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Abstract
The feature maps of vision encoders are funda-
mental to myriad modern AI tasks, ranging from
core perception algorithms (e.g. semantic segmen-
tation, object detection, depth perception, etc.)
to modern multimodal understanding in vision-
language models (VLMs). Currently, in com-
puter vision, the frontier of general purpose vi-
sion backbones is Vision Transformers (ViT), typ-
ically trained using contrastive loss (e.g. CLIP).
A key problem with most off-the-shelf ViTs, par-
ticularly CLIP, is that these models are inflexi-
bly low resolution. Most run at 224 × 224px,
while the “high-resolution” versions are around
378− 448px, but still inflexible. We introduce a
novel method to coherently and cheaply upsam-
ple the feature maps of low-resolution vision en-
coders while picking up on fine-grained details
that would otherwise be lost due to resolution. We
demonstrate the effectiveness of this approach on
core perception tasks as well as within agglom-
erative model training using RADIO as a way
of providing richer targets for distillation. Code
available at https://github.com/NVlabs/FeatSharp.

1. Introduction
Vision foundation models (VFM) (Awais et al., 2023) have
seen widespread use since the beginning of the modern era
of computer vision using deep learning (Krizhevsky et al.,
2012), primarily used to perform transfer learning (Plested
& Gedeon, 2022) (e.g. finetuning a VFM on a downstream
task), information retrieval (Babenko et al., 2014; Zhang &
Liu, 2024), and most recently, to power visual capabilities
for vision-language models (VLM) (Alayrac et al., 2022;
et al., 2024; Liu et al., 2023; Lin et al., 2023). The re-
cent shift toward using Transformers (Vaswani et al., 2017)
for computer vision (ViT (Dosovitskiy et al., 2021)) has
tremendously moved the field forward, but has generally
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Figure 1. PCA visualizations of features from a basketball scene.
Column 1: Raw features produced by the model at normal reso-
lution (e.g. 14x downsample for DFN CLIP, SigLIP, PaliGemma,
and DINOv2, 16x downsample for SAM and RADIOv2.5-L. Col-
umn 2: Raw features at the 4x upsample resolution (we interpolate
the position embeddings for those models that don’t natively sup-
port resolution changes). Column 3: FeatUp-JBU 4x upsampling
(prior work). Column 4: FeatSharp 4x upsampling.
NOTE: “Real 4x” technically only makes sense for models with
strong scale equivariance, such as DINOv2, RADIO, and SAM.

1

https://github.com/NVlabs/FeatSharp


FeatSharp: Your Vision Model Features, Sharper

Tiled Features

Low-Resolution
Features

Featurizer FeatSharp Full-Res Reference

PredictionJBU Upsample

 D
e-

Bi
as

Repeat
with Tiles

FeatUp
JBU

Figure 2. Upsampling architecture diagram. We combine the upsampled features coming from FeatUp (Fu et al., 2024) with the tiled
features and mix them with FeatSharp to produce a feature map with higher fidelity. The tiled features have more detail, but also
representation issues such as the difference in upper and lower body at the tile boundary. “Full-Res Reference” is for display purposes, as
for a model that doesn’t exhibit stable resolution scaling (e.g. DFN CLIP, SigLIP, etc.) we don’t have access to a target hi-res feature map.
Learned modules have a fire icon, and frozen modules a snowflake.

left the use of VFMs in a tricky spot: Transformers are com-
putationally demanding and have poor algorithmic scaling
properties (O(n2) for 1D sequences, or O((w · h)2 for 2D
inputs), leaving the majority of models to be relatively low-
resolution. For example, perhaps the most popular family
of VFMs to date, CLIP (Radford et al., 2021), typically
runs at 224 or 336px input resolutions, and produces spatial
features at a 14x downsample (e.g. 2242 → 162). Owing to
the nature of learned position embeddings, ViTs also tend
to be relatively inflexible to changes of input resolution,
allowing for changes, but requiring finetuning (Dosovitskiy
et al., 2021).

It is possible that the strict dependence on the training res-
olution is an artifact of the algorithm used for training, as
DINOv2 (Oquab et al., 2023; Darcet et al., 2023) is quite ro-
bust to interpolating its position embeddings, producing sta-
ble features at various resolutions (Ranzinger et al., 2024b),
ignoring for the moment that DINOv2, being a transformer,
is expensive to use at high-resolution. A recent technique
called AM-RADIO (Ranzinger et al., 2024a), borrowing
ideas from ViTDet (Li et al., 2022), FlexiViT (Beyer et al.,
2023), and RO-ViT (Kim et al., 2023), has attempted to cre-
ate a resolution-flexible ViT, however it is still dependent on
low-resolution ViTs as it distills from other seminal VFMs
which are low-res only: DFN CLIP (Fang et al., 2023) and
SigLIP (Zhai et al., 2023).

Recently, FeatUp (Fu et al., 2024) aims to directly ad-
dress the problem of low-resolution vision features by us-
ing one of two learned upsampling algorithms: A model-
specific generalized upsampler using Joint Bilateral Up-
sampling (JBU) (Kopf et al., 2007), or a model-specific-

image-specific implicit network. While they demonstrate
particularly compelling results with their implicit network,
their results using the stack of JBU filters lack refined details
(shown in figure 17 in the appendix). Along with the lack
of granular refinement, it’s impossible for this approach to
capture fine-grained details that are too small for the vision
backbone to detect at its native resolution. To this end, we
take inspiration from both FeatUp’s JBU approach, as well
as the recent trend in VLMs such as LLaVA 1.6 (Liu et al.,
2024), InternVL-1.5 (Chen et al., 2024), NVLM (Dai et al.,
2024b) and Eagle (Shi et al., 2024b) to tile an image, aggre-
gating local features from a fixed-low-resolution model, to
build an upsampler that simultaneously leverages the raw
pixel guidance, low-res feature guidance, and regional tile
guidance, resulting in substantially more detailed feature
maps which are also capable of capturing details too small
for the original resolution. Specifically, we:

• Build on top of FeatUp’s JBU algorithm (Fu et al.,
2024) by adding de-biasing and tiling fusion modules
to incorporate detailed tile features, resulting in signif-
icantly higher levels of detail, with extensive experi-
ments demonstrating effectiveness.

• Study the relationship between FeatUp’s feature consis-
tency and ViT-Denoiser’s (Yang et al., 2024a) approach
to cleaning the features of a ViT at its native resolution.

• Introduce an improved training setting for AM-RADIO
(Ranzinger et al., 2024a) demonstrating a +0.6% im-
provement across the entire benchmark suite, and better
teacher adapter features.
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Figure 3. Diagram of the FeatSharp module. We first concatenate
the JBU upsampled and tiled mosaic feature maps along the chan-
nel dimension. We then apply a transformer block with sliding
window attention followed by MLP (in this case, SwiGLU), and
then slice off the first half of the channels, corresponding to the
bilinear upsampled buffer. The role of FeatSharp thus is to refine
the JBU buffer by leveraging the tile buffer.

2. Related Work
Feature Upsampling The most obvious baseline for fea-
ture upsampling is to use traditional filtering approaches
such as bilinear or bicubic upsampling. The alternative
is to evaluate the network at higher resolution, however it
comes with the dual drawback that computational cost in-
creases (quadratically in the case of Vision Transformers),
and also that many models (ViTs in particular) have trou-
ble extrapolating from their trained resolution (Beyer et al.,
2023; Dehghani et al., 2023). If we expand our view to
include parametric approaches, then deconvolution (Noh
et al., 2015; Shi et al., 2016; Dumoulin & Visin, 2016) and
resize-conv (Odena et al., 2016) are popular choices. There
are also pixel-adaptive approaches such as CARAFE (Wang
et al., 2019), SAPA (Lu et al., 2022), and FeatUp (Fu et al.,
2024).

We adopt FeatUp’s formulation of multi-view consistency as
a way to train an upsampler, however, we notice that instead
of solely relying on raw RGB pixels as guidance for upsam-

pling, we can also use a small, fixed budget of inferences
(similar in spirit to their implicit model), and use a mosaic of
tiles as guidance at the higher resolution. This choice gives
us a richer, and semantically relevant, feature space to merge
from. Additionally, it allows us to incorporate information
from regions that were too small for the low-res view, but
become visible within a tile. Small details are a limitation of
every approach that doesn’t acquire extra samples from the
base model, as they rely on all relevant information already
being encoded by the initial model evaluation.

Feature Denoising Related to multi-view consistency,
ViT-Denoiser (Yang et al., 2024a) noticed that ViT fea-
tures are generally very noisy (although some are much
cleaner than others), and also propose a multi-view con-
sistency formulation to learn how to separate fixed noise,
conditional noise, and semantic content. We notice the deep
ties between ViT-Denoiser and FeatUp, in that multi-view
consistency provides a way to eradicate fixed-pattern noise
from the feature buffer. Drawing inspiration from this, we
add a learnable bias buffer (similar to learned position em-
beddings) at the output of the base model. This simple
change works because fixed patterns will degrade multi-
view consistency, as the pattern is always local to the view,
and lacks global coherence.

VLMs The use of tiling to increase information is cur-
rently very prominent in VLMs (Liu et al., 2024; Chen
et al., 2024; Dai et al., 2024a), albeit an alternative ap-
proach is to instead leverage the models at hi-res themselves
(Beyer et al., 2024; Wang et al., 2024). We also see RA-
DIOv2.5(Heinrich et al., 2024) being primarily useful at
high-resolution within VLMs. In the increasingly VLM-
centric approach to computer vision, we turn our focus to
RADIOv2.5, as it has a training procedure that relies on
matching a high-resolution student against a low-resolution
teacher, an application area that is perfect for studying fea-
ture upsampling, as it would provide richer guidance to the
distillation.

Agglomerative Models In the agglomerative model space,
there are currently three major approaches: RADIO
(Ranzinger et al., 2024b;a; Heinrich et al., 2024), Theia
(Shang et al., 2024), and UNIC (Sariyildiz et al., 2024).
We focus our attention on RADIO because it is the only
approach that directly tries to tackle resolution flexibility as
well as high-resolution.

3. Method
We leverage FeatUp’s training algorithm of treating the up-
sampling problem as that of multi-view consistency between
the upsampled and then downsampled features and different
low-res views of the same image.
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Encoder

Figure 4. Visualization of the tiling process. An input image (left) is split into 2× 2 tiles, each of which is resized to match the input
resolution of the encoder, fed through the encoder independently, and then stitched back into a higher resolution feature map. Feature
maps shown are from DFN CLIP, and they are resized to be larger than actual for demonstration purposes.

3.1. Review - FeatUp: Joint Bilateral Upsampling (JBU)

Given a high-resolution signal G (e.g. the raw pixels) as
guidance, and a low-resolution signal Flr that we’d like to
upsample, and let Ω be a neighborhood of each pixel in the
guidance. Let k(·, ·) be a similarity kernel that measures
how close two vectors are. Then

F̂hr[i, j] =
1

Z

∑
(a,b)∈Ω

(
Flr[a, b]·

krange (G[i, j], G[a, b]) ·

kspatial ([i, j], [a, b])
) (1)

with Z being a normalization to make the kernel sum to 1.
kspatial is a Gaussian kernel with learnable σspatial defined
as

kspatial(x, y) = exp

(
−∥x− y∥22
2σ2

spatial

)
(2)

and krange as

krange(x, y) = softmax
(a,b)∈Ω

(
1

σ2
range

h(G[x, y]) · h(G[a, b])

)
(3)

with h(x) being a learned MLP projector. They define

Fhr = (JBU(·, x) ◦ JBU(·, x) ◦ ...) (f(x), x) (4)

as a stack of 2× upsamplers, thus enabling power-of-2 up-
sample factors. With x being the original input image and
f(x) being the low-resolution feature map. We note that
2× is not a necessary part of the architecture, and that their
implementation supported arbitrary factors, so we simply
propose to take a given upsample factor z ∈ Z+ and prime

factorize z to get a set of upsample factors, using a JBUk

for each prime factor. This decomposes to an identical
operation as before when log2 z ∈ Z+, but allows for an
easy guide for any other integer, e.g. for a 14× upsam-
ple corresponding to a patch-size-14 backbone, we’d use a
(JBU7× ◦ JBU2×) (f(x), x) stack.

As is typical with bilateral upsampling, this method is very
sensitive to strong edges in the guidance buffer, however,
it also tends to over-smooth features in regions of lower
contrast. Particularly, it struggles with feature patterns such
as SAM (figure 1) where there are interior edges in feature
space, but not pixel space. This results in the features being
blurred inside of objects.

We don’t make any changes to their downsampler, instead
opting to just use their Attention Downsampler without
modification. We then focus on two changes, one to output
normalization, and the other to how upsampling guidance is
computed.

3.2. Feature Normalization

FeatUp supports either leaving the features coming from
the backbone as-is (e.g. no normalization), or using a Lay-
erNorm to better condition the outputs for feature learning.
For a similar motivation as PHI-S (Ranzinger et al., 2024a),
we want to avoid using the raw features as they have very
distinct distributions, and we’d also like to avoid using Lay-
erNorm as it makes the features incompatible with the orig-
inal feature space. Naı̈vely learning the raw feature space
across the suite of teachers without normalization often led
to convergence issues, particularly given the wide variance
of activations. Thus, we adopt PHI-S as a way to standardize
the backbone features without distortion and to retain the
ability to model the original distribution. We compute the
distribution statistics over 100k samples from the training
dataset.
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Figure 5. Visualization of 2× upsampling using bilinear (left) ver-
sus tiling (right), using the DFN CLIP encoder.

3.3. Tile-Guided Attentional Refinement

Joint-Bilateral Upsampling is able to retain object bound-
aries primarily in instances when there are noticeable
changes in intensity in the RGB input image. This results in
sharp contours, but within a region, we end up with vague
and blurry feature representations. Owing to the reliance on
raw pixel intensities, object contours that are less discrimina-
tive in color space often get blurred with the neighborhood.
Finally, because the upsampling operation is only truly op-
erating on the low resolution feature maps of the model,
it’s impossible for JBU to introduce new details into the
feature map that are visible/encodable at higher input reso-
lutions. FeatUp’s implicit upsampler doesn’t have this same
limitation because it’s constructing a global view from nu-
merous local views of the original image, enabling detailed
refinements. We propose an intermediary method between
JBU which leverages a single featurizer inference, and the
implicit model, which relies on numerous inferences and is
thus cost prohibitive1.

Inspired by the use of tiling in Vision-Language Models
(VLMs) (Liu et al., 2024; Shi et al., 2024a; Dai et al., 2024b),
we develop an attentional refinement block that is able to
integrate the information between a JBU upsampled feature
map, as well as a feature map composed of tiles. We show
an overview of the algorithm in figures 2, 3 and 4. The
diagram shows actual results using RADIOv2.5-L, which
is the most scale equivariant foundation model (Heinrich
et al., 2024), and generally the strongest visual foundation
model (Lu et al., 2024; Drozdova et al., 2024; Guo et al.,
2024). Because the model has strong resolution scaling, it
provides us with a good way to compare the results of the
upsampling process against the feature maps of the same
resolution attained by increasing the resolution of the input
image. We also observe that even just at 4× tiling, there
are major discontinuities in the tiled feature map, which
the FeatSharp module must overcome to produce a unified
higher-resolution image.

For the FeatSharp module, we leverage a single Atten-
tion+SwiGLU transformer block. In order to prevent the
quadratic cost of global attention, we instead use 2D local
attention (Ramachandran et al., 2019). We concatenate the

1https://github.com/mhamilton723/FeatUp/issues/2

JBU upsampled buffer with the tiled feature map and feed it
to the block. After the block is computed, we slice the first
C dimensions of the output, with C being the model feature
dimension, and treat that as the refined features. The slic-
ing strategy takes advantage of the fact that a transformer
block has a residual pathway, and thus a no-op from the
transformer would be equivalent to returning the bilinear
upsampled features. Through the attention mechanism, the
model is able to consider the local neighborhood and refine
its features to achieve better multi-view consistency. To this
end, we train our model identically to FeatUp’s multi-view
consistency algorithm. We do not employ any special loss
functions beyond the MSE loss on multi-view consistency,
contrary to FeatUp’s use of Total Variation and Conditional
Random Field losses. We provide ablations wrt architecture
choice in appendix B.2.

3.4. Denoising

Drawing inspiration from (Yang et al., 2024a), we notice
that the problem formulation has a very similar solution to
FeatUp (and ours), owing to the fact that all methods are
using multi-view consistency and thus learn to eliminate
position-based artifacts. From their formulation:

ViT(x) = f(x) + g(Epos) + h(x,Epos)
((Yang et al., 2024a), Eq 5)

We add a learnable g buffer, such that

f̂(x) = f(x) + g (5)

with f(x) being the frozen vision encoder. The learnable
g allows our model to learn and negate the fixed position
artifacts that the encoder produces. Notably, given that
we are also using the base model for the tiles, this learned
buffer is applied to all of the generated tiles as well. We
visualize these biases in figure 11. It’s entirely possible
for FeatSharp to remove the biases itself, but we found
that having this learnable bias buffer consistently improves
multi-view consistency, which we show in table 7 in the
appendix.

3.5. Complexity

An important point about this method is that because of
the tiling, it requires more evaluations of the base vision
model to construct the high-resolution feature map. How-
ever, due to the scaling properties of global self-attention,
our proposed method always has better scaling properties
than running the original model at higher resolution (assum-
ing the model is capable of doing this in the first place).
Specifically, let f(x) be the relative cost of computing Feat-
Sharp, and g(x) the relative cost of running the base model
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on the hi-res input, with x ∈ Z+ being the number of tiles
per dimension, and c being the cost of processing a single
tile:

f(x) ≤ c

x∑
i=1

i2

g(x) = c
(
x2
)2

= cx4

f(x) ≤ g(x) ∀x > 1

(6)

We show the empirical scaling cost in figure 14 in the ap-
pendix, and prove equation 6 in appendix E.2. We also
note that experiments for FeatSharp only use the global
view, plus the final level of tiles, thus f(x) simplifies to
f(x) = c

(
1 + x2

)
, however we prove the general case, as

progressive upsampling may be beneficial in future work.

4. Upsampling Results
We consider upsampling to be important in cases where
one is given a fixed pretrained model, and the goal is to
extract more information out of it, for a given image. We
study our method in relation to FeatUp from a core multi-
view consistency standpoint in this section, from a semantic
segmentation linear probe standpoint, and also for training
a new RADIO-like model with hi-res teacher targets.

4.1. Fidelity

Multi-View Consistency Following (Ranzinger et al.,
2024a), we use their definition of fidelity (equation 51)
for multi-view consistency, where a higher fidelity value
means that the upsampled-transformed-downsampled rep-
resentations are closer to the raw transformed predictions
from the model.

f(X,Y) =
MSE(Y,µY )

MSE(X,Y)
(7)

with X being the warped predictions and Y the targets.
This serves as a proxy measure for how well the upsam-
pler is working, as arbitrarily warping and downsampling
it results in representations closer to the real prediction at
low resolution. We show these results in figure 6, where
we observe that FeatSharp consistently achieves the highest
fidelities, substantially so with the “cleaner” models such as
DINOv2-L, RADIOv2.5-L, and SAM-H.

4.2. Qualitative

We run this upsampling method on seven different foun-
dation models coming from diverse domains such as su-
pervised (ViT, (Dosovitskiy et al., 2021)), contrastive

DFN CLIP DINOv2-L PaliGemma RADIOv2.5-L SAM-H SigLIP ViT
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Figure 6. Fidelity plot for different models and upsampling meth-
ods. Higher values are better. We don’t show SAM 4x because of
OOM issues training these models.

(DFN CLIP (Fang et al., 2023), SigLIP (Zhai et al.,
2023)), Self-supervised (DINOv2-L-reg (Darcet et al.,
2023)), Segmentation (SAM (Kirillov et al., 2023)), VLM
(PaliGemma (Beyer et al., 2024)), and Agglomerative
(RADIOv2.5-L (Ranzinger et al., 2024a)). Results are in
figure 1. The original feature maps run the spectrum from ex-
tremely noisy (SigLIP) to very clean (RADIOv2.5-L, SAM),
which allows us to demonstrate the effectiveness of the ap-
proach on a diverse set of models. Taking SAM for an
example, the way in which it has thick edge outlines cannot
be reproduced in the shape interior by FeatUp, primarily be-
cause the bilateral upsampler is operating on the raw pixels,
where the interior edge doesn’t exist in the real image. For
all of the featurizers, FeatSharp is able to achieve more legi-
ble representations. In particular it is more able to closely
match the real hi-res features in the second column.

4.3. Semantic Segmentation

Semantic segmentation has the potential to benefit from in-
creased resolution, as it allows for label contours to be more
precise, and potentially for regions to be recovered that are
otherwise too small. The first setting we evaluate on is we
train both FeatUp and FeatSharp at 2× and 4× upsampling,
both using PHI-S. We resize the input size to be the featur-
izer’s native input resolution, which we call “1× Input Size”,
and we also consider “2× Input Size”, where we double
the input size, and feed directly to the featurizer in the case
of “Baseline”, or we allow the upsampler to have higher
resolution guidance while keeping the featurizer input fixed
at 1× resolution. We show these results in figure 7. In most
cases, both upsampling algorithms produce higher quality
segmentations than the baseline, however, FeatUp is worse
than the “Baseline 2×” method for RADIOv2.5-L and ViT.
In all cases, FeatSharp is superior to both FeatUp and also
the baselines by significant margins. We even improve upon
SOTA RADIO’s published result of 51.47 with a 2× upsam-
pling combined with 2× input size, producing a model that
attains 53.13 mIoU, a +1.66 mIoU improvement. RADIO
itself improves with the 2× input size, but not to the same
degree as with FeatSharp, with FeatSharp being 57% faster.
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We notice that 3× upsampling is generally slightly worse
than 2× or 4× for both upsamplers, but leave an investi-
gation into why as future work. This figure also provides
insight into the general ability of these foundation mod-
els to operate at resolutions that deviate from their native
resolution. The CLIP family models (DFN CLIP, SigLIP,
PaliGemma) are unable to benefit from this increased reso-
lution at all, or in the case of PaliGemma, degrade with it,
while the first-class-dense models like DINOv2 and RADIO
natively benefit from increased resolution. Surprisingly,
even though ViT is solely trained as a classification model,
it also benefits from native resolution increases.

4.4. Object Detection

We integrate our method, FeatUp-JBU, the baselines, as
well as SAPA (Lu et al., 2022) and the preprint ReSFU
(Zhou et al., 2025) into Detectron2 using the Edge2 code-
base, and probe on COCO 2017 (Lin et al., 2014). We
use a [(frozen) featurizer] + [(frozen) upsampler] + ViT-
Det (Li et al., 2022) + DINO (Zhang et al., 2023)3 (DETR
with Improved DeNoising Anchor Boxes for End-to-End
Object Detection) pipeline. We evaluate these methods on
both RADIOv2.5-L (Heinrich et al., 2024) and the recently
proposed SigLIP2-SO400M-512 (Tschannen et al., 2025)
models. We show the results in table 1, where FeatSharp
is clearly best able to improve object detection results over
baseline and comparison methods, particularly for small
objects, benefitting from the additional tile guidance. We
also note that we were unable to use SAPA with SigLIP2
due to a CUDA configuration error in their backprop kernel.

4.5. Agglomerative Models

We build upon RADIOv2.5-L (Heinrich et al., 2024) as it
learns directly from the spatial features of teacher models.
In particular, we consider whether we can improve upon
their multi-resolution training strategy by using FeatSharp to
convert the low-res teachers into hi-res teachers. We convert
the teachers in the bottom left quadrant “Low-Res Teacher /
High-Res Student” in their Figure 6 into “High-Res Teacher
/ High-Res Student” by using the upsampler. We consider
a few different comparative baselines in order to prove the
efficacy of the technique. For our baseline, we make one
change to the recipe in (Heinrich et al., 2024), which is
to bilinearly upsample the teacher to match the student, as
opposed to downsampling the student. We stress that this
produces a strong baseline, as it scores even better than
RADIOv2.5-L on average. The reason we make this change
is so that we’re across the board comparing upsampling
methods, with bilinear being the simplest technique. Then,

2https://dgcnz.github.io/edge/part2/adapting.html
3Not to be confused with the DINO/DINOv2 foundation mod-

els.

RADIOv2.5-L

Upsampler Upsample AP
Factor * Sm Md Lg

Baseline 1 51.38 28.73 56.56 73.72
Bilinear 2 51.61 28.43 56.98 74.14

SAPA 2 41.44 15.92 45.08 69.77
ReSFU 2 49.81 26.22 55.37 73.55
FeatUp 2 46.71 21.77 52.01 72.25

FeatSharp 2 54.83 34.72 59.40 74.40
SigLIP2-SO400M-512

Baseline 1 52.66 30.31 57.94 74.31
Bilinear 2 52.69 30.19 57.84 74.16
SAPA† 2 - - - -
ReSFU 2 50.84 28.45 56.18 73.69
FeatUp 2 47.42 22.87 53.17 72.80

FeatSharp 2 55.93 36.85 61.00 74.62

Table 1. COCO 2017 object detection results using Detectron2
and various upsampling methods for both RADIOv2.5-L and
SigLIP2-SO400M. †SAPA was unable to process this model’s
input size/dimension, producing a CUDA configuration error.

we consider two techniques which are popular in the VLM
literature: Tiling (Liu et al., 2024), and S2 (Shi et al., 2024a).
Both of these rely on tiling, but S2 also considers the low-
res version. Because we need the feature space to remain
the same as the low-res partition of RADIO, we opt to
upsample the low-res feature map, and then interpolate the
upsampled-low-res against the tiled version, using y =
β · low-res + (1 − β) · high-res. We set β = 0.5 as it’s
unclear what an optimal balance might be, and it’s expensive
to search this space. As a final baseline, we include FeatUp’s
JBU variant, as the implicit version would be prohibitive to
use within a training loop4.

In figure 8 we qualitatively visualize the DFN CLIP adap-
tor features learned by the radio model. We can see that
each upsampling method has a substantial impact on the
resulting feature maps. The baseline method exhibits strong
high-frequency artifacting starting at 768px. This is likely
when RADIO “mode switches” to high-resolution, which
is something that (Heinrich et al., 2024) addressed for the
backbone features, but apparently still exhibit for the adap-
tor features. We observe that Tiling and S2 exhibit not only
high-frequency noise patterns like the baseline, but also
obvious grid patterns, arising from the use of tiles. More
troublesome, we can see how the student learned to mimic
representation switches within tiles for both Tiling and S2,
where the mulch in one cell gets a different feature repre-
sentation (thus color) than another, based on whether any
of the dog is present in the tile view. FeatUp appears to
mode switch starting at 768px into a smooth, but low-detail
feature space. FeatSharp remains smooth and highly de-

41-5 minutes per image
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Figure 7. ADE20k (Zhou et al., 2017) Semantic segmentation results for different featurizers and upsamplers. We also vary the input size
between Inpt-1× and Inpt-2× the featurizer’s native resolution. 1× Resolutions: DFN CLIP = 378px, DINOv2-L = 448px, PaliGemma =
448px, RADIOv2.5-L = 512px, SigLIP = 378px, ViT = 224px. The dark line represents the mean of 5 runs, with shaded areas showing
the standard deviation. Because the x-axis is the upsample amount, the baselines should technically be single points on a “1x” x-coord,
but we instead draw a line to make it easier to see the change in the upsamplers across the upsample amounts. E.g. for “RADIO, Baseline
Inpt-2x”, we can see that it’s better than FeatUp 2× upsampling, but worse than FeatSharp 2× upsampling.

tailed as resolution increases, however, visually, it’s still
possible that the features are mode switching. We show
another comparison in appendix F with the SigLIP adaptor
head.

Along with improvements in the adaptors, we also study
the effects on the backbone features for the RADIO model.
Following (Maninis et al., 2019; Lu et al., 2024) we report
the MTL Gain (∆m) across a suite of tasks. Unlike the prior
works, instead of leveraging a single-task baseline, we opt
to report the change relative to the baseline training run.

Let

δm = 100 · (−1)lt
Mt −MB,t

MB,t
(8)

∆m =
1

T

T∑
t=1

δm (9)

where Mt is the metric for the current model on task t, and
MB,t is the metric for the baseline model. lt is 0 when
higher task values are better, and 1 when lower is better.

We show the MTL Gain results in table 2. Given that the
results are relative to our baseline run, S2 and FeatSharp are
the only two methods to improve, however, only FeatSharp
was categorically better, leading to a +0.39% improvement
across all benchmarks on average. These two methods are
the only two that incorporate both low-res and hi-res fea-
tures, with S2 perhaps being considered a baseline to Feat-
Sharp, so their improvements suggest that this extra detail
is indeed useful for RADIO training. We also see that our

version of RADIO with FeatSharp teachers generally does
better than RADIOv2.5-L (Heinrich et al., 2024), which is
the current state of the art, where we improve over it on
everything except for the VILA task. We report all of the
raw per-task benchmark scores in tables 3, 4, 5 and 6 in the
appendix.

5. Conclusion
We have presented a novel feature upsampling technique
named FeatSharp that achieves higher multi-view fidelity
than the current best method, FeatUp. We achieve this by
joining FeatUp’s JBU upsampler with a mosaic of tiles,
and then process with a single local attention block. We
demonstrate its effectiveness on ADE20K semantic segmen-
tation linear probing, where the use of FeatSharp improves
over both baseline and FeatUp, even with the strongest
segmenter, RADIO, which itself can handle hi-res inputs
robustly. We also demonstrate our effectiveness in object
detection with frozen backbone and upsampler, and see AP
benefits in particular for small objects, but also medium and
large. We then demonstrate the effectiveness of FeatSharp
by employing it directly within RADIO training, enabling
hi-res distillation targets for low-res-only teacher models. In
doing so, our FeatSharp-RADIO largely improves on dense
vision task benchmarks, and yields an overall improvement
over our reproduction baseline, which itself improves over
RADIOv2.5-L, the current state of the art. We believe this
work can be useful both as a drop-in extension of existing
vision systems which rely on pretrained vision encoders, as
well as the newly trained FeatSharp-RADIO model with
hi-res teachers, which can emulate these same models. Ow-

8
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Figure 8. Visualization of our trained RADIO’s DFN CLIP adaptor when the high-res partition used various teacher upsample schemes.

Upsampler Classification Dense Probe 3D Retrieval Pascal Context NYUDv2 VILA ∆m%
RADIOv2.5-L -0.47 -0.09 -1.05 -0.45 0.62 -2.26 2.24 -0.21

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tile -0.03 0.30 -0.08 -0.23 -0.02 1.33 -3.17 -0.27
S2 -0.05 0.15 -0.03 -0.44 0.13 1.33 -0.89 0.03

FeatUp -0.07 0.14 0.23 -0.07 0.14 0.32 -1.58 -0.13
FeatSharp 0.06 0.16 0.83 0.13 0.17 0.93 0.43 0.39

Table 2. Relative changes (in %) on a suite of aggregated benchmarks, with each column reporting δm% and averaged into ∆m%. All
relative changes are against our baseline run. Raw metrics are in section A.1. NOTE: The upsamplers are only applied to the DFN CLIP
and SigLIP teachers during RADIO training. Metrics are collected from trained RADIO without upsampling methods.

ing to FeatSharp-RADIO’s emulation abilities, it allows us
to estimate these teacher models at arbitrary resolutions,
not just integer upsampling factors as restricted in Feat-
Sharp/FeatUp’s core training algorithm. Further, combining
RADIO’s “ViTDet” (Li et al., 2022) mode with these hi-res
teacher emulations allows us to achieve hi-res feature maps
without fully paying the quadratic penalty in number of
tokens as required by standard ViTs.

Impact Statement
This paper presents work whose goal is to advance the field
of computer vision. By virtue of being a lightweight addi-
tion to existing vision models, the work aims to open up
doors for higher-resolution perception tasks (e.g. segmenta-
tion, depth perception, distillation, etc.) while retaining the
original model representations. As such, the ethical impacts
are constrained to those of the model being upsampled. The
FeatSharp training code will be released to the community.
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A. RADIO Results
A.1. Benchmark Results

In this section, we provide detailed benchmark results used to compute the MTL aggregate metrics in table 2. We show
these results in tables 3, 4, 5, and 6.

Upsampler
Classification Zero Shot Retrieval
ImageNet-1k COCO Flickr30k

Zero Shot kNN Text2Im Im2Text Text2Im Im2Text
RADIOv2.5-L 81.01 84.68 51.65 69.06 77.52 90.80

Baseline 81.47 85.00 52.25 68.68 78.64 90.60
Tile 81.41 85.01 51.90 68.30 78.46 91.10

S2 81.44 84.95 51.94 67.98 78.34 90.80
FeatUp 81.39 84.96 51.93 68.40 78.26 91.70

FeatSharp 81.56 85.01 52.13 68.80 78.50 91.30

Table 3. Classification and Zero Shot Retrieval Metrics. All zero shot methods use the DFN CLIP Text encoder, paired with RADIO’s
respective learned adaptor.

Upsampler Dense Probe3d
ADE20k VOC SAM COCO Depth Surface Normals Correspondence SPair71k

RADIOv2.5-L 51.47* 85.49* 75.06 84.69 60.06 58.46 54.36
Baseline 51.58 85.08 75.46 85.03 61.42 59.27 54.49

Tile 51.62 85.55 75.67 85.14 60.85 59.65 54.41
S2 51.56 85.28 75.66 85.11 60.49 59.84 54.68

FeatUp 51.67 85.20 74.54 85.39 61.20 59.63 54.63
FeatSharp 51.75 85.13 75.54 85.48 60.76 59.55 56.33

Table 4. Dense and Probe3D (El Banani et al., 2024) metrics. *We report numbers for evaluation at 512px, which are found in Table A5 in
RADIOv2.5 (Heinrich et al., 2024).

Upsampler Pascal Context NYUDv2
SemSeg mIOU ↑ Parsing mIoU ↑ Saliency maxF ↑ Surface Normals ↓ SemSeg mIoU ↑ Depth rmse ↓ Surface Normals ↓

RADIOv2.5-L 82.87 74.32 81.65 16.15 61.42 0.458 18.57
Baseline 82.88 75.02 80.55 16.49 62.64 0.448 18.09

Tile 83.07 75.28 80.56 16.60 62.91 0.437 17.90
S2 83.09 75.45 80.63 16.56 62.64 0.436 17.86

FeatUp 83.11 75.21 80.68 16.51 62.74 0.449 17.93
FeatSharp 83.17 75.28 80.64 16.51 62.60 0.439 17.95

Table 5. Pascal Context and NYUDv2 multitask learning metrics. Following the setup of MLoRE (Yang et al., 2024b) and RADIOv2.5
(Heinrich et al., 2024) with a convolutional probe. NOTE: We’re only using their harness with a conv probe, and not using their
architecture.

A.2. Additional Qualitative Visualizations

In figure 9, we show more PCA feature visualizations coming from our trained RADIO models. We can see that RADIO
learned to mimic how tiling lacks global context, as the background-only tiles use a different feature space than those with
background+content.

A.3. Difference Visualization

In figure 10, we show the difference heatmaps between FeatSharp/FeatUp and Bilinear upsampling. For DFN CLIP and
SigLIP, we actually see that a lot of the differences are with high frequency noise. More intuitively, for the cleaner RADIO
and SAM models, the differences are largely concentrated at the edges. Because the PCA projection down to 3D can
sometimes distract from the true differences between representations (e.g. color flipping), these difference maps help show
where the information is truly different between methods.

14



FeatSharp: Your Vision Model Features, Sharper

Upsampler
AI2D ChartQA DocVQA GQA InfoVQA MME MMMU OCR Bench POPE SEED TextVQA

No Mask Overall Val Accuracy Val Perception Val Accuracy F1 All ValAccuracy Accuracy
RADIOv2.5-L 79.2 56.4 49.2 63.4 29.8 1592.4 43.3 441 87.6 69.27 66.7

Baseline 78.04 57.32 47.12 63.41 28.78 1568.11 40.00 422 87.51 69.08 65.33
Tile 75.71 54.32 42.44 63.60 26.80 1541.61 40.33 400 86.63 68.62 63.78

S2 77.07 55.28 44.89 63.73 28.75 1549.50 42.33 405 87.14 68.96 64.86
FeatUp 78.40 55.56 45.31 63.60 26.98 1563.57 40.33 407 86.83 68.57 65.05

FeatSharp 79.15 57.56 46.39 63.75 28.25 1564.41 42.22 416 88.06 68.77 66.41

Table 6. VILA metrics, using the same setup from [(Heinrich et al., 2024), Table 9].

Figure 9. Visualization of RADIO’s SigLIP adaptor, using different teacher upsampling techniques.

B. Architecture Ablations
B.1. De-bias Module

Adding the de-bias module yields a positive improvement in fidelity across all featurizers studied. We show the changes in
fidelity metrics for all featurizers in table 7. We also demonstrate that this module helps for both FeatSharp and FeatUp, as it
occurs prior to upsampling, and is thus generally applicable. In figure 11, we visualize the learned biases, which are unique
to each featurizer, but also how these biases can sometimes be directly visible in the output features of these models. Most
obvious is SAM, which has windowing artifacts stemming from their use of windowed attention.

B.2. FeatSharp Architecture

Input Feature Selection Based on figures 2 and 3, there are important degrees of freedom in the design of the system. We
demonstrate in table 7 that including the de-bias module always improves the distribution matching fidelity. Here, we look
at some of the other design choices:

• Should we use bilinear upsampling, or FeatUp, for the low-res upsampler? (or both)
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Figure 10. Visualization of the differences between the FeatSharp or FeatUp algorithm, and bilinear upsampling.

• Should bilinear, tiling, or FeatUp be the residual pathway to the output?

• Should we use all three upsampling methods?

We show the results of this ablation in table 8 for both our noisiest featurizer (SigLIP), and our cleanest (RADIO) as a sanity
check that we aren’t overfitting to a particular featurizer. We also note that we’re relatively agnostic to the specific base
feature upsampler, allowing us to use other methods, such as ReSFU (Zhou et al., 2025), as future work.

We also visualize the resulting feature maps of the different input configurations in figure 12, as it’s hard to get a feel for
what this multi-view fidelity is telling us. It’s clear both in the metrics (table 8) and the visualization that just using one of
the three different feature maps largely retains the biases of those views (e.g. the bilinear result is roughly regular bilinear
upsampling, the FeatUp input looks like vanilla FeatUp, etc.). We can also see the profound impact on the resulting maps
based on which input feature map is the residual pathway. For the single input case, we can observe how the tile-only input
results in a distribution shift, apparent because the color space has largely shifted. Once we look at 2+ inputs, the color
spaces become consistent. Even though the bilinear-first configurations always have the highest fidelity, they also are clearly
the blurriest. This is perhaps not surprising given that FeatUp’s JBU upsampler has a strong edge prior, so incorporating it
into FeatSharp will also hone in on edge boundaries. Also, regardless of 2+ input configuration, we can see that FeatSharp is
able to refine the text, clearly leveraging the tile features. The similarity is very close to the tile-only input in that region. We
do notice that using “Bilinear + other(s)” yields the highest fidelities, but also that the resulting feature maps are relatively
blurry.

In order to not make an entire argument to prefer the use of FeatUp’s JBU as the low-res upsampler due to the prettiness of
the PCA features, we also consider alternative measures of the produced features. The Total Variation (TV) loss gives us
a sense of how much “noise” is present in the produced features, simply based on accumulating the differences between
neighbors. On its own, this doesn’t tell us much, but in conjunction with the multi-view-consistency fidelity, and when that
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Model FeatSharp 2x FeatSharp 4x FeatUp 2x FeatUp 4x
DFN CLIP 0.020 0.022 0.033 0.025
DINOv2-L 0.121 0.110 0.164 0.144
PaliGemma 0.017 0.021 0.030 0.023

RADIOv2.5-L 0.208 0.173 0.144 0.138
SAM-H 0.067 0.076
SigLIP 0.014 0.017 0.033 0.019

ViT 0.014 0.009 0.096 0.038

Table 7. The delta change in multi-view consistency fidelity when applying the learned de-bias buffer. Positive values mean that the
fidelity has improved, which is true for every model and upsampler tested.

Arch SigLIP RADIO
Fidelity ↑ TV Loss ↓ CRF Loss ↓ Fidelity ↑ TV Loss ↓ CRF Loss ↓

Single Input
Bilinear 1.466 0.135 0.137 4.599 0.061 0.071
FeatUp 1.440 0.020 0.051 3.870 0.025 0.047

Tiles 1.261 0.897 0.237 2.713 0.357 0.094
Two Inputs

Bilinear + Tiles 1.470 0.136 0.135 4.694 0.073 0.074
FeatUp + Tiles 1.460 0.072 0.062 4.173 0.076 0.057

Tiles + Bilinear 1.337 0.812 0.241 3.202 0.336 0.098
Tiles + FeatUp 1.323 0.821 0.228 3.157 0.337 0.094

Three Inputs
Bilinear First 1.469 0.138 0.137 4.682 0.072 0.073
FeatUp First 1.473 0.063 0.065 4.202 0.064 0.057

Tiles First 1.339 0.800 0.238 3.238 0.334 0.098

Table 8. Ablation over different FeatSharp-2x configurations. Single Input means that we only supply the respective buffer to the FeatSharp
module. For “Two Inputs“, we compare different low-res upsamplers in conjunction with tiling, and also the residual pathway, where the
first value indicates the residual path. The FeatSharp module must integrate the information from the other value into the residual. “Three
Inputs” is similar to Two, except that we only care about which buffer is the residual path, owing to the fact that there’s no intrinsic order
preference in the weights for the secondary buffer(s). “TV Loss” stands for Total Variation Loss (Rudin et al., 1992). CRF is Conditional
Random Field, and is essentially measuring how similar the semantics of two nearby RGB pixel patches are based on how similar the
RGB values are. TV and CRF losses were not included in the gradient during training.

fidelity is roughly equal, it might be reasonable to assume that less variation is better. We can see in table 8 that the use of
FeatUp does indeed reduce this for SigLIP, but has the opposite effect on RADIO. The other prior that we consider is the
CRF loss, which approximately translates to the idea that nearby regions that have a similar RGB color should probably also
have similar semantics. The JBU also does a good job of reducing this for our noisiest SigLIP model, as well as for RADIO.
It stands to reason that spurious model noise is penalized by CRF because it breaks visual/semantic correspondence. For
both TV and CRF losses, we capture the metrics, but they do not participate in the gradient. So, we’re purely measuring the
latent behaviors.

An alternative argument, which doesn’t require hand waving about whether less variance is a good thing, or if spatio-semantic
similarity is necessarily good, we turn to Maximum Mean Discrepancy (MMD, (Gretton et al., 2012)) which is precisely
defined as a way to test whether two sets of observations X := {x1, ..., xm} and Y := {y1, ..., yn} are sampled from the
same distribution. It has the clear advantage in our setup in that m doesn’t have to be equal to n, or rather, we can have a
different number of samples in X than that in Y . Because we’re upsampling, if we let the low-res distribution be X , then
the high-res distribution can be Y , and then n = u2m with u being the upsampling factor. Given a radial basis function
kernel (RBF)

k(x, y) = e−γ∥x−y∥2

(10)

then we have
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Figure 11. Visualization of the learned position biases for different models. All models have a bias signature, however some have very
noticeable artifacts, which we visualize for SigLIP, PaliGemma, and SAM, where it’s possible to see the artifacts in multiple different
images and scales. We display the biases of the less apparent models in the bottom row.
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((Gretton et al., 2012), Eq 3)

we select γ = med(∥xi − xj∥2) i ̸= j. We then collect results for Fidelity, TV Loss, CRF Loss, and MMD, for 4×
upsampling, and display the results in table 9. We collect these results for SigLIP, DFN CLIP, and RADIO. It is clear that
FeatSharp achieves the highest upsampling fidelities across the board. FeatUp produces the lowest TV and CRF losses. It
achieving the lowest TV loss is intuitive given how smooth it tends to make object interiors, seen in the pca visualizations.
We can see that the lower TV and CRF losses extends to FeatSharp when we apply JBU upsampling, as it achieves lower
values than using bilinear upsampling for the residual pathway. The “JBU + Tiles” FeatSharp variant also does better
on MMD versus “Bilinear + Tiles” across the board. It’s curious that JBU alone has the worst MMD (probably due to
over-smoothing), but the best when incorporated into FeatSharp (probably owing to smoothing out the noise). We can
also see that generally either “X + Tiles” FeatSharp method produces similar fidelities, aside from RADIO, where bilinear
actually does do a bit better. Most likely, this is because RADIO features are themselves already fairly clean, and at some
point, the structural priors of JBU actually hurt, because they’re eliminating some of the raw signal that bilinear upsampling
preserves. In this case, the model always has access to the raw low-res signal with bilinear upsampling because we use an
integer multiple upsampling factor, and our local attention window size is larger than this multiple. Given the totality of
evidence, we choose to select “JBU + Tiles” as the default upsampling mechanism, as it’s either the best, or nearly so, across
the board, and particularly, it does better with the vision models that are not able to natively change their resolution very
well. We also note that newer methods, as they emerge, could serve as better core upsampler modules than bilinear/JBU,
and can be trivially swapped in.
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Figure 12. Feature visualizations of different input configurations for 2x upsampling.
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Upsampler
Featurizer (4× Upsample, Long Recipe)

SigLIP DFN CLIP RADIO
Fidelity ↑ TV ↓ CRF ↓ MMD ↓ Fidelity ↑ TV ↓ CRF ↓ MMD ↓ Fidelity ↑ TV ↓ CRF ↓ MMD ↓

Bilinear 1.348 0.048 0.129 0.016 1.284 0.051 0.088 0.015 3.796 0.023 0.071 0.003
FeatUp (JBU) 1.375 0.009 0.047 0.025 1.326 0.012 0.032 0.023 3.680 0.015 0.064 0.003

Bilinear + Tiles 1.522 0.105 0.093 0.020 1.484 0.167 0.062 0.014 5.921 0.112 0.073 0.001
JBU + Tiles 1.580 0.103 0.077 0.017 1.493 0.157 0.046 0.013 5.898 0.095 0.065 0.001

Table 9. Metrics for 4× upsampling across SigLIP, DFN CLIP, and RADIO. We primarily compare whether to use bilinear or JBU
upsampling for the residual branch of the FeatSharp module, but also report the same values for our two baseline methods, bilinear
upsampling itself, and FeatUp (aka JBU upsampling).
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Figure 13. Ablation study over the choice of window size and upsampling factor for the FeatSharp module.

Local Attention Window Size In figure 13 we run an ablation over local attention window sizes between 1 and 11. We
notice that either 3 or 5 appear to be optimal.

Do We Even Need Attention/MLP? As can be seen in figure 13, the choice of window size has a very small impact on
the resulting fidelity. However, we can also see that FeatSharp is achieving much higher fidelity scores than Bilinear and
FeatUp. So, we also study what effect the attention block, and the MLP, are having on the resulting quality. We use the
“Bilinear + Tile” input configuration from section B.2, and when applicable, use a window size of 5 from section B.2. We
show these results in table 10. We notice that it’s not until the long recipe where at inclusion of attention is helpful, and that
goes a long way toward explaining the relative insensitivity to the window size in figure 13. Inspired by figure 12, we notice
that the longer training recipe results in much sharper images. In table 10 we study the effect of running just the MLP for
the “Long” recipe. We can see that while the fidelity continues to improve, it doesn’t keep up with the “Attention + MLP”
setting, demonstrating that the attention module is indeed helpful.

C. Implementation Details
Upsampler Training We leverage the same training harness as in FeatUp (Fu et al., 2024), including leveraging the same
attention downsampler. We disable the use of the CRF loss that was present in the FeatUp config. Parameters in table 11.

Modules

Fidelity
SigLIP RADIO

2× Upsample 4× Upsample 2× Upsample 4× Upsample
Short Long Short Long Short Long Short Long

Linear 1.521 1.581 1.508 1.566 4.702 5.397 4.926 5.701
Attention 1.505 1.566 1.500 1.560 4.410 5.253 4.656 5.446

MLP 1.522 1.581 1.506 1.566 4.741 5.397 4.934 5.707
Attention + MLP 1.513 1.584 1.502 1.568 4.668 5.502 4.849 5.711

Table 10. Fidelity metrics for different combinations of blocks in the FeatSharp module (3). The “Long” recipe trains for 3× longer
than the short recipe. We only study the “MLP” vs “Attention + MLP” configurations in the long recipe because those were the top two
configurations in the short recipe.
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Hyperparameter FeatUp JBU Regular Long
Num GPUS 1 8 8

Batch Size (per GPU) 4 4 4
Batch Size (total) 4 32 32

Num Steps 2,000 3,000 9,000
Optimizer NAdam NAdam NAdam

Learning Rate 0.001 1e-4 1e-4
Downsampler Attention (k=7) Attention (k=7) Attention (k=7)

Num Jitters 5 5 5
CRF Weight 0.001 0 0

TV Weight 0 0 0
Feature Normalization LayerNorm PHI-S PHI-S

Dataset COCO SA-1B SA-1B
Multi-view Augs Scale, Shift Scale, Shift, HFlip, Rotate, Perspective

Table 11. Training hyperparameters. “FeatUp JBU” refers to the settings in the official https://github.com/mhamilton723/FeatUp. Unless
otherwise specified, we report numbers based on the “Long” schedule, which includes FeatUp reproduction values, to maintain fairness.

RADIO Training We follow the staged setup in (Heinrich et al., 2024) section 4.2, with stages 1 and 2 being exactly
identical. For stage 3, in the hi-res student branch, instead of bilerp downsampling the student features to match DFN CLIP
and SigLIP (RADIOv2.5 baseline), we use our various upsampling methods to create hi-res feature maps which the student
matches. We use our trained 3× upsamplers for the task, as they’re the smallest factor that produces feature maps larger
than RADIO’s hi-res partition. For FeatSharp, because we have the learned de-bias buffer which operates on the original
model resolution, we also choose to apply this to the teachers in the low-res partition, as it represents the fixed bias of the
teacher model, and is thus not particularly useful information.

D. Additional Benchmarks
D.1. Probe3d

In table 12 we show the result of various configurations in Probe3d’s (El Banani et al., 2024) depth probing for both DFN
CLIP and RADIO. We can see that FeatUp produces the best results, however, we also demonstrate that this is likely due to
the strong structural prior to the method, as the single best configuration was to use a FeatUp JBU stack with randomly
initialized weights. Both FeatUp and FeatSharp are able to strongly improve over any configuration of regular DFN CLIP.
For RADIO, we can see that both FeatUp and FeatSharp are still able to improve over baseline, albeit the margins are much
smaller. While FeatSharp 4× does achieve the highest scores, the margin is too small to be significant compared to 2× and
FeatUp, but still better than baseline. We observe essentially the same trend in table 13, where the random JBU stack works
the best for DFN CLIP, and then FeatUp/FeatSharp are comparable for RADIO.

D.2. NYUDv2

We also report metrics on NYUDv2 (Nathan Silberman & Fergus, 2012) in table 14 for both DFN CLIP and RADIO, similar
to Probe3d configurations. We use the MLoRE (Yang et al., 2024b) harness and their conv probing for all configurations.
We only use features from the final layer of the models. We can see here that unlike Probe3d, FeatSharp does a noticeably
better job than FeatUp across the board, and with FeatSharp 2×, we get the strongest results for DFN CLIP. For RADIO, it’s
much tighter between FeatSharp and Baseline, however, FeatSharp is significantly better than FeatUp.

E. Throughput Analysis
E.1. Empirical Throughput

In (6), using f(x) = c(1 + x2) (e.g. non-progressive tiling), we predict that based on the quadratic scaling of attention,
theoretically FeatSharp should always be cheaper than running the base model at the upsampled resolution. FeatSharp’s
cost is linear in the number of tokens, whereas a ViT is quadratic. In figure 14, we show the results of this prediction on
actual hardware. As can be seen with the “Actual” curve, the picture is a bit more complex than pure quadratic scaling, as
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Vision Encoder Input Res Upsampling Method Output Tokens Depth (Scale Aware) Depth (Scale Invariant)
d1 ↑ d2 ↑ d3 ↑ RMSE ↓ d1 ↑ d2 ↑ d3 ↑ RMSE ↓

DFN CLIP

3782 - 272 0.303 0.575 0.772 0.168 0.440 0.710 0.842 0.134
7562 - 542 0.291 0.558 0.757 0.173 0.426 0.695 0.829 0.140
15122 - 1082 0.280 0.535 0.733 0.181 0.399 0.664 0.805 0.152
3782 2× Upsample features 542 0.301 0.573 0.773 0.168 0.443 0.713 0.844 0.133

(2× 2)× 3782 Tiling 542 0.248 0.489 0.697 0.193 0.354 0.616 0.771 0.165
(4× 4)× 3782 Tiling 1082 0.218 0.434 0.634 0.212 0.317 0.567 0.732 0.184

3782 FeatUp 2× 542 0.430 0.712 0.851 0.128 0.538 0.793 0.894 0.107
3782 FeatUp 4× 1082 0.435 0.716 0.853 0.128 0.542 0.796 0.896 0.107
3782 FeatUp 4× (Random Weights) 1082 0.440 0.723 0.858 0.126 0.554 0.805 0.900 0.105
3782 FeatSharp 2× 542 0.398 0.685 0.837 0.136 0.512 0.772 0.882 0.113
3782 FeatSharp 4× 1082 0.419 0.705 0.847 0.131 0.527 0.785 0.890 0.109

RADIO

5122 - 322 0.472 0.749 0.873 0.118 0.584 0.827 0.916 0.097
10242 - 642 0.478 0.756 0.877 0.115 0.589 0.831 0.918 0.095
20482 - 1282 0.456 0.739 0.868 0.120 0.571 0.820 0.911 0.099
5122 FeatUp 2× 642 0.482 0.764 0.885 0.114 0.606 0.840 0.921 0.092
5122 FeatUp 4× 1282 0.481 0.763 0.885 0.114 0.604 0.838 0.920 0.092
5122 FeatSharp 2× 642 0.480 0.766 0.887 0.113 0.604 0.840 0.923 0.091
5122 FeatSharp 4× 1282 0.487 0.769 0.888 0.112 0.610 0.843 0.924 0.090

Table 12. Probe3D - Depth metrics. Linear probe over output features. “Random Weights” refers to a randomly initialized, untrained,
model.

Vision Encoder Input Res Upsampling Method Output Tokens Recall
Avg 0.01m 0.02m 0.05m

DFN CLIP

3782 - 272 49.26 26.02 44.47 77.30
7562 - 542 47.06 23.55 41.72 75.89
15122 - 1082 41.59 18.08 35.30 71.41
3782 FeatUp 2× 542 54.40 30.99 51.20 81.02
3782 FeatUp 4× 1082 54.62 31.05 51.45 81.36
3782 FeatUp 4× (Random Weights) 1082 55.72 32.23 53.05 81.89
3782 FeatSharp 2× 542 53.00 31.21 49.05 78.73
3782 FeatSharp 4× 1082 53.62 31.49 49.60 79.77

RADIO

5122 - 322 59.49 37.20 56.44 84.82
10242 - 642 58.23 37.21 54.70 82.77
20482 - 1282 57.22 34.99 53.53 83.15
5122 FeatUp 2× 642 60.39 38.52 57.51 85.16
5122 FeatUp 4× 1282 60.72 39.01 57.87 85.29
5122 FeatSharp 2× 642 60.69 40.11 57.95 84.02
5122 FeatSharp 4× 1282 60.46 39.95 57.61 83.81

Table 13. Probe3D - NAVI Correspondence. “Random Weights” refers to a randomly initialized, untrained, model.

between 1x and 3x upsample factors, the scaling is actually sub-linear, which likely reflects the period where self-attention
is memory bound, and not compute bound, thus adding extra tokens doesn’t proportionally increase the cost. Specifically, at
1.85x upsampling, we achieve the lowest time per token, and from then on, the cost approximately linearly increases (note
that time per token is the first derivative of the time per image, so linear growth implies quadratic scaling, as predicted).
Because FeatUp only runs the featurizer once, and its upsampling operation is cheap, we can see that it achieves strong
scaling regardless of resolution. FeatSharp requires u2 + 1 inferences with u being the upsample factor, so its cost is higher.
Likely due to non-optimal kernels, we can see that FeatSharp does start operating faster than the base model until about 3.3x
upsampling (≈ 12602px). However, also as predicted by (6), FeatSharp’s scaling is linear.

E.2. Proof of Equation 6

The progressive form of equation 6 is defined as f(x) =
∑x

i=1 i
2, and the regular form of self-attention is g(x) = cx4, with

x being the upsampling factor per-side, and c being the cost to evaluate at the base resolution. We want to show that:

f(x) ≤ g(x) ∀x > 1 (11)

We start by rewriting the series for f(x) in closed form

f(x) = c
x(x+ 1)(2x+ 1)

6
(12)
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Vision Encoder Input Res Upsampling Method Output Tokens SemSeg mIoU ↑ Depth RMSE ↓ Surf Normals ↓ Edge Loss ↓

DFN CLIP

3782 - 272 53.15 0.551 23.49 0.130
7562 - 542 51.11 0.589 23.33 0.127
3782 FeatUp 2× 542 52.51 0.589 23.66 0.129
3782 FeatUp 4× 1082 52.45 0.601 24.15 0.129
3782 FeatSharp 2× 542 54.29 0.579 23.14 0.126
3782 FeatSharp 4× 1082 53.74 0.615 23.93 0.125

RADIO

5122 - 322 60.80 0.486 19.45 0.127
10242 - 642 62.15 0.479 18.55 0.123
5122 FeatUp 2× 642 60.64 0.490 19.32 0.124
5122 FeatUp 4× 1282 60.55 0.493 19.57 0.125
5122 FeatSharp 2× 642 62.23 0.485 19.25 0.123
5122 FeatSharp 4× 1282 61.71 0.511 19.82 0.122

Table 14. Multitask metrics on NYUDv2 (Nathan Silberman & Fergus, 2012) using the MLoRE (Yang et al., 2024b) convolutional probe
harness.

which is the sum of squares sequence multiplied by c. So now

f(x) ≤ g(x) ⇐⇒ x(x+ 1)(2x+ 1)

6
≤ x4 (13)

Given that c > 0 and that it’s a constant factor on both sides, we can eliminate it.

2x3 + 3x2 + x ≤ 6x4 (14)

and with x > 0, we can further simplify to

2x2 + 3x+ 1 ≤ 6x3 (15)

6x3 − 2x2 − 3x− 1 ≥ 0 (16)

(x− 1)(6x2 + 4x+ 1) ≥ 0 (17)

and thus x− 1 ≥ 0 ∀x ≥ 1, and also 6x2 + 4x+ 1 > 0 ∀x ∈ R. Therefore, f(x) ≤ g(x) ∀x > 1.

F. Effects of “Over-Tiling”
In figure 8, we can see that RADIO had learned some idiosyncratic representations when using the Tile and S2 upsampling
algorithms. The effects are also apparent in figure 9 where color spaces can entirely flip. To understand what’s happening,
we rely on the pretrained RADIOv2.5-L model, which has strong scale equivariance properties (Heinrich et al., 2024), and
first see that as the number of tiles increases, the MSE error between the brute-force inference at a given resolution and
the tiling of that resolution, increases. We show these results in figure 15. Visually, we argue that the major increases in
MSE owes largely to regions that lack context, making it difficult for the encoder (in this case RADIO), to come up with a
reasonable representation of the tile-crop. We visualize this in figure 16. Notably, we can see that the 8× 8 tiling difference
images are generally whiter, indicating a general drift towards higher error. We can also see particular tiles that have more
error, such as the notecard in row 4, which gets nearly forgotten due to context. We can also see that there are a lot of errors
with the car on row 5. The bottom center of the floor on row 6 has the same issue. So, while there appears to be a general
upward error drift, it’s exacerbated in regions without much variation.

G. FeatUp’s Two Methods
The FeatUp (Fu et al., 2024) paper presented two methods for feature upsampling: The JBU-Stack, and the Implicit network.
The resulting quality of these two approaches are quite different, with the implicit network producing much finer detailed
maps, but having the major drawback that it requires training a network per-image, and is thus computationally prohibitive
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Figure 14. Throughput of a ViT-H/14 model (e.g. DFN CLIP) achieved with an A100 GPU, BS=1. The blue “Actual” curve reflects the
time per token spent at various resolutions by the base model. “Linear Scale” assumes a constant time per token, based on the cost of
1x upsample factor. Note that “Time Per Token” is effectively the first derivative of “Time Per Image”, so a linear growth in per-token
represents quadratic growth in per-image.

(1̃ minute per image). The JBU stack is effective at preserving edges, but also has the effect of over-blurring object interiors.
We show Figure 5 from (Fu et al., 2024) in our figure 17.
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Figure 15. MSE error between brute-force evaluation of RADIOv2.5-L at a given resolution (512px2 ∗ (tile-level) and the tiling at the
same resolution.
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4x Upsampling 8x Upsampling

Real 4x Tile 4x Diff 4x Real 8x Tile 8x Diff 8x

Figure 16. Visualization of the errors between running RADIOv2.5-L at a given resolution, and the equivalent of tiling it at the same
resolution. The difference images are black when there is no difference, and white where there are large differences. The difference is
computed as the euclidean distance of the full features, not their PCA projections.
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Figure 17. FeatUp’s two upsampler algorithms. Taken directly from their (Fu et al., 2024) Figure 5.
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