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ABSTRACT

Modern privacy regulations have spurred the evolution of machine unlearning, a
technique enabling a trained model to efficiently forget specific training data. In
prior unlearning methods, the concept of “data forgetting” is often interpreted and
implemented as achieving zero classification accuracy on such data. Neverthe-
less, the authentic aim of machine unlearning is to achieve alignment between
the unlearned model and the gold model, i.e., encouraging them to have identical
classification accuracy. On the other hand, the gold model often exhibits non-zero
classification accuracy due to its generalization ability. To achieve aligned data
forgetting, we propose a Twin Machine Unlearning (TMU) approach, where a
twin unlearning problem is defined corresponding to the original unlearning prob-
lem. Consequently, the generalization-label predictor trained on the twin problem
can be transferred to the original problem, facilitating aligned data forgetting.
Additionally, we introduce a noise-perturbed fine-tuning scheme to balance the
trade-off between retaining the model’s generalization ability and enhancing its
resilience to Membership Inference Attacks. Comprehensive empirical experi-
ments illustrate that our approach significantly enhances the alignment between
the unlearned model and the gold model. The code is available here.

1 INTRODUCTION

Machine learning model providers tend to collect extensive data from the Internet and utilize it to
train their machine learning models. The recent introduction of data privacy and protection regula-
tions (European Union’s GDPR |Regulation| (2018)), and California Consumer Privacy Act (CCPA)
Goldman| (2020)) obligate these model providers to comply with the request-to-delete [Dang| (202 1))
from the data owner. For example, a corporation offering facial recognition services might acquire
facial images from the Internet to train their facial recognition models. Subsequently, a user might
discover that the company has utilized his/her facial images in model training. In such a scenario,
the user reserves the right to petition the company to revise the facial recognition model to forget
his/her facial image data.

The straightforward solution is to entirely discard the trained model, delete his/her facial images
from the training data, and re-train a new model from scratch (i.e., called gold model). Unfortunately,
re-training from scratch is expensive. Therefore, machine unlearning|Garg et al.|(2020); Ginart et al.
(2019); [Cao & Yang| (2015); |Gupta et al.| (2021); Sekhari et al.| (2021)); [Brophy & Lowd| (2021);
Ullah et al. (2021) has garnered considerable attention, aiming to efficiently revise a trained model
to forget a cohort of training data, without affecting the performance on the remaining data.

In most prior unlearning methods |Graves et al.| (2021)); [Tarun et al.| (2023), the “forgetting” of a
cohort data D is commonly interpreted and implemented by decreasing the classification accuracy
on Dy as much as possible, i.e., pursuing zero accuracy AC’C’}{,’;ZE‘”” = 0. This implementation
works well when forgetting an entire class k (i.e, Dy = D). However, it is not suitable when
the aim is to forget only a subset of class k (i.e., Dy C Dy). In this case, even though Dy are
not involved in the training of the gold model, the remaining samples from class & (i.e., samples
€ (Dy — Dy)) are still involved in training. Thus, the gold model has ability to recognize class k.
Consequently, the gold model can still correctly classify a portion of Dy due to its generalization
ability, resulting in AC' C%Ofld # 0. As we know, the actual aim of machine unlearning is to obtain
an unlearned model that is well aligned with the gold model. Here, “align” implies requiring the
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Figure 1: Construction of the Twin Model and corresponding Twin Unlearning Problem.

unlearned model to possess the identical classification accuracy as the gold model. Obviously,
it is not appropriate to pursue ACC’%’;IG@T” =0.

In this paper, we denote the samples € Dy that can be correctly classified by the gold model as
the ‘easy’ samples. Conversely, the samples that cannot be correctly classified are referred to as the
‘hard’ samples. As these easy/hard labels for D are defined based on the model’s generalization
ability, we refer to them as generalization-labels. Therefore, a well-aligned unlearning algorithm
should specifically decrease the classification accuracy on hard samples rather than all samples
in Dy. In other words, it is essential to first identify the hard samples from D, and subsequently
reduce the classification accuracy on such samples. However, since the gold model is unknown,
obtaining these generalization-labels becomes challenging. This is the reason why prior unlearning
methods have to adopt achieving zero classification accuracy as the objective of data forgetting.

In this paper, we aim to achieve aligned data forgetting. To this end, we propose to train a binary
classifier to predict the generalization-labels for D ;. With these predicted labels, Dy is partitioned
into an easy subset D% and a hard subset D;%. Subsequently, we specifically decrease the classifica-

tion accuracy on D}}, while retaining the classification accuracy on D%. The most challenging aspect
of our approach lies in training such a binary classifier on a specific dataset, which involves two sub-
challenges: (1) Build a specific labeled dataset for training the binary classifier; (2) Construct a
discriminative representation for the binary classifier.

To address the first challenge, we formulate a twin unlearning problem corresponding to the original
one. Specifically, the original model M, is fine-tuned with D, to produce the Twin Model M.
As a result, in the context of My, the original model M, can be seen as analogous to M;’s gold
model (i.e., MY = M,), where D;.,; can be seen as analogous to M;’s forgetting data, as shown in
Fig[l] In another word, given a trained model My, the Twin Unlearning Problem is to forget Dy,
from M;. Note that in the twin unlearning problem, the gold model is known M} = M,,.

The reason for formulating such a twin unlearning problem is that we can easily obtain a labeled
dataset — the dataset Dy.s¢. Since the gold model of the twin unlearning problem is known (i.e., M,),
we can easily obtain the generalization-labels for D, specifically by employing M, to make class
predications on Dyeg;.

Regarding the second challenge, we propose to integrate three complementary features, each pos-
sessing strong discriminability to distinguish between easy and hard samples. (1) The first feature
is the Distance Feature (DF). For each sample x in D, we identify its nearest neighbor in D,.,
and the distance between them is considered as a feature. Intuitively, if x is an easy sample, it
typically has similar samples in D,., resulting in a small distance. In contrast, the distance feature
for a hard sample tends to be large. (2) The second feature is the Adversarial-attack Feature (AF).
We construct this feature by employing adversarial attacksMadry et al.| (2017)); Goodfellow et al.
(2014); Moosavi-Dezfooli et al.| (2017), which aim to fool a trained model into making incorrect
predictions with small adversarial perturbations. Clearly, hard samples are more vulnerable to ad-
versarial attacks compared to easy samples due to their proximity to the decision boundary. Hence,
the results of adversarial attack can be considered a discriminative feature.(3) The third feature is
the Curriculum-learning-loss Feature (CF). Curriculum learning theory [Kumar et al.| (2010); Tullis
& Benjamin| (2011); Bengio et al.| (2009) suggests that easy samples are learned earlier than hard
samples. Therefore, the loss value of the first fine-tuning epoch is considered a feature to distinguish
between easy and hard samples.
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At last, in addition to reducing the classification accuracy on the hard subset D", it is equally crucial
to maintain the model’s generalization ability on the easy subset D%, ensuring model can correctly
classify those samples. A naive approach to achieving this is by directly minimizing their classifica-
tion loss during machine unlearning. However, such an approach would leave the model vulnerable
to Membership Inference Attack (MIA), which is commonly used to assess the success of data for-
getting. To address this, we propose a noise-perturbed fine-tuning scheme. This scheme minimizes
the classification loss on a noise-perturbed version of D%. By doing so, we could strike a balance
between preserving the model’s generalization ability and enhancing its resilience to MIA.

Overall, we summarize our contributions as follows.

e We emphasize alignments in data forgetting and introduce a Twin Machine Unlearning
(TMU) approach to enhance such alignments.

e We devise three discriminative features to distinguish easy and hard samples, employing
adversarial attack and curriculum learning strategies.

e To withstand the assessment of data forgetting from MIA, we propose a noise-perturbed
fine-tuning scheme to enhance model’s resilience to MIA.

2 PROBLEM OF DATA FORGETTING

Let D = {z;,y;})Y, be a dataset of images x;, each with a label y; € {1,... K} representing a
class. The original model M, (#) is trained with the D, which could be a DNN with parameters 6.

Let Dy be a subset of the D, whose information we want to forget from the trained model M, (9).
The Dy is called the forgetting data, which could be all or some of the data with a given label k, i.e.,
corresponding to forgetting an entire class or a subset of a class, respectively. In this paper, we are
particularly interested in the case of forgetting a subset of a class, as the alignment problem becomes
more critical in this scenario. The remaining data is denoted by D,., whose information is desired
to be kept unchanged in the model. D and D, together represent the entire training set D and are
mutually exclusive, i.e., D, UD; = D and D, N Dy = 0.

Since Dy has been used to train the M, (6), the model parameters 6 will contain information about
Dy. The task of data forgetting aims to forget the information of D; from the trained model
M, (). The ideal solution is to train a new model from scratch with D,., which is denoted as the
gold model M¢(6,). However, obtaining the gold model is time-consuming due to the expensive
re-training procedure. Thus, the practical data forgetting aims to efficiently revise the original model
6 with a ‘scrubbing/forgetting” function s(), so that the revised model s(f) is as close to the gold
model 6, as possible. The s() is often implemented by a machine unlearning algorithm.

2.1 ALIGNMENT IN DATA FORGETTING

The model alignment is often measured by some metrics (called readout functions |Golatkar et al.
(2021))), such as: (i) accuracy on the test set D;.g, i.e., ACCp,,.,; (ii) accuracy on the forgetting
data Dy, i.e., ACCp,; (iii) accuracy on the remaining data D,., i.e., ACCp, . Achieving alignment
on ACCp,,,, and ACCp, is straightforward, as the target is to increase them as much as possible.
In contrast, the challenge lies in aligning the ACCp o b€, the unlearned model is desired to have

the same classification accuracy as the gold model ACC}‘,’;le‘"” = AC C%Or}d. Since the gold model

is unknown, obtaining its AC C’gDOfld is impossible, let alone achieving accuracy alignment.

As a result, prior unlearning methods tend to replace this objective with a surrogate objective, i.e.,
decreasing the accuracy ACCp, as much as possible. For the case of forgetting an entire class,
this implementation is acceptable since, after removing an entire class, the gold model tends to

have ACC}‘_Z,‘}M = 0, aligning with the surrogate objective. However, in the case of forgetting a

subset of class, the remaining data will still contain samples of the forgetting class. Due to the
generalization ability of gold model, the gold model may correctly classify some samples in Dy,

ie, AC ngd 2 0. Thus, we have to carefully consider the alignment challenges.
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Figure 2: The workflow of our approach. We first construct the twin model by fine-tuning the M,
with Dy to produce M;. And then, we extract discriminative features and train a binary classifier
on Dy.s:. Consequently, we transfer the binary classifier to the original problem to predict the
generalization-labels on Dy. Finally, we reduce classification accuracy on D’]}.

Furthermore, as highlighted by |Golatkar et al.| (2020a), implementing data forgetting by merely
decreasing ACCp, may give rise to other issues such as information exposure. For instance, it could
lead to the Streisand effect. This effect describes unexpected model behavior on forget samples,
potentially leaking information about that data. If the samples in D are consistently misclassified,
it might raise suspicious. Therefore, it is crucial to emphasize the alignment in data forgetting.

3 OUR APPROACH

3.1 TwiIN UNLEARNING PROBLEM

In our approach, we first construct a new unlearning problem corresponding to the original one. As
shown in the left part of Fig[2] for the original unlearning problem, we have an original model M,
that is trained with D,.+D¢. Our task is to get an unlearned model M, from M, so that M, is well
aligned with the gold model M¢. The MY is a model trained from scratch only with D,..

As shown in the right part of Fig if we fine-tune the M, with another dataset D;.s;, we obtain a
new model, namely the twin model M,. Consequently, we can construct a twin unlearning problem:
we regard the M; as the “original model” for the twin problem, which is trained with D, +D y+Dy.g;.
We regard the Dy, as the “forgetting data”. Thus, our twin unlearning problem is defined as:

Given a trained model M, the unlearning task is to forget Dy.s; from M.

Obviously, the twin problem’s “gold model” M7 is known, which is exactly the original problem’s
original model M,

MY = M, (1)

Regarding the constructed twin unlearning problem, since its gold model M/ is known, we can eas-
ily obtain the ground-truth generalization-labels for its forgetting data Dy, i.e., run the inference
of the model M} over the Dy, to obtaining the classification results. So far, we have build a
specific labeled dataset. We can train a binary classifier f() to distinguish between hard and easy
samples on Dy, for the twin problem.

It is usually to assume that D;.,; and D have independent and identical distribution (I.1.D). Thus,
the binary classifier f() can be transferred from the twin problem back to the original unlearning
problem for predicting the generalization-labels on Dy. In this way, we can effectively partition
Dy into a hard subset Df} and an easy subset D%. Finally, when solving the original unlearning
problem, we can fine-tune the original model M, by reducing classification accuracy on D? (ie.,
maximizing its loss value) while retaining the accuracy on Df (i.e., maximizing its negative loss
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value), as follows:

max(Lpy (2,y;0) — Lpg (2,4 6)) )

This naive unlearning approach can properly address the alignment challenge in data forgetting.
However, our empirical study shows that it cannot afford the examination of Membership Infer-
ence Attack (MIA). MIA was initially introduced to determine whether a sample was included in a
model’s training set. More recently, it has been employed to assess the effectiveness of data forget-
ting. If the MIA asserts that a forgotten sample belongs to the training data, we conclude that the
unlearning algorithm has failed to forget this data.

MIA typically operates by evaluating the loss value of a sample—if the loss is below a certain
threshold, the sample is presumed to belong to the training set. In our naive unlearning approach
with Eq@, the loss for D% is minimized, which leads MIA to regard D5 as part of the training set.

To withstand the examination of MIA, it is essential to convince MIA that D]% has indeed been
forgotten, while simultaneously ensuring that the unlearned model retains its ability to generalize
and recognize D}. To achieve this, we propose an enhanced unlearning approach as Eq.equation
designed to minimize the loss value for a noise-perturbed version of D¢, denoted as lN)]‘i This can
be formulated as follows:

max(Lpy (2,y;0) — L. (7,43 6)) 3)
where 5? ={Zlr =v +rz € D}}
where a Gaussian noise r is added to each sample in Df.

Since the loss value for D% is not directly minimized, our enhanced approach can withstand the

examination of MIA. At the same time, by minimizing the loss on D%—a noise-perturbed version
of Djec—the unlearned model retains its generalization ability on D]ec, as the introduced noise r is
not large. Particularly, there exists a balance between preserving the model’s generalization ability
and enhancing its resilience to MIA. We can make a trade-off by selecting an appropriate noise level
r, increasing the noise level enhances resilience to MIA, while decreasing it improves the model’s
generalization ability.

3.2 DISCRIMINATIVE FEATURES

Besides building a specific labeled dataset for training the binary classifier, another core of our
approach is to construct discriminative features for the classifier. Briefly, we propose to integrate
three complementary features by employing adversarial attack and curriculum learning strategies.

3.2.1 DISTANCE FEATURE (DF)

In the case of forgetting a subset of a class k, the remaining data D, will still contain samples
belonging to the forgetting class k. Therefore, for each sample x € Dy, we can find some samples
a2’ € D, similar to z. The similarity can be measured by the distance I(x,z’) with respect to a
feature extractor g(),

l(x,2) = |g(x) — g(')] @

For each # € Dy, we can identify the top-N similar samples 2, € D,,(i = 0,...,N — 1).
Intuitively, these distances I(x, ;) for an easy sample would be smaller than that for a hard sample.
Thus, the concatenation of these top-V distances I(x, z}), (¢ = 0,..., N — 1) can be regarded as
a discriminative feature to distinguish between easy and hard samples. In practice, we adopt the
activation value of the penultimate layer (i.e., the layer just before the last fully-connected layer) as

the g().

3.2.2 ADVERSARIAL-ATTACKING FEATURE (AF)

Whether a sample can be correctly generalized or not (i.e., belong to a easy or hard sample) is closely
related to the positional relation between it and the classification boundary. If it is near the boundary,
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it is hard to correctly classify it with high confidence. Thus, the easy samples often stay far from the
boundary, while the hard samples tend to stay near the boundary.

In order to leverage such positional relation knowledge to distinguish between easy and hard sam-
ples, we employ the untargeted adversarial attack technique. As we know, given any sample z,
we can generate a corresponding adversarial sample £ whose classification result is different from
its ground-truth label. The adversarial sample Z is often generated by perturbing x with a certain
perturbation r. The perturbation r is typically constrained by a certain attack budget e, as follows,

max L(x,y; 0) 5)
"'
st vl <ex=x4+7r

The essence of adversarial attack is to move x across the classification boundary, i.e., changing
the classification result. Thus, given a sufficiently large budget ¢, we can successfully conduct the
adversarial attack on any sample, i.e., successfully generating 2.

Intuitively, the attack budget for a sample is related to the positional relation between it and the
classification boundary. If the sample is near the boundary, a small budget is enough to conduct
a successful attack. Thus, we can distinguish between hard and easy samples like that: we use a
relatively small attack budget to conduct adversarial attack, and we identify easy and hard samples
based on whether the attack is successful or fails, i.e., hard samples can be successfully attacked
with a small attack budget, since it is near the classification boundary.

Furthermore, the bipolar results about successful or failure attack cannot be regarded as a good
continuous discriminative feature. Instead, we compute the classification score/logits s(Z) for the
adversarial sample Z. On the other hand, we calculate the classification score s(x) for the clean
sample x, and measure the cross-entropy between s(Z) and s(x),

dist(z,z) = H(s(Z), s(x)) (6)

Obviously, the dist(z,Z) will be large if the attack is successful and vice versa. The larger the
dist(x, Z) is, the higher the likelihood of a successful attack. Thus, the dist(z, &) is regarded as the
second discriminative feature to distinguish between easy and hard samples.

3.2.3 CURRICULUM-LEARNING-LOSS FEATURE (CF)

Curriculum learning theory suggests that easy samples are learned earlier than hard samples. Thus,
we propose to employ a curriculum learning strategy to build our third feature. Curriculum learning
has illustrated that neural networks tend to learn easy samples very quickly at the beginning of the
training iterations. Conversely, the hard samples are learned at the later iterations. Specifically, we
train a randomly-initialized network M, from scratch, where the architecture of M,. is the same as
the architecture of original model M,. To distinguish between easy and hard samples, we just train
the model M, for one or two epochs, instead of completing the full training procedure.

Regarding whether a sample x has been well-learned by M,., we use the loss loss(x) as a metric,
i.e., a small loss value implies that « has been well learned (indicating it is a easy sample) while a
large loss value implies that « has not been well learned (indicating it is a hard sample). Therefore,
the curriculum-learning-loss loss(x) is considered as the third feature to distinguish between easy
and hard samples.

Note that the model M, is trained with a part of D, + Dy and D;... In practice, we find that it is
enough to train M, by just utilizing 30% of all D,. + D . Thus, the training of M,. is much cheaper
than the training of M,,.

3.3 BINARY CLASSIFIER

We have build a specific labeled dataset D;.s:. On the other hand, we have devised three discrimi-
native features to distinguish between easy and hard samples. Next, we will train a binary classifier
to distinguish between easy and hard samples with these feature over the labeled dataset. Specifi-
cally, we employ an MLP network with two hidden layers as the binary classifier. We concatenate
the three discriminative features as the input of the binary classifier. Note that we have opted for
a straightforward binary classifier due to the discriminative nature of our features and our desire to
keep the unlearning process cost-effective.
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4 EVALUATION

4.1 EXPERIMENTAL SETTING

Datasets & Models. We evaluate our approach using three public image datasets: CIFAR-10,
CIFAR-100 Krizhevsky et al.| (2009) and VGGFaces2 (Cao et al.[(2018). CIFAR-10 comprises 10
classes, and we perform data forgetting evaluations for each class independently. For CIFAR-100,
we randomly select 17 out of 100 classes for evaluation due to space constraints. Since we emphasize
on forgetting only a subset of one class, we randomly select 100 images as Dy. For VGGFaces2,
we randomly select 10 out of 100 celebrities as the forgetting class, and then randomly choose 50
facial images to comprise D for each forgetting class.

Three common image classification neural networks are employed for evaluation: ResNet-18 |[He
et al.| (2016), AIICNN |Springenberg et al.|(2014), and Vision Transformer [Lee et al.| (2021). The
original models are trained for 200 epochs using Stochastic Gradient Descent (SGD) optimizer with
a momentum of 0.9, weight decay of be — 4, and an initial learning rate of 0.01. The learning rate is
divided by 10 after 100 and 150 epochs.

Baseline Methods. We compare our approach against four machine unlearning methods: (1) Neg-
ative Gradient |Golatkar et al.| (2020a): fine-tune the original model on D by increasing the loss for
samples in D, which is the common surrogate objective adopted by most unlearning methods. (2)
Fine-tuning: fine-tune the model on D, using a slightly large learning rate. This is analogous to
catastrophic forgetting, as fine-tuning without D may cause the model to forget Dy. (3) Random
Labeling |Graves et al.| (2021): fine-tune the model on D by assigning random labels to samples in
Dy, causing those samples to receive a random gradient. (4) Bad Teacher Chundawat et al.|(2023):
it explores the utility of competent and incompetent teachers in a student-teacher framework to in-
duce forgetfulness. Note that this work is closely related to our approach since it also emphasizes
alignments in data forgetting.

Evaluation Metrics. We assess the alignment quality of unlearning methods using three metrics: (1)
Accuracy on Dy and Dycs: Ideally, the unlearned model is expected to achieve the same accuracy
as the gold model. Let ACCp, and ACC%f denote the accuracy of the unlearned model and
the gold model on Dy. Thus, the differences between them, A = \ACCDf — ACC%fL can be
considered as the measure of alignment quality. Additionally, accuracy on Dy, is employed to
assess whether the model accuracy is compromised after data forgetting. (2) Activation Distance:
This metric calculates the average L2-distance between the activation values of the unlearned model
and the gold model on Dy. A smaller activation distance indicates a better alignment between two
models. (3) Membership Inference Attack (MIA): MIA aims to determine whether a given sample
was included in a model’s training set. Consequently, if we have an ideal MIA, we can employ it to
evaluate the success of data forgetting. The lower the success rate of the MIA, the more effective the
data forgetting process. Thus, the attack success rate (ASR) is employed as a key evaluation metric
for data forgetting effectiveness. Although a perfect MIA is unattainable, we utilize a state-of-the-art
MIA approach|Ye et al|(2022) in our evaluation.

4.1.1 IMPLEMENTATION DETAILS

All our experiments were conducted on a single NVIDIA RTX 3090 GPU. For the binary classifier,
we employ an MLP network with two hidden layers, where the sizes of the hidden layers are 64 and
32, respectively. We use the ReLLU activation function in the classifier. The classifier is trained for
100 epochs using SGD with fixed learning rate of 0.01, momentum 0.9 and weight decay 0.0005. For
the Adversarial-attacking Feature (AF), we set the attack budget as ¢ = 4/255. For the Curriculum-
learning-loss Feature (CF), we obtain it from the loss on the models trained from scratch for two
epochs using Dy and Dy, as well as a 30 % random subset of d,. The learning rate is set to
one-tenth of the learning rate used during the fine-tuning process. The loss feature is obtained from
the same model used for Dy.

4.2 MAIN RESULTS

We compare our approach with four state-of-the-art unlearning methods. Table[T| presents the com-
parison on the CIFAR-10 dataset. When adopting the ResNet-18 neural network, the original model
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Table 1: Comparison with four unlearning methods on CIFAR-10. Three metrics are adopted: (1)
Accuracy on Dy and Dy; (2) Activation Distance; (3) MIA. We conduct the data forgetting exper-
iment for each class in CIFAR-10 independently, where 100 images are randomly selected as Dy.
The results in this table are the average values over all 10 classes in CIFAR-10.

. Activati M Inf
Experiment Accuracy on D¢es¢ and Dy ctivation ember Inference

Distance Attack
Model Methods ACCp, T ACCDf Al ADJ] ASR |
Re-training (Gold Model) 85.31 86.9 0 0 39.1
Fine-tuning 85.06 100 13.1 0.58 532
ResNet-18 Negtive Gradient 84.81 10.6 76.3 0.72 73
Random Label 85.43 0 86.9 1.25 0
Bad Teacher 82.37 91.5 8.0 0.71 23.5
Ours 84.86 90.8 42 0.49 31.6
Re-training (Gold Model) 86.58 86.4 0 0 559
Fine-tuning 87.34 100.0 13.1 0.32 45.6
Negtive Gradient 86.87 33 84.3 0.84 1.7
ALLCNN Random Label 86.89 0 864 096 0
Bad Teacher 85.96 88.0 5.8 0.49 56.4
Ours 86.78 87.7 4.9 0.29 26.6
Re-training (Gold Model) 84.61 84.6 0 0 32.1
Fine-tuning 84.83 100.0 154 0.65 80.0
Vit Negtive Gradient 84.51 62.7 23.9 0.92 325
Random Label 84.21 2.4 82.2 0.88 1.6
Bad Teacher 83.05 87.9 53 0.59 50.2
Ours 84.07 86.1 33 0.40 51.5

Table 2: Comparison with four unlearning methods on CIFAR-100.

Activation Member Inference

Experiment Accuracy on Dyest and D ¢ Distance Attack
Dataset Methods ACCp, 4T ACCDf Al ADJ] ASR |
Re-training (Gold Model) 81.03 81.29 0 0 65.66
Fine-tuning 80.61 100 18.71 0.56 79.72
Resnet-18 Negtive Gradient 80.27 23.94 57.37 0.72 10.9
; Random Label 80.09 14.35 66.94 0.83 8.2
Bad Teacher 78.45 60.64 19.35 0.41 64.35
Ours 79.55 89.29 7.94 0.28 37.83
Re-training (Gold Model) 82.00 84.71 0 0 45.94
Fine-tuning 83.53 100.0 15.29 0.50 75.0
Vit Negtive Gradient 80.50 39.20 45.51 0.75 16.3
Random Label 83.10 0 84.71 0.74 0
Bad Teacher 81.19 81.47 8.64 0.25 75.27
Ours 82.00 88.76 6.23 0.19 62.16

attains an average accuracy of 85.37% across 10 classes. When adopting the AIICNN neural net-
work, the original model has an average accuracy of 86.56%. In this evaluation, we conduct the
data forgetting experiment for each class independently. For each class, 100 samples are randomly
selected as Dy. Due to space constraints, the class-wise results are shown in Appendixes, while
Tablel[T]illustrates the average results across 10 classes.

Accuracy on Dy and D;.,;: We provide the accuracy of the gold model on both D;.s; and Dy
(i.e., ACC’%test and ACCJ%f). For each method, we provide the ACCp,,,,, ACCp,, and A =

|ACCp, — ACC'I%f |. The closer the accuracy between the gold model and the unlearned model
(i.e., the smaller the A is), the better the alignment is achieved. In addition, the accuracy on Dy is

employed to assess whether the model’s normal performance is compromised after data forgetting.
The higher the accuracy on D;.; is, the better the normal performance is maintained.

From Table[l] it’s evident that the Fine-tuning method cannot effectively accomplish data forgetting,
as the ACCp, remains almost at 100%. It implies that Fine-tuning can only forget an entire class but
struggles to forget a subset of a class. In contrast, the Random Labeling method tends to misclassify
all samples in Dy, resulting in ACCp, = 0%. The Negative Gradient method performs better than
Fine-tuning and Random Labeling, with an average difference of Ayg = 76.3%. Due to explicitly
addressing the alignment issue, the Bad Teacher method makes significant progress, achieving a
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Table 3: Ablation study on three discriminative features. We use the accuracy of predicted
generalization-labels ACC; as the metric to measure the quality of alignment.

Forgetting Class| , DFFAF+CF (Ours) DF AF CF
ACCp,,.,T ACCuT|ACCD,, .1 ACCut|ACCD,, ., ACCut|ACCD,, ., ACCyut
Class 0 90.4 92 89.2 92 90.1 92 89.2 91
Class 1 94.4 100 93.8 92 93.7 97 943 100
Class 2 79.6 84 72.6 83 711 85 75.1 82
Class 3 76.9 79 69.2 72 65.5 69 76.6 81
Class 4 833 85 80.3 80 823 82 83.7 82
Class 5 82.9 82 785 77 77.0 74 81.5 86
Class 6 91.7 89 88.2 85 89.3 82 91.0 90
Class 7 90.8 87 91.1 86 91.7 86 91.7 84
Class 8 94.7 92 92.9 90 82.7 89 94.7 91
Class 9 93.6 98 92.0 94 92.0 95 93.2 9%

remarkable average difference of Ag.qr = 8%. Nevertheless, our approach outperforms the Bad
Teacher method in terms of both A and ACC'p,,_, . Particularly, we improve the average difference
A from 8% to 4.2%.

The comparison on the CIFAR-100 is shown in Table[J] We draw similar conclusions as with
CIFAR-10. The Random Labeling method no longer misclassifies all samples in Dy, with an av-
erage ACCp, = 14.35%. Our approach demonstrates a greater advantage than the Bad Teacher
method, with A,,-s = 7.94% against Agqqr = 19.35%.

The comparison on the VGGFaces2 dataset is presented in Appendixes. Similarly, our approach
consistently outperforms all other methods.

Activation Distance: Activation distance Golatkar et al.|(2021)) is another effective metric for evalu-
ating the alignment in unlearning. A smaller activation distance indicates a higher similarity between
the unlearned model and the gold model. From Table[lI] our approach exhibits good performance,
outperforming other methods.

Membership Inference Attack (MIA): We leverage MIA to evaluate the success of data forgetting.
The lower the MIA’s Attack Success Rate (ASR), the more successful the data forgetting process.
In practice, we utilize an enhanced Membership Inference Attack|Ye et al.|(2022) in our evaluation.
From Table[I] we can see that our approach can afford the examination of data forgetting from MIA.
It is worthy to note that the Negative Gradient achieve better performance than our approach in terms
of MIA assessment. This is because the Bad Teacher inherently aims to disrupt accuracy on Dy,
which naturally leads to the resilience to MIA.

In our experiments, three different neural network architectures are evaluated, including ResNet-
18|He et al.|(2016), AIICNN Springenberg et al.|(2014) and ViT Lee et al.[(2021). From Table{I] and
we found that the performance of unlearning methods is less influenced by the neural network
architecture. Specifically, the Fine-tuning method maintains ACCp, = 100%, whereas in contrast,
the Random Labeling method results in almost ACCp, = 0%. Both methods fail to achieve effec-
tive data forgetting, regardless of the employed network architecture. We did not present the results
for AIICNN on CIFAR-100, as AIICNN is unable to effectively handle a 100-class classification
problem.

The Negative Gradient method exhibits relatively better performance, achieving an average differ-
ence AVLENN — 84 3% on AIICNN and AYL = 23.9% on ViT, respectively. In contrast, the Bad
Teacher method makes more progress, achieving a remarkable average difference Aggdcjgv N =5.8%
on AIICNN and A¥%,.. = 5.3% on VIiT, respectively. Nevertheless, our method still outperforms
the Bad Teacher. Particularly, we improve the average difference A from 5.8% to 4.9% on AIICNN
and A from 5.3% to 3.3% on ViT, respectively.

4.3 ABLATION STUDY

In our approach, three discriminative features are proposed and combined to distinguish hard sam-
ples from easy samples. We will evaluate their individual contributions through an ablation study in
this section. Since these features are developed to predict the generalization-labels on Dy, we use
the prediction accuracy as the metric. Note that the prediction accuracy ACCy, is positively related
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Figure 3: The quality of alignment varies with the increase in the size of Dy.

Table 4: Trade-off between preserving model’s generalization and enhancing its resilience to MIA

Noise Level | 0 1 3 5 10

ACC 87.2 85.14 84.05 79.18 76.46
MIA 71.0 55 37 33 27

to the quality of alignment (i.e., A, AD, and ASR). The higher the accuracy, the better the alignment.
Table[3 shows the experimental results on CIFAR-10, where the original model adopts ResNet-18.
From Table[3] the Curriculum-learning-loss Feature (CF) is slightly more discriminative than the
Distance Feature (DF) and Adversarial-attacking Feature (AF). Nonetheless, the three features are
complementary to each other.

We propose a noise-perturbed fine-tuning scheme to enhance model’s resilience to MIA. In another
ablation study, we compare the naive baseline approach (as the Eq(2)) with our approach (as the
Eq(3)). From Table[d] we can see that our propose scheme enables the unlearned model to better
withstand the assessment of data forgetting from MIA. Moreover, we can make a trade-off between
preserving the model’s generalization ability and enhancing its resilience to MIA by adjusting the
noise level r. From Table 4] it turns out that increasing the noise level enhances resilience to MIA
(measured with ASR), while decreasing it improves the model’s generalization ability (measured
with ACCp,).

4.4 FORGETTING MORE DATA

In previous experiments, we evaluate our approach for the situation that the size of forgetting data
is small, i.e., 100 images. In this section, we increase the size of Dy from 100 to 4000 gradually,
aiming to evaluate our approach under the situation of forgetting a larger amount of data.

We assess the performance by gradually increasing the size of Dy to 500, 1000, 2000, 3000 and
4000. The performance is measured by the accuracy of predicted generalization-labels. From Fig[3]
we can see that the alignment becomes more challenging with the increase of Dy size. However,
our approach consistently outperforms the Bad Teacher method, and its advantages become more
pronounced with the increase in the size of Dy.

5 CONCLUSION

This paper aims at the task of data forgetting, emphasizing the alignment in data forgetting. We
introduce a Twin Machine Unlearning approach, where a twin unlearning problem is constructed
and leveraged to solve the original problem. Furthermore, three discriminative features are devised
by employing adversarial attack and curriculum learning strategies. Additionally, to withstand the
assessment of data forgetting from Membership Inference Attack, we propose a noise-perturbed
fine-tuning scheme to enhance model’s resilience to MIA. Extensive empirical experiments show
that our approach significantly improve the alignment in data forgetting.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41-48, 2009.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In International Con-
ference on Machine Learning, pp. 1092—1104. PMLR, 2021.

Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vggface2: A dataset for
recognising faces across pose and age. In 2018 13th IEEFE international conference on automatic
face & gesture recognition (FG 2018), pp. 67-74. IEEE, 2018.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463—480. IEEE, 2015.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
induce forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 7210-7217, 2023.

Quang-Vinh Dang. Right to be forgotten in the age of machine learning. In Advances in Digital
Science: ICADS 2021, pp. 403—411. Springer, 2021.

Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. Formalizing data deletion in the
context of the right to be forgotten. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pp. 373—402. Springer, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304-9312, 2020a.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing
deep networks of information accessible from input-output observations. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
XXIX 16, pp. 383-398. Springer, 2020b.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-privacy forgetting in deep networks. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 792-801, 2021.

Eric Goldman. An introduction to the california consumer privacy act (ccpa). Santa Clara Uniyv.
Legal Studies Research Paper, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 1151611524, 2021.

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites.
Adaptive machine unlearning. Advances in Neural Information Processing Systems, 34:16319—
16330, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
Advances in neural information processing systems, 23, 2010.

11



Under review as a conference paper at ICLR 2025

Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. Vision transformer for small-size
datasets. arXiv preprint arXiv:2112.13492, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765-1773, 2017.

General Data Protection Regulation. General data protection regulation (gdpr). Intersoft Consulting,
Accessed in October, 24(1), 2018.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. Advances in Neural Information Pro-
cessing Systems, 34:18075-18086, 2021.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
machine unlearning. /[EEE Transactions on Neural Networks and Learning Systems, 2023.

Jonathan G Tullis and Aaron S Benjamin. On the effectiveness of self-paced learning. Journal of
memory and language, 64(2):109-118, 2011.

Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via
algorithmic stability. In Conference on Learning Theory, pp. 4126-4142. PMLR, 2021.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. En-
hanced membership inference attacks against machine learning models, 2022. URL https:
//arxiv.org/abs/2111.096709.

A APPENDIX

A.1 CLASS-WISE RESULTS FOR DATA FORGETTING
A.1.1 RESULTS ON CIFAR-10 AND CIFAR-100 DATASET

We conduct the data forgetting experiment for each class in CIFAR-10 and CIFAR-100 indepen-
dently, as depicted in each row of Table[5] TableJ6] Table[7] Table[§|and Table[9] For each class, 100
samples are randomly selected as Dy.

Table 5: Comparison with ResNet-18 on CIFAR-10 dataset. We conduct the data forgetting ex-
periment for each class in CIFAR-10 independently, where 100 images are randomly selected as
Dy.

Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours

Removal Cla
MOV ACC, ., ACCp |ACCp,,,, ACCp, |ACCp,.,, ACCp;A|ACCh,,,, ACCp,|ACCp,,,, ACCp;A|ACCp,,,, ACCp ;A

Class 0 85.61 92 85.08 100 85.29 8; 84 85.49 0 83.98 95; 3 84.60 96; 4
Class 1 85.27 97 85.07 100 85.31 11; 86 85.75 0 80.45 91; 6 84.76 98; 1
Class 2 85.66 84 84.93 100 85.03 11;73 85.03 0 84.27 73; 11 84.65 85 1
Class 3 84.8 74 84.97 100 85.09 9; 65 85.58 0 80.51 80; 6 85.07 72; 2
Class 4 85.24 82 84.94 100 85.29 15;67 85.22 0 81.96 94; 12 84.86 92; 10
Class 5 85.49 76 85.03 100 85.06 13:63 85.37 0 82.69 98;22 84.43 81; 5
Class 6 85.43 88 84.98 100 85.31 9;79 85.62 0 82.64 98; 10 85.02 85; 3
Class 7 84.97 87 84.90 100 85.18 9;78 85.63 0 82.87 92; 5 85.10 99; 12
Class 8 85.13 94 85.02 100 81.34 2;92 85.42 0 83.11 97; 3 85.04 96; 2
Class 9 85.53 95 85.12 100 85.25 19; 76 85.32 0 82.93 97; 2 84.49 97; 2
Avg 8531 86.9 85.06 100 84.81 10.6;76.3 85.43 0 82.37 91.5;8 84.86 90.1; 4.2
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Table 6: Comparison with ResNet-18 on CIFAR-100 dataset. We randomly sample 17 classes for
evaluation, where 100 images are randomly selected as Dy.

Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours

Removal Class
ACCp,,, ACC,)f ACCp,, ., ACCDf ACCp,, ., ACC,)f;A ACCp, ACC,;f;A ACCp, ., ACC,)f;A ACCp, .y ACCDf;A

road 81.07 92 80.61 100 80.62 30; 62 80.00 52; 89 78.11 91; 1 78.97 99; 7
turtle 81.04 79 80.65 100 80.44 25;54 80.24 7,72 7891 25;54 79.09 84; 5
chimpanzee 81.48 90 80.64 100 80.82 28; 62 80.11 8; 82 71.55 70; 20 79.69 96; 6
orchid 81.15 86 80.60 100 80.48 30; 56 80.17 17; 69 78.64 80; 6 79.68 99;13
rabbit 81.25 70 80.54 100 80.31 17;53 79.99 1; 69 78.15 23; 47 79.17 91;21
forest 81.33 72 80.64 100 80.31 22; 50 79.80 17,55 79.24 74; 2 79.71 89; 17
possum 80.40 76 80.57 100 79.82 1;75 80.02 11; 65 77.96 5917 79.84 84; 8
fox 81.18 89 80.65 100 80.38 23; 66 79.94 14;75 78.43 64; 25 80.21 91; 2
house 81.76 85 80.47 100 80.67 24; 61 79.79 9,76 78.11 74; 11 79.97 85, 0
mushroom 81.04 79 80.67 100 80.53 21;58 79.98 10; 69 78.99 64; 15 794 96; 17
chair 81.05 90 80.50 100 80.74 39; 51 79.96 34; 56 78.37 85, 5 79.75 94; 4
tiger 80.79 86 80.74 100 80.51 30; 56 80.21 6; 80 78.58 59;27 78.45 96; 10
snail 81.29 82 80.56 100 70.10 15; 67 80.21 4,78 78.21 51;31 79.77 84; 2
worm 80.92 90 80.72 100 80.34 41;49 80.28 26; 64 78.56 87; 3 80.10 90; 0
beetle 81.16 82 80.61 100 80.66 27,55 80.06 17; 65 78.74 64; 18 79.42 84; 2
beaver 81.21 54 80.67 100 80.32 6; 48 80.31 5,49 78.33 27,27 79.36 74; 20
bed 79.36 80 80.54 100 80.66 28;52 80.41 6; 68 78.8 60; 20 79.85 81; 1
Avg 81.03 81.29 80.61 100 80.27  23.94;57.37 80.09 14.35;66.94| 7845  60.64;19.35| 79.55 89.29;7.94

Table 7: Comparison with AIICNN on CIFAR-10 dataset. Regarding M, its average accuracy over
10 classes is 87.21%.

Removal Class Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCL, ACCL |ACCp,,,, ACCp;|ACCD,,,, ACCpiA|ACCD,,,, ACCp;|ACCD,,., ACCp;iA|ACCD,,,, ACCD ;A
Class 0 87.0 94 87.04 100 86.69 3;91 86.96 0 86.09 86; 8 87.03 89;5
Class 1 86.58 97 87.49 100 86.86 2,95 86.99 0 86.32 92;5 87.43 98: 1
Class 2 87.09 82 87.42 100 86.68 5,77 86.53 0 85.71 75,7 87.06 87;5
Class 3 86.22 78 87.38 100 86.85 2,76 86.62 0 86.54 80; 2 87.51 69; 9
Class 4 86.4 87 87.39 100 86.89 3; 84 87.72 0 84.45 96: 9 86.46 92:5
Class 5 86.36 79 87.23 100 86.75 5;74 86.52 0 85.98 86;7 87.37 83;4
Class 6 86.46 87 87.42 100 87.00 1; 86 87.39 0 86.44 91;4 86.86 89;2
Class 7 86.24 82 87.31 100 86.79 1; 81 87.24 0 86.53 91: 9 87.24 89:7
Class 8 87.0 91 87.65 100 87.22 6; 85 86.95 0 84.51 90; 1 86.84 87;4
Class 9 86.54 87 87.16 100 86.93 5;82 86.02 0 87.05 93,6 87.05 94;7
Avg 86.58 86.4 87.34 100 86.87 3.3;83.1 86.89 0 85.96 88.0;5.8 86.78 87.7,4.9

A.1.2 RESULTS ON VGGFACES2 DATASET

We further apply our method to a real-world facial dataset, VGGFace2. We randomly select 10
classes of faces from the VGGFace?2 dataset, randomly sampled with at least 500 images each. The
dataset is divided into train and test sets in a 7:3 ratio. For each class, we conduct a data removal
experiment where 100 samples are randomly selected as Dy. The performance of our method is
depicted in each row of Table[I0] We observe that our method still outperforms other methods,
achieving the minimum A in each class, with the average A = 3%.

A.2 FORGETTING MORE DATA

To assess the performance when forgetting a larger amount of data, we evaluate our method with the
size of Dy as 500 and 4000, respectively. From Table and Table despite a slight decrease in
performance compared to forgetting 100 images, our method still outperforms others. Our method
outperforms the Bad Teacher in the task of forgetting 500 images, with a A improvement from

8.28% to 5.52%. Similarly, in the task of forgetting 4000 images, we achieve an A boost from
15.94% to 8.85%.

A.3 COMPARISON WITH THE Fisher Forgetting METHOD

In addition to the four methods outlined in the main body of our manuscript, we also compare our
method with the Fisher Forgetting method|Golatkar et al.|(2020b). We evaluate to forget 100 images
from each class in the CIFAR-10 dataset. As observed from Table[I3] the Fisher Forgetting signif-
icantly undermines the performance of the model, while our method achieves effective forgetting
while maintaining the model’s performance.
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Table 8: Comparison with the ViT model on CIFAR-10 dataset. Regarding M,,, its average accuracy
over 10 classes is 84.45%.

Removal Class Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACC%MM ACC%f ACCp,,, ACCDf ACCp,.,, ACCD_f;A ACCp,,, ACCDf ACCp,,,, ACCDf;A ACCp,,, ACCDf;A
Class 0 84.01 92 84.70 100 84.46 62; 30 84.16 4 83.49 92;0 82.94 88:4
Class 1 84.26 96 84.71 100 84.58 76; 20 84.23 9 83.47 87,9 83.37 96; 0
Class 2 85.66 88 84.54 100 84.58 60; 28 84.33 1 82.90 82;6 83.97 91;3
Class 3 84.80 70 84.67 100 84.35 41;29 84.17 0 83.02 87,17 84.16 74: 4
Class 4 85.24 87 84.41 100 84.56 51;36 84.30 0 83.19 87,0 83.85 86; 1
Class 5 84.32 78 84.39 100 84.37 54,24 84.13 0 83.01 86; 8 83.67 80;2
Class 6 83.39 85 84.78 100 84.54 71; 14 84.14 3 83.38 93;8 83.85 90; 5
Class 7 84.97 85 84.74 100 84.63 66; 19 84.29 2 82.51 85;0 83.85 79; 6
Class 8 85.13 92 85.7 100 84.54 72;20 84.28 3 83.37 90; 2 83.65 89;3
Class 9 84.38 93 85.65 100 84.50 74; 19 84.08 2 83.41 90; 3 83.62 88;5
Avg 84.61 86.6 84.83 100 84.51 62.7;23.9 84.21 2.4 83.05 87.9;5.3 84.07 86.1;3.3

Table 9: Comparison with the ViT model on CIFAR-100 dataset. We randomly sample 17 classes
for evaluation. The average accuracy of M, over 100 classes is 83.04%.

Removal Class Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCYL, ACCL |ACCp,,,, ACCD,|ACCD,,,, ACCpiA|ACCp,,,, ACCp;|ACCD,,., ACCp;iA|ACCD,,,, ACCD ;A
road 81.97 95 83.43 100 80.51 41;54 83.04 0 81.80 95; 0 82.13 100; 5
turtle 81.88 80 83.45 100 80.54 22;58 80.54 0 82.00 65; 15 80.61 83; 3
chimpanzee 82.26 96 83.43 100 80.43 28; 68 83.52 0 81.30 81; 15 82.42 100; 4
orchid 81.70 93 83.42 100 80.37 25; 68 83.08 0 80.59 72;21 81.96 87; 6
rabbit 82.11 75 83.46 100 80.44 14; 63 82.95 0 81.09 48;27 82.42 89; 14
forest 82.49 71 83.45 100 80.37 24;54 83.20 0 80.93 76; 1 82.20 90; 13
possum 82.39 78 83.41 100 80.73 16; 62 83.36 0 80.98 57;21 82.38 84; 6
fox 81.67 90 83.43 100 80.43 24; 66 83.11 0 80.55 92; 2 82.19 86; 4
house 82.26 86 83.42 100 80.59 24;59 83.35 0 81.03 83; 3 82.31 67;19
mushroom 81.22 88 83.45 100 80.73 20; 66 83.27 0 81.43 94; 6 82.43 95; 7
chair 83.51 88 83.43 100 80.67 39;49 83.11 0 81.45 95; 7 82.41 9; 6
tiger 82.81 87 83.47 100 80.54 35;52 83.15 0 81.11 94; 7 81.57 84; 3
snail 83.79 90 83.41 100 80.54 18;72 82.19 0 80.80 86; 4 82.4 94; 4
worm 83.22 92 83.41 100 80.61 38; 54 83.04 0 81.22 96; 4 82.56 99; 7
beetle 83.12 80 83.39 100 80.01 15; 65 83.15 0 81.32 92; 12 81.6 97; 17
beaver 83.05 67 83.44 100 80.37 6; 61 83.50 0 81.37 71; 4 81.76 71; 4
bed 83.30 81 83.44 100 80.57 25;56 83.25 0 81.29 88; 7 81.7 89; 8
avg 82.51 84.71 83.43 100 80.50 39.2;45.51 83.10 0 81.19 81.47; 8,64 82.06 88.76; 6.23
Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCthest ACCng ACCp, ., ACCDf ACCp, ., ACCDf;A ACCp,, ., ACCDf ACCp, ., ACCDf;A ACCp,, .y ACCDf;A
85.81 94 87.09 100 8591 63; 31 84.26 0 84.51 91; 3 85.86 90; 4
85.31 83 86.89 100 85.72 67; 14 85.52 0 83.31 72; 9 86.49 82; 1
84.61 91 86.60 100 85.21 60; 38 85.79 1 84.21 80; 11 86.16 92; 1
85.31 87 86.50 100 85.11 58;39 84.50 0 84.61 89; 2 86.59 85; 2
85.11 97 86.70 100 85.50 66; 30 85.89 0 85.91 94; 4 85.50 94; 3
85.02 98 86.79 100 85.01 56; 40 85.95 0 85.21 85;13 86.15 91; 7
85.71 95 86.70 100 84.64 53;31 84.84 0 85.81 86; 9 86.67 94; 1
85.41 81 86.79 100 85.38 63; 16 84.61 0 84.61 68; 13 87.28 90; 9
85.42 87 86.89 100 84.93 48;39 85.15 0 83.21 55;33 87.08 87; 0
84.82 94 86.60 100 85.16 52;42 83.85 0 83.61 84; 10 86.38 96; 2
85.25 90.7 86.76 100 85.23 60.5; 30.2 85.01 0.1 84.50 80.4;10.7 86.41 90.1;3

Table 10: Comparison on VGGFaces2 dataset. Regarding M,, its average accuracy over 10 classes
is 87.01%.

Table 11: Comparison on CIFAR-10 dataset with the size of D as 500. Regarding M,, its average
accuracy over 10 classes is 85.37.

Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCthcst ACCng ACCp,,, ACCDf ACCp,. ., ACCDf ;A |ACCpy, .y ACCDf ACCp,. ., ACCDf ;A ACCh, ACCDf A
85.77 87.6 85.08 100 84.90 40.4;47.2 84.44 0 83.51 97.0; 9.4 83.60 90.2; 2.6
85.56 94.6 85.02 100 84.93 44.2;50.4 84.76 0.2 84.25 100; 5.2 84.58 98.2; 3.6
85.96 80.4 85.07 100 84.66 34.0; 46.4 84.04 0 83.68 96.6; 16.2 84.35 90.5; 10.1
85.89 68.6 84.93 100 84.89 29.2;39.4 85.45 0 79.75 74.8; 9.3 85.37 79.4;10.6
84.93 81.4 84.91 100 84.75 30.8; 50.4 84.89 0 83.45 97.8;16.4 84.43 86.2; 4.8
85.67 74.5 85.03 100 84.94 32.8;41.7 85.08 0 82.90 90.8;16.3 86.12 78.3; 3.8
85.82 87.6 85.05 100 80.46 10.0; 77.6 85.07 0 82.01 934; 5.8 85.47 89.2; 1.6
85.55 91.2 84.92 100 84.72 33.8;574 84.30 0.2 78.22 85.2; 6.0 84.40 98.2; 7.0
85.44 94.8 84.93 100 85.05 44.4;50.5 82.36 1.4 80.81 97.8; 3.0 84.72 97.0; 2.2
85.83 93.0 84.97 100 85.02 38.0; 55.0 85.11 0 84.19 99.6; 6.6 84.93 94.6; 1.6
85.64 85.39 84.99 100 84.32 33.76; 51.60 83.92 0.18 82.27 93.28; 8.28 84.81 90.18; 5.52

14



Under review as a conference paper at ICLR 2025

Table 12: Comparison on CIFAR-10 dataset with the size of D as 4000. Regarding M,,, its average

accuracy over 10 classes is 85.37.

Removal Class Gold model Finetune Negtive Gradient Random Labeling Bad Teacher Ours

ACCi,teSt ACCng ACCp,,, ACCDf ACCp,,, ACCDf;A ACCp,,, ACCDf ACCp,,, ACCDf;A ACCp,,, ACCDf;A

class 0 84.01 62.44 85.31 100 7890  22.42;40.02 76.12 1.83 7942 60.67; 1.77 82.95 61.65; 0.79
class 1 84.26 80.25 85.12 100 76.61 22.97;57.28 76.44 0.83 7854  51.55;28.70 83.61 85.92; 5.67
class 2 82.40 42.65 85.01 100 79.32 13.40; 39.25 76.99 0.38 8242  77.45;34.80 80.34  22.53;20.12
class 3 82.56 24.80 85.36 100 80.78 8.97;15.83 77.65 0.05 7822 28.70; 3.90 79.02 12.42;12.38
class 4 82.20 48.05 85.26 100 79.13 12.05; 36.00 76.34 0.03 79.91 46.37; 1.68 7922 26.70;21.35
class 5 82.99 38.52 85.34 100 80.34 11.55;26.97 71.11 0.03 80.92  70.47;31.95 8223 29.30; 9.22
class 6 84.04 65.90 85.30 100 7742 11.37; 54.53 76.53 0.10 81.79  37.80;28.10 81.07  59.87; 6.03
class 7 83.38 62.87 85.23 100 7799  20.17;42.70 76.19 0.03 77.02  72.92;10.05 82.51 62.82; 0.05
class 8 84.18 77.65 85.25 100 7790  30.17;47.48 75.92 0.80 80.82 83.85; 6.20 83.11 7242; 523
class 9 84.38 73.55 85.29 100 76.00 18.52; 55.03 75.13 0.13 80.06  61.32;12.23 81.99 81.62; 7.70
Avg 83.44 57.38 84.79 100 78.41 17.15; 43.89 76.44 0.42 79.91 63.65;15.94 81.60  51.32; 8.85

Table 13: The Fisher Forgetting method can potentially result in catastrophic forgetting, severely

compromising the performance of the model.

Gold model Fisher Forgetting Ours
model  ACCY, ACC%f ACCp,.,, ACCp, ACCp,, ACCp,
Resnet18 85.61 92 10.37 0 84.60 96
AIICNN 87.00 94 10.07 2 87.03 89
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