TOWARDS ALIGNED DATA FORGETTING VIA TWIN MACHINE UNLEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern privacy regulations have spurred the evolution of machine unlearning, a technique enabling a trained model to efficiently forget specific training data. In prior unlearning methods, the concept of "data forgetting" is often interpreted and implemented as achieving zero classification accuracy on such data. Nevertheless, the authentic aim of machine unlearning is to achieve alignment between the unlearned model and the gold model, *i.e.*, encouraging them to have *identical* classification accuracy. On the other hand, the gold model often exhibits non-zero classification accuracy due to its generalization ability. To achieve aligned data forgetting, we propose a Twin Machine Unlearning (TMU) approach, where a twin unlearning problem is defined corresponding to the original unlearning problem. Consequently, the generalization-label predictor trained on the twin problem can be transferred to the original problem, facilitating aligned data forgetting. Additionally, we introduce a noise-perturbed fine-tuning scheme to balance the trade-off between retaining the model's generalization ability and enhancing its resilience to Membership Inference Attacks. Comprehensive empirical experiments illustrate that our approach significantly enhances the alignment between the unlearned model and the gold model. The code is available here.

028 1 INTRODUCTION

029 030 N

004

010

011

012

013

014

015

016

017

018

019

021

022

024

025

026 027

Machine learning model providers tend to collect extensive data from the Internet and utilize it to train their machine learning models. The recent introduction of data privacy and protection regulations (European Union's GDPR Regulation (2018), and California Consumer Privacy Act (CCPA) Goldman (2020)) obligate these model providers to comply with the request-to-delete Dang (2021) from the data owner. For example, a corporation offering facial recognition services might acquire facial images from the Internet to train their facial recognition models. Subsequently, a user might discover that the company has utilized his/her facial images in model training. In such a scenario, the user reserves the right to petition the company to revise the facial recognition model to forget his/her facial image data.

The straightforward solution is to entirely discard the trained model, delete his/her facial images from the training data, and re-train a new model from scratch (*i.e.*, called *gold model*). Unfortunately, re-training from scratch is expensive. Therefore, machine unlearning Garg et al. (2020); Ginart et al. (2019); Cao & Yang (2015); Gupta et al. (2021); Sekhari et al. (2021); Brophy & Lowd (2021); Ullah et al. (2021) has garnered considerable attention, aiming to *efficiently revise* a trained model to forget a cohort of training data, without affecting the performance on the remaining data.

In most prior unlearning methods Graves et al. (2021); Tarun et al. (2023), the "forgetting" of a 045 cohort data D_f is commonly interpreted and implemented by decreasing the classification accuracy 046 on D_f as much as possible, i.e., pursuing zero accuracy $ACC_{D_f}^{unlearn} = 0$. This implementation 047 works well when forgetting an entire class k (i.e., $D_f = D_k$). However, it is not suitable when 048 the aim is to forget only a subset of class k (*i.e.*, $D_f \subset D_k$). In this case, even though D_f are not involved in the training of the gold model, the remaining samples from class k (i.e., samples 050 $\in (D_k - D_f)$) are still involved in training. Thus, the gold model has ability to recognize class k. 051 Consequently, the gold model can still correctly classify a portion of D_f due to its generalization 052 ability, resulting in $ACC_{D_f}^{gold} \neq 0$. As we know, the actual aim of machine unlearning is to obtain an unlearned model that is well aligned with the gold model. Here, "align" implies requiring the 054

055

056

058 059

060

061

062 063

064 065

067

068

Figure 1: Construction of the Twin Model and corresponding Twin Unlearning Problem.

unlearned model to possess the *identical* classification accuracy as the gold model. Obviously, it is not appropriate to pursue $ACC_{D_f}^{unlearn} = 0$.

In this paper, we denote the samples $x \in D_f$ that can be correctly classified by the gold model as the 'easy' samples. Conversely, the samples that cannot be correctly classified are referred to as the 'hard' samples. As these easy/hard labels for D_f are defined based on the model's generalization ability, we refer to them as generalization-labels. Therefore, a well-aligned unlearning algorithm should specifically decrease the classification accuracy on hard samples rather than all samples in D_f . In other words, it is essential to first identify the hard samples from D_f , and subsequently reduce the classification accuracy on such samples. However, since the gold model is unknown, obtaining these generalization-labels becomes challenging. This is the reason why prior unlearning methods have to adopt achieving zero classification accuracy as the objective of data forgetting.

In this paper, we aim to achieve aligned data forgetting. To this end, we propose to train a binary classifier to predict the generalization-labels for D_f . With these predicted labels, D_f is partitioned into an easy subset D_f^e and a hard subset D_f^h . Subsequently, we specifically decrease the classification accuracy on D_f^h , while retaining the classification accuracy on D_f^e . The most challenging aspect of our approach lies in training such a binary classifier on a specific dataset, which involves two subchallenges: (1) Build a specific labeled dataset for training the binary classifier; (2) Construct a discriminative representation for the binary classifier.

To address the first challenge, we formulate a twin unlearning problem corresponding to the original one. Specifically, the original model M_o is fine-tuned with D_{test} to produce the **Twin Model** M_t . As a result, in the context of M_t , the original model M_o can be seen as analogous to M_t 's gold model (*i.e.*, $M_t^g = M_o$), where D_{test} can be seen as analogous to M_t 's forgetting data, as shown in Fig.1. In another word, given a trained model M_t , the **Twin Unlearning Problem** is to forget D_{test} from M_t . Note that in the twin unlearning problem, the gold model is known $M_t^g = M_o$.

The reason for formulating such a twin unlearning problem is that we can easily obtain a labeled dataset – the dataset D_{test} . Since the gold model of the twin unlearning problem is known (*i.e.*, M_o), we can easily obtain the generalization-labels for D_{test} , specifically by employing M_o to make class predications on D_{test} .

Regarding the second challenge, we propose to integrate three complementary features, each pos-095 sessing strong discriminability to distinguish between easy and hard samples. (1) The first feature 096 is the Distance Feature (DF). For each sample x in D_f , we identify its nearest neighbor in D_r , and the distance between them is considered as a feature. Intuitively, if x is an easy sample, it 098 typically has similar samples in D_r , resulting in a small distance. In contrast, the distance feature 099 for a hard sample tends to be large. (2) The second feature is the Adversarial-attack Feature (AF). 100 We construct this feature by employing adversarial attacksMadry et al. (2017); Goodfellow et al. (2014); Moosavi-Dezfooli et al. (2017), which aim to fool a trained model into making incorrect 102 predictions with small adversarial perturbations. Clearly, hard samples are more vulnerable to ad-103 versarial attacks compared to easy samples due to their proximity to the decision boundary. Hence, 104 the results of adversarial attack can be considered a discriminative feature.(3) The third feature is the Curriculum-learning-loss Feature (CF). Curriculum learning theory Kumar et al. (2010); Tullis 105 & Benjamin (2011); Bengio et al. (2009) suggests that easy samples are learned earlier than hard samples. Therefore, the loss value of the first fine-tuning epoch is considered a feature to distinguish 107 between easy and hard samples.

At last, in addition to reducing the classification accuracy on the hard subset D_f^h , it is equally crucial to maintain the model's generalization ability on the easy subset D_f^e , ensuring model can correctly classify those samples. A naive approach to achieving this is by directly minimizing their classification loss during machine unlearning. However, such an approach would leave the model vulnerable to Membership Inference Attack (MIA), which is commonly used to assess the success of data forgetting. To address this, we propose a noise-perturbed fine-tuning scheme. This scheme minimizes the classification loss on a *noise-perturbed* version of D_f^e . By doing so, we could strike a balance between preserving the model's generalization ability and enhancing its resilience to MIA.

- Overall, we summarize our contributions as follows.
 - We emphasize alignments in data forgetting and introduce a Twin Machine Unlearning (TMU) approach to enhance such alignments.
 - We devise three discriminative features to distinguish easy and hard samples, employing adversarial attack and curriculum learning strategies.
 - To withstand the assessment of data forgetting from MIA, we propose a noise-perturbed fine-tuning scheme to enhance model's resilience to MIA.

2 PROBLEM OF DATA FORGETTING

Let $D = \{x_i, y_i\}_{i=1}^N$ be a dataset of images x_i , each with a label $y_i \in \{1, \dots, K\}$ representing a class. The original model $M_o(\theta)$ is trained with the D, which could be a DNN with parameters θ .

Let D_f be a subset of the D, whose information we want to forget from the trained model $M_o(\theta)$. The D_f is called the *forgetting data*, which could be *all* or *some* of the data with a given label k, *i.e.*, corresponding to forgetting an entire class or a subset of a class, respectively. In this paper, we are particularly interested in the case of forgetting *data* is denoted by D_r , whose information is desired to be kept unchanged in the model. D_f and D_r together represent the entire training set D and are mutually exclusive, *i.e.*, $D_r \cup D_f = D$ and $D_r \cap D_f = \emptyset$.

Since D_f has been used to train the $M_o(\theta)$, the model parameters θ will contain information about D_f . The task of data forgetting aims to **forget the information of** D_f **from the trained model** $M_o(\theta)$. The ideal solution is to train a new model from scratch with D_r , which is denoted as the gold model $M_o^g(\theta_r)$. However, obtaining the gold model is time-consuming due to the expensive re-training procedure. Thus, the practical data forgetting aims to efficiently revise the original model θ with a 'scrubbing/forgetting' function s(), so that the revised model $s(\theta)$ is as close to the gold model θ_r as possible. The s() is often implemented by a machine unlearning algorithm.

145 146

147

116

117 118

119

121

122 123

125 126

127 128

2.1 ALIGNMENT IN DATA FORGETTING

The model alignment is often measured by some metrics (called *readout functions* Golatkar et al. (2021)), such as: (i) accuracy on the test set D_{test} , *i.e.*, $ACC_{D_{test}}$; (ii) accuracy on the forgetting data D_f , *i.e.*, ACC_{D_f} ; (iii) accuracy on the remaining data D_r , *i.e.*, ACC_{D_r} . Achieving alignment on $ACC_{D_{test}}$ and ACC_{D_r} is straightforward, as the target is to increase them as much as possible. In contrast, the challenge lies in aligning the ACC_{D_f} , *i.e.*, the unlearned model is desired to have the same classification accuracy as the gold model $ACC_{D_f}^{unlearn} = ACC_{D_f}^{gold}$. Since the gold model is unknown, obtaining its $ACC_{D_f}^{gold}$ is impossible, let alone achieving accuracy alignment.

As a result, prior unlearning methods tend to replace this objective with a surrogate objective, *i.e.*, decreasing the accuracy ACC_{D_f} as much as possible. For the case of forgetting an entire class, this implementation is acceptable since, after removing an entire class, the gold model tends to have $ACC_{D_f}^{gold} = 0$, aligning with the surrogate objective. However, in the case of forgetting a subset of class, the remaining data will still contain samples of the forgetting class. Due to the generalization ability of gold model, the gold model may correctly classify some samples in D_f , *i.e.*, $ACC_{D_f}^{gold} \neq 0$. Thus, we have to carefully consider the alignment challenges.

Figure 2: The workflow of our approach. We first construct the twin model by fine-tuning the M_{o} with D_{test} to produce M_t . And then, we extract discriminative features and train a binary classifier on D_{test} . Consequently, we transfer the binary classifier to the original problem to predict the generalization-labels on D_f . Finally, we reduce classification accuracy on D_f^h .

Furthermore, as highlighted by Golatkar et al. (2020a), implementing data forgetting by merely decreasing ACC_{D_f} may give rise to other issues such as information exposure. For instance, it could lead to the Streisand effect. This effect describes unexpected model behavior on forget samples, potentially leaking information about that data. If the samples in D_f are consistently misclassified, it might raise suspicious. Therefore, it is crucial to emphasize the alignment in data forgetting.

3 **OUR APPROACH**

3.1 TWIN UNLEARNING PROBLEM

In our approach, we first construct a new unlearning problem corresponding to the original one. As 190 shown in the left part of Fig.2, for the original unlearning problem, we have an original model M_o that is trained with $D_r + D_f$. Our task is to get an unlearned model M_u from M_o , so that M_u is well 192 aligned with the gold model M_{ρ}^{q} . The M_{ρ}^{q} is a model trained from scratch only with D_{r} . 193

As shown in the right part of Fig.2, if we fine-tune the M_o with another dataset D_{test} , we obtain a 194 new model, namely the twin model M_t . Consequently, we can construct a twin unlearning problem: we regard the M_t as the "original model" for the twin problem, which is trained with $D_r + D_f + D_{test}$. 196 We regard the D_{test} as the "forgetting data". Thus, our twin unlearning problem is defined as: 197

Given a trained model M_t , the unlearning task is to forget D_{test} from M_t .

Obviously, the twin problem's "gold model" M_t^g is known, which is exactly the original problem's original model M_o ,

203 204 205

199

200 201

202

174

175

176

177 178 179

181

182

183

185

186 187 188

189

191

$$M_t^g = M_o \tag{1}$$

Regarding the constructed twin unlearning problem, since its gold model M_t^g is known, we can eas-206 ily obtain the ground-truth generalization-labels for its forgetting data D_{test} , *i.e.*, run the inference 207 of the model M_t^g over the D_{test} to obtaining the classification results. So far, we have build a 208 specific labeled dataset. We can train a binary classifier f() to distinguish between hard and easy samples on D_{test} for the twin problem. 210

It is usually to assume that D_{test} and D_f have independent and identical distribution (I.I.D). Thus, 211 the binary classifier f() can be transferred from the twin problem back to the original unlearning 212 problem for predicting the generalization-labels on D_f . In this way, we can effectively partition 213 D_f into a hard subset D_f^h and an easy subset D_f^e . Finally, when solving the original unlearning 214 problem, we can fine-tune the original model M_o by reducing classification accuracy on D_f^h (i.e., 215 maximizing its loss value) while retaining the accuracy on D_f^e (*i.e.*, maximizing its negative loss value), as follows:

218 219

$$\max_{\theta} (L_{D_f^h}(x, y; \theta) - L_{D_f^e}(x, y; \theta))$$
(2)

This naive unlearning approach can properly address the alignment challenge in data forgetting. However, our empirical study shows that it cannot afford the examination of Membership Inference Attack (MIA). MIA was initially introduced to determine whether a sample was included in a model's training set. More recently, it has been employed to assess the effectiveness of data forgetting. If the MIA asserts that a forgotten sample belongs to the training data, we conclude that the unlearning algorithm has failed to forget this data.

MIA typically operates by evaluating the loss value of a sample—if the loss is below a certain threshold, the sample is presumed to belong to the training set. In our naive unlearning approach with Eq(2), the loss for D_f^e is minimized, which leads MIA to regard D_f^e as part of the training set.

To withstand the examination of MIA, it is essential to convince MIA that D_f^e has indeed been forgotten, while simultaneously ensuring that the unlearned model retains its ability to generalize and recognize D_f^e . To achieve this, we propose an enhanced unlearning approach as Eq.equation 3, designed to minimize the loss value for a noise-perturbed version of D_f^e , denoted as \tilde{D}_f^e . This can be formulated as follows:

$$\max_{\theta} (L_{D_{f}^{h}}(x, y; \theta) - L_{\widetilde{D}_{f}^{e}}(\widetilde{x}, y; \theta))$$

$$\text{where } \widetilde{D}_{f}^{e} = \{\widetilde{x} | \widetilde{x} = x + r, x \in D_{f}^{e} \}$$

$$(3)$$

where a Gaussian noise r is added to each sample in D_{f}^{e} .

Since the loss value for D_f^e is not directly minimized, our enhanced approach can withstand the examination of MIA. At the same time, by minimizing the loss on \tilde{D}_f^e —a noise-perturbed version of D_f^e —the unlearned model retains its generalization ability on D_f^e , as the introduced noise r is not large. Particularly, there exists a balance between preserving the model's generalization ability and enhancing its resilience to MIA. We can make a trade-off by selecting an appropriate noise level r, increasing the noise level enhances resilience to MIA, while decreasing it improves the model's generalization ability.

246 247 248

259

235

236

237

3.2 DISCRIMINATIVE FEATURES

Besides building a specific labeled dataset for training the binary classifier, another core of our approach is to construct discriminative features for the classifier. Briefly, we propose to integrate three complementary features by employing adversarial attack and curriculum learning strategies.

253 3.2.1 DISTANCE FEATURE (DF)

In the case of forgetting a subset of a class k, the remaining data D_r will still contain samples belonging to the forgetting class k. Therefore, for each sample $x \in D_f$, we can find some samples $x' \in D_r$ similar to x. The similarity can be measured by the distance l(x, x') with respect to a feature extractor g(),

l(x, x') = |g(x) - g(x')|(4)

For each $x \in D_f$, we can identify the top-N similar samples $x'_i \in D_r$, (i = 0, ..., N - 1). Intuitively, these distances $l(x, x'_i)$ for an easy sample would be smaller than that for a hard sample. Thus, the concatenation of these top-N distances $l(x, x'_i)$, (i = 0, ..., N - 1) can be regarded as a discriminative feature to distinguish between easy and hard samples. In practice, we adopt the activation value of the penultimate layer (*i.e.*, the layer just before the last fully-connected layer) as the g().

267 3.2.2 ADVERSARIAL-ATTACKING FEATURE (AF)

Whether a sample can be correctly generalized or not (*i.e.*, belong to a easy or hard sample) is closely related to the positional relation between it and the classification boundary. If it is near the boundary,

it is hard to correctly classify it with high confidence. Thus, the easy samples often stay far from the boundary, while the hard samples tend to stay near the boundary.

In order to leverage such positional relation knowledge to distinguish between easy and hard samples, we employ the untargeted adversarial attack technique. As we know, given any sample x, we can generate a corresponding adversarial sample \tilde{x} whose classification result is different from its ground-truth label. The adversarial sample \tilde{x} is often generated by perturbing x with a certain perturbation r. The perturbation r is typically constrained by a certain attack budget ϵ , as follows,

$$\max_{\boldsymbol{r}} L(\tilde{\boldsymbol{x}}, y; \theta) \tag{5}$$

278 279

The essence of adversarial attack is to move x across the classification boundary, *i.e.*, changing the classification result. Thus, given a sufficiently large budget ϵ , we can successfully conduct the adversarial attack on any sample, *i.e.*, successfully generating \tilde{x} .

s.t. $||\mathbf{r}||_p < \epsilon, \widetilde{\mathbf{x}} = \mathbf{x} + \mathbf{r}$

Intuitively, the attack budget for a sample is related to the positional relation between it and the classification boundary. If the sample is near the boundary, a small budget is enough to conduct a successful attack. Thus, we can distinguish between hard and easy samples like that: we use *a relatively small attack budget* to conduct adversarial attack, and we identify easy and hard samples based on whether the attack is successful or fails, *i.e.*, hard samples can be successfully attacked with a small attack budget, since it is near the classification boundary.

Furthermore, the bipolar results about successful or failure attack cannot be regarded as a good continuous discriminative feature. Instead, we compute the classification score/logits $s(\tilde{x})$ for the adversarial sample \tilde{x} . On the other hand, we calculate the classification score s(x) for the clean sample x, and measure the cross-entropy between $s(\tilde{x})$ and s(x),

$$list(x,\tilde{x}) = H(s(\tilde{x}), s(x)) \tag{6}$$

Obviously, the $dist(x, \tilde{x})$ will be large if the attack is successful and vice versa. The larger the dist (x, \tilde{x}) is, the higher the likelihood of a successful attack. Thus, the $dist(x, \tilde{x})$ is regarded as the second discriminative feature to distinguish between easy and hard samples.

298 299

294

3.2.3 CURRICULUM-LEARNING-LOSS FEATURE (CF)

Curriculum learning theory suggests that easy samples are learned earlier than hard samples. Thus, we propose to employ a curriculum learning strategy to build our third feature. Curriculum learning has illustrated that neural networks tend to learn easy samples very quickly at the beginning of the training iterations. Conversely, the hard samples are learned at the later iterations. Specifically, we train a *randomly-initialized* network M_r from scratch, where the architecture of M_r is the same as the architecture of original model M_o . To distinguish between easy and hard samples, we just train the model M_r for *one* or *two* epochs, instead of completing the full training procedure.

Regarding whether a sample x has been well-learned by M_r , we use the loss loss(x) as a metric, *i.e.*, a small loss value implies that x has been well learned (indicating it is a easy sample) while a large loss value implies that x has not been well learned (indicating it is a hard sample). Therefore, the curriculum-learning-loss loss(x) is considered as the third feature to distinguish between easy and hard samples.

Note that the model M_r is trained with a part of $D_r + D_f$ and D_{test} . In practice, we find that it is enough to train M_r by just utilizing 30% of all $D_r + D_f$. Thus, the training of M_r is much cheaper than the training of M_o .

316 317 3.3 BINARY CLASSIFIER

We have build a specific labeled dataset D_{test} . On the other hand, we have devised three discriminative features to distinguish between easy and hard samples. Next, we will train a binary classifier to distinguish between easy and hard samples with these feature over the labeled dataset. Specifically, we employ an MLP network with two hidden layers as the binary classifier. We concatenate the three discriminative features as the input of the binary classifier. Note that we have opted for a straightforward binary classifier due to the discriminative nature of our features and our desire to keep the unlearning process cost-effective.

³²⁴ 4 EVALUATION

326 4.1 EXPERIMENTAL SETTING

Datasets & Models. We evaluate our approach using three public image datasets: CIFAR-10, CIFAR-100 Krizhevsky et al. (2009) and VGGFaces2 Cao et al. (2018). CIFAR-10 comprises 10 classes, and we perform data forgetting evaluations for each class independently. For CIFAR-100, we randomly select 17 out of 100 classes for evaluation due to space constraints. Since we emphasize on forgetting only a subset of one class, we randomly select 100 images as D_f . For VGGFaces2, we randomly select 10 out of 100 celebrities as the forgetting class, and then randomly choose 50 facial images to comprise D_f for each forgetting class.

Three common image classification neural networks are employed for evaluation: ResNet-18 He et al. (2016), AllCNN Springenberg et al. (2014), and Vision Transformer Lee et al. (2021). The original models are trained for 200 epochs using Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9, weight decay of 5e - 4, and an initial learning rate of 0.01. The learning rate is divided by 10 after 100 and 150 epochs.

340 **Baseline Methods.** We compare our approach against four machine unlearning methods: (1) Neg-341 ative Gradient Golatkar et al. (2020a): fine-tune the original model on D by increasing the loss for samples in D_f , which is the common surrogate objective adopted by most unlearning methods. (2) 342 *Fine-tuning*: fine-tune the model on D_r using a slightly large learning rate. This is analogous to 343 catastrophic forgetting, as fine-tuning without D_f may cause the model to forget D_f . (3) Random 344 Labeling Graves et al. (2021): fine-tune the model on D by assigning random labels to samples in 345 D_f , causing those samples to receive a random gradient. (4) Bad Teacher Chundawat et al. (2023): 346 it explores the utility of competent and incompetent teachers in a student-teacher framework to in-347 duce forgetfulness. Note that this work is closely related to our approach since it also emphasizes 348 alignments in data forgetting. 349

Evaluation Metrics. We assess the alignment quality of unlearning methods using three metrics: (1) 350 Accuracy on D_f and D_{test} : Ideally, the unlearned model is expected to achieve the same accuracy 351 as the gold model. Let ACC_{D_f} and $ACC_{D_f}^g$ denote the accuracy of the unlearned model and 352 the gold model on D_f . Thus, the differences between them, $\Delta = |ACC_{D_f} - ACC_{D_f}^g|$, can be 353 considered as the measure of alignment quality. Additionally, accuracy on D_{test} is employed to 354 assess whether the model accuracy is compromised after data forgetting. (2) Activation Distance: 355 This metric calculates the average L2-distance between the activation values of the unlearned model 356 and the gold model on D_f . A smaller activation distance indicates a better alignment between two 357 models. (3) Membership Inference Attack (MIA): MIA aims to determine whether a given sample 358 was included in a model's training set. Consequently, if we have an ideal MIA, we can employ it to 359 evaluate the success of data forgetting. The lower the success rate of the MIA, the more effective the 360 data forgetting process. Thus, the attack success rate (ASR) is employed as a key evaluation metric 361 for data forgetting effectiveness. Although a perfect MIA is unattainable, we utilize a state-of-the-art 362 MIA approach Ye et al. (2022) in our evaluation.

- 363 364
- 4.1.1 IMPLEMENTATION DETAILS

365 All our experiments were conducted on a single NVIDIA RTX 3090 GPU. For the binary classifier, 366 we employ an MLP network with two hidden layers, where the sizes of the hidden layers are 64 and 367 32, respectively. We use the ReLU activation function in the classifier. The classifier is trained for 368 100 epochs using SGD with fixed learning rate of 0.01, momentum 0.9 and weight decay 0.0005. For 369 the Adversarial-attacking Feature (AF), we set the attack budget as $\epsilon = 4/255$. For the Curriculum-370 learning-loss Feature (CF), we obtain it from the loss on the models trained from scratch for two 371 epochs using D_f and D_{test} , as well as a 30 % random subset of d_r . The learning rate is set to 372 one-tenth of the learning rate used during the fine-tuning process. The loss feature is obtained from 373 the same model used for D_f .

374

375 4.2 MAIN RESULTS376

We compare our approach with four state-of-the-art unlearning methods. Table.1 presents the comparison on the CIFAR-10 dataset. When adopting the ResNet-18 neural network, the original model Table 1: Comparison with four unlearning methods on CIFAR-10. Three metrics are adopted: (1) Accuracy on D_{test} and D_f ; (2) Activation Distance; (3) MIA. We conduct the data forgetting experiment for each class in CIFAR-10 independently, where 100 images are randomly selected as D_f . The results in this table are the **average values** over all 10 classes in CIFAR-10.

	Experiment	Accuracy or	D_{test} and L	D_f	Activation Distance	Member Inference Attack
Model	Methods	$ACC_{D_{test}}$ \uparrow	ACC_{D_f}	$\Delta \downarrow$	AD↓	$ASR\downarrow$
	Re-training (Gold Model)	85.31	86.9	0	0	39.1
	Fine-tuning	85.06	100	13.1	0.58	53.2
PacNat 18	Negtive Gradient	84.81	10.6	76.3	0.72	7.3
Residet-18	Random Label	85.43	0	86.9	1.25	0
	Bad Teacher	82.37	91.5	8.0	0.71	23.5
	Ours	84.86	90.8	4.2	0.49	31.6
	Re-training (Gold Model)	86.58	86.4	0	0	55.9
	Fine-tuning	87.34	100.0	13.1	0.32	45.6
ALL CNIN	Negtive Gradient	86.87	3.3	84.3	0.84	1.7
ALLCININ	Random Label	86.89	0	86.4	0.96	0
	Bad Teacher	85.96	88.0	5.8	0.49	56.4
	Ours	86.78	87.7	4.9	0.29	26.6
	Re-training (Gold Model)	84.61	84.6	0	0	32.1
	Fine-tuning	84.83	100.0	15.4	0.65	80.0
N 77.	Negtive Gradient	84.51	62.7	23.9	0.92	32.5
Vit	Random Label	84.21	2.4	82.2	0.88	1.6
	Bad Teacher	83.05	87.9	5.3	0.59	50.2
	Ours	84.07	86.1	3.3	0.40	51.5

Table 2: Comparison with four unlearning methods on CIFAR-100.

	Experiment	Accuracy o	n D_{test} and D_{test}	D_f	Activation Distance	Member Inference Attack
Dataset	Methods	$ACC_{D_{test}}\uparrow$	ACC_{D_f}	$\Delta \downarrow$	AD↓	$ASR\downarrow$
Resnet-18	Re-training (Gold Model)	81.03	81.29	0	0	65.66
	Fine-tuning	80.61	100	18.71	0.56	79.72
	Negtive Gradient	80.27	23.94	57.37	0.72	10.9
	Random Label	80.09	14.35	66.94	0.83	8.2
	Bad Teacher	78.45	60.64	19.35	0.41	64.35
	Ours	79.55	89.29	7.94	0.28	37.83
Vit	Re-training (Gold Model)	82.00	84.71	0	0	45.94
	Fine-tuning	83.53	100.0	15.29	0.50	75.0
	Negtive Gradient	80.50	39.20	45.51	0.75	16.3
	Random Label	83.10	0	84.71	0.74	0
	Bad Teacher	81.19	81.47	8.64	0.25	75.27
	Ours	82.00	88.76	6.23	0.19	62.16

attains an average accuracy of 85.37% across 10 classes. When adopting the AllCNN neural network, the original model has an average accuracy of 86.56%. In this evaluation, we conduct the data forgetting experiment for each class independently. For each class, 100 samples are randomly selected as D_f . Due to space constraints, the class-wise results are shown in Appendixes, while Table.1 illustrates the average results across 10 classes.

Accuracy on D_f and D_{test} : We provide the accuracy of the gold model on both D_{test} and D_f (*i.e.*, $ACC_{D_{test}}^g$ and $ACC_{D_f}^g$). For each method, we provide the $ACC_{D_{test}}$, ACC_{D_f} , and $\Delta = |ACC_{D_f} - ACC_{D_f}^g|$. The closer the accuracy between the gold model and the unlearned model (*i.e.*, the smaller the Δ is), the better the alignment is achieved. In addition, the accuracy on D_{test} is employed to assess whether the model's normal performance is compromised after data forgetting. The higher the accuracy on D_{test} is, the better the normal performance is maintained.

From Table 1, it's evident that the Fine-tuning method cannot effectively accomplish data forgetting, as the ACC_{D_f} remains almost at 100%. It implies that Fine-tuning can only forget an entire class but struggles to forget a subset of a class. In contrast, the Random Labeling method tends to misclassify all samples in D_f , resulting in $ACC_{D_f} = 0\%$. The Negative Gradient method performs better than Fine-tuning and Random Labeling, with an average difference of $\Delta_{NG} = 76.3\%$. Due to explicitly addressing the alignment issue, the Bad Teacher method makes significant progress, achieving a

Forgetting Class	DF+AF+CF	(Ours)	DF		AF		CF	
Torgetting Class	$ACC_{D_{test}}$ \uparrow	$ACC_{gl}\uparrow$	$ACC_{D_{test}}$ \uparrow	$ACC_{gl}\uparrow$	$ACC_{D_{test}}$ \uparrow	$ACC_{gl}\uparrow$	$ ACC_{D_{test}}\uparrow$	ACC_g
Class 0	90.4	92	89.2	92	90.1	92	89.2	91
Class 1	94.4	100	93.8	92	93.7	97	94.3	100
Class 2	79.6	84	72.6	83	71.1	85	75.1	82
Class 3	76.9	79	69.2	72	65.5	69	76.6	81
Class 4	83.3	85	80.3	80	82.3	82	83.7	82
Class 5	82.9	82	78.5	77	77.0	74	81.5	86
Class 6	91.7	89	88.2	85	89.3	82	91.0	90
Class 7	90.8	87	91.1	86	91.7	86	91.7	84
Class 8	94.7	92	92.9	90	82.7	89	94.7	91
Class 9	93.6	98	92.0	94	92.0	95	93.2	96

Table 3: Ablation study on three discriminative features. We use the accuracy of predicted generalization-labels ACC_{ql} as the metric to measure the quality of alignment.

445 remarkable average difference of $\Delta_{BadT} = 8\%$. Nevertheless, our approach outperforms the Bad 446 Teacher method in terms of both Δ and $ACC_{D_{test}}$. Particularly, we improve the average difference 447 Δ from 8% to 4.2%.

448 The comparison on the CIFAR-100 is shown in Table.2. We draw similar conclusions as with 449 CIFAR-10. The Random Labeling method no longer misclassifies all samples in D_f , with an av-450 erage $ACC_{D_f} = 14.35\%$. Our approach demonstrates a greater advantage than the Bad Teacher 451 method, with $\Delta_{ours} = 7.94\%$ against $\Delta_{BadT} = 19.35\%$. 452

The comparison on the VGGFaces2 dataset is presented in Appendixes. Similarly, our approach 453 consistently outperforms all other methods. 454

455 Activation Distance: Activation distance Golatkar et al. (2021) is another effective metric for evalu-456 ating the alignment in unlearning. A smaller activation distance indicates a higher similarity between the unlearned model and the gold model. From Table 1, our approach exhibits good performance, 457 outperforming other methods. 458

459 Membership Inference Attack (MIA): We leverage MIA to evaluate the success of data forgetting. 460 The lower the MIA's Attack Success Rate (ASR), the more successful the data forgetting process. 461 In practice, we utilize an enhanced Membership Inference Attack Ye et al. (2022) in our evaluation. 462 From Table.1, we can see that our approach can afford the examination of data forgetting from MIA. It is worthy to note that the Negative Gradient achieve better performance than our approach in terms 463 of MIA assessment. This is because the Bad Teacher inherently aims to disrupt accuracy on D_f , 464 which naturally leads to the resilience to MIA. 465

466 In our experiments, three different neural network architectures are evaluated, including ResNet-467 18 He et al. (2016), AllCNN Springenberg et al. (2014) and ViT Lee et al. (2021). From Table 1 and 468 2, we found that the performance of unlearning methods is less influenced by the neural network architecture. Specifically, the Fine-tuning method maintains $ACC_{D_f} = 100\%$, whereas in contrast, 469 the Random Labeling method results in almost $ACC_{D_f} = 0\%$. Both methods fail to achieve effec-470 tive data forgetting, regardless of the employed network architecture. We did not present the results 471 for AllCNN on CIFAR-100, as AllCNN is unable to effectively handle a 100-class classification 472 problem. 473

474 The Negative Gradient method exhibits relatively better performance, achieving an average difference $\Delta_{NG}^{AllCNN} = 84.3\%$ on AllCNN and $\Delta_{NG}^{ViT} = 23.9\%$ on ViT, respectively. In contrast, the Bad 475 Teacher method makes more progress, achieving a remarkable average difference $\Delta_{BadT}^{AllCNN} = 5.8\%$ 476 on AllCNN and $\Delta_{BadT}^{ViT} = 5.3\%$ on ViT, respectively. Nevertheless, our method still outperforms 477 the Bad Teacher. Particularly, we improve the average difference Δ from 5.8% to 4.9% on AllCNN 478 and Δ from 5.3% to 3.3% on ViT, respectively. 479

480

432

433

481 4.3 ABLATION STUDY

482

In our approach, three discriminative features are proposed and combined to distinguish hard sam-483 ples from easy samples. We will evaluate their individual contributions through an ablation study in 484

this section. Since these features are developed to predict the generalization-labels on D_f , we use 485 the prediction accuracy as the metric. Note that the prediction accuracy ACC_{ql} is positively related

Figure 3: The quality of alignment varies with the increase in the size of D_f .

Table 4: Trade-off between preserving model's generalization and enhancing its resilience to MIA

Noise Level	0	1	3	5	10
ACC	87.2	85.14	84.05	79.18	76.46

to the quality of alignment (*i.e.*, Δ , AD, and ASR). The higher the accuracy, the better the alignment. Table.3 shows the experimental results on CIFAR-10, where the original model adopts ResNet-18. From Table.3, the Curriculum-learning-loss Feature (CF) is slightly more discriminative than the Distance Feature (DF) and Adversarial-attacking Feature (AF). Nonetheless, the three features are complementary to each other.

We propose a noise-perturbed fine-tuning scheme to enhance model's resilience to MIA. In another ablation study, we compare the naive baseline approach (as the Eq(2)) with our approach (as the Eq(3)). From Table 4, we can see that our propose scheme enables the unlearned model to better withstand the assessment of data forgetting from MIA. Moreover, we can make a trade-off between preserving the model's generalization ability and enhancing its resilience to MIA by adjusting the noise level r. From Table 4, it turns out that increasing the noise level enhances resilience to MIA (measured with ASR), while decreasing it improves the model's generalization ability (measured with ACC_{D_f}).

4.4 FORGETTING MORE DATA

In previous experiments, we evaluate our approach for the situation that the size of forgetting data is small, *i.e.*, 100 images. In this section, we increase the size of D_f from 100 to 4000 gradually, aiming to evaluate our approach under the situation of forgetting a larger amount of data.

We assess the performance by gradually increasing the size of D_f to 500, 1000, 2000, 3000 and 4000. The performance is measured by the accuracy of predicted generalization-labels. From Fig.3, we can see that the alignment becomes more challenging with the increase of D_f size. However, our approach consistently outperforms the Bad Teacher method, and its advantages become more pronounced with the increase in the size of D_f .

531 532

533

520 521

522

486

487 488

489

490

491 492

493

494

495

496

497

498

499 500

501

504 505 506

5 CONCLUSION

This paper aims at the task of data forgetting, emphasizing the alignment in data forgetting. We introduce a Twin Machine Unlearning approach, where a twin unlearning problem is constructed and leveraged to solve the original problem. Furthermore, three discriminative features are devised by employing adversarial attack and curriculum learning strategies. Additionally, to withstand the assessment of data forgetting from Membership Inference Attack, we propose a noise-perturbed fine-tuning scheme to enhance model's resilience to MIA. Extensive empirical experiments show that our approach significantly improve the alignment in data forgetting.

540	REFERENCES
541	REI EREI(CES

542 543	Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In <i>Proceedings of the 26th annual international conference on machine learning</i> , pp. 41–48, 2009.
544 545	Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In International Con- ference on Machine Learning, pp. 1092–1104. PMLR, 2021.
540 547 548 549	Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vggface2: A dataset for recognising faces across pose and age. In 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018), pp. 67–74. IEEE, 2018.
550 551 552	Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.
553 554 555	Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching induce forgetting? unlearning in deep networks using an incompetent teacher. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 37, pp. 7210–7217, 2023.
556 557	Quang-Vinh Dang. Right to be forgotten in the age of machine learning. In Advances in Digital Science: ICADS 2021, pp. 403–411. Springer, 2021.
559 560 561	Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. Formalizing data deletion in the context of the right to be forgotten. In <i>Annual International Conference on the Theory and Applications of Cryptographic Techniques</i> , pp. 373–402. Springer, 2020.
562 563	Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data deletion in machine learning. <i>Advances in neural information processing systems</i> , 32, 2019.
564 565 566 567	Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 9304–9312, 2020a.
568 569 570 571	Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep networks of information accessible from input-output observations. In <i>Computer Vision– ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16</i> , pp. 383–398. Springer, 2020b.
572 573 574 575	Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto. Mixed-privacy forgetting in deep networks. In <i>Proceedings of the IEEE/CVF conference on com-</i> <i>puter vision and pattern recognition</i> , pp. 792–801, 2021.
576 577	Eric Goldman. An introduction to the california consumer privacy act (ccpa). Santa Clara Univ. Legal Studies Research Paper, 2020.
578 579 580	Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. <i>arXiv preprint arXiv:1412.6572</i> , 2014.
581 582	Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 35, pp. 11516–11524, 2021.
583 584 585 586	Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites. Adaptive machine unlearning. <i>Advances in Neural Information Processing Systems</i> , 34:16319–16330, 2021.
587 588 589	Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog- nition. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 770–778, 2016.
590 591 592	Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
593	M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. <i>Advances in neural information processing systems</i> , 23, 2010.

- Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. Vision transformer for small-size datasets. *arXiv preprint arXiv:2112.13492*, 2021.
- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.
- Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adversarial perturbations. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1765–1773, 2017.
- General Data Protection Regulation. General data protection regulation (gdpr). Intersoft Consulting, Accessed in October, 24(1), 2018.
- Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
 you want to forget: Algorithms for machine unlearning. *Advances in Neural Information Pro- cessing Systems*, 34:18075–18086, 2021.
- Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional net. *arXiv preprint arXiv:1412.6806*, 2014.
 - Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective machine unlearning. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.
- Jonathan G Tullis and Aaron S Benjamin. On the effectiveness of self-paced learning. *Journal of memory and language*, 64(2):109–118, 2011.
 - Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via algorithmic stability. In *Conference on Learning Theory*, pp. 4126–4142. PMLR, 2021.
 - Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. Enhanced membership inference attacks against machine learning models, 2022. URL https://arxiv.org/abs/2111.09679.

A APPENDIX

600

610

613

614

615

618

619

620 621

622

623

624 625 626

627 628

629 630

631

632

633

634 635

636

637

638

A.1 CLASS-WISE RESULTS FOR DATA FORGETTING

A.1.1 RESULTS ON CIFAR-10 AND CIFAR-100 DATASET

We conduct the data forgetting experiment for each class in CIFAR-10 and CIFAR-100 independently, as depicted in each row of Table.5, Table.6, Table.7, Table.8 and Table.9. For each class, 100 samples are randomly selected as D_f .

Table 5: Comparison with **ResNet-18** on **CIFAR-10** dataset. We conduct the data forgetting experiment for each class in CIFAR-10 independently, where 100 images are randomly selected as D_f .

639													
	Damasual Class	Gold n	nodel	Fine-tu	ining	Negative	e Gradient	Random L	abeling	Bad 7	eacher	0	urs
640	Removal Class	$ACC_{D_{test}}$	ACC_{D_f}	$ ACC_{D_{test}} $	ACC_{D_f}	$ACC_{D_{test}}$	$\mathrm{ACC}_{D_f};\Delta$	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\mathrm{ACC}_{D_f};\Delta$	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\Delta$
641	Class 0	85.61	92	85.08	100	85.29	8; 84	85.49	0	83.98	95; 3	84.60	96; 4
642	Class 1	85.27	97	85.07	100	85.31	11; 86	85.75	0	80.45	91; 6	84.76	98; 1
042	Class 2	85.66	84	84.93	100	85.03	11; 73	85.03	0	84.27	73; 11	84.65	85; 1
643	Class 3	84.8	74	84.97	100	85.09	9; 65	85.58	0	80.51	80; 6	85.07	72; 2
0-10	Class 4	85.24	82	84.94	100	85.29	15;67	85.22	0	81.96	94; 12	84.86	92; 10
644	Class 5	85.49	76	85.03	100	85.06	13; 63	85.37	0	82.69	98; 22	84.43	81; 5
	Class 6	85.43	88	84.98	100	85.31	9; 79	85.62	0	82.64	98; 10	85.02	85; 3
645	Class 7	84.97	87	84.90	100	85.18	9; 78	85.63	0	82.87	92; 5	85.10	99; 12
C 4 C	Class 8	85.13	94	85.02	100	81.34	2; 92	85.42	0	83.11	97; 3	85.04	96; 2
640	Class 9	85.53	95	85.12	100	85.25	19; 76	85.32	0	82.93	97; 2	84.49	97; 2
647	Avg	85.31	86.9	85.06	100	84.81	10.6; 76.3	85.43	0	82.37	91.5; 8	84.86	90.1; 4.2

12

Removal Class	Gold m	odel	Fine-tu	ning	Negative	e Gradient	Random	Labeling	Bad 7	Feacher	0)urs
Kelilovai Class	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_f};\Delta$	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_f};\Delta$	$ACC_{D_{test}}$	ACC_{D_f} ; Δ	$ACC_{D_{test}}$	$ACC_{D_f}; \Delta$
road	81.07	92	80.61	100	80.62	30; 62	80.00	52; 89	78.11	91; 1	78.97	99; 7
turtle	81.04	79	80.65	100	80.44	25; 54	80.24	7; 72	78.91	25; 54	79.09	84; 5
chimpanzee	81.48	90	80.64	100	80.82	28;62	80.11	8;82	77.55	70; 20	79.69	96; 6
orchid	81.15	86	80.60	100	80.48	30; 56	80.17	17;69	78.64	80; 6	79.68	99; 13
rabbit	81.25	70	80.54	100	80.31	17; 53	79.99	1;69	78.15	23; 47	79.17	91; 21
forest	81.33	72	80.64	100	80.31	22; 50	79.80	17; 55	79.24	74; 2	79.71	89; 17
possum	80.40	76	80.57	100	79.82	1;75	80.02	11;65	77.96	59; 17	79.84	84; 8
fox	81.18	89	80.65	100	80.38	23;66	79.94	14; 75	78.43	64; 25	80.21	91; 2
house	81.76	85	80.47	100	80.67	24;61	79.79	9; 76	78.11	74; 11	79.97	85; 0
mushroom	81.04	79	80.67	100	80.53	21;58	79.98	10; 69	78.99	64; 15	79.4	96; 17
chair	81.05	90	80.50	100	80.74	39; 51	79.96	34; 56	78.37	85; 5	79.75	94; 4
tiger	80.79	86	80.74	100	80.51	30; 56	80.21	6; 80	78.58	59; 27	78.45	96; 10
snail	81.29	82	80.56	100	70.10	15;67	80.21	4; 78	78.21	51; 31	79.77	84; 2
worm	80.92	90	80.72	100	80.34	41;49	80.28	26; 64	78.56	87; 3	80.10	90; 0
beetle	81.16	82	80.61	100	80.66	27; 55	80.06	17;65	78.74	64; 18	79.42	84; 2
beaver	81.21	54	80.67	100	80.32	6;48	80.31	5; 49	78.33	27; 27	79.36	74; 20
bed	79.36	80	80.54	100	80.66	28; 52	80.41	6; 68	78.8	60; 20	79.85	81; 1
Avg	81.03	81.29	80.61	100	80.27	23.94; 57.37	80.09	14.35; 66.94	78.45	60.64; 19.35	79.55	89.29; 7.94

Table 6: Comparison with **ResNet-18** on **CIFAR-100** dataset. We randomly sample 17 classes for evaluation, where 100 images are randomly selected as D_f .

Table 7: Comparison with AllCNN on CIFAR-10 dataset. Regarding M_o , its average accuracy over 10 classes is 87.21%.

Damaual Class	Gold m	nodel	Fine-tuning		Negative	Gradient	Random I	abeling	Bad T	eacher	Ours	
Removal Class	$\mathrm{ACC}^g_{D_{test}}$	$\mathrm{ACC}^g_{D_f}$	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\!\Delta$	$ACC_{D_{test}}$	$ACC_{D_{f}}$	$ACC_{D_{test}}$	$\mathrm{ACC}_{D_f};\!\Delta$	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_f};\Delta$
Class 0	87.0	94	87.04	100	86.69	3; 91	86.96	0	86.09	86; 8	87.03	89; 5
Class 1	86.58	97	87.49	100	86.86	2;95	86.99	0	86.32	92; 5	87.43	98; 1
Class 2	87.09	82	87.42	100	86.68	5;77	86.53	0	85.71	75; 7	87.06	87; 5
Class 3	86.22	78	87.38	100	86.85	2;76	86.62	0	86.54	80; 2	87.51	69; 9
Class 4	86.4	87	87.39	100	86.89	3; 84	87.72	0	84.45	96; 9	86.46	92; 5
Class 5	86.36	79	87.23	100	86.75	5; 74	86.52	0	85.98	86; 7	87.37	83; 4
Class 6	86.46	87	87.42	100	87.00	1;86	87.39	0	86.44	91; 4	86.86	89; 2
Class 7	86.24	82	87.31	100	86.79	1;81	87.24	0	86.53	91; 9	87.24	89; 7
Class 8	87.0	91	87.65	100	87.22	6; 85	86.95	0	84.51	90; 1	86.84	87;4
Class 9	86.54	87	87.16	100	86.93	5; 82	86.02	0	87.05	93; 6	87.05	94; 7
Avg	86.58	86.4	87.34	100	86.87	3.3; 83.1	86.89	0	85.96	88.0; 5.8	86.78	87.7; 4.9

A.1.2 RESULTS ON VGGFACES2 DATASET

We further apply our method to a real-world facial dataset, VGGFace2. We randomly select 10 classes of faces from the VGGFace2 dataset, randomly sampled with at least 500 images each. The dataset is divided into train and test sets in a 7:3 ratio. For each class, we conduct a data removal experiment where 100 samples are randomly selected as D_f . The performance of our method is depicted in each row of Table.10. We observe that our method still outperforms other methods, achieving the minimum Δ in each class, with the average $\Delta = 3\%$.

A.2 FORGETTING MORE DATA

To assess the performance when forgetting a larger amount of data, we evaluate our method with the size of D_f as 500 and 4000, respectively. From Table.11 and Table.12, despite a slight decrease in performance compared to forgetting 100 images, our method still outperforms others. Our method outperforms the *Bad Teacher* in the task of forgetting 500 images, with a Δ improvement from 8.28% to 5.52%. Similarly, in the task of forgetting 4000 images, we achieve an Δ boost from 15.94% to 8.85%.

A.3 COMPARISON WITH THE Fisher Forgetting METHOD

In addition to the four methods outlined in the main body of our manuscript, we also compare our method with the Fisher Forgetting method Golatkar et al. (2020b). We evaluate to forget 100 images from each class in the CIFAR-10 dataset. As observed from Table.13, the Fisher Forgetting significantly undermines the performance of the model, while our method achieves effective forgetting while maintaining the model's performance.

	-	-
7		-
		2
	-	

705													
706	Ramoval Class	Gold m	odel	Fine-tu	ning	Negative	Gradient	Random L	abeling	Bad T	eacher	0	urs
700	Keniovai Ciass	$ACC_{D_{test}}^{g}$	$ACC_{D_f}^g$	$ACC_{D_{test}}$	ACC_{D_f}	$\mathrm{ACC}_{D_{test}}$	$\operatorname{ACC}_{D_f};\Delta$	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_f};\!\Delta$	$ACC_{D_{test}}$	$ACC_{D_f};\Delta$
707	Class 0	84.01	92	84.70	100	84.46	62; 30	84.16	4	83.49	92; 0	82.94	88;4
708	Class 1	84.26	96	84.71	100	84.58	76; 20	84.23	9	83.47	87; 9	83.37	96; 0
	Class 2	85.66	88	84.54	100	84.58	60; 28	84.33	1	82.90	82; 6	83.97	91; 3
709	Class 3	84.80	70	84.67	100	84.35	41; 29	84.17	0	83.02	87; 17	84.16	74; 4
710	Class 4	85.24	87	84.41	100	84.56	51; 36	84.30	0	83.19	87; 0	83.85	86; 1
/10	Class 5	84.32	78	84.39	100	84.37	54; 24	84.13	0	83.01	86; 8	83.67	80; 2
711	Class 6	83.39	85	84.78	100	84.54	71; 14	84.14	3	83.38	93; 8	83.85	90; 5
/ / / /	Class 7	84.97	85	84.74	100	84.63	66; 19	84.29	2	82.51	85; 0	83.85	79; 6
712	Class 8	85.13	92	85.7	100	84.54	72; 20	84.28	3	83.37	90; 2	83.65	89; 3
	Class 9	84.38	93	85.65	100	84.50	74; 19	84.08	2	83.41	90; 3	83.62	88; 5
713	Avg	84.61	86.6	84.83	100	84.51	62.7; 23.9	84.21	2.4	83.05	87.9; 5.3	84.07	86.1; 3.3

Table 8: Comparison with the ViT model on CIFAR-10 dataset. Regarding M_o , its average accuracy over 10 classes is 84.45%.

Table 9: Comparison with the ViT model on CIFAR-100 dataset. We randomly sample 17 classes for evaluation. The average accuracy of M_o over 100 classes is 83.04%.

'18	Damaral Class	Gold m	odel	Fine-tu	ning	Negative	Gradient	Random L	abeling	Bad T	eacher	0	urs
719	Removal Class	$\mathrm{ACC}^g_{D_{test}}$	$\mathrm{ACC}^g_{D_f}$	$ACC_{D_{test}}$	ACC_{D_f}	$\mathrm{ACC}_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\!\Delta$	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\Delta$	$\mathrm{ACC}_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\!\Delta$
720	road	81.97	95	83.43	100	80.51	41; 54	83.04	0	81.80	95; 0	82.13	100; 5
20	turtle	81.88	80	83.45	100	80.54	22; 58	80.54	0	82.00	65; 15	80.61	83; 3
21	chimpanzee	82.26	96	83.43	100	80.43	28;68	83.52	0	81.30	81; 15	82.42	100; 4
	orchid	81.70	93	83.42	100	80.37	25;68	83.08	0	80.59	72; 21	81.96	87; 6
722	rabbit	82.11	75	83.46	100	80.44	14; 63	82.95	0	81.09	48; 27	82.42	89; 14
	forest	82.49	77	83.45	100	80.37	24; 54	83.20	0	80.93	76; 1	82.20	90; 13
(23	possum	82.39	78	83.41	100	80.73	16; 62	83.36	0	80.98	57; 21	82.38	84; 6
704	fox	81.67	90	83.43	100	80.43	24;66	83.11	0	80.55	92; 2	82.19	86; 4
/ 24	house	82.26	86	83.42	100	80.59	24; 59	83.35	0	81.03	83; 3	82.31	67; 19
725	mushroom	81.22	88	83.45	100	80.73	20;66	83.27	0	81.43	94; 6	82.43	95; 7
20	chair	83.51	88	83.43	100	80.67	39; 49	83.11	0	81.45	95; 7	82.41	94; 6
726	tiger	82.81	87	83.47	100	80.54	35; 52	83.15	0	81.11	94; 7	81.57	84; 3
	snail	83.79	90	83.41	100	80.54	18; 72	82.19	0	80.80	86; 4	82.4	94; 4
727	worm	83.22	92	83.41	100	80.61	38; 54	83.04	0	81.22	96; 4	82.56	99; 7
700	beetle	83.12	80	83.39	100	80.01	15;65	83.15	0	81.32	92; 12	81.6	97; 17
/ 20	beaver	83.05	67	83.44	100	80.37	6; 61	83.50	0	81.37	71; 4	81.76	71; 4
729	bed	83.30	81	83.44	100	80.57	25; 56	83.25	0	81.29	88; 7	81.7	89; 8
	avg	82.51	84.71	83.43	100	80.50	39.2; 45.51	83.10	0	81.19	81.47; 8,64	82.06	88.76; 6.23
730				1		1							

Gold m	Gold model		Fine-tuning		Negative Gradient		Random Labeling		Bad Teacher		Ours	
$\mathrm{ACC}^g_{D_{test}}$	$\mathrm{ACC}^g_{D_f}$	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\mathrm{ACC}_{D_{f}};\!\Delta$	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\Delta$	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\Delta$	
85.81	94	87.09	100	85.91	63; 31	84.26	0	84.51	91; 3	85.86	90; 4	
85.31	83	86.89	100	85.72	67; 14	85.52	0	83.31	72; 9	86.49	82; 1	
84.61	91	86.60	100	85.21	60; 38	85.79	1	84.21	80; 11	86.16	92; 1	
85.31	87	86.50	100	85.11	58; 39	84.50	0	84.61	89; 2	86.59	85; 2	
85.11	97	86.70	100	85.50	66; 30	85.89	0	85.91	94; 4	85.50	94; 3	
85.02	98	86.79	100	85.01	56; 40	85.95	0	85.21	85; 13	86.15	91; 7	
85.71	95	86.70	100	84.64	53; 31	84.84	0	85.81	86; 9	86.67	94; 1	
85.41	81	86.79	100	85.38	63; 16	84.61	0	84.61	68; 13	87.28	90; 9	
85.42	87	86.89	100	84.93	48; 39	85.15	0	83.21	55; 33	87.08	87; 0	
84.82	94	86.60	100	85.16	52; 42	83.85	0	83.61	84; 10	86.38	96; 2	
85.25	90.7	86.76	100	85.23	60.5; 30.2	85.01	0.1	84.50	80.4; 10.7	86.41	90.1; 3	

Table 10: Comparison on VGGFaces2 dataset. Regarding M_o , its average accuracy over 10 classes is 87.01%.

Table 11: Comparison on CIFAR-10 dataset with the size of D_f as **500**. Regarding M_o , its average accuracy over 10 classes is 85.37.

7 -												
1	Gold m	odel	Fine-tuning		Negative Gradient		Random Labeling		Bad Teacher		Ours	
8	$\mathrm{ACC}^g_{D_{test}}$	$\mathrm{ACC}^g_{D_f}$	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\Delta$	$ACC_{D_{test}}$	$ACC_{D_{f}}$	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\!\Delta$	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\Delta$
-	85.77	87.6	85.08	100	84.90	40.4; 47.2	84.44	0	83.51	97.0; 9.4	83.60	90.2; 2.6
)	85.56	94.6	85.02	100	84.93	44.2; 50.4	84.76	0.2	84.25	100; 5.2	84.58	98.2; 3.6
	85.96	80.4	85.07	100	84.66	34.0; 46.4	84.04	0	83.68	96.6; 16.2	84.35	90.5; 10.1
	85.89	68.6	84.93	100	84.89	29.2; 39.4	85.45	0	79.75	74.8; 9.3	85.37	79.4; 10.6
)	84.93	81.4	84.91	100	84.75	30.8; 50.4	84.89	0	83.45	97.8; 16.4	84.43	86.2; 4.8
_	85.67	74.5	85.03	100	84.94	32.8; 41.7	85.08	0	82.90	90.8; 16.3	86.12	78.3; 3.8
3	85.82	87.6	85.05	100	80.46	10.0; 77.6	85.07	0	82.01	93.4; 5.8	85.47	89.2; 1.6
	85.55	91.2	84.92	100	84.72	33.8; 57.4	84.30	0.2	78.22	85.2; 6.0	84.40	98.2; 7.0
•	85.44	94.8	84.93	100	85.05	44.4; 50.5	82.36	1.4	80.81	97.8; 3.0	84.72	97.0; 2.2
5	85.83	93.0	84.97	100	85.02	38.0; 55.0	85.11	0	84.19	99.6; 6.6	84.93	94.6; 1.6
-	85.64	85.39	84.99	100	84.32	33.76; 51.60	83.92	0.18	82.27	93.28; 8.28	84.81	90.18; 5.52

Table 12: Comparison on CIFAR-10 dataset with the size of D_f as **4000**. Regarding M_o , its average accuracy over 10 classes is 85.37.

D	Gold model		Finetune		Negtive Gradient		Random Labeling		Bad Teacher		Ours	
Removal Class	$\left ACC^g_{D_{test}} \right $	$\mathrm{ACC}^g_{D_f}$	$ACC_{D_{test}}$	ACC_{D_f}	$ACC_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\!\Delta$	$\mathrm{ACC}_{D_{test}}$	ACC_{D_f}	$\mathrm{ACC}_{D_{test}}$	$\operatorname{ACC}_{D_{f}};\!\Delta$	$ACC_{D_{test}}$	$ACC_{D_f};\Delta$
class 0	84.01	62.44	85.31	100	78.90	22.42; 40.02	76.12	1.83	79.42	60.67; 1.77	82.95	61.65; 0.79
class 1	84.26	80.25	85.12	100	76.61	22.97; 57.28	76.44	0.83	78.54	51.55; 28.70	83.61	85.92; 5.67
class 2	82.40	42.65	85.01	100	79.32	13.40; 39.25	76.99	0.38	82.42	77.45; 34.80	80.34	22.53; 20.12
class 3	82.56	24.80	85.36	100	80.78	8.97; 15.83	77.65	0.05	78.22	28.70; 3.90	79.02	12.42; 12.38
class 4	82.20	48.05	85.26	100	79.13	12.05; 36.00	76.34	0.03	79.91	46.37; 1.68	79.22	26.70; 21.35
class 5	82.99	38.52	85.34	100	80.34	11.55; 26.97	77.11	0.03	80.92	70.47; 31.95	82.23	29.30; 9.22
class 6	84.04	65.90	85.30	100	77.42	11.37; 54.53	76.53	0.10	81.79	37.80; 28.10	81.07	59.87; 6.03
class 7	83.38	62.87	85.23	100	77.99	20.17; 42.70	76.19	0.03	77.02	72.92; 10.05	82.51	62.82; 0.05
class 8	84.18	77.65	85.25	100	77.90	30.17; 47.48	75.92	0.80	80.82	83.85; 6.20	83.11	72.42; 5.23
class 9	84.38	73.55	85.29	100	76.00	18.52; 55.03	75.13	0.13	80.06	61.32; 12.23	81.99	81.62; 7.70
Avg	83.44	57.38	84.79	100	78.41	17.15; 43.89	76.44	0.42	79.91	63.65; 15.94	81.60	51.32; 8.85
											1	

Table 13: The *Fisher Forgetting* method can potentially result in catastrophic forgetting, severely compromising the performance of the model.

	Gold n	nodel	Fisher Fo	rgetting	Ours		
model	$\operatorname{ACC}_{D_{test}}^g \operatorname{ACC}_{D_f}^g$		$\mathrm{ACC}_{D_{test}}$	ACC_{D_f}	$\text{ACC}_{D_{test}}$	ACC_{D_f}	
Resnet18 AllCNN	85.61 87.00	92 94	10.37 10.07	0 2	84.60 87.03	96 89	