ε =
12/255 on SVHN and ε = 16/255 on CIFAR10. For stable single-step AT, (Kim et al., 2021) re-
ported 33.9% robust accuracy against PGD-50 at ε = 8/255 with a piecewise learning schedule on
CIFAR10. Our implementation of stable single-step AT achieves averagely 38.06% robust accuracy
against PGD-50-10 with the cyclic learning schedule at ε = 8/255 on CIFAR10. (Kim et al., 2021)
did not report any result on SVHN and at ε = 16/255 on CIFAR10. In our testbed, stable single-step
AT suffers from catastrophic overfitting at ε = 16/255 on CIFAR10 and ε = 8/255 on SVHN, as
shown in Table 3. Note that we also plot the standard and robust accuracy of these efficient AT
methods for different perturbation sizes in Fig. 2 in the appendix.

As shown in Table 4, the computational time of PGD-2-RS AT or Qusai-PGD-2-RS AT is slightly
less than 1.5× FGSM-RS AT’s computational time in practice. This is because the computational
time for the other operations (except forward and backward propagations) is similar for FGSM-RS
AT and PGD-2-RS AT. We denote the additional cost of the other operations as c3N . Then the cost of
FGSM-RS AT is approximately 2(c1 +c2)N+c3N , and the cost of PGD-2-RS AT is approximately
3(c1 + c2)N + c3N . The ratio 3(c1+c2)N+c3N

2(c1+c2)N+c3N
is slightly less than 1.5. Compared to FGSM-RS AT,

FGSM + GradAlign AT leads to 3× slowdown in our testbed, which is consistent with the result of
(Andriushchenko & Flammarion, 2020). As shown in Table 4, PGD-2-RS AT or Qusai-PGD-2-RS
AT only takes approximately a half computational time of FGSM + GradAlign AT.

5.3 IMAGENET

We follow the training scheme of (Wong et al., 2019) to train the ImageNet models on ResNet-50,
and we evaluate the trained models on the whole validation set of ImageNet. The validation set is
not used in the training stage. Notably, Qusai-PGD-2-RS AT can achieve approximately 18% top-1
and 38% top-5 robust accuracy against PGD-50-10, as shown in Table 6. In contrast, both FGSM-
RS AT and FGSM + GradAlign AT suffer from catastrophic overfitting at ε = 8/255 on ImageNet
in our testbed, i.e., their trained models’ robust accuracy against PGD-50-10 drops to nearly 0 at a
certain point in the training process. Compared to FGSM-RS AT and FGSM + GradAlign AT, the
overfitting issue of AT for Free (m = 4) is relatively mild at ε = 8/255, but its final top-1 robust
accuracy against PGD-50-10 on the validation set is still less than 1/2 of the top-1 robust accuracy
achieved by PGD-2-RS AT and Qusai-PGD-2-RS AT.

ImageNet ε = 8/255
Top 1 accuracy Top 5 accuracy

Standard PGD-50-10 Standard PGD-50-10
AT for Free 54.728% 7.304% 77.422% 30.450%

PGD-2-RS AT 46.192% 17.586% 69.728% 38.638%
Qusai-PGD-2-RS AT (3) 44.492% 17.750% 66.988% 38.184%

Table 6: Performance of PGD-2-RS AT and Qusai-PGD-2-RS AT on ImageNet. The final-epoch
training top-1 accuracy against PGD-2-RS or Qusai-PGD-2-RS is around 23%, and the gap between
training accuracy and the testing robust accuracy is only around 5%. Thus, we can say PGD-2-RS
AT and Qusai-PGD-2-RS AT do not suffer from catastrophic overfitting at ε = 8/255 on ImageNet.
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Methods CIFAR10 SVHN
Standard PGD-50-10 Standard PGD-50-10

ε = 8/255

PGD-3-RS AT 82.92%± 0.42% 48.05%± 0.37% 93.33%± 0.22% 50.88%± 0.59%
PGD-4-RS AT 82.62%± 0.41% 48.20%± 0.34% 93.29%± 0.25% 51.19%± 0.68%
PGD-5-RS AT 82.68%± 0.36% 48.51%± 0.48% 93.23%± 0.25% 51.36%± 0.81%

ε = 16/255 ε = 12/255

PGD-3-RS AT 67.11%± 0.50% 28.25%± 0.46% 88.57%± 0.30% 33.80%± 0.49%
PGD-4-RS AT 66.97%± 0.56% 28.70%± 0.41% 88.44%± 0.36% 34.20%± 0.62%
PGD-5-RS AT 66.78%± 0.61% 28.97%± 0.29% 88.29%± 0.32% 34.41%± 0.63%

Table 7: Performance of PGD-k-RS AT on CIFAR10 and SVHN. All the results are reported with
the average and the standard deviation averaged over 5 random seeds.

5.4 PGD-K-RS AT BASELINES

We also study the performance of PGD adversarial training with differing numbers of attack steps k.
As analyzed in Section 3, the computational cost of FGSM + GradAlign AT is similar to the cost of
PGD-5-RS AT (5-step PGD adversarial training with random initialization). Thus, as long as k < 5,
PGD-k-RS AT has a lower cost than FGSM + GradAlign AT. For the PGD-k-RS AT here, we set α
as 1.25ε/k and initialize the perturbations with the random noise from U(−ε, ε) (the conventional
random initialization scheme). We report the standard accuracy and robust accuracy against PGD-
50-10 of PGD-k-RS AT in Table 7. Increasing k leads to additional computational cost on forward
and backward propagations. However, it seems that the benefits coming along with the increasing
k do not merit the additional cost: The increasing trend of robust accuracy due to the increase of
k after k ≥ 2 becomes slow, and Qusai-PGD-2-RS AT achieves comparable robust accuracy as
PGD-3-RS AT. Thus, we hold the opinion that for most cases, Qusai-PGD-2-RS (or PGD-2-RS) can
provide an efficient and acceptable solution to the inner problem for `∞-norm adversarial training
with large `∞ perturbations under proper training settings.

6 ADDITIONAL DISCUSSIONS

The previous works observed that the training settings, such as the learning schedule, can have
significant impacts (Kim et al., 2021). For instance, FGSM-RS AT with a long-time (e.g, 100 or 200
epochs) piecewise learning schedule and learning rate decay suffers from catastrophic overfitting
at ε = 8/255 on CIFAR10. In our testbed, we observe that catastrophic overfitting due to long-
time training with the piecewise learning schedule can be mitigated by simply increasing the weight
decay and stopping model training after the first epoch when the learning rate decays to O(10−3)
(0.001 or 0.002). This observation is detailed in the appendix. We also identify two potential
drawbacks of gradient-based regularization in adversarial training, inducing an open question: Is
gradient-based regularization worthy of its additional cost in adversarial training? We discuss the
potential drawbacks of gradient-based regularization in Section B in the appendix. Also, due to the
space limit, we detail the related work in the appendix.

7 CONCLUSION

In this paper, we show that PGD-2-RS AT with attack step size α = 1.25ε/2 only has approx-
imately a half computational cost of FGSM + GradAlign AT but actually can avoid catastrophic
overfitting for large `∞ perturbations. We hypothesize that, if FGSM-RS AT with attack step size
α = 1.25ε/2 can avoid catastrophic overfitting for `∞ perturbation size ε/2, then PGD-2-RS AT
with α = 1.25ε/2 may be able to avoid catastrophic overfitting for `∞ perturbation size ε under
proper settings. Inspired by this hypothesis, we propose to execute PGD-2-RS with an unconven-
tional two-step initialization scheme and refer to the corresponding AT method as Qusai-PGD-2-RS
AT. Through extensive evaluations, we verify the empirical hypothesis and demonstrate that PGD-
2-RS AT and Qusai-PGD-2-RS AT with α = 1.25ε/2 can achieve overall better performance and
efficiency than FGSM + GradAlign AT. Notably, Qusai-PGD-2 AT achieves comparable robust ac-
curacy as PGD-3-RS AT on CIFAR10 and SVHN, and it also achieves approximately 18% top-1
robust accuracy against PGD-50-10 at ε = 8/255 on ImageNet.
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A ADDITIONAL EXPERIMENTAL RESULTS

We plot the standard accuracy and the robust accuracy against PGD-50-10 for different perturbation
sizes in Fig. 2. The fluctuation for FGSM-RS AT at ε = 14/255 (robust accuracy) is because
FGSM-RS AT happens to train a robust model at ε = 14/255 with seed 0 on CIFAR10. FGSM-
RS AT and AT for Free suffer from catastrophic overfitting for large `∞ perturbations, e.g., at ε =
12/255 on CIFAR10 and ε = 8/255 on SVHN. On CIFAR10, stable single-step AT also encounters
catastrophic overfitting at ε = 12/255. On SVHN, stable single-step AT encounters relatively mild
overfitting for large `∞ perturbations, i.e., the robust accuracy against PGD-50-10 drops quickly but
does not drop to 0 when the perturbation size ε is larger than 6/255. FGSM + GradAlign AT does
not have the issue of catastrophic overfitting for large `∞ perturbations on CIFAR10 and SVHN, but
Qusai-PGD-2-RS AT can outperform FGSM + GradAlign AT by a non-negligible margin in robust
accuracy for large `∞ perturbations with approximately 50% less computational cost.

Figure 2: Standard and robust accuracy of different efficient AT methods on CIFAR-10 and SVHN
with PreAct ResNet-18 trained and evaluated with different perturbation sizes. The results are ob-
tained by averaging over 5 random seeds used for training and reported with the standard deviation.

B RETHINKING GRADIENT-BASED REGULARIZATION

Our observations in this paper naturally raise an open question:

Is gradient-based regularization worthy of its additional cost in adversarial training?

We identify two potential drawbacks of gradient-based regularization, which makes us prefer to
answer “No” to this open question. The two potential drawbacks can be summarized as

1. Gradient-based regularization may promote an artificial/odd change to the loss topology,
which may lead to a sub-optimal loss topology shape in some cases.

2. Fine-tuning the hyperparameter before the gradient-based regularizer may need a fair
amount of additional cost on a new dataset.

Gradient-based regularization may promote an artificial change to the model gradients and loss
topology. For instance, a gradient-based linearity regularizer will render the loss topology to be
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Figure 3: CIFAR10: cross-entropy loss topology (in the vicinity of a testing input) of the models
trained by different AT methods on CIFAR10 (ε = 16/255). dg denotes the unit direction vector of
the gradient, i.e., ‖dg‖2 = 1, and dr denotes a random (orthogonal) unit direction vector. Deeper
red refers to higher loss. Note that we also train robust models by TRADES (Zhang et al., 2019b)
and MART (Wang et al., 2020) and plot the model loss topology. Apparently, the loss topology
of the model trained by FGSM + GradAlign is the odd one, and the loss topologies of the models
trained the other AT methods are similar.

more linear. Our intuition is that such changes to the loss topology may be artificial since they are
promoted by manually-designed regularizers not really learned by the neural network itself. Those
changes may force the loss topology to shape in a sub-optimal pattern. We use GradAlign as an
example to illustrate the above intuition. We randomly select a sample from the test set and plot the
loss topology in the vicinity of the testing sample for FGSM + GradAlign AT, PGD-2-RS AT, Qusai-
PGD-2-RS AT, PGD-10-RS AT, TRADES, and MART. All the models are trained with random seed
0. We show the loss topology of those models in Fig. 3. Apparently, the loss topology of FGSM
+ GradAlign AT trained model is somehow artificial and different from the loss topology of the
models trained by the other AT methods, including TRADES and MART. Since PGD-10-RS (with
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cross-entropy loss), TRADES, and MART all achieve over 30% robust accuracy against PGD-50-10
at ε = 16/255 on CIFAR10, we can say the pattern of the loss topology of FGSM + GradAlign AT
trained model is very likely to be a sub-optimal one.

In addition, a fair amount of additional cost is needed to fine-tune the hyperparameter before the
regularizer when we use gradient-based regularization on a new dataset. Given GradAlign as an
example, the optimal regularization hyperparameters λ for CIFAR10 and SVHN are quite different:
On CIFAR10, Andriushchenko & Flammarion (2020) set λ = 0.2 at ε = 8/255 and λ = 2.0 at ε =
16/255, while on SVHN, Andriushchenko & Flammarion (2020) set λ = 1.0 at ε = 8/255 and λ =
2.0 at ε = 12/255 on SVHN. Although Andriushchenko & Flammarion (2020) claim that GradAlign
is not sensitive to the change of λ, we can still observe slight decrease in the robust accuracy as λ
increases after λ = 2.0 at ε = 16/255 on CIFAR10, as shown in (Andriushchenko & Flammarion,
2020). Also, we note that in our testbed, λ = 2.0 is not a good setting at ε = 12/255 on SVHN,
which trains the model to be a majority classifier, with the random seed being set as 4. In practice, we
have tried five hyperparameter settings at ε = 12/255 on SVHN (i.e., λ = 1.2, 1.5, 1.6, 1.8, 2.0) and
finally set λ = 1.6 at ε = 12/255 on SVHN. Apparently, this hyperparameter fine-tuning process
requires considerable additional cost on a new dataset. In contrast, PGD-2-RS AT and Qusai-PGD-
2-RS AT are free of such a costly fine-tuning process on a regularization hyperparameter like λ in
FGSM + GradAlign AT.

C DETAILED TRAINING SETTINGS

On CIFAR10 and SVHN, we follow (Wong et al., 2019; Andriushchenko & Flammarion, 2020) to
use a batch size of 128, an SGD optimizer with momentum 0.9, cyclic learning schedules (introduced
in Section 5.1), and weight decay 5e-4 by default. For the experiments with piecewise learning
schedules, we increase the weight decay to 2e-3 to avoid catastrophic overfitting, as detailed in
Section D. On ImageNet, we follow (Wong et al., 2019) to divide model training into three phases:
6 epochs, 6 epochs, and 3 epochs. The batch size for the three phases is set as 512, 224, 128, and
the crop size is set as 128, 224, 288. The weight decay is set as 0.0001. Those settings are same as
the settings of (Wong et al., 2019)’s code§. We set the minibatch replay as m = 4 for AT for Free.
For more details about the training settings on ImageNet, the interested readers can refer to the files
in ImageNet/configs in our code repository in the supplementary material.

D ABLATION STUDY ON TRAINING SETTINGS

In this section, we study the impacts of the training settings, such as the learning schedule, weight
decay, and learning rate, on the performance of those efficient AT methods. We mainly conduct
this ablation study on CIFAR10, due to the limited computational resource. We first consider the
following two piecewise learning schedules: (1) We use SGD with the initial learning rate as 0.1
and momentum 0.9; The learning rate decays with a factor of 0.1 at 50 and 75 epochs. (2) We
use SGD with the initial learning rate as 0.01 and momentum 0.9; The learning rate decays with a
factor of 0.2 at 60, 120, 160 epochs (Kim et al., 2021). We confirm that FGSM-RS AT suffers from
catastrophic overfitting at ε = 8/255 on CIFAR10 under the above two long-time learning schedules
with weight decay 5e-4 in our testbed. To avoid catastrophic overfitting under these two long-time
learning schedules, we propose two remedies: (1) increasing the weight decay and (2) stopping
model training after the first epoch when the learning rate decays to O(10−3). Note that increasing
weight decay is a commonly-used remedy to mitigate overfitting. Also, training the model with a
small learning rate (e.g., 0.001 or 0.002) for a long time is a common cause for overfitting in practice
in both standard and adversarial training. Thus, we stop after the first epoch with the learning rate
0.001 or 0.002. We show the experimental results after applying the proposed two remedies in
Table 8. As we can see, Qusai-PGD-2-RS AT achieves the best robust accuracy against PGD-50-10
under both learning schedules. Also, we note that AT for Free with a large learning rate may not
be able to converge in some cases, e.g., AT for Free can not converge under the second learning
schedule. Thus, the previous works (Wong et al., 2019; Andriushchenko & Flammarion, 2020) use
a relatively small learning rate in AT for Free. Also, we note that either of the above two remedies
is essential to avoiding catastrophic overfitting. If we only stop after the first epoch with a small

§https://github.com/locuslab/fast_adversarial/tree/master/ImageNet
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CIFAR10 ε = 8/255
Schedule 1 Schedule 2

Standard PGD-50-10 Standard PGD-50-10

FGSM-RS AT 83.11%± 0.23% 44.51%± 0.37% 84.43%± 0.25% 44.24%± 0.48%
PGD-2-RS AT 82.79%± 0.23% 46.34%± 0.37% 84.14%± 0.29% 46.42%± 0.46%

Qusai-PGD-2-RS AT 81.61%± 0.26% 47.26%± 0.34% 83.06%± 0.30% 47.45%± 0.32%
FGSM + GradAlign AT 80.93%± 0.24% 46.26%± 0.14% 82.59%± 0.41% 46.11%± 0.44%

AT for Free 75.60%± 0.60% 42.65%± 0.73% 25.10%± 7.56% 17.86%± 8.93%
Stable single-step AT 87.03%± 0.21% 36.16%± 0.31% 87.80%± 0.19% 36.77%± 0.41%

Table 8: Performance of different adversarial training methods on CIFAR10 under piecewise learn-
ing schedules. All the results are reported with the average and the standard deviation averaged over
5 random seeds. The best results are marked in bold. We set the weight decay as 2e-3 instead of
5e-4 and stop training after the first epoch with the learning rate 0.001 or 0.002.

Figure 4: The impacts of weight decay on FGSM + GradAlign AT, PGD-2-RS AT, and Qusai-PGD-
2-RS AT. The results are obtained by averaging over 5 random seeds used for training and reported
with the standard deviation. The other hyperparameter settings are same as the settings described in
Section 5.1 and Section C.

learning rate, without increasing the weight decay, FGSM-RS AT still suffers from catastrophic
overfitting with certain random seeds. Even if we increase weight decay to 1.5e-3, FGSM-RS AT
still has the issue of catastrophic overfitting, with the random seed being set as 2. On the other hand,
if we only increase the weight decay, then FGSM-RS AT either suffers from catastrophic overfitting
with a medium weight decay or exhibits a very poor performance with a large weight decay.

We also study the impacts of the weight decay and (maximum) learning rate on the performance of
FGSM + GradAlign AT, PGD-2-RS AT, and Qusai-PGD-2-RS AT under the cyclic learning sched-
ule. We set the weight decay as 2e-4, 5e-4, 1e-3, 2e-3 (the maximum learning rate is fixed as 0.3),
and plot the corresponding standard and robust accuracy in Fig 4. As shown in Fig 4, small weight
decay may lead to overfitting (or even catastrophic overfitting), while large weight decay substan-
tially reduces the model compacity and thus may lead to limited model performance. 5e-4 is a proper
setting for the weight decay. Also, we set the maximum learning rate as 0.1, 0.2, 0.3, 0.4, 0.5 (the
weight decay is fixed as 5e-4), and plot the corresponding standard and robust accuracy of FGSM +
GradAlign AT, PGD-2-RS AT, and Qusai-PGD-2-RS AT in Fig. 5. Though with different settings of
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Figure 5: The impacts of maximum learning rate on FGSM + GradAlign AT, PGD-2-RS AT, and
Qusai-PGD-2-RS AT under the cyclic learning schedule. The results are obtained by averaging over
5 random seeds used for training and reported with the standard deviation. The other hyperparameter
settings are same as the settings described in Section 5.1 and Section C.

the maximum learning rate, PGD-2-RS AT always has better standard accuracy and comparable or
better robust accuracy compared to FGSM + GradAlign AT, and Qusai-PGD-2-RS AT outperforms
FGSM + GradAlign AT in robust accuracy in all the cases. All in all, under all our evaluated training
schemes, both PGD-2-RS AT and Qusai-PGD-2-RS AT have consistently better performance than
FGSM + GradAlign AT.

E RELATED WORK

The vulnerability of deep learning models to adversarial examples was first reported in (Szegedy
et al., 2013). Since then, the community has proposed many approaches to generate or defend
against adversarial examples. Goodfellow et al. (2014) first proposed FGSM to generate adversar-
ial examples and adversarially train robust models against the adversarial examples. However, the
FGSM adversarial training method proposed by Goodfellow et al. (2014) trains a model to fool
FGSM by gradient masking (Tramèr et al., 2018), and thus cannot defend against stronger multi-
step attacks (Kurakin et al., 2016). Madry et al. (2017) then proposed to adversarially train robust
models by PGD adversarial examples, namely PGD adversarial training. In the past few years, PGD
adversarial training has survived the battles against many strong attacks Athalye et al. (2018); An-
driushchenko et al. (2019); Croce & Hein (2020); thus, it is widely known as the most effective
empirical defense. Following Madry et al. (2017), the community developed many variants of PGD
adversarial training and plug-in methods to further improve the defensive performance (Zhang et al.,
2019b; Wang et al., 2020; Dong et al., 2020; Pang et al., 2020; Wu et al., 2020). Despite its effec-
tiveness, PGD adversarial training suffers from high computational overhead due to the multiple
adversary updates for one model update in each training step. Therefore, a great deal of research has
been devoted to accelerating PGD adversarial training. Shafahi et al. (2019) proposed to simultane-
ously update adversarial examples and model parameters in each training step (AT for Free). Since
AT for Free makes full use of every adversary update, it can achieve comparable performance with
PGD adversarial training with fewer adversary updates. Zhang et al. (2019a) proposed to reduce the
costs of the adversary updates by restricting most of the forward and backward propagations within
the first layer of the network during the adversary updates.
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Contrary to the previous popular belief, Wong et al. (2019) found that using FGSM with appropriate
random initialization and attack step size as the adversary can also train a robust model against
multi-step attacks, referred to as FGSM-RS AT. Wong et al. (2019) also identified failure modes
called “catastrophic overfitting” in the previous FGSM adversarial training methods, meaning that
the trained model’s robust accuracy against PGD suddenly drops to 0% over a single epoch. Wong
et al. (2019) owed “catastrophic overfitting” to the inappropriate settings on initialization, step size,
etc. FGSM-RS AT only executes a one-step update on the adversarial examples in each training
step, so it is more efficient than the previous accelerated adversarial training methods (Shafahi et al.,
2019; Zhang et al., 2019a), opening up a promising direction for accelerating adversarial training.

In this line of research, Andriushchenko & Flammarion (2020) observed that even with proper set-
tings, FGSM-RS AT is still prone to “catastrophic overfitting” for larger `∞ perturbations. For
instance, on CIFAR10, when the `∞ perturbation size increases to 10/255, FGSM-RS AT will
encounter catastrophic overfitting in the training process with robust accuracy against PGD-50-10
dropping to 0%. Andriushchenko & Flammarion (2020) conjectured that the model’s local non-
linearity is the cause of catastrophic overfitting. Thus, to prevent catastrophic overfitting, An-
driushchenko & Flammarion (2020) proposed to enhance the trained model’s local linearity by a
regularization method, which maximizes the gradient alignment inside the perturbation sets, namely
gradient alignment regularization (GradAlign). Kim et al. (2021) proposed to search for the appro-
priate step size for each data sample to improve FGSM-RS AT and avoid catastrophic overfitting
under the long-time piecewise learning schedules.
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