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Abstract

Camouflaged object detection (COD) aims to address
the tough issue of identifying camouflaged objects visually
blended into the surrounding backgrounds. COD is a chal-
lenging task due to the intrinsic similarity of camouflaged
objects with the background, as well as their ambiguous
boundaries. Existing approaches to this problem have de-
veloped various techniques to mimic the human visual sys-
tem. Albeit effective in many cases, these methods still
struggle when camouflaged objects are so deceptive to the
vision system. In this paper, we propose the FEature De-
composition and Edge Reconstruction (FEDER) model for
COD. The FEDER model addresses the intrinsic similarity
of foreground and background by decomposing the features
into different frequency bands using learnable wavelets. It
then focuses on the most informative bands to mine sub-
tle cues that differentiate foreground and background. To
achieve this, a frequency attention module and a guidance-
based feature aggregation module are developed. To com-
bat the ambiguous boundary problem, we propose to learn
an auxiliary edge reconstruction task alongside the COD
task. We design an ordinary differential equation-inspired
edge reconstruction module that generates exact edges. By
learning the auxiliary task in conjunction with the COD
task, the FEDER model can generate precise prediction
maps with accurate object boundaries. Experiments show
that our FEDER model significantly outperforms state-of-
the-art methods with cheaper computational and memory
costs. The code will be available at https://github.
com/ChunmingHe/FEDER.

1. Introduction
Camouflaged object detection (COD) aims to detect and

segment objects “seamlessly” integrated into surrounding
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Figure 1. Results of SegMaR [14] and our method under the in-
trinsic similarity (IS) and edge disruption (ED) challenges. Our
method better localizes the objects and produces clearer edges.

environments. COD is a challenging task as it needs to com-
bat against excellent camouflage strategies, including back-
ground matching [40], disruptive coloration [32], etc., and
distinguish the subtle differences between candidate objects
and their backgrounds. Research in COD can simultane-
ously facilitate the development of visual perception for nu-
ance discrimination and promote various valuable real-life
applications, ranging from concealed defect detection [17]
in industry to pest monitoring [34] in agriculture.

COD faces two main challenges. The first is the intrinsic
similarity (IS) challenge, which occurs when camouflaged
objects share similar colors and patterns with their back-
grounds. This makes it difficult to even roughly localize
those camouflaged objects. The second is the edge dis-
ruption (ED) challenge, which arises from extremely am-
biguous object boundaries. Even if a rough localization is
achieved, precise segmentation can barely be obtained.

https://github.com/ChunmingHe/FEDER
https://github.com/ChunmingHe/FEDER


To tackle these challenges, most existing works aim to
develop models that mimic the human visual system [6,27].
However, since camouflage strategies are designed by prey
to confuse the predator’s visual system, and the intrinsic
topological properties of candidate objects are not distinc-
tive, such human perception-oriented attempts may struggle
to identify subtle discriminative features and fail to effec-
tively address the above challenges. For instance, as illus-
trated in Fig. 1, the state-of-the-art human perception-based
COD method can only generate inaccurate prediction maps,
such as the vague caddisfly and incomplete dog (Row 2 and
4), or even fail to detect camouflaged objects like the bird
and snake (Row 1 and 3). Therefore, a better COD method
should compensate for the “flaw” in human perception by
emphasizing subtle discriminative features.

Based on the biological study [40], camouflaged objects
often employ various camouflage strategies to conceal their
discriminative differences, which mainly exist in texture de-
tails and global information distribution, within surround-
ing environments. Such a study inspires us to cope with
the COD task by decomposing the camouflage scenario into
different parts. This allows for the disentanglement of var-
ious intricate connections, enabling each part to be sepa-
rately handled to fully excavate subtle discriminative cues.

With this inspiration, we propose the FEature Decom-
position and Edge Reconstruction (FEDER) model for the
COD task, which compensates for the deficiencies of hu-
man perception by emphasizing subtle discriminative fea-
tures and effectively addresses the IS and ED challenges.
Specifically, to combat the intractable localization problem
caused by the IS challenge, we design the deep wavelet-like
decomposition (DWD) strategy, which decomposes the ex-
tracted features into different frequency bands using learn-
able wavelet-like modules. Then, we focus on the most
informative bands by filtering out noteworthy parts where
discriminative cues are most likely to exist by a novel fre-
quency attention (FA) module. Moreover, a guidance-based
feature aggregation (GFA) module is proposed to aggregate
the multi-scale decomposed features with attentional guid-
ance to further emphasize discriminative information.

To address the ambiguous boundary problem of the ED
challenge, we propose learning an auxiliary edge recon-
struction task to encourage the network to excavate edge de-
tails. We design the ordinary differential equation (ODE)-
inspired edge reconstruction (OER) module to reconstruct
accurate and complete edge prediction maps using a high-
order ODE solver, specifically, the second-order Runge-
Kutta. Incorporating this auxiliary task with the COD task
can facilitate the generation of precise segmentation results
with accurate object boundaries.

Our contributions are summarized as follows:

• We propose the FEature Decomposition and Edge Re-
construction (FEDER) model for the COD task. To

the best of our knowledge, we are the first to approach
COD from a decomposition perspective.

• To highlight the subtle discriminative features, we pro-
pose frequency attention modules to filter out the note-
worthy parts of corresponding features and design the
Guidance-based Feature Aggregation module to aggre-
gate the multi-scale features with attentional guidance.

• We propose to learn an auxiliary edge reconstruction
task along with the COD task to help generate pre-
cise segmentation maps with accurate object bound-
aries and design the ODE-inspired edge reconstruction
module for complete edge prediction.

• The proposed FEDER significantly outperforms the
state-of-the-art methods on four datasets by a large
margin with cheaper computational and memory costs.

2. Related Works
Camouflaged object detection. Unlike existing object de-
tection tasks, camouflaged object detection (COD) poses
new challenges for mining subtle discriminative features
under complex camouflage strategies [6, 11]. Early tech-
niques utilized the hand-crafted operators for COD [11,29],
which were only applicable to camouflaged scenarios with
simple backgrounds. Recent research has leveraged the
huge capacity of deep learning to detect camouflaged ob-
jects in a learning manner [6,14,27]. Inspired by the hunting
process of predators, SINet [6] designed a bio-inspired net-
work to gradually search and locate the camouflaged object.
PFNet [27] proposed the position module and focus module
to imitate human identification with the distraction mining
strategy. By simulating human behaviors in understanding
complex scenarios, SegMaR [14] integrated segment, mag-
nify and reiterate in a coarse-to-fine manner using the multi-
stage strategy. However, these COD solutions mainly focus
on mimicking biovision systems, which can be easily con-
fused by complex camouflaged strategies and struggle to
excavate the subtle discriminative features, thus failing to
handle the IS and ED challenges (see Fig. 1). Unlike these
human perception-oriented techniques, we first propose to
address the COD task from a decomposition perspective by
decomposing the extracted features into different frequency
bands with learnable wavelets and filtering out the most in-
formative bands to excavate those inconspicuous discrimi-
native features, thus remedying the human visual deficiency
and solving the IS challenge. To handle the ED challenge,
we propose learning an auxiliary edge reconstruction task
along with the COD task to facilitate the generation of pre-
cise segmentation results with clear object boundaries.
Deep wavelet decomposition. Deep wavelet decomposi-
tion is an effective tool to decompose image/feature into
various frequency components and has gained immense
popularity in many domains, such as image restoration [15]
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Figure 2. Overview of the proposed FEDER model. CFE and SED are short for camouflaged feature encoder and segmentation-oriented
edge-assisted decoder. HFA/LFA and GFA denote high/low frequency attention modules and the guidance-based feature aggregation
module. RRS and OER indicate the reversible re-calibration segmentation module and the ODE-inspired edge reconstruction module.

and style transfer [48]. To handle the IS challenge, we intro-
duce deep wavelet decomposition into the COD task. Fur-
thermore, to better accommodate the COD data, we employ
the learnable wavelets for deep adaptive feature decompo-
sition, whose coefficients are updated following AWD [8].
ODE-inspired network. Researchers have established a re-
lationship between ODE and neural networks. [45] first ana-
lyzed ResNet from the perspective of discrete ODE and [1]
further extended ResNet to an ODE-inspired network ar-
chitecture with a more accurate transmission. Since then,
ODE-inspired networks are widely utilized in many fields,
such as image dehazing [36] and machine translation [19].
In this paper, to accommodate the fine-grained property of
the edge, we propose an ODE-inspired edge reconstruction
module with the second-order Runge-Kutta and a weighted
gate mechanism, aiming to generate more accurate bound-
aries. Furthermore, we apply the Hamiltonian system to our
OER module to ensure the stability of edge reconstruction.

3. Methodology

Given a camouflaged image, we first extract a cascade
of features using the camouflaged feature encoder (CFE).
We then perform a wavelet-like decomposition (DWD) on
the features to decompose them into different frequency
bands. We select the most informative bands, such as the
high-frequency and low-frequency components, for further
analysis. These informative bands are processed by the fre-
quency attention (FA) module and guidance-based feature

aggregation (GFA) module to highlight the inconspicuous
discriminative features. With the aggregated features, the
segmentation-oriented edge-assisted decoder (SED) outputs
both the segmentation map and the edge prediction map.
Fig. 2 presents the framework of our FEDER model.

3.1. Camouflaged Feature Encoder (CFE)

Following SINet V2 [4], the basic encoder E adopts
ResNet50 [10]/Res2Net50 [7] as its backbone. Given an
image Ic of size W×H , the basic encoder E generates a set
of feature maps {fk}4k=0 with the resolution of H

2k+1 × W
2k+1 ,

R-Net [6] is cascaded to transform {fk}4k=1 into a more in-
formative and compact output, i.e., a series of 64-channel
feature maps {fr

k}4k=1. Additionally, the last feature map
f4 from the basic encoder E is further fed into an efficient
atrous spatial pyramid pooling (e-ASPP) Ae [16] to enlarge
the receptive field and fuse the multi-context information,
resulting in ds5 = Ae (f4), where ds5 is a coarse segmenta-
tion result with the same spatial resolution as f4.

3.2. Deep Wavelet-like Decomposition

3.2.1 Learnable Wavelet-like Decomposition

Camouflaged objects share a high intrinsic similarity with
the background, which poses challenges for common fea-
ture extractors to mine the inconspicuous discriminative
features, ultimately resulting in the suppression of segmen-
tation performance. Based on the biological study [40], the
discriminative features of COD mainly exist in the high-
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Figure 3. Details of the proposed GFA, HFA, and LFA

frequency (HF) component, e.g., texture and edge, and the
low-frequency (LF) component, e.g., color and illumina-
tion. Inspired by this study, we propose to perform deep
wavelet-like decomposition (DWD) on the extracted fea-
tures {fr

k}4k=1 and select the most informative HF and LF
components for further refinement. We decompose fr

k as
(fr

k )HF = WHF (fr
k ) , (f

r
k )LF = WLF (fr

k ) , (1)
where (fr

k )HF and (fr
k )LF denote the HF and LF compo-

nents of fr
k . WHF and WLF represent the learnable HF and

LF filters with the coefficients updated following AWD [8]
and initialized by Haar wavelet [39]. The learned wavelet-
like transformer is expected to better cater to COD data than
manually-designed wavelets [35, 41], thus further facilitat-
ing the extraction of inconspicuous discriminative features.

3.2.2 Frequency Attention Modules

To extract discriminative information from the decomposed
features, we propose a high-frequency attention (HFA)
module and a low-frequency attention (LFA) module, cor-
responding to HF and LF bands, respectively. The detailed
structures of the two modules are illustrated in Fig. 3.
High-frequency attention module. We design the HFA
module to accentuate those texture-rich regions for subtle
discriminative feature extraction. Following [21, 25], we
first apply a residual block for texture preservation, con-
sisting of a 3 × 3 convolution layer, batch normalization
(BN) [12], and ReLU. We then employ the joint attention
module JA (•), which includes spatial attention [33] and
channel attention [44], to highlight noteworthy parts in both
spatial and channel domains. Therefore, given HF features
(fr

k )HF , the HF attention map phk is formulated as follows:

phk = JA (ResB ((fr
k )HF )) , (2)

where ResB (•) denotes the residual block with BN.
Low-frequency attention module. Low-frequency com-
ponents focus more on global information, such as color
distribution and illumination, which inevitably leads to in-
evitably existing redundant components and slight pertur-
bations [42]. To handle those problems, we design a com-
prehensive normalization strategy to suppress the undesired
artifacts and provide cleaner global information for atten-
tion calculation both at the instance level and channel di-
mension, which can highlight those abnormal regions from
a global perspective. Specifically, this module takes the de-

composed LF features (fr
k )LF as the input and outputs

plk = JA (PN (ResIN ((fr
k )LF ))) , (3)

where ResIN (•), PN (•), and JA (•) denote the instance
normalization [43] constrained residual block, positional
normalization [20], and joint attention, respectively.

3.2.3 Guidance-based Feature Aggregation Module
As shown in Fig. 3, we propose a guidance-based feature
aggregation (GFA) module to integrate the multi-scale de-
composed features. Unlike existing heuristic-based feature
aggregation strategies implemented by simply concatena-
tion [23], GFA is specifically designed to address the key is-
sue of COD, i.e., emphasizing the subtle discriminative fea-
tures, by promoting inter-feature information interaction.

Taking HF bands as an example, GFA generates the
aggregated feature {fh

k−1}4k=2 that combines deep seman-
tic information of the low-resolution feature (fr

k )HF (at a
higher level) and the abundant spatial details of the high-
resolution feature (fr

k−1)HF (at a lower level) with the
guidance of the attention map phk . Therefore, the aggregated
feature fh

k−1 can better highlight the subtle discriminative
features. To extract the attention-guided semantic informa-
tion, we first generate the down-sampled aggregated feature
fdh
k−1 with the window-based linear model [22]:(

fdh
k−1

)
i
= σwdown

((
fr
k−1

)
HF

)
i
+ µw,∀i ∈ sw, (4)

where down(•), sw, and i are the down-sampling operation,
local window, and pixel point i. {σw, µw} are linear aggre-
gation coefficients for the pixels in window sw, which can
be acquired by optimizing the following objective function:

min
σw,µw

∑
i∈sw

[(
phk

)2
i

((
fdh
k−1

)
i
− ((fr

k )HF )i
)2

+ ϵσ2
w

]
, (5)

where ϵ is a constraint value for σw. See Supplementary
Material (Supp) for derivations and solutions of {σw, µw}.

Considering pixel i covered by multiple windows, we
average those window-wise coefficients and get the specific
aggregation coefficients {σi, µi} for pixel i. By matrixing
{σi, µi} into {σi,µi}, Eq. (4) can be rewritten as follows:

fdh
k−1 = σi ⊙ down((fr

k−1)HF ) + µi, (6)
where ⊙ is the Hadamard product. We then up-sample
{σi,µi} as {σh,µh} and acquire the high-resolution ag-
gregated feature fh

k−1 for enriching spatial details:

fh
k−1 = GFA

(
(fr

k )HF ,
(
fr
k−1

)
HF

, phk
)
,

= σh ⊙
(
fr
k−1

)
HF

+ µh.
(7)



RRS

Dk

C

Cr

·

Channel-wise Splittig

Channel-wise Concatenation

Sigmoid+Reverse

Conv-ReLU-Conv

C

OER

RK2

k

te

+1

k

te

wg

1-

k

1+

s

kd

o

kf

· Hadamard Operator

S

C

Weighted Gate Mechanismwg

SummationRepeatr

Multiplication

OER

te +1te
CS

e

2

te
2

+1te

1

te
1

+1te

-
RK21 RK22

1×1/3×3 Convolution

e

kd

s

kd

F

F

F

Figure 4. Details of SED with RRS and OER modules. OER is an
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To iteratively acquire the aggregated features
{
fh
k−1

}4

k=2
,

we redefine GFA module by replacing (fr
k )HF with fh

k :
fh
k−1 = GFA

(
fh
k ,

(
fr
k−1

)
HF

, phk
)
, (8)

where phk = JA(ResB(fh
k )) and fh

4 = (fr
4 )HF . Guaran-

teed with frequency-specific attention, our aggregated fea-
tures can emphasize more discriminative features than oth-
ers by combining abundant spatial details and deep seman-
tic information, thus better catering to the COD task. The
calculation of the aggregated LF features f l

k−1 are similar
to fh

k−1, which can be seen in Supp.
Considering that bottom layers (at higher levels) focus

more on HF details while top layers (at lower levels) care
more about global information [37], we pass the aggre-
gated HF/LF features into the bottom/top decoder layers
along with the skip-connected encoded features {fr

k}4k=1.
To balance performance and efficiency, the integrated fea-
tures {fo

k}4k=1 passed to the decoder are defined as:
fo
1 = conv1

(
con

(
fr
1 , up

(
fh
1

)))
, fo

2 = fr
2 ,

fo
3 = fr

3 , f
o
4 = conv1

(
con

(
fr
4 , f

l
3

))
,

(9)

where up (•) and con (•) denote the up-sampling operation
and the concatenation operation. conv1 represents 1 × 1
convolution, which is used for channel-level integration.

3.3. Segmentation-oriented Edge-assisted Decoder

In the segmentation-oriented edge-assisted decoder
(SED) {Dk}4k=1, we propose to learn an auxiliary edge re-
construction task alongside the COD task to help generate
precise segmentation maps with accurate boundaries. To be
specific, as shown in Fig. 4, each decoder layer Dk consists
of a reversible re-calibration segmentation (RRS) module
and an ODE-inspired edge reconstruction (OER) module.

3.3.1 Reversible Re-calibration Segmentation Module

Due to complex camouflage, prediction maps inevitably
have some ambiguous regions with low confidence, we
adopt a reverse strategy to excavate cues from these
low-confidence regions by reversing the attention, which

erases detected regions and amplifies the response in low-
confidence regions, thus re-calibrating the misclassified re-
gions. Specifically, we repeat the coarse segmentation map
{dsk+1}3k=0 as a 64-dimension tensor, normalize it to [0, 1]
with Sigmoid S (•), and reverse it by subtracting each el-
ement from 1. We then multiply the integrated feature fo

k

with the reversed map and concatenate it with the edge fea-
ture dfek to obtain the segmentation result dsk:

dsk = conv3
(
con

(
dfek , fo

k ⊙ rv
(
S(rp(dsk+1))

)))
, (10)

where rp (•) and rv (•) denote repeat and reverse.

3.3.2 ODE-inspired Edge Reconstruction Module

Existing methods tend to excavate edge information by in-
corporating certain priors within the residual network struc-
ture [13, 49]. However, either the intractable localization
problem of the IS challenge or the ambiguous boundary
problem of the ED challenge makes it difficult to design an
appropriate edge prior for the COD task. In some cases, a
biased prior can even reduce the segmentation performance.

Therefore, instead of exploiting prior knowledge, we
focus on proposing an edge-friendly network architecture,
i.e., the ODE-inspired edge reconstruction (OER) mod-
ule. Compared with the traditional residual network struc-
ture that can be seen as the first-order Euler discretiza-
tion approximation of ODE with nonnegligible truncation
errors [45], the proposed OER module employs a higher-
order ODE solver, specifically, a second-order Runge-Kutta
(RK2), to provide more accurate numerical solutions in
edge information processing. This better accommodates the
fine-grained property of edges and facilitates the complete
edge reconstruction, thus addressing the ED challenge. To
ensure the flexibility of our OER module, we replace the
fixed trade-off parameter in the RK2 solver with a weighted
gate mechanism gw with learnable coefficients. Given an
input et, where et = conv1

(
con

(
fo
k , rp

(
dsk+1

)))
, the pro-

posed OER module can be formulated as follows:
et+1 = et + gwF1 + (1− gw)F2,

gw = S (σgcon (F1, F2) + µg) ,

F1 = F (et, θt) , F2 = F (et + F1, θt) ,

(11)

where et+1 = dfek , σg and µg are the learnable parame-
ters in gw. {Fi}2i=1 denotes the intermediate layers with
shared parameters θt for efficiency. Following [1], we set Fi

as a Conv-ReLU-Conv framework. To ensure the stability
of OER, we apply the Hamiltonian system [9] to our OER
module. By denoting Eq. (11) as RK2(•), the Hamiltonian-
theory-guaranteed OER module is defined as follows:
et+1 = con

(
e1t+1, e

2
t+1

)
, e1t+1 = e1t +RK21

(
e2t
)
,

e2t+1 = e2t −RK22
(
e1t +RK21

(
e2t
))

,
(12)

where et is split to e1t and e2t in channel-wise. Note
that the OER module in Eq. (12) is a reversible and sta-



CHAMELEON (76 images) CAMO (250 images) COD10K (2,026 images) NC4K (4,121 images)Methods Publications Backbones
M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑

Common Setting: Single Input Scale and Single Stage
CPD [46] CVPR19 ResNet50 0.048 0.775 0.874 0.857 0.113 0.675 0.723 0.716 0.053 0.578 0.776 0.750 0.072 0.719 0.808 0.787
SINet [6] CVPR20 ResNet50 0.034 0.823 0.936 0.872 0.092 0.712 0.804 0.745 0.043 0.667 0.864 0.776 0.058 0.768 0.871 0.808
PFNet [27] CVPR21 ResNet50 0.033 0.820 0.931 0.882 0.085 0.751 0.841 0.782 0.040 0.676 0.877 0.800 0.053 0.779 0.887 0.829
MGL-R [49] CVPR21 ResNet50 0.031 0.825 0.917 0.891 0.088 0.738 0.812 0.775 0.035 0.680 0.851 0.814 0.053 0.778 0.867 0.833
LSR [24] CVPR21 ResNet50 0.030 0.835 0.935 0.890 0.080 0.756 0.838 0.787 0.037 0.699 0.880 0.804 0.048 0.802 0.890 0.834
UGTR [47] ICCV21 ResNet50 0.031 0.805 0.910 0.888 0.086 0.747 0.821 0.784 0.036 0.670 0.852 0.817 0.052 0.778 0.874 0.839
SLT-Net [2] CVPR22 ResNet50 0.030 0.835 0.940 0.887 0.082 0.763 0.848 0.792 0.036 0.681 0.875 0.804 0.049 0.787 0.886 0.830
SegMaR-1 [14] CVPR22 ResNet50 0.028 0.828 0.944 0.892 0.072 0.772 0.861 0.805 0.035 0.699 0.890 0.813 0.052 0.767 0.885 0.835
OSFormer [31] ECCV22 ResNet50 0.028 0.836 0.939 0.891 0.073 0.767 0.858 0.799 0.034 0.701 0.881 0.811 0.049 0.790 0.891 0.832
FEDER-R50 — ResNet50 0.028 0.855 0.947 0.894 0.069 0.785 0.873 0.807 0.032 0.740 0.900 0.823 0.045 0.817 0.905 0.846
SINet V2 [4] TPAMI22 Res2Net50 0.030 0.816 0.942 0.888 0.070 0.779 0.882 0.822 0.037 0.682 0.887 0.815 0.048 0.792 0.903 0.847
BSA-Net [51] AAAI22 Res2Net50 0.027 0.851 0.946 0.895 0.079 0.768 0.851 0.796 0.034 0.723 0.891 0.818 0.048 0.805 0.897 0.841
FEDER-R2N — Res2Net50 0.026 0.856 0.947 0.903 0.066 0.807 0.897 0.836 0.029 0.748 0.911 0.844 0.042 0.824 0.913 0.862

Other Setting: Multiple Input Scales (MIS)
ZoomNet [30] CVPR22 ResNet50 0.024 0.858 0.943 0.902 0.066 0.792 0.877 0.820 0.029 0.740 0.888 0.838 0.043 0.814 0.896 0.853
FEDER-MIS — ResNet50 0.023 0.869 0.959 0.906 0.064 0.801 0.893 0.827 0.028 0.756 0.913 0.837 0.041 0.832 0.915 0.859

Other Setting: Multiple Stages (MS)
SegMaR-4 [14] CVPR22 ResNet50 0.025 0.855 0.955 0.906 0.071 0.779 0.865 0.815 0.033 0.737 0.896 0.833 0.047 0.793 0.892 0.845
FEDER-MS-4 — ResNet50 0.025 0.874 0.964 0.907 0.067 0.809 0.886 0.822 0.028 0.752 0.917 0.851 0.042 0.827 0.917 0.863

Table 1. Quantitative comparisons of the proposed FEDER and other state-of-the-art methods on four benchmarks. SegMaR-1 and
SegMaR-4 denote SegMaR at one stage and four stages. R50 and R2N indicate ResNet50 and Res2Net50. The best results are marked in
bold. For ResNet50 backbone in the common setting, the best two results are in red and blue fonts.

ble block [9], which further promotes the edge reconstruc-
tion performance. In this case, the final edge predictions
{dek}4k=1 can be acquired in the following manner:

dek = conv3 (et+1) = conv3
(
dfek

)
. (13)

3.4. Loss Functions

The loss function of the proposed FEDER consists of
two kinds of supervisions, namely the segmentation mask
GTs and edge GTe of the camouflaged object, which cor-
respond to the multi-scale segmentation maps {dsk}5k=1 and
the multi-scale object edges {dek}4k=1. Following [4], we
employ the weighted binary cross-entropy loss Lw

BCE and
weighted intersection-over-union loss Lw

IoU for segmenta-
tion supervision, which focuses more on those hard pixels.
For edge supervision, we use the dice loss Ldice [28] to
overcome the extreme imbalance between the positive and
negative samples. Furthermore, to handle the multi-scale
outputs, we up-sampling all the outputs to match the size of
their corresponding ground truths during training. There-
fore, the total loss of our FEDER is formulated as follows:

Lt =

5∑
k=1

1

2k−1
(Lw

BCE (dsk, GTs) + Lw
IoU (dsk, GTS))

+

4∑
k=1

1

2k−1
Ldice (d

e
k, GTe) .

(14)

4. Experiment

4.1. Experimental Setup

Datasets. We used four widely-used COD datasets for
evaluation, including CHAMELEON [38], CAMO [18],

COD10K [4], and NC4K [24]. CHAMELEON contains 76
hand-annotated images. CAMO has 1,250 camouflaged im-
ages with 1,000 training images and 250 testing images.
Currently, COD10K is the largest COD benchmark, with
3,040 training images and 2,026 testing images. NC4K is a
large-scale COD testing dataset, comprising 4,121 images.
Following [4], we form the training set with 3,040 images
from COD10K and 1,000 images from CAMO, while the
remaining camouflaged images are used for testing.
Evaluation metrics. Four commonly-used metrics are em-
ployed for COD task, including mean absolute error M ,
adaptive F-measure Fβ [26], mean E-measure Eϕ [5], and
structure measure Sα [3]. Larger Fβ , Eϕ, Sα, and smaller
M indicate better segmentation performance.
Implementation details. The proposed FEDER is
implemented in PyTorch on two RTX3090TI GPUs
and is optimized by the Adam with momentum terms
(0.9, 0.999). Following the common setting [4, 6], our en-
coder (ResNet50 by default) is initialized with the model
pre-trained on ImageNet [6]. In the training phase, the batch
size is set to 36 and the learning rate is initialized to 0.0001,
dividing by 10 every 80 epochs. For both training and in-
ference phases, all images are resized as 384× 384.

4.2. Comparison with the State-of-the-arts

Quantitative analysis. We compare the proposed FEDER
with 12 cutting-edge techniques in three different settings,
including the common setting (single input scale and sin-
gle stage) and two other settings (multiple input scales
(MIS) and multiple stages (MS)). In the MIS and MS set-
tings, the proposed FEDER follows the practices of Zoom-
Net [30] and SegMaR [14], where FEDER-MS-4 means
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Figure 5. Visual comparisons of the proposed FEDER and other nine state-of-the-art methods. Our method can generate more accurate
prediction maps with clearer boundaries than other methods. Please zoom in for more details.
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Figure 6. Performance-Params-FLOPs comparisons of some state-
of-the-art deep learning-based COD methods on COD10K [4].

complete COD task with our FEDER at four stages follow-
ing SegMaR-4. For a fair comparison, prediction maps of
the above techniques are directly segmented by their pro-
vided models with no modifications. Besides, all prediction
maps are evaluated with the same code. As shown in Tab. 1,
our method achieves the best results in all settings and back-
bones, which comprehensively demonstrates the superiority
of our FEDER. Notably, COD10K and NC4K are the two
most challenging datasets in terms of the number of images
and segmentation difficulty. In the common setting, the pro-
posed FEDER surpasses the second best results 3.6% on
average over all metrics on COD10K dataset and 2.6% on
average on NC4K dataset. Such a big margin further con-
firms the effectiveness of the proposed method, both with
the deep wavelet-like feature decomposition strategy and
the ODE-inspired edge reconstruction module.
Qualitative analysis. Fig. 5 presents a visual comparison
of our FEDER and other SOTAs. We select various typi-

cal and challenging camouflaged images and arrange them
in order of the camouflaged object size, from smallest to
largest. Note that most of these images suffer from the IS
or ED challenge, which can confuse existing COD tech-
niques, resulting in mislocalization, ambiguous boundaries,
etc. In contrast to those methods, our FEDER can over-
come such challenges and generate more competitive pre-
diction maps in the following aspects: (a) more accurate
localization of small objects. For those small objects under
the IS challenge, precise localization is a significant prob-
lem due to subtle differences and can confuse most exist-
ing methods. Thanks to our HFA, LFA, and GFA modules,
our FEDER can emphasize the inconspicuous discrimina-
tive features and thus ensure more accurate camouflaged
object localization (in Rows 1 and 2). (b) clearer edges on
large objects. For those large objects, our prediction maps
can achieve much clearer boundaries than others (see Rows
7 and 8), which mainly attributes to our joint training strat-
egy of edge and segmentation and our edge-friendly OER
module. (c) stronger suppression of redundant information.
In the IS challenge and degraded imaging scenarios, the de-
tection performance can be inevitably influenced by redun-
dant information, such as background noise. However, the
proposed deep decomposition strategy can suppress the re-
dundant information by filtering out those components with
the most discriminative information, namely, the HF and LF
components. Thus, as depicted in Rows 3 and 4 in Fig. 5,
FEDER can generate more accurate prediction maps.

Efficiency analysis. We compare the performance, pa-
rameters, and FLOPs with other SOTAs on COD10K [4]
in Fig. 6. As presented in Fig. 6, our proposed FEDER
achieves the smallest FLOPs and parameters compared with
other state-of-the-art deep learning-based COD techniques.
Furthermore, our score in Fβ is much higher than other
methods and surpasses the second best one in 5.6%.



Methods COD10K (2026 images) NC4K (4121 images)
M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑

(a) w/o DWD 0.035 0.697 0.861 0.794 0.049 0.776 0.873 0.817
(b) FW–>LW 0.032 0.731 0.895 0.822 0.046 0.811 0.899 0.844
(c) w/o HFA 0.033 0.728 0.895 0.817 0.047 0.805 0.891 0.840
(d) w/o LFA 0.033 0.724 0.887 0.816 0.047 0.803 0.892 0.841
(e) UFA–>GFA 0.033 0.720 0.894 0.810 0.047 0.804 0.890 0.838
(f) FEDER 0.032 0.740 0.900 0.823 0.045 0.817 0.905 0.846

(a) Ablation study of DWD Component.

Methods COD10K (2026 images) NC4K (4121 images)
M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑

(a) w/o OER 0.034 0.714 0.871 0.804 0.048 0.780 0.889 0.834
(b) FC–>WGM 0.032 0.731 0.899 0.817 0.046 0.814 0.895 0.842
(c) w/o HS 0.032 0.723 0.885 0.821 0.046 0.798 0.892 0.840
(d) RB–>RK2 0.033 0.722 0.881 0.811 0.047 0.802 0.895 0.843
(e) RK4–>RK2 0.031 0.742 0.905 0.829 0.045 0.816 0.906 0.848
(f) FEDER 0.032 0.740 0.900 0.823 0.045 0.817 0.905 0.846

(b) Ablation study of OER module.
Table 2. Ablation study on COD10k [4] and NC4K [24], where w/o means without. (a) FW, LW, and UFA are short for fixed wavelet [39],
learnable wavelet, and upsampling-based feature aggregation [50]. (b) FC, WGM, HS, RB, and RK4 are short for fixed coefficient,
weighted gate mechanism, Hamiltonian system, residual block, and forth-order Runge-Kutta. The best results are marked in bold.
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Figure 7. Visual verification of the effectiveness of the proposed
components. B, D, and O denote baseline, DWD, and OER. Note
that B+D+O is our proposed FEDER.

4.3. Ablation Study

We conduct the ablation study on the two largest
datasets, namely COD10K and NC4K.
Effect of DWD component. We demonstrate the effec-
tiveness of our DWD component both in visual verification
(see Fig. 7) and quantitative analysis (see Tab. 2a). In Fig. 7,
the networks with DWD component (Rows 3 and 5) exhibit
more accurate localizations and stronger redundant infor-
mation suppression capacities. In addition, we present more
detailed information in Tab. 2a to verify the validity of each
part in the DWD component. As presented in Tab. 2a, we
prove the superiority of the DWD component (in (a)), learn-
able wavelet-like decomposition strategy (in (b)), HFA/LFA
module (in (c) and (d)), and GFA module (in (e)).
Effect of OER module. The efficacy of our OER module is
demonstrated visually by Figs. 7 and 8. In Fig. 7, methods
with the OER module can generate the prediction maps with
clearer edges. Besides, Fig. 8 illustrates the advancement of
our OER module in generating accurate and clear boundary
information. We provide detailed information about the su-
periority of our OER module in Tab. 2b. Specifically, (b)
and (c) verify the effectiveness of our weighted gate mech-
anism (learnable coefficient) and Hamiltonian system. We
further compare the performance of the OER module with
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Figure 8. Visualizations of the reconstructed edge from the OER
module, where the edges are marked in red for well-read.

different Runge-Kutta methods, i.e., RB (RK1), RK2, and
RK4. Notably, the COD results with RK2 significantly out-
perform those with RB and are slightly lower than that with
RK4. Therefore, we integrate RK2 into our OER module
for a balance of performance and efficiency.

5. Conclusions
To address the IS and ED challenges, in this paper, we

propose the FEDER model for COD. Specifically, we de-
compose the features into different frequency bands with
learnable wavelets and filter out the most informative bands
to excavate the subtle discriminative features with the HFA,
LFA, and GFA modules, thereby solving the IS challenge.
Besides, we propose to learn an auxiliary edge reconstruc-
tion task with our OER module to generate complete edges.
Learning this auxiliary task along with the COD task thus
facilitates the generation of precise segmentation results
with accurate object boundaries, thus mitigating the ED
challenge. Extensive experiments verify the superiority of
our FEDER model in comparison with other SOTAs.
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