Under review as a conference paper at ICLR 2026

AGENT*: OPTIMIZING TEST-TIME COMPUTE FOR
MULTI-AGENT SYSTEMS WITH MODULARIZED
COLLABORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling test-time computation improves large language model performance with-
out additional training. Recent work demonstrates that techniques such as re-
peated sampling, self-verification, and self-reflection can significantly enhance
task success by allocating more inference-time compute. However, applying these
techniques across multiple agents in a multi-agent system is difficult: there does
not exist principled mechanisms to allocate compute to foster collaboration among
agents, to extend test-time scaling to collaborative interactions, or to distribute
compute across agents under explicit budget constraints. To address this gap,
we propose AGENT*, a framework for optimizing test-time compute allocation in
multi-agent systems under fixed budgets. AGENT* introduces modularized col-
laboration, formalized as callable functions that encapsulate reusable multi-agent
workflows. These modules are automatically derived through self-play reflection
by abstracting recurring interaction patterns from past trajectories. Building on
these modules, AGENT* employs a dual-level planning architecture that opti-
mizes compute allocation by reasoning over the current task state while also spec-
ulating on future steps. Experiments on complex agent benchmarks demonstrate
that AGENT* consistently outperforms baselines across diverse budget settings,
validating its effectiveness for multi-agent collaboration in inference-time opti-
mization.

1 INTRODUCTION

Increasing inference-time computation (Snell et al.l [2024; Muennighoff et al., 2025; |Balachandran
et al.| |2025; [Zhang et al., |2025b) has emerged as a powerful strategy for improving the perfor-
mance of large language model (LLM) without additional training. Recent models, such as Ope-
nATI’s ol and 03 and Anthropic’s Claude Sonnet 3.7, have demonstrated strong reasoning capabil-
ities through techniques such as self-correction (Madaan et al.l 2023} |Chen et al., |2025a), iterative
verification (Lee et al.l 2025), and best-of-N sampling (Brown et al., [2024). However, extending
test-time scaling to multi-agent systems (OpenAl, 2025} |Google} [2025; |Anthropic| |2024; |OpenAl,
2024) introduces unique challenges.

First, current test-time scaling techniques do not extend effectively to multi-agent systems. In single-
agent settings, extra compute can be spent directly on repeated sampling, verification, or reflection.
In contrast, multi-agent systems face the challenge of deciding how additional compute should be
allocated across agents and interactions. Existing approaches, such as the widely adopted orchestra-
tor—worker paradigm (Hadfield et al.l 2025} [Tran et al., 2025}, decompose tasks and invokes agents
sequentially, but this setup neither facilitates genuine collaboration nor encourages the system to
invest extra compute in coordination. As a result, synergies between complementary agents remain
underexploited, and execution is biased toward fixed patterns, limiting adaptability to varying task
demands.

Second, there is no principled mechanism for maximizing performance under a fixed compute bud-
get. Existing strategies, such as budget enforcement (Muennighoff et al.l [2025), typically rely on
static rules or heuristics. Such approaches cannot adjust compute allocation across inference steps
to account for varying complexities, nor can they anticipate future compute demands. Anticipation

Under review as a conference paper at ICLR 2026

is essential for scaling, because deciding whether to scale compute for the current step depends on
estimating how much is likely to be needed later. Without this foresight, systems risk overspend-
ing early or under-investing when tasks become more challenging. This limitation is particularly
acute in multi-agent systems, where compute must be strategically distributed across agents with
heterogeneous capabilities and costs.

In this paper, we address the core question: How can multi-agent systems maximize performance
under fixed compute budgets while leveraging complementary agents capable of collaboration? To
answer this, we propose AGENT*, a general framework for budget-constrained optimization of test-
time compute in multi-agent systems. At its core, AGENT* introduces the abstraction of collab-
oration modules — modular, callable functions that encapsulate high-level coordination strategies
among agents. Each module defines a structured multi-agent workflow with a standardized input
schema and functionality, making agent interactions composable and reusable, similar to tools. Col-
laboration modules provide a principled way to allocate and scale compute effectively, since the
orchestrator can decide when and how to invoke more compute-intensive forms of collaboration
depending on task state and budget. In this view, multi-agent collaboration reduces to a function-
calling problem, with a meta-agent dynamically choosing which module to invoke. The modules
themselves are automatically induced through self-play reflection on past trajectories, ensuring they
capture reusable coordination patterns without manual design.

Having established reusable collaboration modules, the central challenge becomes how to allocate
computation across them under budget constraints. To address this, AGENT* employs a dual-level
planning architecture that integrates short-horizon and long-horizon planning. The short-horizon
planning proposes candidate next actions, either invoking a collaboration module or an individual
agent, conditioned on the current task state. In parallel, the long-horizon planning, inspired by spec-
ulative decoding (Leviathan et al., [2023)), performs high-level speculation by reasoning abstractly
over potential sequences of collaboration modules instead of concretely executing them. This yields
low-cost estimates of budget feasibility, enabling the system to reason about when additional com-
pute should be saved or spent. Together, the two levels operate in an A*-like fashion, where the
short-horizon planner prioritizes promising near-term actions and the long-horizon planner supplies
a lookahead signal that aligns decisions with budget-aware trajectories.

To summarize, this paper makes the following contributions:

* We formulate the problem of optimizing test-time compute allocation for multi-agent systems
under fixed budget constraints with a set of agents capable of collaboration.

* We propose AGENT*, a general framework for budget-aware multi-agent collaboration. AGENT*
introduces collaboration modules to facilitate effective multi-agent collaboration, and employs
a dual-level planning architecture that balances short-horizon action selection with long-horizon
speculation to allocate compute effectively under budget constraints.

* We develop self-play reflection to collect cost estimates of agent and collaboration module execu-
tions and automatically induce collaboration modules from recurring interaction patterns.

* We demonstrate that AGENT* consistently outperforms baselines across challenging multi-agent
benchmarks, achieving higher task success rates and more effective budget utilization.

2 ORCHESTRATOR—WORKER FRAMEWORK UNDER BUDGET CONSTRAINTS

In this section, we introduce the general setting of orchestrator—worker framework (Hadfield et al.,
2025} [Tran et al.l 2025)) in multi-agent systems that operate under a fixed test-time compute budget.
The goal is to solve an input task while ensuring total computation stays within budget.

Let A = {a1,...,an} denote the set of available worker agents, each initialized with a large
language model (LLM) with distinct capabilities and an associated cost of invocation. A task is
solved through a sequence of intermediate states {s; } /L., where s is the initial task description and
sy is the final output returned by the system. At each step ¢, the orchestrator selects an action oy

ar = (ag,v), ap €A,

where v; specifies the subtask or input to the chosen worker. Executing «; produces an output o,
and the new state is defined as s; = (v, 0;). Each action incurs a cost cost(c), and the cumulative

Under review as a conference paper at ICLR 2026

Orchestrator-Worker Collaboration Modules

e

Task
\L F-h/orkeﬂ] 1
Worker1 ’ Worker2 Short-term

—=> Current State N
[Workar?.] PIQ'\V\IV\H

Orchestrator

Previous successful
< ong-term plan)

Orchestrator

Action [action1| [action_2]| [action3]

i

KScore J
Short-term Planning e C] D D \

¥
next_action

Score X ‘/
L—— OL-S&\YLVa‘tior\ -

Long—tlaming A F'an“;ng [j D . C]
Budget % % %

E

—_—

v J

Figure 1: Overview of AGENT*. The framework extends the standard orchestrator—worker paradigm
by introducing collaboration modules, which encapsulate reusable multi-agent workflows, and a
dual-level planning architecture, which integrates short-term and long-term planning to select the
most promising next action.

cost is constrained by the budget

H
Z cost(a;) < B.
t=1

The system’s behavior at step ¢ is governed by a policy 7 that selects the next action based on the
execution history H; = { s, }'Z§.

We instantiate the policy m with a LLM (Yao et al.l 2020; Huang et al., [2022; |Yao et al., 2023),
which serves as the backbone for the orchestrator agent. Following the ReAct framework (Yao et al.,
2023)), the orchestrator generates subtasks, assigns them to worker agents, evaluates their outputs,
and determines subsequent actions until a final solution is produced or the budget is exhausted.

3 AGENT*

Multi-agent systems built on the orchestrator—worker paradigm (Hadfield et al.| [2025; [Tran et al.,
20235)) suffer from limited coordination and inefficient use of additional compute. Synergies between
agents are underexploited, and budget-aware optimization has not been well studied. To address
these issues, we propose AGENT*, which extends the orchestrator—worker framework with two key
components.

At the core of AGENT* are collaboration modules (§3.1)), that are modular functions encapsulating
reusable coordination strategies and transforming multi-agent interaction into a structured function-
calling problem. Building on this abstraction, AGENT* employs a dual-level planning architecture
(§3.2) that balances short-horizon action selection with long-horizon speculation, enabling adap-
tive and forward-looking compute allocation under strict budget limits. An overview is shown in
Figure 1

3.1 COLLABORATION MODULES

The traditional orchestrator—worker framework is constrained by sequential, one-agent-at-a-time
execution. This design becomes inefficient on complex, open-ended tasks, as it is difficult to cap-
ture synergies between agents with complementary capabilities. In particular, the sequential setup
limits coordination, since intermediate results are not jointly integrated across agents, leaving sub-
tasks only partially addressed. Moreover, this rigid design restricts how additional compute can
be used: allocating more resources to a single agent, through repeated sampling or iterative verifi-
cation, merely amplifies that agent’s behavior without fostering cross-agent collaboration. Unlike
test-time scaling in single-agent LLMs, such additional compute does not provide a principled path
to improving performance in multi-agent systems.

To address these limitations, we introduce collaboration modules — modular, callable functions
that encapsulate high-level coordination strategies among multiple agents. Each module specifies

Under review as a conference paper at ICLR 2026

a standardized and reusable workflow, such as combining outputs from multiple agents or chain-
ing agents in a pipeline, and can be invoked with a single function call. This abstraction reframes
multi-agent collaboration as a function-calling problem, where the orchestrator decides which col-
laboration module to invoke at each step. By structuring interactions in this way, collaboration
modules enable richer coordination and provides a scalable and principled mechanism for utilizing
test-time compute more effectively, as additional budget is allocated to cross-agent collaboration
rather than simply amplifying the behavior of individual agents.

Formally, we define a collaboration module as
m=(S,k), SCA,

where S denotes a subset of worker agents and « is a coordination strategy that specifies how these
agents interact. The action space available to the orchestrator is therefore expanded to include not
only the individual base agents but also collaboration modules:

A'=AUM,

where A is the set of base worker agents and M is the set of collaboration modules. From this point
onward, we assume that a; in action oy is drawn from A’, enabling the orchestrator to invoke either
a single agent or a collaboration module at each step.

3.2 DUAL-LEVEL PLANNING ARCHITECTURE

While collaboration modules provide a structured abstraction for multi-agent coordination, they also
introduce the challenge of how to allocate computation effectively under budget constraints. Dis-
tributing test-time resources across modules is inherently uncertain, since the system cannot know
in advance which modules will be invoked or how their interactions will unfold. This uncertainty
motivates the need for a planning mechanism that adaptively determines which modules to invoke
and how to allocate computation across them, ensuring resources are used efficiently to maximize
task performance under strict budget constraints.

Inspired by traditional A* search (Hart et al., 1968 Meng et al.,2024), AGENT* frames planning as
the exploration of a search tree, where each node represents a decision point at step ¢ for invoking
an action ay = (at, v¢), evaluated by the cumulative gain g(«) and the future gain h(at)ﬂ Analo-
gously, in AGENT*, short-term planning plays the role of g(ay): it expands candidate next actions
based on the policy 7(- | ;) and assigns each a score reflecting the short-term gain. Long-term
planning corresponds to h(ay): it speculates over possible future trajectories to estimate whether
subsequent steps will remain feasible under the budget. By combining these two levels, the orches-
trator effectively selects the candidate with the highest overall utility score f(a;) = g(a) + h(a),
ensuring that immediate actions are consistent with budget-aware long-term feasibility.

3.2.1 SHORT-TERM PLANNING

In short-term planning, AGENT* evaluates the immediate utility of a candidate action oy = (a¢, vy)
proposed by the policy 7. At each step t, the policy generates K candidate actions by drawing from
the distribution

Ct = {agl)a R agK)} ~ 7T(~ | Ht; ﬁeasible,t—l)y

where Treasivle,.—1 denotes the set of budget-feasible speculative trajectories carried over from the
previous step. This conditioning ensures that short-term proposals are informed by speculated
budget-feasible high-level plans rather than sampled solely from H;. As a result, the candidate
set reflects not only the current task context but also long-term budget feasibility, yielding proposals
that are both contextually grounded and more likely to lead to successful completions within budget.

To assess these candidates, we compute a self-consistency score (Wang et al., [2022)), which serves
as a proxy for their effectiveness. Formally, let ¢((a,v)) = a extract the agent or module from an
action. The short-term gain is defined as

o(o87) = e o afo(ol) = o(o)].

"Here, cumulative and future gains are interpreted as the inverse of cumulative and future costs in A*.

Under review as a conference paper at ICLR 2026

where 1[-] is the indicator function. Actions with higher self-consistency receive larger g(af)) val-
ues, indicating stronger evidence that they will contribute effectively to task progress. This mech-
anism provides a lightweight yet reliable signal for prioritizing near-term actions before long-term

feasibility is considered.

3.2.2 LONG-TERM PLANNING

While short-term planning evaluates the immediate promise of an action, long-term planning specu-
lates on its feasibility under the remaining budget. The goal is to compute a budget feasibility score

h(aii)) that captures whether choosing ail) as the next action is likely to keep future trajectories

within budget, without actually executing aii) and following actions.

Concretely, the orchestrator agent expands each candidate action into speculative trajectories, which
are abstract rollouts representing possible continuations of agents or collaboration modules. These
trajectories are generated symbolically at the module level, so no agents are invoked, keeping the

procedural lightweight. Each trajectory is associated with an estimated cumulative cost, and any that
exceed the remaining budget are filtered out. Formally, let 7}(04?)) denote the set of speculative tra-
jectories beginning with a,(f) , and let cost(7) represent the estimated cumulative cost of a trajectory
TE ﬁ(agi)). Given the remaining budget B;, we define the set of feasible trajectories as

ﬁeasible,t(agi)) ={re ﬂ(agi)) | cost(7) < B:},

so that trajectories whose costs exceed B, are filtered out. Among the feasible trajectories, we then
normalize across the K candidate actions sampled at step ¢. This defines the budget feasibility score:

|7¥easible,t (QEZ)”

Z?I“(:l |7;easible,t (af‘r)) |

h(a))) =

Intuitively, h(agi)) reflects the likelihood that an action can be extended into a successful budget-
compliant plan. Actions with higher h(ay)) values are favored, since they not only appear promising
in the short term but are also more likely to sustain progress without violating budget constraints.
This speculative lookahead ensures that immediate choices remain consistent with long-term feasi-
bility, complementing the short-term gain g(agz)) in the overall utility f (agi)) = g(agl)) + h(agl)).
Moreover, the resulting feasible speculative set Tresible,+ 1S catried forward to guide candidate gen-
eration in the next step’s short-term planning.

Finally, we select the candidate action with the highest utility score as the next action. The dual-level
planning procedure is formally presented in Alg.

3.3 SELF-PLAY REFLECTION

Dual-level planning requires estimates of the execution cost for both agents and collaboration mod-
ules in order to conduct long-term planning. Also, for the collaboration modules, we need effective
ways to structure multi-agent collaborations. To address both needs, AGENT* employs self-play re-
flection, an iterative process that builds experience by generating execution trajectories on a subset
of validation tasks and uses this experience both to compute the average cost of invoking each agent
or module and to automatically construct collaboration modules from recurring interaction patterns.

Formally, given the set of actions .A’, the system executes multiple trajectories and logs the agents
invoked, subtasks addressed, outputs produced, and costs incurred. The average execution cost is
then estimated as .

cost(a) = Eqaj,0 [cost(a,v)], a€ A,

providing the statistics required for long-term planning. While in theory the cost of invoking an
agent or module depends on both a and the specific subtask v, enumerating all possible subtasks
is infeasible. We therefore relax this assumption and approximate the cost by averaging across
observed subtasks in self-play trajectories, treating the resulting estimate as transferable across tasks.

In parallel, successful trajectories are reflected upon by an LLM to identify recurring sequences of
agent interactions that consistently contribute to successful task completion. These sequences are

Under review as a conference paper at ICLR 2026

abstracted into reusable collaboration modules, which are added to the action space A’ and refined
through further rounds of self-play. Over successive iterations, this process yields a growing library
of collaboration modules as well as reliable cost profiles for both modules and base agents.

Through self-play reflection, AGENT* unifies cost estimation and collaboration module discovery
in a single data-driven procedure, eliminating the need for manual engineering and enabling more
effective budget-optimal planning.

4 EXPERIMENTS

To evaluate the effectiveness of AGENT* in multi-agent settings, we conduct experiments on the
GAIA and BrowseComp-Plus benchmarks, comparing its performance against baselines under strict
budget constraints.

4.1 EXPERIMENT SETTINGS

Dataset. We evaluate AGENT* on two agent benchmarks: (1) GAIA (Mialon et al.| | 2023): a real-
world QA benchmark that evaluates web browsing and general tool-use ability of language models;
and (2) BrowseComp-Plus (Chen et al.,2025b): a benchmark derived from BrowseComp (Wei et al.,
2025)) that measures the ability for agents to browse the web using a fixed, curated corpus.

Agents and Collaboration Modules. For each benchmark, we first instantiate a set of task-
specialized agents. In GAIA, we utilize four agents: Search Agent, Browser Agent, Reasoning
Agent, and Media Inspector Agent. In BrowseComp-Plus, we use three agents: Retriever Agent,
Document Reader Agent, and Critic Agent.

To construct collaboration modules, we conduct five rounds of self-play reflection for each bench-
mark, with each round producing one candidate module. We utilize the first 30 questions in the
benchmark as a validation set to collect cost estimates and collaboration modules. This process
yields mainly five distinct modules for GAIA: interactive search and browse, search then browse,
ensemble search, two ensemble reasoning, and three ensemble reasoning. For BrowseComp-Plus, it
yields four unique modules: interactive search, ensemble interactive search, interactive search then
critic, and ensemble interactive search then critic, with the final round producing a duplicateEl

Models. We employ two model families: Claude (Anthropic, [2025) and Qwen3 (Yang et al.,
2025)). Within the Claude family, we use Claude-3.7-Sonnet for the orchestrator, reasoning,
critic, and media inspector agents, and Claude-3.5-Haiku for the rest. For the Qwen family,
we use Qwen3-32B for all the agents.

Budget Constraints. For the unit of cost and budget, we compute the monetary cost of each action
by multiplying its input and output token usage with the official token pricing from AWS Bedroclﬂ
We evaluate performance under four budget settings. To determine suitable constraints for each
benchmark and model, we first measure the trajectory costs from self-play reflection and take their
average as the minimum budget. Larger budgets are then defined either by fixed increments or by
exponential scaling. For Claude experiments, we allocate per-question budgets of $0.2, $0.3, $0.4,
and $0.5 across both benchmarks. For Qwen experiments, we set budgets of $0.05, $0.1, $0.2, and
$0.3 for GAIA, and $0.025, $0.05, $0.1, and $0.2 for BrowseComp-Plus.

Metrics. We report results using Acc@ B, which denotes the accuracy achieved under a budget
B. This metric reflects the proportion of questions answered correctly while ensuring that the total
token-based compute cost does not exceed B for each query. Acc@ B enables fair comparison across
different compute regimes and highlights how effectively each method converts its allotted budget
into correct answers.

2We provide the prompt for self-play reflection inand detailed descriptions of agents and collabo-

ration modules in|A . SA
We referred to https://aws.amazon.com/bedrock/pricing/. The actual token price we used is in|{Appx. §B|

Under review as a conference paper at ICLR 2026

Claude Models
Method GAIA BrowseComp-Plus
Acc@(0.2 Acc@0.3 Acc@04 Acc@0.5 Acc@0.2 Acc@0.3 Acc@04 Acc@0.5
Fixed Agent Workflow
ADAS 11.72 11.72 11.72 11.72 6.20 6.20 6.20 6.20
AFlow 12.96 12.96 12.96 12.96 542 5.42 542 542
ReAct with test-time scaling
ReAct 35.80 35.80 35.80 35.80 24.33 24.66 24.66 24.66
w/ Best-of-N 35.80 35.80 37.03 37.65 24.33 24.80 24.80 24.80
w/ Iterative Verification 35.80 36.41 38.27 37.03 24.54 25.06 25.58 24.80
ReAct with Collaboration Modules
Budget-Unaware 35.80 37.65 38.27 38.27 25.32 25.50 27.08 26.20
Budget-Aware Prompt 36.41 41.97 43.20 43.20 24.07 26.34 27.37 28.07
AGENT#* 38.89 44.44 46.91 48.15 25.53 27.50 28.07 29.00
Qwen3-32B
Method GAIA BrowseComp-Plus
Acc@0.05 Acc@0.1 Acc@0.2 Acc@0.3 Acc@0.025 Acc@0.05 Acc@0.1 Acc@0.2
Fixed Agent Workflow
ADAS 4.93 4.93 4.93 4.93 2.84 2.84 2.84 2.84
AFlow 3.70 3.70 3.70 3.70 3.35 3.35 3.35 3.35
ReAct with test-time scaling
ReAct 12.66 12.66 12.66 12.66 7.10 7.71 8.07 8.07
w/ Best-of-N 12.66 13.58 13.58 14.19 7.10 7.71 7.71 8.07
w/ Iterative Verification 12.66 14.19 16.00 16.67 8.07 14.72 15.24 16.14
ReAct with Collaboration Modules
Budget-Unaware 15.33 16.00 16.00 16.00 10.36 16.14 17.46 17.46
Budget-Aware Prompt 11.33 13.33 14.00 14.00 16.98 16.74 16.74 16.74
AGENT#* 16.00 16.67 20.00 21.33 18.07 18.92 19.42 20.72

Table 1: Evaluation Results of the baselines using Accuracy under budget (Acc@ B) on GAIA and
BrowseComp-Plus for Claude and Qwen3 model families.

Baselines. We consider the following categories of baselines. (1) Fixed Agent Workflow: Base-
lines with optimized agent workflow that are fixed during the test time. We employ the most rep-
resentative works, ADAS and AFlow (Zhang et al} 2024d). (2) ReAct with test-
time scaling: We evaluate on the standard ReAct framework (Yao et al] along with two
well-established test-time scaling methods, Best-of-N (Brown et al.,[2024) and Iterative Verification
(Madaan et al] [2023)). (3) ReAct with Collaboration Modules: We incorporate collaboration mod-
ules into the ReAct loop and evaluate two settings: Budget-Unaware, where the orchestrator
does not receive explicit budget information, and Budget-Aware Prompt, where the orchestra-
tor is given explicit budget information in the prornp[Elg

4.2 BENCHMARK RESULTS

[Table T presents the experiment results of the baselines on the GAIA and BrowseComp-Plus bench-
marks across different budget constraints.

First, fixed agent workflow baselines underperform on both GAIA and BrowseComp-Plus because
they cannot adapt agent execution dynamically during inference. These benchmarks contain ques-
tions that require highly diverse workflows, causing the optimized workflow in these methods to
collapse into a simple, generic pipeline, which makes it difficult for a single, static workflow to
address these tasks effectively. Moreover, since these approaches have no mechanism for dynami-
cally allocating compute, their performance remains largely unchanged even as the available budget
increases.

Next, ReAct performs noticeably better than fixed agent workflow baselines but exhibits limited
utilization of larger budgets. Although adding Best-of-N or Iterative Verification partially mitigates

*We provide detailed implementation details in|Appx. §C

Under review as a conference paper at ICLR 2026

=+ ReAct
0.3 —*Budget-Unaware
=- Budget-Aware Prompt

0.08

B —— AGENT* I
§ 8 o008
= 02 s
° . B
- // o 0.04
2 . 8
13 [
S 0.1 - z
< 0.02
0.2 0.3 0.4 0.5 0.05 0.10 0.20 0.30
Total Budget Total Budget

Figure 2: Average total cost vs total budget on GAIA using Claude (left) and Qwen3 (right).

this issue, these methods consume significantly more compute while yielding only minimal and
inconsistent accuracy gains, which quickly plateau as the budget increases. This suggests that simply
allocating more budget through standard test-time scaling does not guarantee improved performance.

Lastly, collaboration modules lead to clear and consistent improvements. The Budget-Unaware
variant already surpasses ReAct by a significant margin, confirming its effectiveness in using test-
time compute. Moreover, while Budget-Aware Prompt method occasionally improves accuracy
relative to non-budget-aware settings, its effect is inconsistent and in some cases plateaus at higher
budgets. AGENT* further achieves the strongest results across all budgets, outperforming both the
Budget-Unaware and Budget-Aware Prompt baselines. These gains highlight the value of dual-level
planning, which enables the orchestrator to allocate test-time compute more effectively by balancing
short-term decisions with long-horizon feasibility.

4.3 CoST UTILIZATION UNDER BUDGET CONSTRAINTS

We further examine the average total cost incurred when running the GAIA benchmark under dif-
ferent budget constraints, as reported in Across all three baselines, the available budget
is consistently underutilized, with the total cost plateauing well below the specified constraint. In
contrast, AGENT* achieves substantially higher cost utilization, which transfers into a performance
enhancement. This finding highlights a fundamental challenge in multi-agent systems: even when
sufficient budget is available, baseline strategies struggle to convert it into effective computation that
drives performance gains. By leveraging dual-level planning, AGENT* allocates resources more
aggressively when necessary, ensuring that budget headroom is effectively translated into higher
performance.

4.4 IMPACT OF SHORT-TERM AND LONG-TERM PLANNING

To assess the contribution of each planning com-

ponent in AGENT*, we evaluate them by isolating

each component under $0.2 and $0.5 budgets using Method Acc@0.2 Acc@0.5
Claude models on GAIA benchmark. The results Only Short-term 36.41 44.44
are shown in Short-term planning alone Only Long-term 37.65 46.91
provides a meaningful boost over vanilla ReAct, as Dual-level (Both) 38.89 48.15

it guides the orchestrator toward more informed lo-
cal decisions and encourages the use of valuable Table 2: Evaluation results of short-term and
collaboration modules. Long-term planning alone long-term planning on GAIA under $0.2 and
performs slightly better, particularly at higher bud- $0.5 budget.

gets, since it enables the model to anticipate down-

stream computation and avoid prematurely committing to suboptimal trajectories. When combined,
these complementary behaviors yield the strongest performance, underscoring the value of integrat-
ing both local and global planning signals for budget-optimal multi-agent coordination.

Under review as a conference paper at ICLR 2026

5 RELATED WORKS

5.1 TEST-TIME SCALING FOR LLMs

Existing approaches to increasing test-time compute for LLMs can be broadly categorized into two
paradigms (Muennighoff et al. [2025)), including parallel scaling and sequential scaling. Parallel
scaling methods, such as best-of-N sampling (Brown et al} 2024} [Snell et al.| [2024), generate mul-
tiple candidate solutions in parallel and select the best one using voting, confidence heuristics, or

reward models (Wang et al.}[2022} [Irvine et al.}[2023). In contrast, sequential scaling encourages iter-
ative refinement via methods such as chain-of-thought prompting (Wei et al., [2022), self-refinement

(Madaan et al.| 2023}, [Chen et al.} 2023} Min et al.| 2024} [Lee et al., [2025), and verifier-guided re-
vision (Gou et al., 2023} [Zhang et al., 2024d). While these methods offer promising directions for
test-time scaling, they do not consider optimization under a strict compute budget. Recent works
have explored budget-constrained settings (MuennighofT et al} 2025}, [Han et al} 2025}, [Zheng et al]
2024} [Qiu et al} 2023)), but they either focus on single LLM setting or target system-level efficiency
rather than scaling test-time computation to improve the performance. In contrast, our work focuses
on budget-optimal compute allocation in a multi-agent setting, which is not addressed by these prior
approaches

5.2 DESIGNING AND OPTIMIZING MULTI-AGENT SYSTEM

Multi-agent systems (MAS) have recently gained traction as a way to structure complex tasks
through the collaboration of specialized LLM-based agents. Early systems such as CAMEL
2023)), AutoGen (Wu et all, 2024), and MetaGPT (Hong et al.} 2023) demonstrated the value

of explicit role assignment and agent interaction, but relied heavily on manual configurations, in-
cluding prompt engineering, agent profiling, and fixed communication protocols 2024).
These limitations hinder their adaptability across domains and tasks. In response, recent work has
focused on automating various components of MAS design. Some methods treat agent functions
as learnable policies (Zhang et all, or synthesize trajectories for offline agent optimiza-
tion (Qiao et al, 2024). Others expand the MAS search space to include prompts (Khattab et al.

2023)), tools (Zhou et all,2024), workflows (Li et al.||2024)), and reasoning strategies (Shang et al.
2024). DyLAN (Liu et al.l [2024) supports dynamic agent composition, while Archon (Saad-Falcon

et al.||2024) treats MAS construction as a hyperparameter optimization problem. GPTSwarm (Zhuge
et al.,2024)) optimizes agent communication using policy gradients, and state-of-the-art systems like
ADAS (Hu et al.,[2024) and AFlow (Zhang et al.| [2024a)) perform full workflow optimization using
search algorithms or LLM controllers.

More recently, several methods generate workflows on a per-query basis. MaAS
Sa)) learns distributions over architectures to trade off performance and cost; FlowReasoner (Gao|
et al.| 2025)), ScoreFlow (Wang et al 2023)), and Flow synthesize or refine work-
flows using execution feedback, DPO training, or graph-based reasoning. However, these systems
aim to produce a single optimized configuration per task and do not support dynamic, inference-time
planning under compute budgets, nor do they introduce reusable collaboration abstractions that en-
able adaptive, budget-efficient multi-agent coordination without retraining or static system design.

6 CONCLUSION

We presented AGENT#*, a general framework for budget-constrained optimization of test-time com-
pute in multi-agent systems. AGENT* leverages collaboration modules as reusable abstractions of
multi-agent coordination and employs a dual-level planning architecture that balances short-horizon
execution with long-horizon speculation. Extensive experiments demonstrate that AGENT* consis-
tently outperforms both standard baselines and those augmented with test-time scaling, achieving
higher accuracy while utilizing resources more efficiently. These findings underscore the impor-
tance of structured collaboration and forward-looking planning for budget-constrained inference,
and point toward a promising direction for building more adaptable and compute-efficient multi-
agent systems.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude code: Deep coding at terminal velocity. Anthropic Blog / Product Page, Septem-
ber 2024. URL: https://www.anthropic.com/claude—code.

Anthropic. Claude: Product overview. https://www.anthropic.com/product/
overview, 2025. Accessed: YYYY-MM-DD.

Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John
Langford, Besmira Nushi, Vibhav Vineet, Yue Wu, et al. Inference-time scaling for complex
tasks: Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, Jinsung Yoon, and Sercan O
Arik. Sets: Leveraging self-verification and self-correction for improved test-time scaling. arXiv
preprint arXiv:2501.19306, 2025a.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, et al. Browsecomp-plus: A more fair and transparent
evaluation benchmark of deep-research agent. arXiv preprint arXiv:2508.06600, 2025b.

Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min
Lin, and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents. arXiv preprint
arXiv:2504.15257, 2025.

Google. Gemini deep research. Gemini Overview, February 2025. URL: https://gemini.
google/overview/deep—research/.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Jeremy Hadfield, Barry Zhang, Kenneth Lien, Florian Scholz, Jeremy Fox, and Daniel Ford. How we
built our multi-agent research system. https://www.anthropic.com/engineering/
multi-agent-research-system, June 2025. Blog post, Engineering at Anthropic.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqging Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. In Findings of the Association for Computational Linguistics: ACL
2025, pp. 2484224855, 2025.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107,
1968.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2023.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118-9147. PMLR, 2022.

Robert Irvine, Douglas Boubert, Vyas Raina, Adian Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei
Korshuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, et al. Rewarding chatbots for real-world
engagement with millions of users. arXiv preprint arXiv:2303.06135, 2023.

10

https://www.anthropic.com/claude-code
https://www.anthropic.com/product/overview
https://www.anthropic.com/product/overview
https://gemini.google/overview/deep-research/
https://gemini.google/overview/deep-research/
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system

Under review as a conference paper at ICLR 2026

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy:
Compiling declarative language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
and Xinyun Chen. Evolving deeper 1lm thinking. arXiv preprint arXiv:2501.09891, 2025.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. Autoflow: Automated workflow generation for large language model agents.
arXiv preprint arXiv:2407.12821, 2024.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration. In First Conference on Language Modeling, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun Peng, and Kai-Wei Chang. Llm-a*: Large
language model enhanced incremental heuristic search on path planning. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2024, pp. 1087-1102, 2024.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Yingqgian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, and Tongliang Liu. Flow:
Modularized agentic workflow automation. arXiv preprint arXiv:2501.07834, 2025.

OpenAl. Codex. OpenAl Product Page, 2024. URL: https://openai.com/codex/.

OpenAl. Introducing deep research. OpenAl Blog, February 2 2025. URL: https://openai.
com/index/introducing-deep-research/.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
Weize Chen, Cheng Yang, et al. Scaling large language model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Jiang,
Chengfei Lv, and Huajun Chen. AutoAct: Automatic agent learning from scratch for QA via
self-planning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp- 3003-3021, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.165. URL https://aclanthology.org/2024.
acl-long.165/.

11

https://openai.com/codex/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://aclanthology.org/2024.acl-long.165/
https://aclanthology.org/2024.acl-long.165/

Under review as a conference paper at ICLR 2026

Rennai Qiu, Chen Qian, Ran Li, Yufan Dang, Weize Chen, Cheng Yang, Yingli Zhang, Ye Tian, Xu-
antang Xiong, Lei Han, et al. Co-saving: Resource aware multi-agent collaboration for software
development. arXiv preprint arXiv:2505.21898, 2025.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, et al. Archon: An architecture
search framework for inference-time techniques. arXiv preprint arXiv:2409.15254, 2024.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
Ilm agent search in modular design space. arXiv preprint arXiv:2410.06153, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. Scoreflow: Mastering
llm agent workflows via score-based preference optimization. arXiv preprint arXiv:2502.04306,
2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen 1lm applications via multi-
agent conversations. In First Conference on Language Modeling, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore:
Language models for action generation in text-based games. arXiv preprint arXiv:2010.02903,
2020.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025a.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen

Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024a.

12

Under review as a conference paper at ICLR 2026

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
models: What, how, where, and how well? arXiv preprint arXiv:2503.24235, 2025b.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning, 2024b.

Wengqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and
optimization. arXiv preprint arXiv:2402.17574, 2024c.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jaekyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct rea-
soning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associ-
ation for Computational Linguistics: ACL 2024, pp. 15637-15653, Bangkok, Thailand, August
2024d. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.924. URL
https://aclanthology.org/2024.findings—acl.924/.

Yuanhang Zheng, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. Budget-constrained tool
learning with planning. arXiv preprint arXiv:2402.15960, 2024.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

A SUPPLEMENTARY DETAILS ON AGENTS AND COLLABORATION MODULES

For the GAIA benchmark, we employ the following agents:

» Search Agent: Given a search query, outputs the google search results

* Browser Agent. Given one or more URLs, visits the pages and returns the content of webpages.

* Reasoning Agent: Given a problem, performs multi-step reasoning and outputs a final solution.

* Media Inspector Agent: Given an image or video link and a question, analyzes the media and
answers the question.

In addition, we define the following collaboration modules:

* interactive_search_and browse: A search agent and a browser agent share context and
invoke each other interactively.

* search_then browse: First searches for URLSs, then browses the retrieved pages for detailed
content.

* ensemble_search: Generates three distinct queries, spawns three search agents in parallel,
and aggregates their results.

* two_ensemble_reasoning: Two reasoning agents independently produce reasoning paths,
which are aggregated into a final answer.

* three_ensemble_reasoning: Three reasoning agents independently produce reasoning
paths, which are aggregated into a final answer.

For the BrowseComp-Plus benchmark, we employ the following agents:

* Retriever Agent: Given a search query, retrieves the top-5 documents by semantic similarity and
returns (doc_id, title, snippet) foreach.

13

https://aclanthology.org/2024.findings-acl.924/

Under review as a conference paper at ICLR 2026

* Document Reader Agent: Given a doc_id, fetches and returns the full document content.

* Critic Agent: Given the current task state and available information, identifies missing information
and recommends what to search for next.

We define the following collaboration modules:

* interactive_search: A search agent and a document reader agent share context and invoke
each other interactively.

* ensemble_interactive_search: Spawns three interactive_search modules in par-
allel and aggregates their results.

e interactive_search_then_critic: First calls the interactive_search module,
then the critic agent evaluates the gathered information.

* ensemble_interactive_search_then_critic: Spawns three
interactive_search_then_critic modules in parallel and aggregates their results.

B TOKEN PRICING FOR COST COMPUTATION

We compute the monetary cost of each action by multiplying its input and output token usage with
the official token pricing provided by AWS Bedrock. lists the exact token prices used
for all models in our experiments. These values correspond to the pricing available at the time of
experimentation.

Model Name Input Price ($/1K tok) Output Price ($/1K tok)
claude-3-5-haiku-latest $0.0008 $0.004
claude-3-7-sonnet-latest $0.003 $0.015
gwen3-32b $0.0007 $0.0028

Table 3: Token prices used for calculating costs and budgets.

C IMPLEMENTATION DETAILS

Here, we provide detailed implementation details for the baselines. For the best-of-N baseline, we
set N = 3, but if the budget is exhausted before completing all three attempts, we use the available
attempts and apply self-consistency on the answers from the attempts to produce the final answer.
For the iterative verification baseline, once an initial answer is generated, any remaining budget is
used to prompt the orchestrator to re-examine the trajectory and refine the solution until the budget
is fully consumed.

D MAIN EXPERIMENT SCORES

We have additionally included the specific performance scores presented in §4.2] in and
[1able Sl

E DUAL-LEVEL PLANNING ALGORITHM

We provide algorithm for dual-level planning in Alg. [T}

14

Under review as a conference paper at ICLR 2026

You are given a set of successful execution trajectories produced by
a multi-agent system.

Each trajectory contains the sequence of agents invoked with a
subtask, and their intermediate outputs

Your goal is to analyze these trajectories to identify a recurring
agent interactions that frequently appear in successful
trajectories.

Such patterns may include:

- Sequential workflows

— Parallel workflows

— Verification or Refinement

For each recurring pattern you identify:

1. Describe the workflow in plain language.

2. Specify the agents involved and their roles.

3. Implement a class that executes this workflow using these agents

4. Explain why this pattern is effective, referring to the trajectory
evidence.

Here are some examples of the extracted pattern:
{few_shot_demonstrations}

Here are the patterns that are already observed. Avoid outputting
duplicated patterns.
{collected_collaboration_modules}

Figure 3: Prompt used for self-play reflection to induce collaboration modules from successful
trajectories.

M GAIA BrowseComp-Plus
ethod
Budget ($) Accuracy (%) Budget ($) Accuracy (%)

No Module, No Budget Aware 35.80 24.33
With Module, No Budget Aware 02 35.80 02 25.32
With Module, Budget-Aware ’ 36.41 ' 24.07
AGENT* 38.89 25.53
No Module, No Budget Aware 35.80 24.66
With Module, No Budget Aware 03 37.65 03 25.50
With Module, Budget-Aware ’ 41.97) 26.34
AGENT#* 44.44 27.50
No Module, No Budget Aware 35.80 24.66
With Module, No Budget Aware 04 38.27 04 27.08
With Module, Budget-Aware ’ 43.20 ’ 27.37
AGENT* 46.91 28.07
No Module, No Budget Aware 35.80 24.66
With Module, No Budget Aware 05 38.27 0.5 26.2
With Module, Budget-Aware ’ 43.20) 28.07
AGENT#* 48.15 29.00

Table 4: Performance of different methods across different budget on GAIA and BrowseComp-Plus
using Claude model family.

15

Under review as a conference paper at ICLR 2026

M GAIA BrowseComp-Plus
ethod
Budget ($) Accuracy (%) Budget ($) Accuracy (%)

No Module, No Budget Aware 12.66 7.10
With Module, No Budget Aware 0.05 15.33 0.025 10.36
With Module, Budget-Aware ’ 11.33 ’ 16.98
AGENT#* 16.00 18.07
No Module, No Budget Aware 12.66 7.71
With Module, No Budget Aware 01 16.0 0.05 16.14
With Module, Budget-Aware ’ 13.33 ’ 16.74
AGENT* 16.67 18.92
No Module, No Budget Aware 12.66 8.07
With Module, No Budget Aware 02 16.0 0.1 17.46
With Module, Budget-Aware ’ 14.00) 16.74
AGENT¥* 20.00 19.42
No Module, No Budget Aware 12.66 8.07
With Module, No Budget Aware 03 16.0 02 17.46
With Module, Budget-Aware ’ 14.00 ’ 16.74
AGENT* 21.33 20.72

Table 5: Performance of different methods across different budget on GAIA and BrowseComp-Plus
using Qwen3 model family.

16

Under review as a conference paper at ICLR 2026

Algorithm 1: Dual-Level Planning

Input: Policy 7, set of agents/modules A’, initial history H, total budget B, max steps Tiax
Output: Final output and execution trace

16+ 0

2 Ht < Ho;

3 By + B;

4 Jfeasible,0 < 0;

s while ¢t < T}, and B, > 0 and not SOLVED(H;) do

6 Sample candidate actions

Ct = {Oégl)a) agK)} ~ 7T(' | Hta %easible,tfl)

// Let ¢((a,v)) =a extract the agent/module from an action
7 fori=1to K do

9 for: =1to K do
(1)

10 Generate speculative trajectories 7;(049) beginning with «; ’;
1 Define feasible set:

Treasvie (01)) = {7 € Ty(af") | cost(r) < B}
‘ﬁeasible,t (agl))‘

n(af?) = i
r=1

12 Compute f(agi’)) = g(agi)) + h(agi)) fori=1,...,K;

ﬂeasible,t (Oégr)) ’

*
ap = argmax f(a)

14 Execute o = (a},vy) to obtain output o4;
15 Update state: Hyy1 < H, U {(vf,00)}s

16 Update budget: B;11 < B — cost(ay);
17 t+—t+1;

s return Final output derived from H;

—

17

Under review as a conference paper at ICLR 2026

Method Budget ($) Total Cost ($) Accuracy (%)
With Modules
+ No Budget Aware 0.1156 35.80
+ Budget-Aware Prompting 0.2 0.1246 36.41
+ Best-of-/NV Sampling ’ 0.1698 35.80
+ Iterative Verification 0.1928 36.41
AGENT* 0.1660 38.89
With Modules
+ No Budget Aware 0.1409 37.65
+ Budget-Aware Prompting 03 0.1592 41.97
+ Best-of-N Sampling ’ 0.2583 37.65
+ Iterative Verification 0.2903 42.59
AGENT* 0.2233 44.44
With Modules
+ No Budget Aware 0.1507 38.27
+ Budget-Aware Prompting 0.4 0.1727 43.20
+ Best-of-N Sampling ’ 0.3464 43.20
+ Iterative Verification 0.3885 43.20
AGENT* 0.2771 46.91
With Modules
+ No Budget Aware 0.1587 38.27
+ Budget-Aware Prompting 05 0.1771 43.20
+ Best-of-N Sampling ’ 0.3825 44.44
+ Iterative Verification 0.4803 43.20
AGENT* 0.3090 48.15

Table 6: Performance comparison among different test-time scaling methods under budget con-
straints on GAIA with Claude.

18

	Introduction
	Orchestrator–Worker Framework Under Budget Constraints
	Agent*
	Collaboration Modules
	Dual-Level Planning Architecture
	Short-Term Planning
	Long-Term Planning

	Self-Play Reflection

	Experiments
	Experiment Settings
	Benchmark Results
	Cost Utilization under Budget Constraints
	Impact of Short-term and Long-term Planning

	Related Works
	Test-Time Scaling for LLMs
	Designing and Optimizing Multi-Agent System

	Conclusion
	Supplementary Details on Agents and Collaboration Modules
	Token Pricing for Cost Computation
	Implementation Details
	Main Experiment Scores
	Dual-Level Planning Algorithm

