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ABSTRACT

Scaling test-time computation improves large language model performance with-
out additional training. Recent work demonstrates that techniques such as re-
peated sampling, self-verification, and self-reflection can significantly enhance
task success by allocating more inference-time compute. However, applying these
techniques across multiple agents in a multi-agent system is difficult: there does
not exist principled mechanisms to allocate compute to foster collaboration among
agents, to extend test-time scaling to collaborative interactions, or to distribute
compute across agents under explicit budget constraints. To address this gap,
we propose AGENT*, a framework for optimizing test-time compute allocation in
multi-agent systems under fixed budgets. AGENT* introduces modularized col-
laboration, formalized as callable functions that encapsulate reusable multi-agent
workflows. These modules are automatically derived through self-play reflection
by abstracting recurring interaction patterns from past trajectories. Building on
these modules, AGENT* employs a dual-level planning architecture that opti-
mizes compute allocation by reasoning over the current task state while also spec-
ulating on future steps. Experiments on complex agent benchmarks demonstrate
that AGENT* consistently outperforms baselines across diverse budget settings,
validating its effectiveness for multi-agent collaboration in inference-time opti-
mization.

1 INTRODUCTION

Increasing inference-time computation (Snell et al., 2024; Muennighoff et al., 2025; Balachandran
et al., 2025; Zhang et al., 2025) has emerged as a powerful strategy for improving the performance
of large language model (LLM) without additional training. Recent models, such as OpenAI’s
o1 and o3 and Anthropic’s Claude Sonnet 3.7, have demonstrated strong reasoning capabilities
through techniques such as self-correction (Madaan et al., 2023; Chen et al., 2025a), iterative verifi-
cation (Lee et al., 2025), and best-of-N sampling (Brown et al., 2024). However, extending test-time
scaling to multi-agent systems (OpenAI, 2025; Google, 2025; Anthropic, 2024; OpenAI, 2024) in-
troduces unique challenges.

First, current test-time scaling techniques do not extend effectively to multi-agent systems. In single-
agent settings, extra compute can be spent directly on repeated sampling, verification, or reflection.
In contrast, multi-agent systems face the challenge of deciding how additional compute should be
allocated across agents and interactions. Existing approaches, such as the widely adopted orches-
trator–worker paradigm, decompose tasks and invokes agents sequentially, but this setup neither
facilitates genuine collaboration nor encourages the system to invest extra compute in coordina-
tion. As a result, synergies between complementary agents remain underexploited, and execution is
biased toward fixed patterns, limiting adaptability to varying task demands.

Second, there is no principled mechanism for maximizing performance under a fixed compute bud-
get. Existing strategies, such as budget enforcement (Muennighoff et al., 2025), typically rely on
static rules or heuristics. Such approaches cannot adjust compute allocation across inference steps
to account for varying complexities, nor can they anticipate future compute demands. Anticipation
is essential for scaling, because deciding whether to scale compute for the current step depends on
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estimating how much is likely to be needed later. Without this foresight, systems risk overspend-
ing early or under-investing when tasks become more challenging. This limitation is particularly
acute in multi-agent systems, where compute must be strategically distributed across agents with
heterogeneous capabilities and costs.

In this paper, we address the core question: How can multi-agent systems maximize performance
under fixed compute budgets while leveraging complementary agents capable of collaboration? To
answer this, we propose AGENT*, a general framework for budget-constrained optimization of test-
time compute in multi-agent systems. At its core, AGENT* introduces the abstraction of collab-
oration modules — modular, callable functions that encapsulate high-level coordination strategies
among agents. Each module defines a structured multi-agent workflow with a standardized input
schema and functionality, making agent interactions composable and reusable, similar to tools. Col-
laboration modules provide a principled way to allocate and scale compute effectively, since the
orchestrator can decide when and how to invoke more compute-intensive forms of collaboration
depending on task state and budget. In this view, multi-agent collaboration reduces to a function-
calling problem, with a meta-agent dynamically choosing which module to invoke. The modules
themselves are automatically induced through self-play reflection on past trajectories, ensuring they
capture reusable coordination patterns without manual design.

Having established reusable collaboration modules, the central challenge becomes how to allocate
computation across them under budget constraints. To address this, AGENT* employs a dual-level
planning architecture that integrates short-horizon and long-horizon planning. The short-horizon
planning proposes candidate next actions, either invoking a collaboration module or an individual
agent, conditioned on the current task state. In parallel, the long-horizon planning, inspired by spec-
ulative decoding (Leviathan et al., 2023), performs high-level speculation by reasoning abstractly
over potential sequences of collaboration modules instead of concretely executing them. This yields
low-cost estimates of budget feasibility, enabling the system to reason about when additional com-
pute should be saved or spent. Together, the two levels operate in an A*-like fashion, where the
short-horizon planner prioritizes promising near-term actions and the long-horizon planner supplies
a lookahead signal that aligns decisions with budget-aware trajectories.

To summarize, this paper makes the following contributions:

• We formulate the problem of optimizing test-time compute allocation for multi-agent systems
under fixed budget constraints with a set of agents capable of collaboration.

• We propose AGENT*, a general framework for budget-aware multi-agent collaboration. AGENT*
introduces collaboration modules to facilitate effective multi-agent collaboration, and employs
a dual-level planning architecture that balances short-horizon action selection with long-horizon
speculation to allocate compute effectively under budget constraints.

• We develop self-play reflection to collect cost estimates of agent and collaboration module execu-
tions and automatically induce collaboration modules from recurring interaction patterns.

• We demonstrate that AGENT* consistently outperforms baselines across challenging multi-agent
benchmarks, achieving higher task success rates and more effective budget utilization.

2 ORCHESTRATOR–WORKER FRAMEWORK UNDER BUDGET CONSTRAINTS

In this section, we introduce the general setting of orchestrator–worker framework in multi-agent
systems that operate under a fixed test-time compute budget. The goal is to solve an input task while
ensuring total computation stays within budget.

Let A = {a1, . . . , aN} denote the set of available worker agents, each initizlied with a large lan-
guage model (LLM) with distinct capabilities and an associated cost of invocation. A task is solved
through a sequence of intermediate states {st}Ht=0, where s0 is the initial task description and sH is
the final output returned by the system. At each step t, the orchestrator selects an action αt

αt = (at, υt), at ∈ A,

where υt specifies the subtask or input to the chosen worker. Executing αt produces an output ot,
and the new state is defined as st = (υt, ot). Each action incurs a cost cost(αt), and the cumulative
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Figure 1: Overview of AGENT*. The framework extends the standard orchestrator–worker paradigm
by introducing collaboration modules, which encapsulate reusable multi-agent workflows, and a
dual-level planning architecture, which integrates short-term and long-term planning to select the
most promising next action.

cost is constrained by the budget
H∑
t=1

cost(αt) ≤ B.

The system’s behavior at step t is governed by a policy π that selects the next action based on the
execution historyHt = { sr }t−1

r=0.

We instantiate the policy π with a LLM (Yao et al., 2020; Huang et al., 2022; Yao et al., 2023),
which serves as the backbone for the orchestrator agent. Following the ReAct framework (Yao et al.,
2023), the orchestrator generates subtasks, assigns them to worker agents, evaluates their outputs,
and determines subsequent actions until a final solution is produced or the budget is exhausted.

3 AGENT*

Multi-agent systems built on the orchestrator–worker paradigm suffer from limited coordination and
inefficient use of additional compute. Synergies between agents are underexploited, and budget-
aware optimization has not been well studied. To address these issues, we propose AGENT*, which
extends the orchestrator–worker framework with two key components.

At the core of AGENT* are collaboration modules (§3.1), that are modular functions encapsulating
reusable coordination strategies and transforming multi-agent interaction into a structured function-
calling problem. Building on this abstraction, AGENT* employs a dual-level planning architecture
(§3.2) that balances short-horizon action selection with long-horizon speculation, enabling adap-
tive and forward-looking compute allocation under strict budget limits. An overview is shown in
Figure 1.

3.1 COLLABORATION MODULES

The traditional orchestrator–worker framework is constrained by sequential, one-agent-at-a-time
execution. This design becomes inefficient on complex, open-ended tasks, as it is difficult to cap-
ture synergies between agents with complementary capabilities. In particular, the sequential setup
limits coordination, since intermediate results are not jointly integrated across agents, leaving sub-
tasks only partially addressed. Moreover, this rigid design restricts how additional compute can
be used: allocating more resources to a single agent, through repeated sampling or iterative verifi-
cation, merely amplifies that agent’s behavior without fostering cross-agent collaboration. Unlike
test-time scaling in single-agent LLMs, such additional compute does not provide a principled path
to improving performance in multi-agent systems.

To address these limitations, we introduce collaboration modules — modular, callable functions
that encapsulate high-level coordination strategies among multiple agents. Each module specifies
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a standardized and reusable workflow, such as combining outputs from multiple agents or chain-
ing agents in a pipeline, and can be invoked with a single function call. This abstraction reframes
multi-agent collaboration as a function-calling problem, where the orchestrator decides which col-
laboration module to invoke at each step. By structuring interactions in this way, collaboration
modules enable richer coordination and provides a scalable and principled mechanism for utilizing
test-time compute more effectively, as additional budget is allocated to cross-agent collaboration
rather than simply amplifying the behavior of individual agents.

Formally, we define a collaboration module as

m = (S, κ), S ⊆ A,
where S denotes a subset of worker agents and κ is a coordination strategy that specifies how these
agents interact. The action space available to the orchestrator is therefore expanded to include not
only the individual base agents but also collaboration modules:

A′ = A ∪M,

whereA is the set of base worker agents andM is the set of collaboration modules. From this point
onward, we assume that at in action αt is drawn from A′, enabling the orchestrator to invoke either
a single agent or a collaboration module at each step.

3.2 DUAL-LEVEL PLANNING ARCHITECTURE

While collaboration modules provide a structured abstraction for multi-agent coordination, they also
introduce the challenge of how to allocate computation effectively under budget constraints. Dis-
tributing test-time resources across modules is inherently uncertain, since the system cannot know
in advance which modules will be invoked or how their interactions will unfold. This uncertainty
motivates the need for a planning mechanism that adaptively determines which modules to invoke
and how to allocate computation across them, ensuring resources are used efficiently to maximize
task performance under strict budget constraints.

Inspired by traditional A* search, AGENT* frames planning as the exploration of a search tree,
where each node represents a decision point at step t for invoking an action αt = (at, υt), evaluated
by the cumulative gain g(αt) and the future gain h(αt)

1. Analogously, in AGENT*, short-term
planning plays the role of g(αt): it expands candidate next actions based on the policy π(· | Ht)
and assigns each a score reflecting the short-term gain. Long-term planning corresponds to h(αt): it
speculates over possible future trajectories to estimate whether subsequent steps will remain feasible
under the budget. By combining these two levels, the orchestrator effectively selects the candidate
with the highest overall utility score f(αt) = g(αt) + h(αt), ensuring that immediate actions are
consistent with budget-aware long-term feasibility.

3.2.1 SHORT-TERM PLANNING

In short-term planning, AGENT* evaluates the immediate utility of a candidate action αt = (at, υt)
proposed by the policy π. At each step t, the policy generates K candidate actions by drawing from
the distribution

Ct = {α(1)
t , . . . , α

(K)
t } ∼ π(· | Ht, Tfeasible,t−1),

where Tfeasible,t−1 denotes the set of budget-feasible speculative trajectories carried over from the
previous step. This conditioning ensures that short-term proposals are informed by speculated
budget-feasible high-level plans rather than sampled solely from Ht. As a result, the candidate
set reflects not only the current task context but also long-term budget feasibility, yielding proposals
that are both contextually grounded and more likely to lead to successful completions within budget.

To assess these candidates, we compute a self-consistency score (Wang et al., 2022), which serves
as a proxy for their effectiveness. Formally, let ϕ((a, υ)) = a extract the agent or module from an
action. The short-term gain is defined as

g
(
α
(i)
t

)
=

1

K

K∑
k=1

1
[
ϕ
(
α
(k)
t

)
= ϕ

(
α
(i)
t

)]
,

1Here, cumulative and future gains are interpreted as the inverse of cumulative and future costs in A*.
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where 1[·] is the indicator function. Actions with higher self-consistency receive larger g(α(i)
t ) val-

ues, indicating stronger evidence that they will contribute effectively to task progress. This mech-
anism provides a lightweight yet reliable signal for prioritizing near-term actions before long-term
feasibility is considered.

3.2.2 LONG-TERM PLANNING

While short-term planning evaluates the immediate promise of an action, long-term planning specu-
lates on its feasibility under the remaining budget. The goal is to compute a budget feasibility score
h(α

(i)
t ) that captures whether choosing α

(i)
t as the next action is likely to keep future trajectories

within budget, without actually executing α
(i)
t and following actions.

Concretely, the orchestrator agent expands each candidate action into speculative trajectories, which
are abstract rollouts representing possible continuations of agents or collaboration modules. These
trajectories are generated symbolically at the module level, so no agents are invoked, keeping the
procedural lightweight. Each trajectory is associated with an estimated cumulative cost, and any that
exceed the remaining budget are filtered out. Formally, let Tt(α(i)

t ) denote the set of speculative tra-
jectories beginning with α

(i)
t , and let cost(τ) represent the estimated cumulative cost of a trajectory

τ ∈ Tt(α(i)
t ). Given the remaining budget Bt, we define the set of feasible trajectories as

Tfeasible,t(α
(i)
t ) = {τ ∈ Tt(α(i)

t ) | cost(τ) ≤ Bt},
so that trajectories whose costs exceed Bt are filtered out. Among the feasible trajectories, we then
normalize across the K candidate actions sampled at step t. This defines the budget feasibility score:

h(α
(i)
t ) =

|Tfeasible,t(α
(i)
t )|∑K

r=1 |Tfeasible,t(α
(r)
t )|

.

Intuitively, h(α(i)
t ) reflects the likelihood that an action can be extended into a successful budget-

compliant plan. Actions with higher h(α(i)
t ) values are favored, since they not only appear promising

in the short term but are also more likely to sustain progress without violating budget constraints.
This speculative lookahead ensures that immediate choices remain consistent with long-term feasi-
bility, complementing the short-term gain g(α

(i)
t ) in the overall utility f(α

(i)
t ) = g(α

(i)
t ) + h(α

(i)
t ).

Moreover, the resulting feasible speculative set Tfeasible,t is carried forward to guide candidate gen-
eration in the next step’s short-term planning.

Finally, we select the candidate action with the highest utility score as the next action. The dual-level
planning procedure is formally presented in Alg. 1.

3.3 SELF-PLAY REFLECTION

Dual-level planning requires estimates of the execution cost for both agents and collaboration mod-
ules in order to conduct long-term planning. Also, for the collaboration modules, we need effective
ways to structure multi-agent collaborations. To address both needs, AGENT* employs self-play re-
flection, an iterative process that builds experience by generating execution trajectories on a subset
of validation tasks and uses this experience both to compute the average cost of invoking each agent
or module and to automatically construct collaboration modules from recurring interaction patterns.

Formally, given the set of actions A′, the system executes multiple trajectories and logs the agents
invoked, subtasks addressed, outputs produced, and costs incurred. The average execution cost is
then estimated as

ĉost(a) = Etraj,υ
[
cost(a, υ)

]
, a ∈ A′,

providing the statistics required for long-term planning. While in theory the cost of invoking an
agent or module depends on both a and the specific subtask υ, enumerating all possible subtasks
is infeasible. We therefore relax this assumption and approximate the cost by averaging across
observed subtasks in self-play trajectories, treating the resulting estimate as transferable across tasks.

In parallel, successful trajectories are reflected upon by an LLM to identify recurring sequences of
agent interactions that consistently contribute to successful task completion. These sequences are
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abstracted into reusable collaboration modules, which are added to the action space A′ and refined
through further rounds of self-play. Over successive iterations, this process yields a growing library
of collaboration modules as well as reliable cost profiles for both modules and base agents.

Through self-play reflection, AGENT* unifies cost estimation and collaboration module discovery
in a single data-driven procedure, eliminating the need for manual engineering and enabling more
effective budget-optimal planning.

4 EXPERIMENTS

To evaluate the effectiveness of AGENT* in multi-agent settings, we conduct experiments on the
GAIA and BrowseComp-Plus benchmarks, comparing its performance against baselines under strict
budget constraints.

4.1 EXPERIMENT SETTINGS

Dataset. We evaluate AGENT* on two agent benchmarks: (1) GAIA (Mialon et al., 2023): a real-
world QA benchmark that evaluates web browsing and general tool-use ability of language models;
and (2) BrowseComp-Plus (Chen et al., 2025b): a benchmark derived from BrowseComp Wei et al.
(2025) that measures the ability for agents to browse the web using a fixed, curated corpus.

Agents and Collaboration Modules. For each benchmark, we first instantiate a set of task-
specialized agents. In GAIA, we utilize four agents: Search Agent, Browser Agent, Reasoning
Agent, and Media Inspector Agent. In BrowseComp-Plus, we use three agents: Retriever Agent,
Document Reader Agent, and Critic Agent.

To construct collaboration modules, we conduct five rounds of self-play reflection for each bench-
mark, with each round producing one candidate module. We utilize the first 30 questions in the
benchmark as a validation set to collect cost estimates and collaboration modules. This process
yields mainly five distinct modules for GAIA: interactive search and browse, search then browse,
ensemble search, two ensemble reasoning, and three ensemble reasoning. For BrowseComp-Plus, it
yields four unique modules: interactive search, ensemble interactive search, interactive search then
critic, and ensemble interactive search then critic, with the final round producing a duplicate2.

Models. We employ two model families: Claude (Anthropic, 2025) and Qwen3 (Yang et al.,
2025). Within the Claude family, we use Claude-3.7-Sonnet for the orchestrator, reasoning,
critic, and media inspector agents, and Claude-3.5-Haiku for the rest. For the Qwen family,
we use Qwen3-32B for all the agents.

Budget Constraints. We evaluate performance under four budget settings. To determine suitable
constraints for each benchmark and model, we first measure the trajectory costs from self-play
reflection and take their average as the minimum budget. Larger budgets are then defined either
by fixed increments or by exponential scaling. For Claude experiments, we allocate per-question
budgets of $0.2, $0.3, $0.4, and $0.5 across both benchmarks. For Qwen experiments, we set budgets
of $0.05, $0.1, $0.2, and $0.3 for GAIA, and $0.025, $0.05, $0.1, and $0.2 for BrowseComp-Plus.

4.2 BASELINES

We consider two dimensions for our baselines: the effectiveness of collaboration modules and the
effectiveness of budget utilization. The effectiveness of collaboration modules is tested by com-
paring settings where the orchestrator can only call agents versus those where it can also invoke
collaboration modules. The effectiveness of budget utilization is tested by setting a Budget-Aware
Prompting method as a baseline where the orchestrator is provided with the total budget, the cost of
each agent and module, and the remaining budget at each step when selecting actions.

This yields three baselines: (1) No Modules, No Budget Aware, where the orchestrator relies only on
the agents; (2) With Modules, No Budget Aware, where both agents and collaboration modules are

2We provide the prompt for self-play reflection in Figure 5 and detailed descriptions of agents and collabo-
ration modules in Appx. §A
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(a) Performance on GAIA with Claude (b) Performance on GAIA with Qwen3

(c) Performance on BrowseComp-Plus with Claude (d) Performance on BrowseComp-Plus with Qwen3

Figure 2: Performance Comparison among baselines on GAIA and BrowseComp-Plus.

available but without budget information; and (3) With Modules, Budget-Aware Prompting, where
the orchestrator has access to both collaboration modules and explicit budget information in the
prompt.

4.3 BENCHMARK RESULTS

Figure 2 presents the experiment results on the GAIA and BrowseComp-Plus benchmarks across
different budget constraints3.

First, the utilization of collaboration modules yields clear improvements: With Modules, No Budget
Aware surpasses No Modules, No Budget Aware with a high margin, confirming the effectiveness of
collaboration modules in scaling the test-time computation using more informed agent interactions.

Second, AGENT* achieves the strongest performance overall, outperforming With Modules, Budget-
Aware Prompting at all budget levels. This demonstrates the benefit of dual-level planning, which
allows the orchestrator to optimize the test-time compute more effectively according to the short-
term and long-term plans.

Finally, while budget-aware prompting method occasionally improves accuracy relative to non-
budget-aware settings, its effect is inconsistent and in some cases plateaus at higher budgets. These
findings indicate that collaboration modules are necessary for robust test-time scaling, and that dual-
level planning, as realized in AGENT*, is more effective than budget-aware prompting for operating
under budget constraints.

4.4 COST UTILIZATION UNDER BUDGET CONSTRAINTS

We further examine the average total cost incurred when running the GAIA benchmark under dif-
ferent budget constraints, as reported in Figure 3. Across all three baselines, the available budget

3We present the comprehensive table for all the scores in Appx. §B
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Figure 3: Average total cost vs total budget on GAIA using Claude (left) and Qwen3 (right).

Figure 4: Performance (left) and Total Cost (right) comparison under various budget constraints
among baselines on GAIA.

is consistently underutilized, with the total cost plateauing well below the specified constraint. In
contrast, AGENT* achieves substantially higher cost utilization, which transfers into a performance
enhancement. This finding highlights a fundamental challenge in multi-agent systems: even when
sufficient budget is available, baseline strategies struggle to convert it into effective computation that
drives performance gains. By leveraging dual-level planning, AGENT* allocates resources more
aggressively when necessary, ensuring that budget headroom is effectively translated into higher
performance.

4.5 INCORPORATING STANDARD TEST-TIME SCALING UNDER BUDGET CONSTRAINTS

The previous section showed that AGENT* leverages the available budget more effectively than
baseline approaches. A natural concern, however, is whether these performance gains arise merely
from allocating additional test-time compute, rather than from effectively optimizing its use through
the scheduling and scaling of collaboration modules. To examine this, we conduct an ablation
study that incorporates standard test-time scaling techniques commonly used in single-agent or LLM
settings. In particular, we extend the With Modules, No Budget Aware baseline with two
methods: best-of-N sampling (Brown et al., 2024) and iterative verification (Lee et al., 2025). both
are applied until the budget is exhausted. For best-of-N sampling, we set N = 3, but if the budget
is exhausted before completing all three attempts, we use the available attempts and apply self-
consistency on the answers from the attempts to produce the final answer. For iterative verification,
once an initial answer is generated, any remaining budget is used to prompt the orchestrator to
re-examine the trajectory and refine the solution until the budget is fully consumed.

Figure 4 presents the comparison among baselines with standard test-time scaling methods on GAIA
benchmark with Claude4. Although both best-of-N sampling and iterative verification substantially
increase cost utilization, their accuracy gains are minimal and plateau quickly as the budget grows.
This suggests that simply allocating more budget through standard test-time scaling does not guar-

4We include the scores in Table 3
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antee improved performance. In contrast, AGENT* achieves higher accuracy while operating with
lower cost, highlighting the effectiveness of dual-level planning in optimizing test-time computation
compared to standard test-time scaling methods.

5 RELATED WORKS

5.1 TEST-TIME SCALING FOR LLMS

Existing approaches to increasing test-time compute for LLMs can be broadly categorized into two
paradigms (Muennighoff et al., 2025), including parallel scaling and sequential scaling. Parallel
scaling methods, such as best-of-N sampling (Brown et al., 2024; Snell et al., 2024), generate mul-
tiple candidate solutions in parallel and select the best one using voting, confidence heuristics, or
reward models (Wang et al., 2022; Irvine et al., 2023). In contrast, sequential scaling encourages iter-
ative refinement via methods such as chain-of-thought prompting (Wei et al., 2022), self-refinement
(Madaan et al., 2023; Chen et al., 2023; Min et al., 2024; Lee et al., 2025), and verifier-guided
revision (Gou et al., 2023; Zhang et al., 2024d). These methods do not account for multi-agent
collaboration as a mechanism for scaling test-time compute. They are typically confined to single-
agent settings and lack the ability to leverage coordination across specialized agents. Additionally,
these methods do not consider optimization under a strict compute budget. The only relevant work
is Muennighoff et al. (2025), which enforces a hard budget constraint but lacks the ability to adapt
scaling strategies based on available compute. As a result, it cannot support performance scaling in
response to different budget requirements.

5.2 DESIGNING MULTI-AGENT SYSTEM

Multi-agent systems (MAS) have recently gained traction as a way to structure complex tasks
through the collaboration of specialized LLM-based agents. Early systems such as CAMEL (Li
et al., 2023), AutoGen (Wu et al., 2024), and MetaGPT (Hong et al., 2023) demonstrated the value
of explicit role assignment and agent interaction, but relied heavily on manual configurations, in-
cluding prompt engineering, agent profiling, and fixed communication protocols (Qian et al., 2024).
These limitations hinder their adaptability across domains and tasks. In response, recent work has
focused on automating various components of MAS design. Some methods treat agent functions
as learnable policies (Zhang et al., 2024b;c) or synthesize trajectories for offline agent optimization
(Qiao et al., 2024). Others expand the MAS search space to include prompts (Khattab et al., 2023),
tools (Zhou et al., 2024), workflows (Li et al., 2024), and reasoning strategies (Shang et al., 2024).
DyLAN (Liu et al., 2024) supports dynamic agent composition, while Archon (Saad-Falcon et al.,
2024) treats MAS construction as a hyperparameter optimization problem. GPTSwarm (Zhuge
et al., 2024) optimizes agent communication using policy gradients, and state-of-the-art systems
like ADAS (Hu et al., 2024) and AFlow (Zhang et al., 2024a) perform full workflow optimization
using search algorithms or LLM controllers. However, most of these systems aim to produce a
single optimized configuration per task and do not support dynamic, inference-time planning over
collaboration strategies that enables adaptive and compute-efficient behavior without retraining or
static system design.

6 CONCLUSION

We presented AGENT*, a general framework for budget-constrained optimization of test-time com-
pute in multi-agent systems. AGENT* leverages collaboration modules as reusable abstractions of
multi-agent coordination and employs a dual-level planning architecture that balances short-horizon
execution with long-horizon speculation. Extensive experiments demonstrate that AGENT* consis-
tently outperforms both standard baselines and those augmented with test-time scaling, achieving
higher accuracy while utilizing resources more efficiently. These findings underscore the impor-
tance of structured collaboration and forward-looking planning for budget-constrained inference,
and point toward a promising direction for building more adaptable and compute-efficient multi-
agent systems.
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A SUPPLEMENTARY DETAILS ON AGENTS AND COLLABORATION MODULES

For the GAIA benchmark, we employ the following agents:

• Search Agent: Given a search query, outputs the google search results
• Browser Agent: Given one or more URLs, visits the pages and returns the content of webpages.
• Reasoning Agent: Given a problem, performs multi-step reasoning and outputs a final solution.
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• Media Inspector Agent: Given an image or video link and a question, analyzes the media and
answers the question.

In addition, we define the following collaboration modules:

• interactive search and browse: A search agent and a browser agent share context and
invoke each other interactively.

• search then browse: First searches for URLs, then browses the retrieved pages for detailed
content.

• ensemble search: Generates three distinct queries, spawns three search agents in parallel,
and aggregates their results.

• two ensemble reasoning: Two reasoning agents independently produce reasoning paths,
which are aggregated into a final answer.

• three ensemble reasoning: Three reasoning agents independently produce reasoning
paths, which are aggregated into a final answer.

For the BrowseComp-Plus benchmark, we employ the following agents:

• Retriever Agent: Given a search query, retrieves the top-5 documents by semantic similarity and
returns (doc id, title, snippet) for each.

• Document Reader Agent: Given a doc id, fetches and returns the full document content.
• Critic Agent: Given the current task state and available information, identifies missing information

and recommends what to search for next.

We define the following collaboration modules:

• interactive search: A search agent and a document reader agent share context and invoke
each other interactively.

• ensemble interactive search: Spawns three interactive search modules in par-
allel and aggregates their results.

• interactive search then critic: First calls the interactive search module,
then the critic agent evaluates the gathered information.

• ensemble interactive search then critic: Spawns three
interactive search then critic modules in parallel and aggregates their results.

B MAIN EXPERIMENT SCORES

We have additionally included the specific performance scores presented in §4.3 in Table 1 and
Table 2.

C DUAL-LEVEL PLANNING ALGORITHM

We provide algorithm for dual-level planning in Alg. 1.
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You are given a set of successful execution trajectories produced by
a multi-agent system.

Each trajectory contains the sequence of agents invoked with a
subtask, and their intermediate outputs

Your goal is to analyze these trajectories to identify a recurring
agent interactions that frequently appear in successful
trajectories.

Such patterns may include:
- Sequential workflows
- Parallel workflows
- Verification or Refinement

For each recurring pattern you identify:
1. Describe the workflow in plain language.
2. Specify the agents involved and their roles.
3. Implement a class that executes this workflow using these agents
4. Explain why this pattern is effective, referring to the trajectory

evidence.

Here are some examples of the extracted pattern:
{few_shot_demonstrations}

Here are the patterns that are already observed. Avoid outputting
duplicated patterns.

{collected_collaboration_modules}

Figure 5: Prompt used for self-play reflection to induce collaboration modules from successful
trajectories.

Method GAIA BrowseComp-Plus

Budget ($) Accuracy (%) Budget ($) Accuracy (%)

No Module, No Budget Aware

0.2

35.80

0.2

24.33
With Module, No Budget Aware 35.80 25.32
With Module, Budget-Aware 36.41 24.07
AGENT* 38.89 25.53
No Module, No Budget Aware

0.3

35.80

0.3

24.66
With Module, No Budget Aware 37.65 25.50
With Module, Budget-Aware 41.97 26.34
AGENT* 44.44 27.50
No Module, No Budget Aware

0.4

35.80

0.4

24.66
With Module, No Budget Aware 38.27 27.08
With Module, Budget-Aware 43.20 27.37
AGENT* 46.91 28.07
No Module, No Budget Aware

0.5

35.80

0.5

24.66
With Module, No Budget Aware 38.27 26.2
With Module, Budget-Aware 43.20 28.07
AGENT* 48.15 29.00

Table 1: Performance of different methods across different budget on GAIA and BrowseComp-Plus
using Claude model family.
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Method GAIA BrowseComp-Plus

Budget ($) Accuracy (%) Budget ($) Accuracy (%)

No Module, No Budget Aware

0.05

12.66

0.025

7.10
With Module, No Budget Aware 15.33 10.36
With Module, Budget-Aware 11.33 16.98
AGENT* 16.00 18.07
No Module, No Budget Aware

0.1

12.66

0.05

7.71
With Module, No Budget Aware 16.0 16.14
With Module, Budget-Aware 13.33 16.74
AGENT* 16.67 18.92
No Module, No Budget Aware

0.2

12.66

0.1

8.07
With Module, No Budget Aware 16.0 17.46
With Module, Budget-Aware 14.00 16.74
AGENT* 20.00 19.42
No Module, No Budget Aware

0.3

12.66

0.2

8.07
With Module, No Budget Aware 16.0 17.46
With Module, Budget-Aware 14.00 16.74
AGENT* 21.33 20.72

Table 2: Performance of different methods across different budget on GAIA and BrowseComp-Plus
using Qwen3 model family.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1: Dual-Level Planning
Input: Policy π, set of agents/modules A′, initial historyH0, total budget B, max steps Tmax

Output: Final output and execution trace
1 t← 0;
2 Ht ← H0;
3 Bt ← B;
4 Tfeasible,0 ← ∅;
5 while t < Tmax and Bt > 0 and not SOLVED(Ht) do
6 Sample candidate actions

Ct = {α(1)
t , . . . , α

(K)
t } ∼ π(· | Ht, Tfeasible,t−1)

// Let ϕ((a, υ)) = a extract the agent/module from an action
7 for i = 1 to K do
8

g
(
α
(i)
t

)
=

1

K

K∑
k=1

1
[
ϕ
(
α
(k)
t

)
= ϕ

(
α
(i)
t

)]
9 for i = 1 to K do

10 Generate speculative trajectories Tt(α(i)
t ) beginning with α

(i)
t ;

11 Define feasible set:

Tfeasible,t(α
(i)
t ) =

{
τ ∈ Tt(α(i)

t )
∣∣ cost(τ) ≤ Bt

}
h
(
α
(i)
t

)
=

∣∣∣Tfeasible,t(α
(i)
t )

∣∣∣∑K
r=1

∣∣∣Tfeasible,t(α
(r)
t )

∣∣∣
12 Compute f(α

(i)
t ) = g(α

(i)
t ) + h(α

(i)
t ) for i = 1, . . . ,K;

13

α⋆
t = argmax

α∈Ct

f(α)

14 Execute α⋆
t = (a⋆t , υ

⋆
t ) to obtain output ot;

15 Update state: Ht+1 ← Ht ∪ {(υ⋆
t , ot)};

16 Update budget: Bt+1 ← Bt − cost(α⋆
t );

17 t← t+ 1;
18 return Final output derived fromHt
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Method Budget ($) Total Cost ($) Accuracy (%)

With Modules
+ No Budget Aware

0.2

0.1156 35.80
+ Budget-Aware Prompting 0.1246 36.41
+ Best-of-N Sampling 0.1698 35.80
+ Iterative Verification 0.1928 36.41

AGENT* 0.1660 38.89
With Modules

+ No Budget Aware

0.3

0.1409 37.65
+ Budget-Aware Prompting 0.1592 41.97
+ Best-of-N Sampling 0.2583 37.65
+ Iterative Verification 0.2903 42.59

AGENT* 0.2233 44.44
With Modules

+ No Budget Aware

0.4

0.1507 38.27
+ Budget-Aware Prompting 0.1727 43.20
+ Best-of-N Sampling 0.3464 43.20
+ Iterative Verification 0.3885 43.20

AGENT* 0.2771 46.91
With Modules

+ No Budget Aware

0.5

0.1587 38.27
+ Budget-Aware Prompting 0.1771 43.20
+ Best-of-N Sampling 0.3825 44.44
+ Iterative Verification 0.4803 43.20

AGENT* 0.3090 48.15

Table 3: Performance comparison among different test-time scaling methods under budget con-
straints on GAIA with Claude.
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