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Abstract

Approaches to predicting neuronal spike re-
sponses commonly use a Poisson learning objec-
tive. This objective quantizes responses into spike
counts within a fixed summation interval, typi-
cally on the order of 10 to 100 milliseconds in du-
ration; however, neuronal responses are often time
accurate down to a few milliseconds, and Poisson
models struggle to precisely model them at these
timescales. We propose the concept of a spike
distance function that maps points in time to the
temporal distance to the nearest spike. We show
that neural networks can be trained to approxi-
mate spike distance functions, and we present an
efficient algorithm for inferring spike trains from
the outputs of these models. Using recordings of
chicken and frog retinal ganglion cells responding
to visual stimuli, we compare the performance of
our approach to that of Poisson models trained
with various summation intervals. We show that
our approach outperforms the use of Poisson mod-
els at spike train inference.

1. Introduction

This paper proposes a new learning objective for the prob-
lem of spike prediction. Spike prediction is the task of
estimating the timing of future action potentials (spikes) of
a neuron; for example, given 1000 ms of stimulus and spike
activity, predict the next 80 ms of spike activity. The task is
illustrated in Figure 1.

The design of retinal prosthetics is an example where pre-
dicting spike sequences is important: patients suffering from
diseases such as retinitis pigmentosa can have their vision
partially restored through electrical or optogenetic stimu-
lation that attempts to reproduce the spike sequences of
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Figure 1. Spike prediction task: predict future spikes given stimu-
lus and spike history. For this work, stimulus history is a 1-second
snippet of a widefield stimulus at four wavebands (420 nm, 480 nm,
505 nm and 630 nm). The prediction duration is not fixed—several
durations are explored. Information about the stimulus after ¢ = 0
is not available to the model, matching the task faced by retinal
prosthetic devices.

retinal ganglion cells (RGCs) in a healthy retina (Borda and
Ghezzi, 2022; Sahel et al., 2021).

A widely used approach to spike prediction is to train a
model to predict the number of spikes that will occur within
a fixed time interval. A probabilistic motivation is often
given by describing the neuron’s output as a Poisson pro-
cess. In this setting, the model’s output is interpreted as a
firing rate and corresponds to the single parameter of the
Poisson process at a certain point in time. Training the
model amounts to maximizing the likelihood of this time-
varying parameter with respect to the data.

For the Poisson approach, the interval length over which
spikes are summed is a hyperparameter that impacts the
training and inference of a model. As will be described
in Section 3, the desire to reach millisecond resolution en-
courages shorter summation intervals; however, as the sum-
mation interval is reduced, training becomes more difficult,
and both the effects of binning and the shape of the Poisson
distribution can limit performance.

In this work, we propose a summation-free approach. Rather
than reduce a chunk of a spike train to a single number, we
choose a representation that preserves its details. Inspired
by the idea of a signed distance function used in geometric
modelling, we propose the idea of a spike distance function
that maps points in time to the temporal distance to the
nearest spike. We train neural networks to output this repre-
sentation and use it to predict spike trains. A demonstration
of the spike distance approach (still imprecisely defined for
now) compared to the Poisson approach is shown in Figure
2. The process of predicting spikes is shown in Figure 3.
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Figure 2. Spike prediction using spike distance. The output of a spike distance model (depicted by the blue line) can be used to precisely
predict individual spikes. Section 5.1 describes the algorithm used for inferring spikes from a spike distance array. The Poisson models
have their outputs rounded and that number of spikes are tiled over the interval. With this inference strategy, a fixed summation interval
introduces a trade-off: longer intervals prevent precise spike localization, while shorter intervals cause predictions to tend towards O for all
time steps. Section 5.2 and 5.3 describe other approaches for inferring spikes from outputs of Poisson models.

We inspect the effectiveness of this new approach by com-
paring a neural network trained using the spike distance
objective with neural networks trained using a range of Pois-
son objectives, each using a different summation interval.
Comparison is based on models’ ability to infer spike trains:
we predict spike trains from model outputs and compare
these against ground truth spike trains using spike train
similarity measures.

Our spike prediction dataset is formed from a multi-
electrode array (MEA) recording of 60 chicken RGCs re-
sponding to visual stimuli. We repeat the experiments for
113 frog RGCs from a separate recording.

In the next section, we present related work. We come back
to set the scene more concretely by elucidating the draw-
backs of the Poisson approach in Section 3 and describing
the spike distance function in Section 4. How to infer spike
trains from model outputs is covered in Section 5. The ex-
periments are described in Section 6 with results appearing
in Section 7, and a discussion follows in Section 8.

2. Related Work

For the task of spike prediction, the effectiveness despite
simplicity of generalized linear models (GLMs) makes them
important models to study. Using GLMs to model neurons
is covered by Weber and Pillow (2017). GLMs are fur-
ther relevant because their success has contributed to the
popularity of the Poisson learning objective.

GLMs are effectively single-layer neural networks, and so
the neural network approaches that follow can be thought of
as trading the simplicity of GLMs with the increased power

of deeper neural networks. MclIntosh et al. (2016) used
convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs) to predict spiking behaviour of tiger
salamander RGCs. In parallel, Batty et al. (2016) carried
out similar work using RNNs to predict spiking behaviour
of macaque RGCs. Gogliettino et al. (2024) used CNNs
to predict responses of human RGCs. These three studies
recorded the cells using MEAs. Cadena et al. (2019) com-
pared CNNs trained from scratch with a fine-tuned vision
model at predicting spiking behaviour of macaque V1 neu-
rons. This study recorded cells using penetrative probes.
In all of these studies, models have a single output which
is interpreted as a parameter of a probability distribution
modelling the spike count in an interval.

At a finer scale, spike rates are no longer a suitable ab-
straction, and spike prediction becomes an example of the
general problem of locating points in 1 or more dimensions
or locating surfaces in 2 or more dimensions and so on, of
which there are other applications. Earthquake prediction
faces such a problem where the task is framed as predicting
the “time to failure”. Computer vision and graphics have an
analogous concept—a signed distance function—which is
effectively a “distance to surface” and is used for implicitly
modelling 2D surfaces in 3D space. It is from these contexts
that we draw inspiration to propose “distance to spike” as
an effective tool for spike prediction.

For earthquake prediction, Rouet-Leduc et al. (2017) and
(Wang et al., 2022) applied machine learning to predict time-
to-failure for a laboratory fault system. See the review by
(Ren et al., 2020) for broad coverage. Interestingly, these
approaches stop at predicting time-to-failure signals and do
not take the next step of inferring precise rupture times from
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Figure 3. Overview of spike prediction for both the spike distance approach and the Poisson approach. To make the two comparable,
the networks used by each approach were designed with the preponderance of weights and computation carried out using the same
twelve-layer base architecture. ConvNext refers to the layers introduced by Liu et al. (2022). Algorithm 1 is described in Section 5.1.

these signals. The inference procedure described in Section
5 will work with these signals also.

In computer vision, the notion of a signed distance function
is used to implicitly define surfaces. Our work to predict
spike distance is analogous to the work by Zeng et al. (2017)
and Dai et al. (2017) who used neural networks to represent
3D shapes using a grid of truncated signed distance values.
Later work in this area has tackled the scaling issues with
3D data, such as the work by Park et al. (2019), where
neural networks were given the additional job of querying
the 3D representation. The directional queries of the 3D
representation are conceptually similar to spike-stimulus
history input that we will use to request output behaviour
from our neural network model. Although not considered in
this work, the creative forms of querying 3D representations,
such as Sitzmann et al.’s (2021) use of Pliicker coordinates,
raise the question: are there other useful ways to query
neural network representations for neuronal behaviour?

Instead of predicting spikes in an interval, an alternative is to
predict the time until the next spike. The area of neural tem-
poral point processes tackles this problem for arbitrary event
sequences by outputting a probability distribution over the
next event time, given an event history. Two reviews of this
area are Shchur et al. (2021) and Bosser and Taieb (2023).
A drawback of this approach is that inference requires a
forward pass through the neural network after each spike,
which becomes impractical for applications such as retinal
prosthetics, as spikes of a single cell can be separated by a
few milliseconds, and across cells, spikes can be recorded
as coincident. Additionally, the stimulus stream strongly af-
fects responses and quickly invalidates any prediction made
beyond a short future interval, making next-spike prediction
less suitable in this setting.

Outside the context of neural networks, other works have
investigated non-Poisson approaches to modelling spike
emission. For example, both the work of Teh and Rao
(2011) and Liu and Lengyel (2023) model spike emission
with renewal processes modulated by Gaussian processes.
These works support the idea that in the context of neural
networks for spike prediction, alternatives to the incumbent
Poisson approach are worth exploring.

3. Issues With the Poisson Approach

The summation interval used in the Poisson approach to
spike prediction leads to a trade-off between temporal reso-
lution and effective training and inference.

The goal of having predictions with high temporal resolu-
tion encourages the choice of a shorter summation interval.
Recordings of chicken RGCs show bursts of spikes with
spike intervals as short as 1-2 ms (Seifert et al., 2023); and
primate, salamander, cat and rabbit RGCs have been shown
to have stimulus-driven variability across trials as low as
1 ms (Uzzell and Chichilnisky, 2004; Berry and Meister,
1998; Keat et al., 2001; Berry et al., 1997). Neurons from
other brain regions also demonstrate this precision, such as
neurons in the lateral geniculate nucleus of cats (Butts et al.,
2011; Keat et al., 2001). Furthermore, there is evidence that
this precision is linked to function: retinal ganglion cells
have been shown to vary their response time to stimuli on
the order of milliseconds depending on the spatial structure
of stimuli (Gollisch and Meister, 2008) and the wavelength
of stimuli (Seifert et al., 2023).

This suggests that summation intervals as short as 1 ms in
duration would be useful. However, decreasing the sum-
mation interval can cause several issues. Training slows
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Figure 4. The probability mass function of the Poisson distribution for six values of the distribution’s parameter, A. The probability
assigned to 1 is labelled. For a single non-zero value such as 1, no A allows a concentration of probability at that value. The distribution is
unsuitable as part of a learning objective where a model is expected to express strong confidence in any single non-zero value.

and becomes more difficult as data becomes spread over an
increased number of samples, most of which are empty of
spikes. If carrying out inference by maximizing probabil-
ity, zero spikes can become the most compatible prediction
for all time steps, as short summation intervals can lead
to model outputs being consistently close to zero. These
issues are ameliorated with longer intervals, but at the cost
of temporal resolution.

With a long interval of say 80 ms, 80 ms of neural activity
will be compressed into a single scalar value—a quick burst
of spikes a few milliseconds apart will be indistinguishable
from the same number of spikes spread over the entire inter-
val. At training time, this results in a loss signal that has no
sensitivity to how spikes fall within the interval but is overly
sensitive to subtle movements of spikes crossing the interval
boundary. At inference time, a model’s scalar output does
not indicate the positions where spikes might occur, despite
it being plausible that a capable model would estimate this
information in some form before arriving at a spike rate.

The above issues will affect any setup where training and
inference works with isolated bins of spike counts. Using
a Poisson distribution has an additional issue in that its
shape is restrictive. The distribution’s single parameter is
simultaneously the mean and variance of the distribution,
which does not allow a model to express strong confidence
in any specific non-zero spike count. For example, the
largest probability assignable to the occurrence of 1 spike
is 36.8%, which occurs when the Poisson’s A parameter
is set to 1.0; however, at this A, 36.8% is also assigned
to the occurrence of O spikes. Figure 4 demonstrates this
situation by displaying the Poisson distribution for a range
of X\ values between 0.8 and 1.8. This becomes an issue
at low summation intervals as the preponderance of spike
counts will be 0 or 1.

The exponential distribution is the inter-event interval equiv-
alent of the Poisson distribution. When modelling inter-
event intervals, it is common to deviate from the exponen-
tial distribution, for example by using self-exciting Hawkes
processes (Hawkes, 1971). This supports the idea that it
is reasonable to seek flexibility beyond what the Poisson
distribution offers.

With spike prediction in mind, it would be desirable to have
a loss function that changes proportionately to changes in
spike position and to have an output representation that facil-
itates spike position inference. Furthermore, a model should
not be hindered from expressing strong confidence in spe-
cific spike patterns. The spike distance function described
next can be used to create a learning objective with these
properties.

4. Spike Distance

A Spike distance function maps each point in time to a scalar
representing the temporal distance to the nearest spike. This
is either the time elapsed since the last spike or the time
remaining until the next spike, whichever is less. This is
an implicit representation of a set of spikes using contours.
A comprehensive treatment of using implicit functions to
represent points and surfaces is Osher and Fedkiw (2003).

Formally, let S € RY be a set of N spike times. Let
I = [a, b] be an interval of R. The spike distance function
of S on [ is the function fg : I — R defined as:

t) = min |t —
fs(t) gggl 8|

Any interval can support a spike distance function, and this
spike distance function can depend on spikes both inside and
outside the interval. An example spike distance function
evaluated over the interval [0 ms, 128 ms] for the spikes
[20 ms, 60 ms, 65 ms, 86 ms] is shown in Figure 5.
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Figure 5. The spike distance function in milliseconds over the in-
terval [0, 128] for the spikes [20, 60, 65, 86].
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From the example, it can be seen that subtle or large changes
to a spike train will be reflected proportionately in the spike
distance function, which was the characteristic lacking in
the Poisson loss signal.

In practice, we will work with discrete arrays and use a dis-
crete spike distance function, fs : N — R, where S is now
an array of spike counts. We assume that the sample rate is
fast enough that no two spikes are recorded in the same bin,
and so S can be treated as a binary array. Appendix A.14
covers the discrete spike distance in more detail, includ-
ing generalizing it to allow multiple spikes to be recorded
in a single sample. Two other considerations—the choice
of a maximum distance and the choice of the evaluation
interval—are discussed in Appendix A.13.

5. Spike Train Inference

For the spike prediction task, we will infer a spike train
from a model’s outputs. For both the spike distance model
and the Poisson models this will be done autoregressively:
concatenating model outputs and using previously predicted
spikes as input to subsequent forward passes. The two
approaches differ in how they carry out a single step—each
is covered below.

5.1. Spikes From a Spike Distance Array

We describe spike inference from a spike distance array
from the perspective of energy minimization. An array of
spike distance values outputted by a model can be seen as
parameterizing some function that assigns a scalar energy
value to any set of spikes. Various functions are possi-
ble. We use the L2 norm between the model output and
the discrete spike distance function of a candidate spike
sequence. Let the model output M = (m;)-" be a se-
quence of reals of length L, and let the binary sequence
S = (s;)L=;' be a candidate spike count sequence of the
same length. For example, with L = 5, the model output
could be M = [1.1,0.5,0.9,1.1,0.6] and a candidate spike
sequence count be S = [0,1,0,0, 1]. The energy assigned
to S is given by:

B (I = sum(ELI0 - ) )
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Figure 6. Visual form of Equation 1. The discrete spike distance,
fs, is described further in Appendix A.14.

The energy is a measure of incompatibility between the can-

didate spikes and the model output (here we are following
the convention that low energy values correspond to greater
compatibility). Spike train inference amounts to finding the
spike train with the lowest energy.

This optimization problem can be solved exactly by brute-
force search. Dynamic programming can also be used, as
the problem can be decomposed into left and right sub-
problems. Both of these approaches were found to be too
slow in practice. We propose an inexact solution, Algorithm
1, that begins by predicting a spike in every time step then
iteratively refines the prediction by removing spikes.

Algorithm 1 Spike inference algorithm: predict a spike
in every time step then iteratively remove spikes—remove
if the L2 norm between the candidate and target distance
arrays is lower when the spike is not present. Iterate spikes
in order of the estimated effect on the error. The function
SPIKEDIST converts a set of spikes into an array of spike
distances (see Appendix A.14 for details).

Require: w is the target spike distance (model output) of
length L and s is the most recent “past” spike.

1: function SPIKEINFERENCE(w, Sg)

2: S« indicesof w (i.e. [0,1,...,L —1])

3 scores < w

4 repeat

5: Soig S

6 for all s € S sorted descending by scores[s] do
7 err < L2NORM (w, SPIKEDIST(S, s¢)

8 S’ < S with s removed

9: err’ < L2NORM(w, SPIKEDIST(S’, s¢) )
10: 0 < err —err’
11: scores[s] < 0
12: if 6 > 0 then
13: S+ 5
14: end if
15: end for

16: until S = S,y
17:  return S
18: end function

In terms of time complexity, applying this algorithm au-
toregressively to infer a spike train L bins long, broken into
N steps of [ bins uses ~ N2 log! compares in the worst
case—this corresponds to an [ log ! cost of sorting that may
be repeated [ times each inference step, of which there are
N. Except in pathological cases, the outer loop of SPIKEIN-
FERENCE requires very few iterations—for the combined 90
minutes of spike train inference carried out on the chicken
test set, no inference step required more than two iterations.
Thus, with comparisons as a cost model, the algorithm’s av-
erage cost is ~ Nllogl: growing linearly with the number
of inference steps (/V) and linearithmic with the resolution
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(1) of a single inference step. Figure 18 in Appendix A.12
shows inference running times on the authors’ hardware.
The algorithm uses additional memory that grows linearly
with [.

5.2. Spike Counts From a Poisson Distribution

A Poisson distribution has a single parameter A. A model
trained with a Poisson learning objective outputs a single
scalar value, y, which is used to parameterize a Poisson
distribution by setting A\ = y. From such a parameterized
Poisson distribution, we consider three ways to infer spike
counts: maximizing probability, sampling, and approximat-
ing the mean.

Maximizing probability involves selecting the spike count
with maximum probability under the Poisson distribution
with parameter A = y. By nature of the Poisson distribution,
this value—the mode of the distribution—is |y]|.

Sampling a spike count from the Poisson distribution with
parameter A = y is another approach to inferring a spike
count. Instead of selecting the most likely spike count, the
distribution is sampled to produce a random spike count.

Approximating the mean is an alternative whereby the
model’s output is rounded to produce a spike count predic-
tion. This approach is a less principled approach; however,
empirically, it outperforms sampling or using the mode. In-
deed, the overall best-scoring spike trains using Poisson
models were produced with this approach at a summation
interval of 80 ms. It is hypothesized but not tested that the
reason for the rounded mean being more effective than the
mode is that the mean is always larger and so will take the
value zero less often in the case where the Poisson distribu-
tion skews towards zero.

The main results are reported using both sampling and the
rounded mean strategy. Inference by maximizing probability
(using the mode) performs significantly worse than using
the rounded mean and is reported in Appendix A.2.

5.3. Spikes From a Spike Count

The Poisson distribution gives no information other than
the spike rate, so a reasonable strategy for spike placement
must be chosen. In this work, given an inferred spike count
n, we tile n spikes uniformly over the interval. In exper-
iments not reported here, stochastic spike placement was
also tested—by sampling n times from a uniform distribu-
tion; however, this approach performed notably worse than
uniform tiling.

6. Experiment Settings

A spike distance model was compared to a family of 6
Poisson-based models, each differing by the length of their

summation interval: 5ms, 10 ms, 20 ms, 40 ms, 80 ms and
160 ms. Below we describe the dataset, models, training
procedure and evaluation procedure.

6.1. Dataset

Model input was a (5, 992)-shaped array corresponding
to 1 second of history: a 4-channel stimulus and a single
spike train, both sampled at 992 Hz. The data came from a
15-minute recording of chicken RGCs exposed to full-field
colour noise, recorded by Seifert et al. (2023). The recording
contains 154 cells. Models were trained separately for each
cell, so each cell can be considered a separate 15-minute
dataset. The 15 minutes was split according to the ratio
(7,2,1) into training, validation and test sets. Appendix A.7
describes the recording in more detail.

Our computational budget restricted how many cells we
could work with—training time was considered too long for
more than 60 cells (60 cells requires 500 hours of training,
as described in Appendix A.12). A principled way to choose
cells is to focus on cells with more spikes. The evaluation
metrics that will be introduced in Section 6.4 become less in-
formative at low spike counts—the spike train metrics need
spikes to operate on, and at low spike counts, it is difficult
to distinguish models from a naive model that outputs an
empty spike train. We consider only cells that contain an
average spike rate greater than (.75 spikes per second in the
training set. This threshold resulted in 60 of 154 cells being
used. Cells that meet this criterion will typically have more
than 65 spikes in the 90-second test set (the exact number
depends on their spike rate in the test set). Appendix A.8
describes the construction of the dataset in more detail.

6.2. Models

For each of the 60 cells, 7 models were trained: 1 spike
distance model and 6 Poisson models. Each Poisson model
used a different summation interval length: 5, 10, 20, 40,
80 and 160 bins. As the duration of 1 bin (1.0008 ms) is
approximately 1 ms, these models are referred to as Poisson-
5 ms, Poisson-10 ms, and so on.

A single architecture is not used for both the spike distance
objective and the Poisson objective, as the former requires
output in the form of an array and the latter a scalar; in-
stead, two neural networks are used. These were designed
towards maximizing our ability to compare the two learning
objectives. An overview of the architectures is shown in
Figure 3. The two architectures were designed around a
shared base architecture that accounts for the preponderance
of parameters and compute. A CNN using ConvNext blocks
described by Liu et al. (2022) forms the shared base. The
Poisson architecture then ends in a fully-connected layer,
whereas the spike distance architecture’s head consists of 4
upsampling ConvNext blocks. There is no weight sharing
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Figure 7. Left: A 15-minute retina recording, split into training, validation and test subsets. Right: A single ~1.1-second snippet taken
from the training subset. ¢ = 0 separates the snippet into the “past” data, available to the model, and the “future” data, for which models
will be expected to make predictions. In our experiments, the length of the past data is always 1 second (992 samples); the length of the
future data depends on the model; for example, the Poisson-5 ms model with a 5-sample summation interval will use 5 samples (~5 ms).

employed for training on multiple cells—the models are
trained end-to-end for each cell individually. The alternative
of training on all cells at once by adding per-cell modula-
tion to the network was avoided, as the outputs of the two
architectures are very different in nature, and any single
modulation scheme may favour one over the other. Further
details on the models are described in Appendix A.9.

One concern addressed is layer count. The spike distance ar-
chitecture has additional layers in its head, and we wished to
rule out this difference leading to a performance advantage.
This concern was ameliorated by optimizing the number of
layers in the shared base architecture to maximize Poisson
performance. This architecture search over layer count is
described in Appendix A.10.

6.3. Training

All models were trained for 80 epochs using the AdamW op-
timizer with the 1-cycle learning rate policy (Smith, 2017).
Loss for the spike distance model was mean squared error
between the model output and the log of the target spike dis-
tance. Loss for Poisson models was negative log-likelihood
with respect to the target Poisson distribution. The A param-
eter of the target distribution is the count of spikes within
the summation interval. Final models were chosen based
on the lowest validation loss across the 80 epochs. Training
hyperparameters are described further in Appendix A.11.
Total training times are summarized in Appendix A.12.

6.4. Evaluation

Once trained on a cell, a model was used to predict a spike
train using the 90-second test data. Each inferred spike
train was compared to the ground truth spike train using
three metrics for spike train similarity/dissimilarity: Van
Rossum distance (Van Rossum, 2001), Schreiber similarity
(Schreiber et al., 2003) and Pearson correlation. Appendix
A.5 covers these metrics in more detail. Schreiber similarity
and Van Rossum distance were chosen because they are
frequently used and easy to explain. Pearson correlation is
reported so as to have a common metric with the work of
Mclntosh et al. (2016) and Gogliettino et al. (2024). We

refer to Paiva et al. (2010) and Sihn and Kim (2019) for a
comparison of different spike train measures.

The spike train metrics are each parameterized by a smooth-
ing parameter. For Van Rossum distance and Schreiber
similarity, their parameters—7 and o respectively—are inte-
gral to their definition. We augment the Pearson correlation
by prepending a smoothing step copied from the Schreiber
similarity. The comparison of spike trains is sensitive to the
degree of smoothing, and different models perform best at
different smoothing “sweet spots”. There is a scale from
instantaneous spikes to average spike rate. No single point
on this scale can capture all that matters about a neuron’s
response, so it is important to investigate spiking behaviour
over a range of timescales. We evaluate the three metrics at
a range of smoothing values, from 0 to 150.

7. Results

Training and evaluating a model 60 times, once for each cell,
is considered a run. 11 runs were performed for both the
spike distance model and the Poisson-80 ms model (the most
competitive model). All other models were evaluated for a
single run. We follow the recommendation of Agarwal et al.
(2021) and report aggregate performance for a model using
interquartile mean (IQM) across cells and runs; and for the
two models with multiple runs, uncertainty is estimated with
stratified bootstrap confidence intervals.

Figure 8 records the three metrics for all models. Both sam-
pling (Figure 8a) and rounded mean (Figure 8b) are used
for inference with the Poisson models. An additional per-
spective on the variability across cells is provided by Figure
9 (Appendix A.1) which zooms in on a single smoothing pa-
rameter. The results when the Poisson models use inference
via the mode are presented in Figure 10 (Appendix A.2).
For a qualitative comparison of inference strategies for the
Poisson models, the snippet from Figure 2 is repeated in
Appendix A.3 for inference using sampling (Figure 11) and
the distribution mode (Figure 12).

The experiment was repeated for a recording of frog RGCs,
and the results for this data are presented in Appendix A.4.
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Figure 8. Performance comparison between the spike distance model and the Poisson models at spike prediction. For the Poisson models,
two spike count inference strategies are considered: (left) sampling and (right) using the rounded mean. Three metrics are considered:
(top) Van Rossum distance, (middle) Schreiber similarity and (bottom) Pearson correlation between the ground truth and output spike
trains, reported as interquartile mean over the 60 chicken cells. The metrics are evaluated for a range of their smoothing parameters, (7 and
o), from 0 to 150. 95% confidence intervals are included for the Poisson-80 ms and spike distance models. Scores for the zero spike spike
train are included for comparison, highlighting that the metrics become less effective at comparing models at low smoothing levels—in
particular, the Van Rossum distance eventually prefers the zero spike train for sufficiently low 7 values. See Figure 9 in Appendix A.1 for
a visualization of the variability across cells at a specific smoothing value, 7 = o = 60.
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8. Discussion

An effective model should perform well over a wide range
of the metrics’ smoothing parameters, and in this regard, the
spike distance model outperforms the Poisson models in all
three metrics.

For the Poisson models, the spike inference strategy has
a major effect on the quality of the spike trains produced.
When using inference via sampling (Figure 8a), all Pois-
son models perform similarly but are outperformed by the
spike distance model, and considerably so in terms of Van
Rossum distance. Inference via the rounded mean allows
a more deterministic placement of spikes; however, as the
summation interval is reduced, models begin to approach
the performance of the zero spike train model due to model
outputs being rounded to zero. Eventually, the model with
the shortest summation interval, Poisson 5 ms, has perfor-
mance indistinguishable from that of the zero spike train.
When inference uses the distribution’s mode, (Figure 10 in
Appendix A.2) this effect is exacerbated, and both Poisson
20ms and Poisson 10ms also have performance indistin-
guishable from that of the zero spike train.

The Poisson 80 ms model using inference via rounded mean
is the overall best-performing Poisson model. It can be un-
derstood to sit in a sweet spot where the summation interval
is long enough to be less affected by the rounding to zero ef-
fect but short enough to have good temporal resolution. This
result suggests that the less principled approach of inferring
spike counts by rounding the model output should be consid-
ered when choosing a spike count inference strategy. If one
is unable to experiment with various summation intervals,
using sampling can give a higher lower-bound performance
across summation intervals at the cost of incurring a lower
peak performance.

The evaluation settings that least favour the distance model
are the Van Rossum distances at low smoothing levels,
where the Van Rossum distance prefers Poisson models
with short summation intervals using the mode or rounded
mean for inference. This is explained by these models pre-
dicting very few spikes and having a performance similar
to the empty spike train model. For Van Rossum distance,
there will always be a 7 value below which predicting zero
spikes performs best. At low smoothing values, inexact
spikes are penalized twice—once for missing the correct
spike and once for a spike at an incorrect time. Paiva et al.
(2010, p. 408) describes this as Van Rossum distance acting
as a co-incidence detector at low 7 values. When comparing
models via the Van Rossum distance, the 7 values where the
empty spike train performs best are less informative, and
above these 7 values, it is the spike distance model that is
most competitive.

9. Limitations and Improvements

The results supporting the use of the spike distance objective
are limited by the scope of the experiment. The two learning
objectives were compared in the context of a neural network
model with mostly convolutional layers, and how the proper-
ties of this architecture, such as the translation invariance of
the convolutional layers, support or undermine each learning
objective is an interesting question that is not investigated in
this work. How the differences between the model outputs
interact with hyperparameters or affect regularization are
other considerations that are not investigated.

A strength of the Poisson objective that remains undisputed
is interpretability—GLMs trained with a Poisson objective
can be easily probed to obtain interpretable stimulus filters
(Weber and Pillow, 2017). It is unclear whether models with
a spike distance output would be as useful in this regard. It
is only in the context of predicting precise spike times that
this work argues for the use of the spike distance objective.

There are opportunities to increase the competitiveness of
the spike distance approach. The model architecture can
be optimized with spike distances in mind (the architecture
used in this work was optimized for the performance of
the Poisson models). As some aspects of generating spike
distance arrays do not need real spike data to be learned, pre-
training the network using synthetic data may be effective.
As for the real data—it can be better utilized by training a
single model on multiple cells, which was avoided in this
work in order to improve our ability to compare models. Fi-
nally, the space of algorithms for inferring spikes from spike
distance arrays has yet to be explored deeply. Algorithm 1
demonstrates effectiveness in practice; however, it is an ap-
proximate solution, and to what extent an optimal solution
improves spike prediction is an interesting question.

It is also interesting to ask: what other representations can
create effective learning objectives? We experimented with
other representations such as a Van Rossum-like represen-
tation and a representation that tracked separately the time
until and time since a spike. With these representations,
we observed model outputs that were more difficult to infer
spikes with, and we did not pursue these past early experi-
ments. Such representations are worth further investigation.

10. Conclusion

We propose using a “distance to spike” representation of a
spike train which we call a spike distance function. We show
that neural networks can be trained to approximate spike
distance functions and that these outputs can be used to pre-
dict spikes. For the task of spike train prediction, we show
that models trained to approximate a spike distance func-
tion outperform models trained using the standard Poisson
objective.



Spike Distance Function as a Learning Objective for Spike Prediction

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements

KD would like to acknowledge scholarship support from the
Leverhulme Trust (DS-2020-065). CY acknowledges fund-
ing from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie
grant agreement no: 101026409. TP acknowledges funding
from the Wellcome Trust (Investigator Award in Science
220277/220/Z), the European Research Council (ERC-StG
“NeuroVisEco” 677687), URKI (BBSRC, BB/R014817/1,
BB/W013509/1 and BB/X020053/1), the Leverhulme Trust
(PLP-2017-005, RPG-2021-026 and RPG-2-23-042) and
the Lister Institute for Preventive Medicine. This research
was funded in whole, or in part, by the Wellcome Trust
[220277/Z20/Z]. For the purpose of open access, the author
has applied a CC BY public copyright licence to any Author
Accepted Manuscript version arising from this submission.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro,
Aaron C Courville, and Marc Bellemare. Deep Reinforce-
ment Learning at the Edge of the Statistical Precipice.
In Advances in Neural Information Processing Systems,
volume 34, pages 29304-29320. Curran Associates, Inc.,
2021.

Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heit-
man, Alexander Sher, Alan Litke, E. J. Chichilnisky, and
Liam Paninski. Multilayer Recurrent Network Models
of Primate Retinal Ganglion Cell Responses. In Interna-

tional Conference on Learning Representations, Novem-
ber 2016.

Michael J. Berry and Markus Meister. Refractoriness and
Neural Precision. Journal of Neuroscience, 18(6):2200-
2211, March 1998. ISSN 0270-6474, 1529-2401. doi:
10.1523/INEUROSCI.18-06-02200.1998.

Michael J. Berry, David K. Warland, and Markus Meister.
The structure and precision of retinal spike trains. Pro-
ceedings of the National Academy of Sciences, 94(10):
5411-5416, May 1997. doi: 10.1073/pnas.94.10.5411.

Eleonora Borda and Diego Ghezzi. Advances in visual pros-
theses: Engineering and biological challenges. Progress
in Biomedical Engineering, 4(3):032003, August 2022.
ISSN 2516-1091. doi: 10.1088/2516-1091/ac812c.

10

Tanguy Bosser and Souhaib Ben Taieb. On the Predictive
Accuracy of Neural Temporal Point Process Models for
Continuous-time Event Data. Transactions on Machine
Learning Research, March 2023. ISSN 2835-8856.

Romain Brette. Philosophy of the Spike: Rate-Based vs.
Spike-Based Theories of the Brain. Frontiers in Systems
Neuroscience, 9, 2015. ISSN 1662-5137.

Daniel A. Butts, Chong Weng, Jianzhong Jin, Jose-Manuel
Alonso, and Liam Paninski. Temporal precision in the
visual pathway through the interplay of excitation and
stimulus-driven suppression. The Journal of Neuro-
science: The Official Journal of the Society for Neu-
roscience, 31(31):11313-11327, August 2011. ISSN
1529-2401. doi: 10.1523/JNEUROSCI.0434-11.2011.

Santiago A. Cadena, George H. Denfield, Edgar Y. Walker,
Leon A. Gatys, Andreas S. Tolias, Matthias Bethge, and
Alexander S. Ecker. Deep convolutional models improve
predictions of macaque V1 responses to natural images.
PLOS Computational Biology, 15(4):1-27, April 2019.
doi: 10.1371/journal.pcbi.1006897.

Stuart Coles. An Introduction to Statistical Modeling of
Extreme Values. Springer Series in Statistics. Springer,
London, 2001. ISBN 978-1-84996-874-4 978-1-4471-
3675-0. doi: 10.1007/978-1-4471-3675-0.

Angela Dai, Charles Ruizhongtai Qi, and Matthias NieB-
ner. Shape Completion Using 3D-Encoder-Predictor
CNNs and Shape Synthesis. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 6545-6554, Honolulu, HI, July 2017. IEEE. ISBN
978-1-5386-0457-1. doi: 10.1109/CVPR.2017.693.

Alex R. Gogliettino, Sam Cooler, Ramandeep S. Vilkhu,
Nora J. Brackbill, Colleen Rhoades, Eric G. Wu, Alexan-
dra Kling, Alexander Sher, Alan M. Litke, and E.J.
Chichilnisky. Modeling responses of macaque and human
retinal ganglion cells to natural images using a convolu-
tional neural network, March 2024.

Tim Gollisch and Markus Meister. Rapid Neural Coding in
the Retina with Relative Spike Latencies. Science, 319
(5866):1108-1111, February 2008. doi: 10.1126/science.
1149639.

Alan G. Hawkes. Spectra of Some Self-Exciting and Mutu-
ally Exciting Point Processes. Biometrika, 58(1):83-90,
1971. ISSN 0006-3444. doi: 10.2307/2334319.

Jeremy Howard, Sylvain Gugger, and Soumith Chintala.
Deep Learning for Coders with Fastai and PyTorch: Al
Applications without a PhD. O’Reilly Media, Inc, Se-
bastopol, California, first edition edition, 2020. ISBN
978-1-4920-4552-6.



Spike Distance Function as a Learning Objective for Spike Prediction

Justin Keat, Pamela Reinagel, R. Clay Reid, and Markus
Meister. Predicting Every Spike: A Model for the Re-
sponses of Visual Neurons. Neuron, 30(3):803-817, May
2001. ISSN 0896-6273. doi: 10.1016/S0896-6273(01)
00322-1.

David Liu and Mate Lengyel. Bayesian nonparametric
(non-)renewal processes for analyzing neural spike train
variability. Advances in Neural Information Processing
Systems, 36:68013-68027, December 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Fe-
ichtenhofer, Trevor Darrell, and Saining Xie. A Con-
vNet for the 2020s. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11966-11976, June 2022. doi: 10.1109/CVPR52688.
2022.01167.

Lane MclIntosh, Niru Maheswaranathan, Aran Nayebi,
Surya Ganguli, and Stephen Baccus. Deep Learning
Models of the Retinal Response to Natural Scenes. In
Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016.

Stanley Osher and Ronald Fedkiw. Level Set Methods
and Dynamic Implicit Surfaces, volume 153 of Ap-
plied Mathematical Sciences. Springer, New York, NY,
2003. ISBN 978-1-4684-9251-4 978-0-387-22746-7. doi:
10.1007/b98879.

Antonio R. C. Paiva, Il Memming Park, and Jose C. Principe.
A comparison of binless spike train measures. Neural
Computing and Applications, 19(3):405-419, April 2010.
doi: 10.1007/s00521-009-0307-6.

Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
Continuous Signed Distance Functions for Shape Repre-
sentation. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 165-174,
June 2019. doi: 10.1109/CVPR.2019.00025.

Christopher X. Ren, Claudia Hulbert, Paul A. Johnson, and
Bertrand Rouet-Leduc. Chapter Two - Machine learning
and fault rupture: A review. In Ben Moseley and Lion
Krischer, editors, Advances in Geophysics, volume 61 of

Machine Learning in Geosciences, pages 57—107. Else-
vier, January 2020. doi: 10.1016/bs.agph.2020.08.003.

Bertrand Rouet-Leduc, Claudia Hulbert, Nicholas Lubbers,
Kipton Barros, Colin J. Humphreys, and Paul A. John-
son. Machine Learning Predicts Laboratory Earthquakes.
Geophysical Research Letters, 44(18):9276-9282, 2017.
ISSN 1944-8007. doi: 10.1002/2017GL074677.

José-Alain Sahel, Elise Boulanger-Scemama, Chloé Pagot,
Angelo Arleo, Francesco Galluppi, Joseph N. Martel, Si-
mona Degli Esposti, Alexandre Delaux, Jean-Baptiste

11

de Saint Aubert, Caroline de Montleau, Emmanuel Gut-
man, Isabelle Audo, Jens Duebel, Serge Picaud, Deniz
Dalkara, Laure Blouin, Magali Taiel, and Botond Roska.
Partial recovery of visual function in a blind patient af-
ter optogenetic therapy. Nature Medicine, 27(7):1223—
1229, July 2021. ISSN 1546-170X. doi: 10.1038/
s41591-021-01351-4.

Susanne Schreiber, Susanne Schreiber, Jean Marc Fellous,
Diane Whitmer, Paul H. E. Tiesinga, and Terrence J. Se-
jnowski. A new correlation-based measure of spike tim-
ing reliability. Neurocomputing, 52:925-931, June 2003.
doi: 10.1016/s0925-2312(02)00838-x.

Marvin Seifert, Paul A. Roberts, George Kafetzis, Daniel
Osorio, and Tom Baden. Birds multiplex spectral and tem-
poral visual information via retinal On- and Off-channels.
Nature Communications, 14(1):5308, August 2023. ISSN
2041-1723. doi: 10.1038/s41467-023-41032-z.

Oleksandr Shchur, Ali Caner Tiirkmen, Tim Januschowski,
and Stephan Giinnemann. Neural Temporal Point Pro-
cesses: A Review. In Proceedings of the Thirtieth In-
ternational Joint Conference on Artificial Intelligence,
pages 4585-4593, Montreal, Canada, August 2021. In-
ternational Joint Conferences on Artificial Intelligence
Organization. ISBN 978-0-9992411-9-6. doi: 10.24963/
ijcai.2021/623.

Duho Sihn and Sung-Phil Kim. A Spike Train Distance Ro-
bust to Firing Rate Changes Based on the Earth Mover’s
Distance. Frontiers in Computational Neuroscience, 13:
82-82, January 2019. doi: 10.3389/fncom.2019.00082.

Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light Field Networks:
Neural Scene Representations with Single-Evaluation
Rendering. In Advances in Neural Information Process-
ing Systems, volume 34, pages 19313-19325. Curran
Associates, Inc., 2021.

Leslie N. Smith. Cyclical Learning Rates for Training Neu-
ral Networks. In 2017 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pages 464-472,
March 2017. doi: 10.1109/WACV.2017.58.

Leslie N. Smith and Nicholay Topin. Super-convergence:
Very fast training of neural networks using large learning
rates. In Tien Pham, editor, Artificial Intelligence and
Machine Learning for Multi-Domain Operations Appli-
cations, page 36, Baltimore, United States, May 2019.
SPIE. ISBN 978-1-5106-2677-5 978-1-5106-2678-2. doi:
10.1117/12.2520589.

Yee Teh and Vinayak Rao. Gaussian process modulated
renewal processes. In Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc.,
2011.



Spike Distance Function as a Learning Objective for Spike Prediction

V. J. Uzzell and E. J. Chichilnisky. Precision of Spike
Trains in Primate Retinal Ganglion Cells. Journal of
Neurophysiology, 92(2):780-789, August 2004. ISSN
0022-3077. doi: 10.1152/jn.01171.2003.

M. C. W. Van Rossum. A Novel Spike Distance. Neural
Computation, 13(4):751-763, April 2001. doi: 10.1162/
089976601300014321.

Kun Wang, Christopher W. Johnson, Kane C. Bennett, and
Paul A. Johnson. Predicting Future Laboratory Fault
Friction Through Deep Learning Transformer Models.
Geophysical Research Letters, 49(19):€2022GL098233,
October 2022. ISSN 0094-8276, 1944-8007. doi: 10.
1029/2022GL098233.

Alison I. Weber and Jonathan W. Pillow. Capturing the
Dynamical Repertoire of Single Neurons with Gener-
alized Linear Models. Neural Computation, 29(12):
3260-3289, December 2017. ISSN 0899-7667. doi:
10.1162/neco_a_01021.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei
Chen, Zhuang Liu, In So Kweon, and Saining Xie. Con-
vNeXt V2: Co-Designing and Scaling ConvNets With
Masked Autoencoders. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16133-16142, 2023.

Andy Zeng, Shuran Song, Matthias Nieiner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser.
3DMatch: Learning Local Geometric Descriptors from
RGB-D Reconstructions. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
199-208, July 2017. doi: 10.1109/CVPR.2017.29.

12



Spike Distance Function as a Learning Objective for Spike Prediction

A. Appendix

Appendices A.1-A.4 present supplementary results. Ap-
pendix A.5 describes the evaluation metrics in more detail.
Appendix A.6 argues for the suitability of our evaluation
methodology. Details of the MEA recording and how it is
processed to form a dataset are presented in Appendices A.7
and A.8. Appendices A.9, A.10 and A.11 cover the models
used. Computational resources used are listed in Appendix
A.12. Appendices A.13 and A.14 go into more detail on
working with spike distances.

A.1. Variability Across Cells

Figure 9 explores the variability of the data by zooming
in on a single smoothing parameter value (the x-axis value
T = 0 = 60) of the results in Figure 8. The purpose of this
figure is to give readers a better sense of the spread of the
data that is being condensed in Figure 8.

A.2. Inference by Maximizing Probability

During inference, using the mode of the Poisson distribu-
tion (the floor of a Poisson model’s output) is a principled
approach to selecting the spike count with the highest proba-
bility. Using this strategy performs significantly worse than
using the rounded mean of the distribution (the rounded
model’s output). Figure 10 complements Figure 8a and Fig-
ure 8b by reporting the performance of the Poisson models
when using the mode for inference.

A.3. Input-Output Snippets for Inference Using
Sampling and Using the Mode

An input-output snippet comparing the spike distance model
to the Poisson models was shown in Figure 2. The Poisson
models in this figure used the rounded model outputs for
spike count inference. We repeat this figure but with Pois-
son models using inference via sampling (Figure 11) and
inference via the mode (Figure 12).

A 4. Xenopus (Frog) RGCs

Xenopus (frog) RGCs were recorded under similar condi-
tions to those of the chicken RGCs. The same MEA device
and recording process was used. One difference is that,
unlike the chicken dataset for which Seifert et al. (2023) ap-
plied a quality criterion to filter out poorly responding cells,
no such filtering was applied to the frog data. The same
average spike rate threshold of 0.75 spikes per second in the
training set was applied, and this filtering resulted in 113
cells. Figure 13 shows the Van Rossum distance, Schreiber
similarity and Pearson correlation for 113 recorded frog
RGCs. All models were trained for a single run only (no
confidence intervals). The gap in performance between the
spike distance model and the Poisson models is narrower

13

for the frog RGCs in comparison to the chicken RGCs (Fig-
ure 8); however, the spike distance model is still the most
consistently competitive model across the three metrics.
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Figure 9. Zoomed in to a single smoothing value from Figure 8, the spike distance model is compared to 3 of the Poisson models for all
60 cells. The left and right columns of this figure correspond to the left and right columns of Figure 8: (left) Poisson models use sampling
for inference, (right) Poisson models use the rounded mean for inference. All three metrics are presented: (top) Van Rossum distance at
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count inference via sampling being used for the Poisson models. The boxed numbers represent the neural network outputs, rounded to two
decimal places (rounded to fit in the figure). When using sampling, a spike count quite different from a model’s output can become the
prediction. This is beneficial for short summation intervals, where outputs might otherwise be rounded or floored to zero, but with longer
intervals, the model’s output may be an accurate prediction that then gets perturbed by the sampling process. Note: due to limited space in
the figure, the models with summation interval below 40 ms have model output values omitted.
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Figure 12. Inference via the distribution mode, for Poisson models. The same input-output snippet from Figure 2 (and Figure 11) is
repeated here, but with Poisson models using the distribution’s mode for spike count inference. The boxed numbers represent the floored
neural network outputs. The mode of the Poisson distribution is the floor of the model’s output. For a preponderance of outputs, the
model’s output is floored to zero. Note: due to limited space in the figure, the models with summation interval below 20 ms have their
model output values omitted; predicted spikes are still shown, although there are no predicted spikes to show for the Poisson 10 ms and
Poisson 5 ms models.
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Figure 13. Frog RGCs. Performance comparison between the spike distance model and the Poisson models at spike prediction. For the
Poisson models, two spike count inference strategies are considered: (left) sampling and (right) using the rounded mean. Three metrics
are considered: (top) Van Rossum distance, (middle) Schreiber similarity and (bottom) Pearson correlation between the ground truth
and output spike trains, reported as interquartile mean over the 113 frog RGCs. All models are trained for a single run (no confidence
intervals). Metrics are evaluated for a range of their smoothing parameters, (7 and o), from O to 150. Scores for the zero spike train are
included for comparison, highlighting that the metrics become less effective at comparing models at low smoothing levels—in particular,
the Van Rossum distance eventually prefers the zero spike train for sufficiently low 7 values.
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A.5. Evaluation Metrics

This section describes the three spike train metrics used for
evaluation. Figure 14 describes Van Rossum distance and
Schreiber similarity. Pearson correlation is the well-known
normalized covariance.

Choosing a spike train metric remains an unsatisfying ac-
tivity as there is not yet any strong basis on which the char-
acteristics of different metrics can be definitively ranked.
As mentioned in Section 6.4, Schreiber similarity and Van
Rossum distance were chosen as they are frequently used
and easy to explain. Pearson correlation is reported so as
to have a common metric with the work of Mclntosh et al.
(2016) and Gogliettino et al. (2024). We refer to Paiva
et al. (2010) and Sihn and Kim (2019) for a comparison of
different spike train measures.

Each of the three spike train metrics used in this work is
parameterized by a smoothing parameter. For Van Rossum
distance and Schreiber similarity, their parameters are an
integral component of their definition. We augment the
Pearson correlation by prepending a smoothing step copied
from the Schreiber similarity. For Schreiber similarity and
Pearson correlation, spike trains are first smoothed with a
Gaussian kernel with standard deviation parameter o; for
Van Rossum distance, the first step is to smooth spike trains
with an exponential kernel with decay parameter 7.

An important distinction between Van Rossum distance and
Schreiber similarity is their sensitivity to the overall number
of spikes. Van Rossum distance lacks any normalization to
spike count—it cares about both where spikes are placed
and how many. In comparison, Schreiber similarity includes
a normalization to the number of spikes present in both
spike trains. This distinction between the metrics explains
how some models can perform well in terms of one metric
and poorly in terms of the other. To illustrate this, consider
an example where a cell’s average spike rate is known, but
there is no information on when spikes occur. Two predic-
tion strategies are: predict zero spikes or predict a constant
rate of spikes equal to the known average rate. Van Rossum
distance will score the first strategy more favourably than
the second, while it is the reverse for Schreiber similarity.
The Van Rossum distance will penalize the many incor-
rectly timed spikes predicted by the second strategy. Under
Schreiber similarity, the first strategy will necessarily score
zero while the second strategy scores positively for having
some positive projection onto the ground truth spike train.
This distinction explains how, if the preponderance of a Pois-
son model’s outputs are close to zero, switching to sampling
for spike count inference can lead to better performance
in terms of Schreiber similarity and worse performance in
terms of Van Rossum distance. This illustrates the benefit of
using both Van Rossum distance and Schreiber similarity for
evaluation: they give different perspectives on the quality of
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a predicted spike train.

A.6. Evaluation Methodology

In this section, we justify our departure from other evalua-
tion practices.

This work’s approach to evaluation is to consider the qual-
ity of generated spike trains. Our evaluation departs from
previous work by avoiding binning, avoiding a single fixed
smoothing, and avoiding multi-trial averaging. In Batty et al.
(2016), Mclntosh et al. (2016) and Cadena et al. (2019),
ground truth spikes are binned then Gaussian smoothed
and compared to Gaussian smoothed model outputs. Fur-
thermore, ground truths are averaged over multiple trials
in Mclntosh et al. (2016) and normalized by the average
over multiple trials in Batty et al. (2016) and Cadena et al.
(2019). In each of these studies, the choice of bin size and
smoothing filter width were fixed and chosen to match the
bin size and smoothing used during training. A downside
of our approach is that, by choosing spike trains as the in-
puts to comparison, we must first convert Poisson model
outputs into spike predictions, and this introduces the extra
consideration of which spike inference strategy works best.

We also eschew averaging or normalizing across repetitions
of the same stimulus. As argued by Brette (2015), neuron
state is not stable, and differences across stimulus presen-
tations may arise not solely from noise to be disregarded
but from the fact that the state of a neuron or network of
neurons can change. With this in mind, we present a single
stimulus pattern without repetition and delegate the mod-
elling of uncertainty and identification of latent variables to
the neural network.

Finally, we argue against the use of negative log-likelihood
(NLL) as an effective evaluation metric. Likelihood-based
metrics are common in neural temporal point process liter-
ature. In their review of neural temporal point processes,
Shchur et al. (2021) argue against the prevalent usage of
NLL, saying that “NLL is mostly irrelevant as a measure
of error in real-world applications” and claim that the lack
of investigations focusing on domain-specific metrics is a
major gap in current neural temporal point process litera-
ture. In our work, NLL as a metric would not allow the
direct comparison of Poisson models with different summa-
tion intervals, nor would it provide a way to measure the
performance of the spike distance model, which does not
output probability distributions. Our results demonstrate
the benefits that can be achieved by working outside the
probabilistic setting.

A.7. Retina Recording

The main dataset is created from a single 15-minute record-
ing of chicken RGC spike activity carried out by Seifert
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Figure 14. Calculation of Van Rossum distance (left) and Schreiber similarity (right) from two input spike trains. Both metrics employ
distinct smoothing kernels to produce an intermediate vector. Van Rossum distance can be thought of as measuring the Euclidean distance
between the vectors, while the Schreiber similarity assesses the angle between them.

et al. (2023). Important aspects of the recording will be
summarized here (see Seifert et al. (2023) for full details).
A chicken retina was placed on an MEA, and a full-field
colour sequence driven by 4-LEDs was projected onto the
retina. The colour sequence was a random sequence of
50 ms frames, with each LED having a 50% chance of being
on or off in each frame. The electrical activity recorded by
the MEA was passed through a spike sorter to produce a
sequence of spike events sampled at 17.9 kHz. The stimu-
lus frame changes were also recorded as trigger events at
17.9kHz. At this point, quality criteria were used to filter
out cells which were considered to respond poorly. The
stimulus was downsampled by a factor of 18 to 992 Hz,
and the spike data was rebinned to 992 Hz. Keeping corre-
spondence between the sample period of the stimulus and
spike data allows both to be stacked into a single 2D array.
Downsampling by 18 was chosen as the sample period of
~1 ms is short enough that no two spikes are recorded in
the same bin, which simplifies the spike distance calcula-
tion. Downsampling by 18 is also convenient as it results
in a sample period very close to 1 ms (1.0008 ms), enabling
number of samples and number of milliseconds to be used
interchangeably with little effect on precision.

The same procedure was followed to collect the frog MEA
recording, except for one difference: no cell filtering based
on quality criteria was carried out.

The spike trains produced by the spike sorter are not a
perfect representation of the true spike activity produced
by the neurons—false positives, false negatives and the
incorrect assignment of spikes to cells are all issues. In this
work, we consider the neurons, the multi-electrode array
and the spike sorter as a single black box whose behaviour
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we predict; we do not attempt to make claims about any of
the three components individually.

Further processing of the data was carried out in order to
create separate training, validation and test sets. This is
described next.

A.8. Dataset

The 15-minute recording was split according to the ratio (7,
2, 1) into training, validation and test sets as shown previ-
ously in Figure 7. As the health of the retina can degrade
over the course of the recording altering its behaviour, the
(7,2, 1) split was formed by first splitting the recording by
the ratio (7, 2, 2, 2, 7) and then combining segments: the
first and last 5.25-minute segments form the training set,
the single middle 90-second segment forms the test set, and
the two remaining 90-second segments form the validation
set. This approach allows the test set to be exposed to both
extremes while keeping the test set as a single contiguous
chunk.

For the Poisson models, each dataset sample is a tuple (input,
target), where the input is a 5 x 992 array representing 1
second of stimulus and spike history, and the target is a
scalar representing the number of spikes in the summation
interval. For the spike distance model, each sample is a
tuple (input, target) where the input is the same as that for
the Poisson models, and the target is a 128-length array
representing ~128 ms of ground-truth spike distance data,
with ¢ = 0 positioned at index 32. The choice of these
values are hyperparameters discussed in Appendix A.11.

As the dataset’s sequential nature means that adjacent sam-
ples will be the same except for a 1 time step shift, we
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introduce a configurable stride parameter for the training
dataset. A larger stride decreases the number of samples
that constitute an epoch; this allows model evaluation and
checkpoints to be carried out frequently while still being syn-
chronized to epoch completions. The intermediate samples
are still used in training, but they appear as augmentations
by random indexing between stride indices. For all experi-
ments, the stride was set to 13. A value of 13 resulted in the
U-shaped learning curve being observed over 80 epochs.

A.9. Models

The convolutional kernels used in the shared base architec-
ture are shown in Table 1. In addition to the convolutional
layers, a learnable positional embedding was added to the
output of the initial convolutional layer of the shared archi-
tecture. The kernels used for the spike distance head and the
Poisson head are shown in Tables 2 and 3 respectively. The
shared base architecture accounts for 88% of parameters
and 93% of multi-adds in the spike distance model, and
accounts for practically all the parameters and multi-adds
for the Poisson models.

ConvNext blocks introduced by Liu et al. (2022) were cho-
sen to form the main component of the architecture as they
are commonly used and well-tested. Our implementation
includes the Global Response Normalization layer (GRN)
from ConvNextv2 blocks introduced by Woo et al. (2023).
We use dropout at the end of each block, at a rate of 0.2.

A.10. Architecture Search

The number of mid-layers in the shared base architecture
was varied in order to increase confidence that performance
differences between the spike distance model and the Pois-
son models are not due to differences in layer and parameter
counts. The number of mid-layers was varied between 0
and 7 (inclusive) and the configuration that best served the
Poisson-80 ms model was chosen. This selection was based
on the interquartile mean of the loss across cells in the vali-
dation set. Focus was given to the Poisson-80 ms model as
it was observed to be the most competitive Poisson model.

For each of these configurations, the Poisson-80 ms model
was trained once for each of the 60 chicken RGCs. The
interquartile mean loss is shown in Figure 15. To gauge the
magnitude of the effect on metrics, the interquartile mean
Pearson correlation is reported in Figure 16. Other metrics
show a similar lack of dependency on layer count. The 5-
layer configuration was selected based on the loss; however,
it seems like the number of mid-layers has very little effect
on the performance of the Poisson-80 ms model.
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Table 1. Base architecture shared by both Poisson and spike distance models. ~302 k parameters, ~8.28 M multi-adds.

Layer ‘ Input size ‘ Kernels (length, channels, stride) ‘ Output size
Initial conv 5%x992 [157 64, 2} x 1 64 x 496

3 64 2
ConvNext blocks 1 128 1

(downsampling) 64 x 496 5 128 1| <© 648
1 64 1
1, 128, 1

ConvNext blocks 64 x 8 3, 128, 1| x4 64 x 8
1, 64, 1

Table 2. Distance model head. ~29 k parameters, ~587 k multi-adds.

Layer ‘ Input size ‘ Kernels (length, channels, stride) ‘ Output size
1, 128, 1
ConvNext 64 x 8 5, 128, 1| x1 16 x 16
1, 16, 1
1, 32, 1
ConvNext 16 x 16 5, 32, 1| x3 16 x 128
1, 16, 1
Conv 16 x 128 1, 1, 1]x1 1% 128

Table 3. Poisson model head. 513 parameters, 513 multi-adds.

Layer ‘ Input size ‘ Kernels (length, channels, stride) ‘ Output size

Flatten 64 x 8 None 512

FC layer | 512 x 1 [1, 512, 1] 1
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ground-truth spike trains, smoothed with a Gaussian kernel with
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Figure 17. Three learning rates identified by the range test for learning rates described by Smith and Topin (2019). Valley start and valley
end describe the edges of the U-shaped valley containing the suggested learning rate, which is a weighting of the edges.
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A.11. Hyperparameters

A list of hyperparameters associated with models, training
and inference.

Architecture. The following settings are associated with
the model architectures.

* Channel count in the shared base: 64. Early experi-
ments not reported here found 32 to have slightly worse
performance for all models, and 64 and 128 were ob-
served to have similar performance.

¢ Channel count in the distance model head: 16. Increas-
ing this setting was observed to improve performance;
however, to keep the model’s parameter count close to
that of the Poisson models, the channel count was kept
low.

* Channel expansion factor of the ConvNext blocks: 2.
Changes to this value were not tested.

* Dropout rate: 0.2. Early experiments not reported
here observed benefits of dropout for all models. Once
added, the dropout rate was not experimented with
further.

Training. Settings associated with training were chosen as
described below.

+ Maximum learning rate: 5 x 10~4. This was chosen
by running the LR range test introduced by Smith and
Topin (2019) on an earlier architecture for all chicken
RGCs. After finalizing the architecture (see Appendix
A.10), the range test was run again to ensure that the
learning rate was still appropriate. Figure 17 plots
the results of this second range test, which supports
5 x 10~ still being an appropriate learning rate.

* Batch size: 256. Smaller batch sizes resulted in a
training speed considered onerously slow.

¢ Dataset stride: 13. The dataset stride is described in
Appendix A.8.

e Epochs: 80. Training is carried out for 80 epochs.
Each time step will be part of a model input on average
80 x %2 = 6105 times.

* AdamW parameters: (81, B2, eps, weight decay)
(0.9,0.99,1 x 1075,0.3). These were chosen in line
with heuristics described by Howard et al. (2020).

* Learning rate scheduler: 1-cycle scheduler policy de-
scribed by Smith and Topin (2019) was used, with
three-phase enabled and other options as default values
in Pytorch 2.0’s implementation.

23

* Precision: Nvidia’s automatic mixed precision was
used.

Spike distance. A number of settings were used to con-
trol the nature of the output spike distance array and the
inference process:

e stride: how many time steps to shift forward when
carrying out autoregressive inference. This was set to
80 time steps (~80 ms). Shorter strides offer improved
inference at the cost of increased compute. 80 was
chosen to match the Poisson-80 ms model.

e L: the length of the spike distance array the model
outputs. 128 is the next power of two greater than
80, allowing the distance model’s head to be a simple
sequence of 4 upsample blocks. The additional time
steps were split between before t = 0 and after ¢t =
80 ms according to the next setting, ig.

* i,: the index into the array that corresponds to ¢ = 0.
This was set to 32. A low value negatively affects
inference as described in Appendix A.13.2. 32 was
chosen as it is the length of 2 activations before passing
through the 4 upsample blocks (leaving 1 activation
that extends past ¢ = 80). A search for an optimal
value has not been carried out.

e M: the maximum distance for an element of the spike
distance field. This was set to 200 ms. This is not a very
sensitive parameter. A few settings were experimented
with, as described in Appendix A.13.1.

A.12. Computational Resources

All training and inference was carried out on a single work-
station, with CPU, GPU and RAM specifications: AMD
Ryzen 9 5900X CPU, Nvidia RTX 3090 GPU and 128 GiB
RAM.

Training a single model on all 60 chicken RGCs took
~12 hours. This was repeated 11 times for the Poisson-80 ms
model and 11 times for the spike distance model in order
to calculate confidence intervals. Only 1 repeat was carried
out for the remaining five Poisson models. For architecture
variations, the Poisson-80 ms model was trained 8 times for
all RGCs to investigate the number of mid-layers. Training
on the frog RGCs took ~23 hours, and was done once for
each of the 7 models.

The total training time was ~574 hours: 12 hours/model
X (2x11 4 5+ 8) models + 23 hours/model x 7 models
= 581. Inference was considerably quicker, taking a total of
~8 hours summed over all experiments.
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Figure 18. Running time of Algorithm 1 to infer 90 seconds of spike behaviour for 60 cells, in steps of 80 ms. Running time is calculated
with Python’s t ime it package. In order to isolate the running time of Algorithm 1, inference is not autoregressive, and instead uses
precalculated model outputs as inputs to the algorithm. (Mean, standard deviation) = (8.9, 0.27).

A.13. Spike Distance

This section covers some details on working with spike dis-
tance: choosing a maximum spike distance, and the benefits
to inference of outputting an extended spike distance.

A.13.1. MAXIMUM SPIKE DISTANCE

If there are no spikes, then the distance to the nearest spike
can be considered infinite. When approximating a distance
function, infinite distances can be avoided by fixing a maxi-
mum allowed distance. The choice of a maximum is impor-
tant beyond simply the avoidance of undefined values—it
is also useful to limit how far into the past or future we
expect a distance function to be reasonably approximated.
Consider the spike distance function fg evaluated at some
time point ¢;. The single value fs(¢;) contains information
about all time points in the interval [t — fs(t1), t1+ fs(t1)].
For example, if fs(t1) = 10, then we know that there are no
spikes in the open interval (¢, — 10, ¢; + 10). When training
a model for spike prediction, we do not expect the model to
anticipate spiking activity far into the future. For a model
that predicts spike distance, one way to limit its exposure
to the future is to clamp the target spike distance function.
In this paper, we work with a maximum spike distance of
200 ms. Through experimentation not reported here, for the
dataset used in this paper, we tested a range of maximum
distances and found that there was not a major difference
in performance when the maximum spike distance is be-
tween 100 ms and 600 ms. Below 100 ms and above 600 ms
performance begins to degrade.

A.13.2. AN EXTENDED SPIKE DISTANCE IMPROVES
INFERENCE

Spike prediction performance is improved if the spike dis-
tance function outputted by the neural network extends both
before and after the interval in which spikes are to be pre-
dicted. This means that when predicting L time steps start-
ing from %y, the neural network should output a spike dis-
tance function that extends both before ¢y and after ¢y + L.

The reason for this lies in the capacity of spike distance to
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carry information about a spike train both before and after
the time point at which it is evaluated. For example, the
spike distance at £y — 1 (past) can be affected by spikes that
come after ¢y (future). In other words, the spike distance
representation for a spike train does not fall neatly into
the same time interval. By extending the spike distance
function before t( and after £y + L, there is more information
available for the inference algorithm to judge the placement
of spikes. The model presented in this work is trained
to output a spike distance array of length 128, where 32
elements are assigned to the past. If predicting a spike
train for 80 time steps into the future, then there would be
16 elements of the model’s output remaining that extend
beyond the end of the spike train.

A.14. Discrete Spike Distance

In practice, both spike times and spike distance will be
discretized. Instead of the input being exact spike times,
we will use spike counts sampled at a certain sample period
T, and instead of evaluating the spike distance at any real,
we will evaluate the distance at discrete times separated by
the same period 7" and collect the values in a spike distance
array.

A naive and computationally simple approach of approxi-
mating the continuous spike distance is to count the number
of samples until a sample with a non-zero spike count. This
is a suitable approach when the sample rate is fast in com-
parison to the spike rate and spikes are rarely coincident
in the same sample. Indeed, the main results in this work
involve sample frequencies fast enough that no spikes are
coincident in the same sample. When using a slower sam-
pling rate, it may be beneficial to use the approach outlined
below, which more faithfully discretizes the minimum dis-
tance when there is uncertainty over the precise location of
spikes.

To approximate the continuous spike distance function
fs(t) : R — R introduced in Section 4, we are seeking
a function fs(t) : N — R that is a faithful approxima-
tion when both spike times and the points being evaluated
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3r T3 4T
Figure 19.1f one spike is detected in sample 3, then the spike
distance for sample 3 is given by f(3) = E[ts — r3] = 0.25T,
where r3 = 3.57 and t3 is a random variable uniformly distributed
over [37,47T).

are discretized. Osher and Fedkiw (2003) presents several
methods for discretizing implicit representations; there the
authors use known properties of the physical systems being
modelled in order to discretize implicit functions. Our spike
events are far less analytically constrained, and so we will
instead take a probabilistic approach.

A.14.1. MOTIVATING THE DISCRETE SPIKE DISTANCE

In the continuous case, the two points between which a
distance is calculated are obvious: the spike time and the
time for which the spike distance is being evaluated. In the
discrete case, we must consider candidates for both of these
time points.

Consider recording spikes at a sample period 7' = 20 ms,
where each sample is a sum of the spikes that occurred
within a 20 ms interval. If a single spike is recorded in the
5% sample, and the 5" sample collected spikes from the
interval (80 ms, 100 ms), then where in this interval should
we consider the spike to have occurred? Another question:
if we wish to calculate an array of spike distances at some
sample rate, what reference point should each sample use
from which to measure distance? For spike times there is
uncertainty, and for reference points there is a choice to be
made.

A few decisions and assumptions are sufficient to determine
a discrete distance. First, we will treat spike times as being
random variables distributed uniformly over the sample in
which they are recorded. This decision is reasonable when
the samples represent a count of spikes within an interval,
and there is no further information about the location of
spikes within the interval. Indeed, this is the case for this
work—the spike events are outputs of a black-box detection
mechanism of the MEA and are subsequently rebinned to re-
duce the sample rate. The second decision is to fix our array
of distance calculations to the same frequency as the spike
recording, and we measure distances from the midpoint of
each interval.

To appreciate the implications of these choices, consider the
case where a single spike is recorded in sample ¢ and we
wish to evaluate the discrete spike distance for the same in-
dex, i. The naive solution is to define fs(i) = 0. However,
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0 is not a good representation of the spike distance over the
whole interval [¢T", (¢ + 1)T; 0 is only ever the value of the
spike distance at the instantaneous time a spike occurs. A
better value for fs (¢) should incorporate the fact that there
is uncertainty about when exactly a spike occurs within this
interval of length T'. The approach we take goes as follows.
Fix the reference point r; from which spike distances are
measured to be the interval’s midpoint, s = (¢ + 0.5)7.
Consider the spike time to have a uniform distribution over
the interval [iT, (i + 1)T. The value for fg(i) will be de-
fined as the expected distance to the reference point, where
the expectation is calculated over the uniformly distributed
spike time. Figure 19 shows this case in more detail. The
next section formalizes these ideas and arrives at a simple
procedure for calculating the discrete spike distance from a
sequence of spike counts.

A.14.2. DEFINITION AND CALCULATION

What follows is a formalization of the discrete spike distance
that can be thought of as applying extreme value theory to
spike distances. Coles (2001) is a good introduction to ex-
treme value statistics. What prevents the direct use of a
plug-and-play theorem from extreme value theory is that
in our situation we are not interested in the asymptotic be-
haviour of an unknown distribution, but the finite behaviour
of a known distribution.

As part of the formalization, we will also generalize what
was introduced in Section 4. Equation 1 in Section 4 defined
a spike count sequence to be a binary array. This was a sim-
plification allowed for by the high sample rate that ensured
no two spikes were recorded in the same sample. Below,
we relax this assumption and allow for the possibility of
multiple spikes in a single sample.

We set the scene with two definitions. Similar to how the
continuous spike distance function was parameterized by
a set of spike times, the discrete spike distance function is
parameterized by a sequence of spike counts.

Definition A.1. Let 7' € R be the sample rate. Let! € N
be a positive integer representing the number of samples.
Then a spike count sequence S = (si)é;é at sample rate
T is a sequence of spike counts, where s; is the number of
spikes recorded in the interval [T, (i + 1)T].

If S = (s;)!Z{ is a spike count sequence with a total spike
count n = Zi;é s;, we can associate with it a sequence
of independent random variables, Xy, X1, ... X, —1, where
each X represents a spike time distributed uniformly over
one of the length T intervals. For example, if sy = 3 and
s1 = 1, then X, X; and X5 would be distributed uniformly
over the interval [0, 7] while X3 would be uniformly dis-
tributed over the interval [T, 277.

Definition A.2. Let i be a sample index. Let .S be a spike
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count sequence and let Xy, X1, ...X,,_1 be independently
identically distributed real random variables representing the
spike times of the n spikes from S. Each X is distributed
uniformly over the sample interval in which it is recorded.
Let 7; = i 4 0.5 represent the midpoint of the i sample
interval. For each X; let D; = |X; — r;| be the derived
random variable representing the distance of the ;" spike
to the midpoint r;. The discrete spike distance function
fs : N — R at ¢ is given by:

fs(l) = EDO,DL.A.,anl Oglgn D]

@)

and has units of the sampling period, 7.

Calculating this value involves considering only the one or
two samples containing spikes that are closest to the sample
of interest, ¢. This could be sample i itself, a single sample
to the left or right of ¢ or two samples equidistant to ¢, one on
either side. Being able to ignore most of the samples allows
for the discrete spike distance to be expressed neatly in terms
of the spike counts of the closest non-empty sample(s).

Proposition A.3. Let d € N be the difference in sam-
ples between the sample of interest i and the closest spike-
containing sample(s). Let m € N the number of spikes
contained within the closest spike-containing sample(s).

The value of fs(z) from Equation 2 is given by:

if one or more spikes

Py — 1
R ) fs(i) = 2(m+1) in sample i

fs(i)=d— 14 mi_l otherwise.

3

Proof. First, the first case: there are m > 0 spikes in sample
i. The presence of the min function in Equation 2 means
that we can ignore all spikes that are not in sample i, as they
will not affect the expectation. Let Dy, D1, ..., D,,—1 be
the random variables representing the distance of the m!"
spike recorded within sample <. Single out one of these,
D1, and we will return later to include the others. D; will
contribute to the expectation only when it is smaller than
all others: if D, = t, then all m — 1 other distances must
be greater than ¢. The probability P(D; = t) = 2 (uniform
over interval of length %) and the probability of other D;
having a value larger than ¢ is P(D; > t) = 2(3 — ¢).

The contribution to the expectation for DD then amounts to:
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1 m—1
/ t-P(Dy = 1) [ B(D, > 1) dt
0 j=1
% m—1 1
:/ t(2) H(Q)(i—t)dt
0 .
Jj=1
:2/215(1 2t)™ 1 dt
0
t LA
=2|——(1—2t)™ —(1—2t)™
{m( t) }OJF/O m( )™ dt
0+[ ! (1 21t)7"+1}5
2m(m + 1) 0
- 1
C2m(m+1)

We singled out D1 ; however, any of the m spikes are equally
likely to be the closest spike. Summing the contribution over
m spikes gives us:

2(m+1)

as required by the first case.

What distinguished the second case is that the reference
point r; is not in the same sample as the closest spike(s).
Let m > 0 be the number of spikes that are in the closest
one or two samples, situated d samples from the sample
of interest i. We ignore spikes from other samples. Let
Dy, D1, ...D,,—1 be the random variables representing the
distance of the m!" spike to the reference point r;. Single
out one of these, D;. D; will contribute to the expectation
only when it is smaller than all others: if D; = ¢, then
all m — 1 other distances must be greater than ¢. This
time, D; has a uniform distribution over the interval [d —
1.d + 1] of length 1 with P(D; = t) = 1 in this interval.
The probability of other D; having a value larger than ¢ is
P(D; >t)=d+ 1 -t

The contribution to the expectation for DD then amounts to:
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Table 4. The approximate spike distance compared to the discrete spike distance. Discrete spike distances are evaluated for the samples 0
to 8 when there are three spikes recorded: one in sample 2 and two in sample 8.

sample index, @ 0 1 2 3 4 5 6 7 8
spikes | [l
m 1 1 1 1 1 3 2 2 2
d 2 1 0 1 2 3 2 1 0
spike distance, fs(i), inunitsof 7 | 2 [ 1 | L | 1| 2 |23 12| 3 | 1
approx. spike distance, in units of 7" | 2 1 0 1 2 3 2 1 0

d+ m—1
/ “tP(Dy =) [] B(D; > b at
j=1

d+% m—1 1
:/ 1 t-(l)H(d+§—t)dt
d i1

T2

and by change of variable,

_/1(d—1+t) W TT (-6
0 2 e}
—/1(d—+t)(1 tym=tdt

0

d—5+t !
{ 2t (1t)m} +/ La—pma
m 0 o m
d—1 1 !
— 2 |:_ (1_t)m+1:|
m m(m + 1) 0
d—3 1
= 2 4 .
m m(m+ 1)

We singled out D;; however, any of the m spikes are equally
likely to be the closest spike. Summing the contribution over
m spikes gives us:

J 1 L 1
2 m(m+1)
as required by the second case. O

Table 4 compares the discrete spike distance described above
to the approximate spike distance, including the values for
m and d from Equation 3.

27



