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ABSTRACT

Modern privacy regulations have spurred the evolution of machine unlearning, a
technique enabling a trained model to efficiently forget specific training data. In
prior unlearning methods, the concept of “data forgetting” is often interpreted and
implemented as achieving zero classification accuracy on such data. Neverthe-
less, the authentic aim of machine unlearning is to achieve alignment between
the unlearned model and the gold model, i.e., encouraging them to have identical
classification accuracy. On the other hand, the gold model often exhibits non-zero
classification accuracy due to its generalization ability. To achieve aligned data
forgetting, we propose a Twin Machine Unlearning (TMU) approach, where a
twin unlearning problem is defined corresponding to the original unlearning prob-
lem. Consequently, the generalization-label predictor trained on the twin problem
can be transferred to the original problem, facilitating aligned data forgetting.
Additionally, we introduce a noise-perturbed fine-tuning scheme to balance the
trade-off between retaining the model’s generalization ability and enhancing its
resilience to Membership Inference Attacks. Comprehensive empirical experi-
ments illustrate that our approach significantly enhances the alignment between
the unlearned model and the gold model. The code is available here.

1 INTRODUCTION

Machine learning model providers tend to collect extensive data from the Internet and utilize it to
train their machine learning models. The recent introduction of data privacy and protection regula-
tions (European Union’s GDPR Regulation (2018), and California Consumer Privacy Act (CCPA)
Goldman (2020)) obligate these model providers to comply with the request-to-delete Dang (2021)
from the data owner. For example, a corporation offering facial recognition services might acquire
facial images from the Internet to train their facial recognition models. Subsequently, a user might
discover that the company has utilized his/her facial images in model training. In such a scenario,
the user reserves the right to petition the company to revise the facial recognition model to forget
his/her facial image data.

The straightforward solution is to entirely discard the trained model, delete his/her facial images
from the training data, and re-train a new model from scratch (i.e., called gold model). Unfortunately,
re-training from scratch is expensive. Therefore, machine unlearning Garg et al. (2020); Ginart et al.
(2019); Cao & Yang (2015); Gupta et al. (2021); Sekhari et al. (2021); Brophy & Lowd (2021);
Ullah et al. (2021) has garnered considerable attention, aiming to efficiently revise a trained model
to forget a cohort of training data, without affecting the performance on the remaining data.

In most prior unlearning methods Graves et al. (2021); Tarun et al. (2023), the “forgetting” of a
cohort data Df is commonly interpreted and implemented by decreasing the classification accuracy
on Df as much as possible, i.e., pursuing zero accuracy ACCunlearn

Df
= 0. This implementation

works well when forgetting an entire class k (i.e., Df = Dk). However, it is not suitable when
the aim is to forget only a subset of class k (i.e., Df ⊂ Dk). In this case, even though Df are
not involved in the training of the gold model, the remaining samples from class k (i.e., samples
∈ (Dk −Df )) are still involved in training. Thus, the gold model has ability to recognize class k.
Consequently, the gold model can still correctly classify a portion of Df due to its generalization
ability, resulting in ACCgold

Df
̸= 0. As we know, the actual aim of machine unlearning is to obtain

an unlearned model that is well aligned with the gold model. Here, “align” implies requiring the
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Figure 1: Construction of the Twin Model and corresponding Twin Unlearning Problem.

unlearned model to possess the identical classification accuracy as the gold model. Obviously,
it is not appropriate to pursue ACCunlearn

Df
= 0.

In this paper, we denote the samples x ∈ Df that can be correctly classified by the gold model as
the ‘easy’ samples. Conversely, the samples that cannot be correctly classified are referred to as the
‘hard’ samples. As these easy/hard labels for Df are defined based on the model’s generalization
ability, we refer to them as generalization-labels. Therefore, a well-aligned unlearning algorithm
should specifically decrease the classification accuracy on hard samples rather than all samples
in Df . In other words, it is essential to first identify the hard samples from Df , and subsequently
reduce the classification accuracy on such samples. However, since the gold model is unknown,
obtaining these generalization-labels becomes challenging. This is the reason why prior unlearning
methods have to adopt achieving zero classification accuracy as the objective of data forgetting.

In this paper, we aim to achieve aligned data forgetting. To this end, we propose to train a binary
classifier to predict the generalization-labels for Df . With these predicted labels, Df is partitioned
into an easy subset De

f and a hard subset Dh
f . Subsequently, we specifically decrease the classifica-

tion accuracy on Dh
f , while retaining the classification accuracy on De

f . The most challenging aspect
of our approach lies in training such a binary classifier on a specific dataset, which involves two sub-
challenges: (1) Build a specific labeled dataset for training the binary classifier; (2) Construct a
discriminative representation for the binary classifier.

To address the first challenge, we formulate a twin unlearning problem corresponding to the original
one. Specifically, the original model Mo is fine-tuned with Dtest to produce the Twin Model Mt.
As a result, in the context of Mt, the original model Mo can be seen as analogous to Mt’s gold
model (i.e., Mg

t = Mo), where Dtest can be seen as analogous to Mt’s forgetting data, as shown in
Fig.1. In another word, given a trained model Mt, the Twin Unlearning Problem is to forget Dtest

from Mt. Note that in the twin unlearning problem, the gold model is known Mg
t = Mo.

The reason for formulating such a twin unlearning problem is that we can easily obtain a labeled
dataset – the dataset Dtest. Since the gold model of the twin unlearning problem is known (i.e., Mo),
we can easily obtain the generalization-labels for Dtest, specifically by employing Mo to make class
predications on Dtest.

Regarding the second challenge, we propose to integrate three complementary features, each pos-
sessing strong discriminability to distinguish between easy and hard samples. (1) The first feature
is the Distance Feature (DF). For each sample x in Df , we identify its nearest neighbor in Dr,
and the distance between them is considered as a feature. Intuitively, if x is an easy sample, it
typically has similar samples in Dr, resulting in a small distance. In contrast, the distance feature
for a hard sample tends to be large. (2) The second feature is the Adversarial-attack Feature (AF).
We construct this feature by employing adversarial attacksMadry et al. (2017); Goodfellow et al.
(2014); Moosavi-Dezfooli et al. (2017), which aim to fool a trained model into making incorrect
predictions with small adversarial perturbations. Clearly, hard samples are more vulnerable to ad-
versarial attacks compared to easy samples due to their proximity to the decision boundary. Hence,
the results of adversarial attack can be considered a discriminative feature.(3) The third feature is
the Curriculum-learning-loss Feature (CF). Curriculum learning theory Kumar et al. (2010); Tullis
& Benjamin (2011); Bengio et al. (2009) suggests that easy samples are learned earlier than hard
samples. Therefore, the loss value of the first fine-tuning epoch is considered a feature to distinguish
between easy and hard samples.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

At last, in addition to reducing the classification accuracy on the hard subset Dh
f , it is equally crucial

to maintain the model’s generalization ability on the easy subset De
f , ensuring model can correctly

classify those samples. A naive approach to achieving this is by directly minimizing their classifica-
tion loss during machine unlearning. However, such an approach would leave the model vulnerable
to Membership Inference Attack (MIA), which is commonly used to assess the success of data for-
getting. To address this, we propose a noise-perturbed fine-tuning scheme. This scheme minimizes
the classification loss on a noise-perturbed version of De

f . By doing so, we could strike a balance
between preserving the model’s generalization ability and enhancing its resilience to MIA.

Overall, we summarize our contributions as follows.

• We emphasize alignments in data forgetting and introduce a Twin Machine Unlearning
(TMU) approach to enhance such alignments.

• We devise three discriminative features to distinguish easy and hard samples, employing
adversarial attack and curriculum learning strategies.

• To withstand the assessment of data forgetting from MIA, we propose a noise-perturbed
fine-tuning scheme to enhance model’s resilience to MIA.

2 PROBLEM OF DATA FORGETTING

Let D = {xi, yi}Ni=1 be a dataset of images xi, each with a label yi ∈ {1, . . .K} representing a
class. The original model Mo(θ) is trained with the D, which could be a DNN with parameters θ.

Let Df be a subset of the D, whose information we want to forget from the trained model Mo(θ).
The Df is called the forgetting data, which could be all or some of the data with a given label k, i.e.,
corresponding to forgetting an entire class or a subset of a class, respectively. In this paper, we are
particularly interested in the case of forgetting a subset of a class, as the alignment problem becomes
more critical in this scenario. The remaining data is denoted by Dr, whose information is desired
to be kept unchanged in the model. Df and Dr together represent the entire training set D and are
mutually exclusive, i.e., Dr ∪Df = D and Dr ∩Df = ∅.

Since Df has been used to train the Mo(θ), the model parameters θ will contain information about
Df . The task of data forgetting aims to forget the information of Df from the trained model
Mo(θ). The ideal solution is to train a new model from scratch with Dr, which is denoted as the
gold model Mg

o (θr). However, obtaining the gold model is time-consuming due to the expensive
re-training procedure. Thus, the practical data forgetting aims to efficiently revise the original model
θ with a ‘scrubbing/forgetting’ function s(), so that the revised model s(θ) is as close to the gold
model θr as possible. The s() is often implemented by a machine unlearning algorithm.

2.1 ALIGNMENT IN DATA FORGETTING

The model alignment is often measured by some metrics (called readout functions Golatkar et al.
(2021)), such as: (i) accuracy on the test set Dtest, i.e., ACCDtest

; (ii) accuracy on the forgetting
data Df , i.e., ACCDf

; (iii) accuracy on the remaining data Dr, i.e., ACCDr
. Achieving alignment

on ACCDtest
and ACCDr

is straightforward, as the target is to increase them as much as possible.
In contrast, the challenge lies in aligning the ACCDf

, i.e., the unlearned model is desired to have
the same classification accuracy as the gold model ACCunlearn

Df
= ACCgold

Df
. Since the gold model

is unknown, obtaining its ACCgold
Df

is impossible, let alone achieving accuracy alignment.

As a result, prior unlearning methods tend to replace this objective with a surrogate objective, i.e.,
decreasing the accuracy ACCDf

as much as possible. For the case of forgetting an entire class,
this implementation is acceptable since, after removing an entire class, the gold model tends to
have ACCgold

Df
= 0, aligning with the surrogate objective. However, in the case of forgetting a

subset of class, the remaining data will still contain samples of the forgetting class. Due to the
generalization ability of gold model, the gold model may correctly classify some samples in Df ,
i.e., ACCgold

Df
̸= 0. Thus, we have to carefully consider the alignment challenges.

3
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Figure 2: The workflow of our approach. We first construct the twin model by fine-tuning the Mo

with Dtest to produce Mt. And then, we extract discriminative features and train a binary classifier
on Dtest. Consequently, we transfer the binary classifier to the original problem to predict the
generalization-labels on Df . Finally, we reduce classification accuracy on Dh

f .

Furthermore, as highlighted by Golatkar et al. (2020a), implementing data forgetting by merely
decreasing ACCDf

may give rise to other issues such as information exposure. For instance, it could
lead to the Streisand effect. This effect describes unexpected model behavior on forget samples,
potentially leaking information about that data. If the samples in Df are consistently misclassified,
it might raise suspicious. Therefore, it is crucial to emphasize the alignment in data forgetting.

3 OUR APPROACH

3.1 TWIN UNLEARNING PROBLEM

In our approach, we first construct a new unlearning problem corresponding to the original one. As
shown in the left part of Fig.2, for the original unlearning problem, we have an original model Mo

that is trained with Dr+Df . Our task is to get an unlearned model Mu from Mo, so that Mu is well
aligned with the gold model Mg

o . The Mg
o is a model trained from scratch only with Dr.

As shown in the right part of Fig.2, if we fine-tune the Mo with another dataset Dtest, we obtain a
new model, namely the twin model Mt. Consequently, we can construct a twin unlearning problem:
we regard the Mt as the “original model” for the twin problem, which is trained with Dr+Df+Dtest.
We regard the Dtest as the “forgetting data”. Thus, our twin unlearning problem is defined as:

Given a trained model Mt, the unlearning task is to forget Dtest from Mt.

Obviously, the twin problem’s “gold model” Mg
t is known, which is exactly the original problem’s

original model Mo,

Mg
t = Mo (1)

Regarding the constructed twin unlearning problem, since its gold model Mg
t is known, we can eas-

ily obtain the ground-truth generalization-labels for its forgetting data Dtest, i.e., run the inference
of the model Mg

t over the Dtest to obtaining the classification results. So far, we have build a
specific labeled dataset. We can train a binary classifier f() to distinguish between hard and easy
samples on Dtest for the twin problem.

It is usually to assume that Dtest and Df have independent and identical distribution (I.I.D). Thus,
the binary classifier f() can be transferred from the twin problem back to the original unlearning
problem for predicting the generalization-labels on Df . In this way, we can effectively partition
Df into a hard subset Dh

f and an easy subset De
f . Finally, when solving the original unlearning

problem, we can fine-tune the original model Mo by reducing classification accuracy on Dh
f (i.e.,

maximizing its loss value) while retaining the accuracy on De
f (i.e., maximizing its negative loss

4
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value), as follows:

max
θ

(LDh
f
(x, y; θ)− LDe

f
(x, y; θ)) (2)

This naive unlearning approach can properly address the alignment challenge in data forgetting.
However, our empirical study shows that it cannot afford the examination of Membership Infer-
ence Attack (MIA). MIA was initially introduced to determine whether a sample was included in a
model’s training set. More recently, it has been employed to assess the effectiveness of data forget-
ting. If the MIA asserts that a forgotten sample belongs to the training data, we conclude that the
unlearning algorithm has failed to forget this data.

MIA typically operates by evaluating the loss value of a sample—if the loss is below a certain
threshold, the sample is presumed to belong to the training set. In our naive unlearning approach
with Eq(2), the loss for De

f is minimized, which leads MIA to regard De
f as part of the training set.

To withstand the examination of MIA, it is essential to convince MIA that De
f has indeed been

forgotten, while simultaneously ensuring that the unlearned model retains its ability to generalize
and recognize De

f . To achieve this, we propose an enhanced unlearning approach as Eq.equation 3,
designed to minimize the loss value for a noise-perturbed version of De

f , denoted as D̃e
f . This can

be formulated as follows:

max
θ

(LDh
f
(x, y; θ)− LD̃e

f
(x̃, y; θ)) (3)

where D̃e
f = {x̃|x̃ = x+ r, x ∈ De

f}
where a Gaussian noise r is added to each sample in De

f .

Since the loss value for De
f is not directly minimized, our enhanced approach can withstand the

examination of MIA. At the same time, by minimizing the loss on D̃e
f—a noise-perturbed version

of De
f—the unlearned model retains its generalization ability on De

f , as the introduced noise r is
not large. Particularly, there exists a balance between preserving the model’s generalization ability
and enhancing its resilience to MIA. We can make a trade-off by selecting an appropriate noise level
r, increasing the noise level enhances resilience to MIA, while decreasing it improves the model’s
generalization ability.

3.2 DISCRIMINATIVE FEATURES

Besides building a specific labeled dataset for training the binary classifier, another core of our
approach is to construct discriminative features for the classifier. Briefly, we propose to integrate
three complementary features by employing adversarial attack and curriculum learning strategies.

3.2.1 DISTANCE FEATURE (DF)

In the case of forgetting a subset of a class k, the remaining data Dr will still contain samples
belonging to the forgetting class k. Therefore, for each sample x ∈ Df , we can find some samples
x′ ∈ Dr similar to x. The similarity can be measured by the distance l(x, x′) with respect to a
feature extractor g(),

l(x, x′) = |g(x)− g(x′)| (4)

For each x ∈ Df , we can identify the top-N similar samples x′
i ∈ Dr, (i = 0, . . . , N − 1).

Intuitively, these distances l(x, x′
i) for an easy sample would be smaller than that for a hard sample.

Thus, the concatenation of these top-N distances l(x, x′
i), (i = 0, . . . , N − 1) can be regarded as

a discriminative feature to distinguish between easy and hard samples. In practice, we adopt the
activation value of the penultimate layer (i.e., the layer just before the last fully-connected layer) as
the g().

3.2.2 ADVERSARIAL-ATTACKING FEATURE (AF)

Whether a sample can be correctly generalized or not (i.e., belong to a easy or hard sample) is closely
related to the positional relation between it and the classification boundary. If it is near the boundary,
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it is hard to correctly classify it with high confidence. Thus, the easy samples often stay far from the
boundary, while the hard samples tend to stay near the boundary.

In order to leverage such positional relation knowledge to distinguish between easy and hard sam-
ples, we employ the untargeted adversarial attack technique. As we know, given any sample x,
we can generate a corresponding adversarial sample x̃ whose classification result is different from
its ground-truth label. The adversarial sample x̃ is often generated by perturbing x with a certain
perturbation r. The perturbation r is typically constrained by a certain attack budget ϵ, as follows,

max
r

L(x̃, y; θ) (5)

s.t. ||r||p < ϵ, x̃ = x+ r

The essence of adversarial attack is to move x across the classification boundary, i.e., changing
the classification result. Thus, given a sufficiently large budget ϵ, we can successfully conduct the
adversarial attack on any sample, i.e., successfully generating x̃.

Intuitively, the attack budget for a sample is related to the positional relation between it and the
classification boundary. If the sample is near the boundary, a small budget is enough to conduct
a successful attack. Thus, we can distinguish between hard and easy samples like that: we use a
relatively small attack budget to conduct adversarial attack, and we identify easy and hard samples
based on whether the attack is successful or fails, i.e., hard samples can be successfully attacked
with a small attack budget, since it is near the classification boundary.

Furthermore, the bipolar results about successful or failure attack cannot be regarded as a good
continuous discriminative feature. Instead, we compute the classification score/logits s(x̃) for the
adversarial sample x̃. On the other hand, we calculate the classification score s(x) for the clean
sample x, and measure the cross-entropy between s(x̃) and s(x),

dist(x, x̃) = H(s(x̃), s(x)) (6)

Obviously, the dist(x, x̃) will be large if the attack is successful and vice versa. The larger the
dist(x, x̃) is, the higher the likelihood of a successful attack. Thus, the dist(x, x̃) is regarded as the
second discriminative feature to distinguish between easy and hard samples.

3.2.3 CURRICULUM-LEARNING-LOSS FEATURE (CF)

Curriculum learning theory suggests that easy samples are learned earlier than hard samples. Thus,
we propose to employ a curriculum learning strategy to build our third feature. Curriculum learning
has illustrated that neural networks tend to learn easy samples very quickly at the beginning of the
training iterations. Conversely, the hard samples are learned at the later iterations. Specifically, we
train a randomly-initialized network Mr from scratch, where the architecture of Mr is the same as
the architecture of original model Mo. To distinguish between easy and hard samples, we just train
the model Mr for one or two epochs, instead of completing the full training procedure.

Regarding whether a sample x has been well-learned by Mr, we use the loss loss(x) as a metric,
i.e., a small loss value implies that x has been well learned (indicating it is a easy sample) while a
large loss value implies that x has not been well learned (indicating it is a hard sample). Therefore,
the curriculum-learning-loss loss(x) is considered as the third feature to distinguish between easy
and hard samples.

Note that the model Mr is trained with a part of Dr +Df and Dtest. In practice, we find that it is
enough to train Mr by just utilizing 30% of all Dr +Df . Thus, the training of Mr is much cheaper
than the training of Mo.

3.3 BINARY CLASSIFIER

We have build a specific labeled dataset Dtest. On the other hand, we have devised three discrimi-
native features to distinguish between easy and hard samples. Next, we will train a binary classifier
to distinguish between easy and hard samples with these feature over the labeled dataset. Specifi-
cally, we employ an MLP network with two hidden layers as the binary classifier. We concatenate
the three discriminative features as the input of the binary classifier. Note that we have opted for
a straightforward binary classifier due to the discriminative nature of our features and our desire to
keep the unlearning process cost-effective.

6
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4 EVALUATION

4.1 EXPERIMENTAL SETTING

Datasets & Models. We evaluate our approach using three public image datasets: CIFAR-10,
CIFAR-100 Krizhevsky et al. (2009) and VGGFaces2 Cao et al. (2018). CIFAR-10 comprises 10
classes, and we perform data forgetting evaluations for each class independently. For CIFAR-100,
we randomly select 17 out of 100 classes for evaluation due to space constraints. Since we emphasize
on forgetting only a subset of one class, we randomly select 100 images as Df . For VGGFaces2,
we randomly select 10 out of 100 celebrities as the forgetting class, and then randomly choose 50
facial images to comprise Df for each forgetting class.

Three common image classification neural networks are employed for evaluation: ResNet-18 He
et al. (2016), AllCNN Springenberg et al. (2014), and Vision Transformer Lee et al. (2021). The
original models are trained for 200 epochs using Stochastic Gradient Descent (SGD) optimizer with
a momentum of 0.9, weight decay of 5e− 4, and an initial learning rate of 0.01. The learning rate is
divided by 10 after 100 and 150 epochs.

Baseline Methods. We compare our approach against four machine unlearning methods: (1) Neg-
ative Gradient Golatkar et al. (2020a): fine-tune the original model on D by increasing the loss for
samples in Df , which is the common surrogate objective adopted by most unlearning methods. (2)
Fine-tuning: fine-tune the model on Dr using a slightly large learning rate. This is analogous to
catastrophic forgetting, as fine-tuning without Df may cause the model to forget Df . (3) Random
Labeling Graves et al. (2021): fine-tune the model on D by assigning random labels to samples in
Df , causing those samples to receive a random gradient. (4) Bad Teacher Chundawat et al. (2023):
it explores the utility of competent and incompetent teachers in a student-teacher framework to in-
duce forgetfulness. Note that this work is closely related to our approach since it also emphasizes
alignments in data forgetting.

Evaluation Metrics. We assess the alignment quality of unlearning methods using three metrics: (1)
Accuracy on Df and Dtest: Ideally, the unlearned model is expected to achieve the same accuracy
as the gold model. Let ACCDf

and ACCg
Df

denote the accuracy of the unlearned model and
the gold model on Df . Thus, the differences between them, ∆ = |ACCDf

− ACCg
Df

|, can be
considered as the measure of alignment quality. Additionally, accuracy on Dtest is employed to
assess whether the model accuracy is compromised after data forgetting. (2) Activation Distance:
This metric calculates the average L2-distance between the activation values of the unlearned model
and the gold model on Df . A smaller activation distance indicates a better alignment between two
models. (3) Membership Inference Attack (MIA): MIA aims to determine whether a given sample
was included in a model’s training set. Consequently, if we have an ideal MIA, we can employ it to
evaluate the success of data forgetting. The lower the success rate of the MIA, the more effective the
data forgetting process. Thus, the attack success rate (ASR) is employed as a key evaluation metric
for data forgetting effectiveness. Although a perfect MIA is unattainable, we utilize a state-of-the-art
MIA approach Ye et al. (2022) in our evaluation.

4.1.1 IMPLEMENTATION DETAILS

All our experiments were conducted on a single NVIDIA RTX 3090 GPU. For the binary classifier,
we employ an MLP network with two hidden layers, where the sizes of the hidden layers are 64 and
32, respectively. We use the ReLU activation function in the classifier. The classifier is trained for
100 epochs using SGD with fixed learning rate of 0.01, momentum 0.9 and weight decay 0.0005. For
the Adversarial-attacking Feature (AF), we set the attack budget as ϵ = 4/255. For the Curriculum-
learning-loss Feature (CF), we obtain it from the loss on the models trained from scratch for two
epochs using Df and Dtest, as well as a 30 % random subset of dr. The learning rate is set to
one-tenth of the learning rate used during the fine-tuning process. The loss feature is obtained from
the same model used for Df .

4.2 MAIN RESULTS

We compare our approach with four state-of-the-art unlearning methods. Table.1 presents the com-
parison on the CIFAR-10 dataset. When adopting the ResNet-18 neural network, the original model
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Table 1: Comparison with four unlearning methods on CIFAR-10. Three metrics are adopted: (1)
Accuracy on Dtest and Df ; (2) Activation Distance; (3) MIA. We conduct the data forgetting exper-
iment for each class in CIFAR-10 independently, where 100 images are randomly selected as Df .
The results in this table are the average values over all 10 classes in CIFAR-10.

Experiment Accuracy on Dtest and Df
Activation
Distance

Member Inference
Attack

Model Methods ACCDtest↑ ACCDf
∆↓ AD↓ ASR ↓

ResNet-18

Re-training (Gold Model) 85.31 86.9 0 0 39.1
Fine-tuning 85.06 100 13.1 0.58 53.2

Negtive Gradient 84.81 10.6 76.3 0.72 7.3
Random Label 85.43 0 86.9 1.25 0
Bad Teacher 82.37 91.5 8.0 0.71 23.5

Ours 84.86 90.8 4.2 0.49 31.6

ALLCNN

Re-training (Gold Model) 86.58 86.4 0 0 55.9
Fine-tuning 87.34 100.0 13.1 0.32 45.6

Negtive Gradient 86.87 3.3 84.3 0.84 1.7
Random Label 86.89 0 86.4 0.96 0
Bad Teacher 85.96 88.0 5.8 0.49 56.4

Ours 86.78 87.7 4.9 0.29 26.6

Vit

Re-training (Gold Model) 84.61 84.6 0 0 32.1
Fine-tuning 84.83 100.0 15.4 0.65 80.0

Negtive Gradient 84.51 62.7 23.9 0.92 32.5
Random Label 84.21 2.4 82.2 0.88 1.6
Bad Teacher 83.05 87.9 5.3 0.59 50.2

Ours 84.07 86.1 3.3 0.40 51.5

Table 2: Comparison with four unlearning methods on CIFAR-100.

Experiment Accuracy on Dtest and Df
Activation
Distance

Member Inference
Attack

Dataset Methods ACCDtest↑ ACCDf
∆↓ AD↓ ASR ↓

Resnet-18

Re-training (Gold Model) 81.03 81.29 0 0 65.66
Fine-tuning 80.61 100 18.71 0.56 79.72

Negtive Gradient 80.27 23.94 57.37 0.72 10.9
Random Label 80.09 14.35 66.94 0.83 8.2
Bad Teacher 78.45 60.64 19.35 0.41 64.35

Ours 79.55 89.29 7.94 0.28 37.83

Vit

Re-training (Gold Model) 82.00 84.71 0 0 45.94
Fine-tuning 83.53 100.0 15.29 0.50 75.0

Negtive Gradient 80.50 39.20 45.51 0.75 16.3
Random Label 83.10 0 84.71 0.74 0
Bad Teacher 81.19 81.47 8.64 0.25 75.27

Ours 82.00 88.76 6.23 0.19 62.16

attains an average accuracy of 85.37% across 10 classes. When adopting the AllCNN neural net-
work, the original model has an average accuracy of 86.56%. In this evaluation, we conduct the
data forgetting experiment for each class independently. For each class, 100 samples are randomly
selected as Df . Due to space constraints, the class-wise results are shown in Appendixes, while
Table.1 illustrates the average results across 10 classes.

Accuracy on Df and Dtest: We provide the accuracy of the gold model on both Dtest and Df

(i.e., ACCg
Dtest

and ACCg
Df

). For each method, we provide the ACCDtest
, ACCDf

, and ∆ =

|ACCDf
− ACCg

Df
|. The closer the accuracy between the gold model and the unlearned model

(i.e., the smaller the ∆ is), the better the alignment is achieved. In addition, the accuracy on Dtest is
employed to assess whether the model’s normal performance is compromised after data forgetting.
The higher the accuracy on Dtest is, the better the normal performance is maintained.

From Table.1, it’s evident that the Fine-tuning method cannot effectively accomplish data forgetting,
as the ACCDf

remains almost at 100%. It implies that Fine-tuning can only forget an entire class but
struggles to forget a subset of a class. In contrast, the Random Labeling method tends to misclassify
all samples in Df , resulting in ACCDf

= 0%. The Negative Gradient method performs better than
Fine-tuning and Random Labeling, with an average difference of ∆NG = 76.3%. Due to explicitly
addressing the alignment issue, the Bad Teacher method makes significant progress, achieving a

8
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Table 3: Ablation study on three discriminative features. We use the accuracy of predicted
generalization-labels ACCgl as the metric to measure the quality of alignment.

Forgetting Class DF+AF+CF (Ours) DF AF CF
ACCDtest↑ ACCgl↑ ACCDtest↑ ACCgl↑ ACCDtest↑ ACCgl↑ ACCDtest↑ ACCgl↑

Class 0 90.4 92 89.2 92 90.1 92 89.2 91
Class 1 94.4 100 93.8 92 93.7 97 94.3 100
Class 2 79.6 84 72.6 83 71.1 85 75.1 82
Class 3 76.9 79 69.2 72 65.5 69 76.6 81
Class 4 83.3 85 80.3 80 82.3 82 83.7 82
Class 5 82.9 82 78.5 77 77.0 74 81.5 86
Class 6 91.7 89 88.2 85 89.3 82 91.0 90
Class 7 90.8 87 91.1 86 91.7 86 91.7 84
Class 8 94.7 92 92.9 90 82.7 89 94.7 91
Class 9 93.6 98 92.0 94 92.0 95 93.2 96

remarkable average difference of ∆BadT = 8%. Nevertheless, our approach outperforms the Bad
Teacher method in terms of both ∆ and ACCDtest . Particularly, we improve the average difference
∆ from 8% to 4.2%.

The comparison on the CIFAR-100 is shown in Table.2. We draw similar conclusions as with
CIFAR-10. The Random Labeling method no longer misclassifies all samples in Df , with an av-
erage ACCDf

= 14.35%. Our approach demonstrates a greater advantage than the Bad Teacher
method, with ∆ours = 7.94% against ∆BadT = 19.35%.

The comparison on the VGGFaces2 dataset is presented in Appendixes. Similarly, our approach
consistently outperforms all other methods.

Activation Distance: Activation distance Golatkar et al. (2021) is another effective metric for evalu-
ating the alignment in unlearning. A smaller activation distance indicates a higher similarity between
the unlearned model and the gold model. From Table.1, our approach exhibits good performance,
outperforming other methods.

Membership Inference Attack (MIA): We leverage MIA to evaluate the success of data forgetting.
The lower the MIA’s Attack Success Rate (ASR), the more successful the data forgetting process.
In practice, we utilize an enhanced Membership Inference Attack Ye et al. (2022) in our evaluation.
From Table.1, we can see that our approach can afford the examination of data forgetting from MIA.
It is worthy to note that the Negative Gradient achieve better performance than our approach in terms
of MIA assessment. This is because the Bad Teacher inherently aims to disrupt accuracy on Df ,
which naturally leads to the resilience to MIA.

In our experiments, three different neural network architectures are evaluated, including ResNet-
18 He et al. (2016), AllCNN Springenberg et al. (2014) and ViT Lee et al. (2021). From Table.1 and
2, we found that the performance of unlearning methods is less influenced by the neural network
architecture. Specifically, the Fine-tuning method maintains ACCDf

= 100%, whereas in contrast,
the Random Labeling method results in almost ACCDf

= 0%. Both methods fail to achieve effec-
tive data forgetting, regardless of the employed network architecture. We did not present the results
for AllCNN on CIFAR-100, as AllCNN is unable to effectively handle a 100-class classification
problem.

The Negative Gradient method exhibits relatively better performance, achieving an average differ-
ence ∆AllCNN

NG = 84.3% on AllCNN and ∆V iT
NG = 23.9% on ViT, respectively. In contrast, the Bad

Teacher method makes more progress, achieving a remarkable average difference ∆AllCNN
BadT = 5.8%

on AllCNN and ∆V iT
BadT = 5.3% on ViT, respectively. Nevertheless, our method still outperforms

the Bad Teacher. Particularly, we improve the average difference ∆ from 5.8% to 4.9% on AllCNN
and ∆ from 5.3% to 3.3% on ViT, respectively.

4.3 ABLATION STUDY

In our approach, three discriminative features are proposed and combined to distinguish hard sam-
ples from easy samples. We will evaluate their individual contributions through an ablation study in
this section. Since these features are developed to predict the generalization-labels on Df , we use
the prediction accuracy as the metric. Note that the prediction accuracy ACCgl is positively related

9
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Figure 3: The quality of alignment varies with the increase in the size of Df .

Table 4: Trade-off between preserving model’s generalization and enhancing its resilience to MIA

Noise Level 0 1 3 5 10

ACC 87.2 85.14 84.05 79.18 76.46
MIA 71.0 55 37 33 27

to the quality of alignment (i.e., ∆, AD, and ASR). The higher the accuracy, the better the alignment.
Table.3 shows the experimental results on CIFAR-10, where the original model adopts ResNet-18.
From Table.3, the Curriculum-learning-loss Feature (CF) is slightly more discriminative than the
Distance Feature (DF) and Adversarial-attacking Feature (AF). Nonetheless, the three features are
complementary to each other.

We propose a noise-perturbed fine-tuning scheme to enhance model’s resilience to MIA. In another
ablation study, we compare the naive baseline approach (as the Eq(2)) with our approach (as the
Eq(3)). From Table 4, we can see that our propose scheme enables the unlearned model to better
withstand the assessment of data forgetting from MIA. Moreover, we can make a trade-off between
preserving the model’s generalization ability and enhancing its resilience to MIA by adjusting the
noise level r. From Table 4, it turns out that increasing the noise level enhances resilience to MIA
(measured with ASR), while decreasing it improves the model’s generalization ability (measured
with ACCDf

).

4.4 FORGETTING MORE DATA

In previous experiments, we evaluate our approach for the situation that the size of forgetting data
is small, i.e., 100 images. In this section, we increase the size of Df from 100 to 4000 gradually,
aiming to evaluate our approach under the situation of forgetting a larger amount of data.

We assess the performance by gradually increasing the size of Df to 500, 1000, 2000, 3000 and
4000. The performance is measured by the accuracy of predicted generalization-labels. From Fig.3,
we can see that the alignment becomes more challenging with the increase of Df size. However,
our approach consistently outperforms the Bad Teacher method, and its advantages become more
pronounced with the increase in the size of Df .

5 CONCLUSION

This paper aims at the task of data forgetting, emphasizing the alignment in data forgetting. We
introduce a Twin Machine Unlearning approach, where a twin unlearning problem is constructed
and leveraged to solve the original problem. Furthermore, three discriminative features are devised
by employing adversarial attack and curriculum learning strategies. Additionally, to withstand the
assessment of data forgetting from Membership Inference Attack, we propose a noise-perturbed
fine-tuning scheme to enhance model’s resilience to MIA. Extensive empirical experiments show
that our approach significantly improve the alignment in data forgetting.
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A APPENDIX

A.1 CLASS-WISE RESULTS FOR DATA FORGETTING

A.1.1 RESULTS ON CIFAR-10 AND CIFAR-100 DATASET

We conduct the data forgetting experiment for each class in CIFAR-10 and CIFAR-100 indepen-
dently, as depicted in each row of Table.5, Table.6, Table.7, Table.8 and Table.9. For each class, 100
samples are randomly selected as Df .

Table 5: Comparison with ResNet-18 on CIFAR-10 dataset. We conduct the data forgetting ex-
periment for each class in CIFAR-10 independently, where 100 images are randomly selected as
Df .

Removal Class Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCDtest ACCDf

ACCDtest ACCDf
ACCDtest ACCDf

; ∆ ACCDtest ACCDf
ACCDtest ACCDf

; ∆ ACCDtest ACCDf
; ∆

Class 0 85.61 92 85.08 100 85.29 8; 84 85.49 0 83.98 95; 3 84.60 96; 4
Class 1 85.27 97 85.07 100 85.31 11; 86 85.75 0 80.45 91; 6 84.76 98; 1
Class 2 85.66 84 84.93 100 85.03 11; 73 85.03 0 84.27 73; 11 84.65 85; 1
Class 3 84.8 74 84.97 100 85.09 9; 65 85.58 0 80.51 80; 6 85.07 72; 2
Class 4 85.24 82 84.94 100 85.29 15; 67 85.22 0 81.96 94; 12 84.86 92; 10
Class 5 85.49 76 85.03 100 85.06 13; 63 85.37 0 82.69 98; 22 84.43 81; 5
Class 6 85.43 88 84.98 100 85.31 9; 79 85.62 0 82.64 98; 10 85.02 85; 3
Class 7 84.97 87 84.90 100 85.18 9; 78 85.63 0 82.87 92; 5 85.10 99; 12
Class 8 85.13 94 85.02 100 81.34 2; 92 85.42 0 83.11 97; 3 85.04 96; 2
Class 9 85.53 95 85.12 100 85.25 19; 76 85.32 0 82.93 97; 2 84.49 97; 2

Avg 85.31 86.9 85.06 100 84.81 10.6; 76.3 85.43 0 82.37 91.5; 8 84.86 90.1; 4.2
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Table 6: Comparison with ResNet-18 on CIFAR-100 dataset. We randomly sample 17 classes for
evaluation, where 100 images are randomly selected as Df .

Removal Class Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCDtest ACCDf

ACCDtest ACCDf
ACCDtest ACCDf

;∆ ACCDtest ACCDf
;∆ ACCDtest ACCDf

; ∆ ACCDtest ACCDf
; ∆

road 81.07 92 80.61 100 80.62 30; 62 80.00 52; 89 78.11 91; 1 78.97 99; 7
turtle 81.04 79 80.65 100 80.44 25; 54 80.24 7; 72 78.91 25; 54 79.09 84; 5

chimpanzee 81.48 90 80.64 100 80.82 28; 62 80.11 8; 82 77.55 70; 20 79.69 96; 6
orchid 81.15 86 80.60 100 80.48 30; 56 80.17 17; 69 78.64 80; 6 79.68 99; 13
rabbit 81.25 70 80.54 100 80.31 17; 53 79.99 1; 69 78.15 23; 47 79.17 91; 21
forest 81.33 72 80.64 100 80.31 22; 50 79.80 17; 55 79.24 74; 2 79.71 89; 17

possum 80.40 76 80.57 100 79.82 1; 75 80.02 11; 65 77.96 59; 17 79.84 84; 8
fox 81.18 89 80.65 100 80.38 23; 66 79.94 14; 75 78.43 64; 25 80.21 91; 2

house 81.76 85 80.47 100 80.67 24; 61 79.79 9; 76 78.11 74; 11 79.97 85; 0
mushroom 81.04 79 80.67 100 80.53 21; 58 79.98 10; 69 78.99 64; 15 79.4 96; 17

chair 81.05 90 80.50 100 80.74 39; 51 79.96 34; 56 78.37 85; 5 79.75 94; 4
tiger 80.79 86 80.74 100 80.51 30; 56 80.21 6; 80 78.58 59; 27 78.45 96; 10
snail 81.29 82 80.56 100 70.10 15; 67 80.21 4; 78 78.21 51; 31 79.77 84; 2
worm 80.92 90 80.72 100 80.34 41; 49 80.28 26; 64 78.56 87; 3 80.10 90; 0
beetle 81.16 82 80.61 100 80.66 27; 55 80.06 17; 65 78.74 64; 18 79.42 84; 2
beaver 81.21 54 80.67 100 80.32 6; 48 80.31 5; 49 78.33 27; 27 79.36 74; 20

bed 79.36 80 80.54 100 80.66 28; 52 80.41 6; 68 78.8 60; 20 79.85 81; 1
Avg 81.03 81.29 80.61 100 80.27 23.94; 57.37 80.09 14.35; 66.94 78.45 60.64; 19.35 79.55 89.29; 7.94

Table 7: Comparison with AllCNN on CIFAR-10 dataset. Regarding Mo, its average accuracy over
10 classes is 87.21%.

Removal Class Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCg

Dtest
ACCg

Df
ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

;∆

Class 0 87.0 94 87.04 100 86.69 3; 91 86.96 0 86.09 86; 8 87.03 89; 5
Class 1 86.58 97 87.49 100 86.86 2; 95 86.99 0 86.32 92; 5 87.43 98; 1
Class 2 87.09 82 87.42 100 86.68 5; 77 86.53 0 85.71 75; 7 87.06 87; 5
Class 3 86.22 78 87.38 100 86.85 2; 76 86.62 0 86.54 80; 2 87.51 69; 9
Class 4 86.4 87 87.39 100 86.89 3; 84 87.72 0 84.45 96; 9 86.46 92; 5
Class 5 86.36 79 87.23 100 86.75 5; 74 86.52 0 85.98 86; 7 87.37 83; 4
Class 6 86.46 87 87.42 100 87.00 1; 86 87.39 0 86.44 91; 4 86.86 89; 2
Class 7 86.24 82 87.31 100 86.79 1; 81 87.24 0 86.53 91; 9 87.24 89; 7
Class 8 87.0 91 87.65 100 87.22 6; 85 86.95 0 84.51 90; 1 86.84 87; 4
Class 9 86.54 87 87.16 100 86.93 5; 82 86.02 0 87.05 93; 6 87.05 94; 7

Avg 86.58 86.4 87.34 100 86.87 3.3; 83.1 86.89 0 85.96 88.0; 5.8 86.78 87.7; 4.9

A.1.2 RESULTS ON VGGFACES2 DATASET

We further apply our method to a real-world facial dataset, VGGFace2. We randomly select 10
classes of faces from the VGGFace2 dataset, randomly sampled with at least 500 images each. The
dataset is divided into train and test sets in a 7:3 ratio. For each class, we conduct a data removal
experiment where 100 samples are randomly selected as Df . The performance of our method is
depicted in each row of Table.10. We observe that our method still outperforms other methods,
achieving the minimum ∆̄ in each class, with the average ∆̄ = 3%.

A.2 FORGETTING MORE DATA

To assess the performance when forgetting a larger amount of data, we evaluate our method with the
size of Df as 500 and 4000, respectively. From Table.11 and Table.12, despite a slight decrease in
performance compared to forgetting 100 images, our method still outperforms others. Our method
outperforms the Bad Teacher in the task of forgetting 500 images, with a ∆̄ improvement from
8.28% to 5.52%. Similarly, in the task of forgetting 4000 images, we achieve an ∆̄ boost from
15.94% to 8.85%.

A.3 COMPARISON WITH THE Fisher Forgetting METHOD

In addition to the four methods outlined in the main body of our manuscript, we also compare our
method with the Fisher Forgetting method Golatkar et al. (2020b). We evaluate to forget 100 images
from each class in the CIFAR-10 dataset. As observed from Table.13, the Fisher Forgetting signif-
icantly undermines the performance of the model, while our method achieves effective forgetting
while maintaining the model’s performance.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 8: Comparison with the ViT model on CIFAR-10 dataset. Regarding Mo, its average accuracy
over 10 classes is 84.45%.

Removal Class Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCg

Dtest
ACCg

Df
ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

;∆

Class 0 84.01 92 84.70 100 84.46 62; 30 84.16 4 83.49 92; 0 82.94 88; 4
Class 1 84.26 96 84.71 100 84.58 76; 20 84.23 9 83.47 87; 9 83.37 96; 0
Class 2 85.66 88 84.54 100 84.58 60; 28 84.33 1 82.90 82; 6 83.97 91; 3
Class 3 84.80 70 84.67 100 84.35 41; 29 84.17 0 83.02 87; 17 84.16 74; 4
Class 4 85.24 87 84.41 100 84.56 51; 36 84.30 0 83.19 87; 0 83.85 86; 1
Class 5 84.32 78 84.39 100 84.37 54; 24 84.13 0 83.01 86; 8 83.67 80; 2
Class 6 83.39 85 84.78 100 84.54 71; 14 84.14 3 83.38 93; 8 83.85 90; 5
Class 7 84.97 85 84.74 100 84.63 66; 19 84.29 2 82.51 85; 0 83.85 79; 6
Class 8 85.13 92 85.7 100 84.54 72; 20 84.28 3 83.37 90; 2 83.65 89; 3
Class 9 84.38 93 85.65 100 84.50 74; 19 84.08 2 83.41 90; 3 83.62 88; 5

Avg 84.61 86.6 84.83 100 84.51 62.7; 23.9 84.21 2.4 83.05 87.9; 5.3 84.07 86.1; 3.3

Table 9: Comparison with the ViT model on CIFAR-100 dataset. We randomly sample 17 classes
for evaluation. The average accuracy of Mo over 100 classes is 83.04%.

Removal Class Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCg

Dtest
ACCg

Df
ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

;∆

road 81.97 95 83.43 100 80.51 41; 54 83.04 0 81.80 95; 0 82.13 100; 5
turtle 81.88 80 83.45 100 80.54 22; 58 80.54 0 82.00 65; 15 80.61 83; 3

chimpanzee 82.26 96 83.43 100 80.43 28; 68 83.52 0 81.30 81; 15 82.42 100; 4
orchid 81.70 93 83.42 100 80.37 25; 68 83.08 0 80.59 72; 21 81.96 87; 6
rabbit 82.11 75 83.46 100 80.44 14; 63 82.95 0 81.09 48; 27 82.42 89; 14
forest 82.49 77 83.45 100 80.37 24; 54 83.20 0 80.93 76; 1 82.20 90; 13

possum 82.39 78 83.41 100 80.73 16; 62 83.36 0 80.98 57; 21 82.38 84; 6
fox 81.67 90 83.43 100 80.43 24; 66 83.11 0 80.55 92; 2 82.19 86; 4

house 82.26 86 83.42 100 80.59 24; 59 83.35 0 81.03 83; 3 82.31 67; 19
mushroom 81.22 88 83.45 100 80.73 20; 66 83.27 0 81.43 94; 6 82.43 95; 7

chair 83.51 88 83.43 100 80.67 39; 49 83.11 0 81.45 95; 7 82.41 94; 6
tiger 82.81 87 83.47 100 80.54 35; 52 83.15 0 81.11 94; 7 81.57 84; 3
snail 83.79 90 83.41 100 80.54 18; 72 82.19 0 80.80 86; 4 82.4 94; 4
worm 83.22 92 83.41 100 80.61 38; 54 83.04 0 81.22 96; 4 82.56 99; 7
beetle 83.12 80 83.39 100 80.01 15; 65 83.15 0 81.32 92; 12 81.6 97; 17
beaver 83.05 67 83.44 100 80.37 6; 61 83.50 0 81.37 71; 4 81.76 71; 4

bed 83.30 81 83.44 100 80.57 25; 56 83.25 0 81.29 88; 7 81.7 89; 8
avg 82.51 84.71 83.43 100 80.50 39.2; 45.51 83.10 0 81.19 81.47; 8,64 82.06 88.76; 6.23

Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCg

Dtest
ACCg

Df
ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

;∆

85.81 94 87.09 100 85.91 63; 31 84.26 0 84.51 91; 3 85.86 90; 4
85.31 83 86.89 100 85.72 67; 14 85.52 0 83.31 72; 9 86.49 82; 1
84.61 91 86.60 100 85.21 60; 38 85.79 1 84.21 80; 11 86.16 92; 1
85.31 87 86.50 100 85.11 58; 39 84.50 0 84.61 89; 2 86.59 85; 2
85.11 97 86.70 100 85.50 66; 30 85.89 0 85.91 94; 4 85.50 94; 3
85.02 98 86.79 100 85.01 56; 40 85.95 0 85.21 85; 13 86.15 91; 7
85.71 95 86.70 100 84.64 53; 31 84.84 0 85.81 86; 9 86.67 94; 1
85.41 81 86.79 100 85.38 63; 16 84.61 0 84.61 68; 13 87.28 90; 9
85.42 87 86.89 100 84.93 48; 39 85.15 0 83.21 55; 33 87.08 87; 0
84.82 94 86.60 100 85.16 52; 42 83.85 0 83.61 84; 10 86.38 96; 2
85.25 90.7 86.76 100 85.23 60.5; 30.2 85.01 0.1 84.50 80.4; 10.7 86.41 90.1; 3

Table 10: Comparison on VGGFaces2 dataset. Regarding Mo, its average accuracy over 10 classes
is 87.01%.

Table 11: Comparison on CIFAR-10 dataset with the size of Df as 500. Regarding Mo, its average
accuracy over 10 classes is 85.37.

Gold model Fine-tuning Negative Gradient Random Labeling Bad Teacher Ours
ACCg

Dtest
ACCg

Df
ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

;∆

85.77 87.6 85.08 100 84.90 40.4; 47.2 84.44 0 83.51 97.0; 9.4 83.60 90.2; 2.6
85.56 94.6 85.02 100 84.93 44.2; 50.4 84.76 0.2 84.25 100; 5.2 84.58 98.2; 3.6
85.96 80.4 85.07 100 84.66 34.0; 46.4 84.04 0 83.68 96.6; 16.2 84.35 90.5; 10.1
85.89 68.6 84.93 100 84.89 29.2; 39.4 85.45 0 79.75 74.8; 9.3 85.37 79.4; 10.6
84.93 81.4 84.91 100 84.75 30.8; 50.4 84.89 0 83.45 97.8; 16.4 84.43 86.2; 4.8
85.67 74.5 85.03 100 84.94 32.8; 41.7 85.08 0 82.90 90.8; 16.3 86.12 78.3; 3.8
85.82 87.6 85.05 100 80.46 10.0; 77.6 85.07 0 82.01 93.4; 5.8 85.47 89.2; 1.6
85.55 91.2 84.92 100 84.72 33.8; 57.4 84.30 0.2 78.22 85.2; 6.0 84.40 98.2; 7.0
85.44 94.8 84.93 100 85.05 44.4; 50.5 82.36 1.4 80.81 97.8; 3.0 84.72 97.0; 2.2
85.83 93.0 84.97 100 85.02 38.0; 55.0 85.11 0 84.19 99.6; 6.6 84.93 94.6; 1.6
85.64 85.39 84.99 100 84.32 33.76; 51.60 83.92 0.18 82.27 93.28; 8.28 84.81 90.18; 5.52
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Table 12: Comparison on CIFAR-10 dataset with the size of Df as 4000. Regarding Mo, its average
accuracy over 10 classes is 85.37.

Removal Class Gold model Finetune Negtive Gradient Random Labeling Bad Teacher Ours
ACCg

Dtest
ACCg

Df
ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

ACCDtest ACCDf
;∆ ACCDtest ACCDf

;∆

class 0 84.01 62.44 85.31 100 78.90 22.42; 40.02 76.12 1.83 79.42 60.67; 1.77 82.95 61.65; 0.79
class 1 84.26 80.25 85.12 100 76.61 22.97; 57.28 76.44 0.83 78.54 51.55; 28.70 83.61 85.92; 5.67
class 2 82.40 42.65 85.01 100 79.32 13.40; 39.25 76.99 0.38 82.42 77.45; 34.80 80.34 22.53; 20.12
class 3 82.56 24.80 85.36 100 80.78 8.97; 15.83 77.65 0.05 78.22 28.70; 3.90 79.02 12.42; 12.38
class 4 82.20 48.05 85.26 100 79.13 12.05; 36.00 76.34 0.03 79.91 46.37; 1.68 79.22 26.70; 21.35
class 5 82.99 38.52 85.34 100 80.34 11.55; 26.97 77.11 0.03 80.92 70.47; 31.95 82.23 29.30; 9.22
class 6 84.04 65.90 85.30 100 77.42 11.37; 54.53 76.53 0.10 81.79 37.80; 28.10 81.07 59.87; 6.03
class 7 83.38 62.87 85.23 100 77.99 20.17; 42.70 76.19 0.03 77.02 72.92; 10.05 82.51 62.82; 0.05
class 8 84.18 77.65 85.25 100 77.90 30.17; 47.48 75.92 0.80 80.82 83.85; 6.20 83.11 72.42; 5.23
class 9 84.38 73.55 85.29 100 76.00 18.52; 55.03 75.13 0.13 80.06 61.32; 12.23 81.99 81.62; 7.70

Avg 83.44 57.38 84.79 100 78.41 17.15; 43.89 76.44 0.42 79.91 63.65; 15.94 81.60 51.32; 8.85

Table 13: The Fisher Forgetting method can potentially result in catastrophic forgetting, severely
compromising the performance of the model.

Gold model Fisher Forgetting Ours

model ACCg
Dtest

ACCg
Df

ACCDtest ACCDf
ACCDtest ACCDf

Resnet18 85.61 92 10.37 0 84.60 96
AllCNN 87.00 94 10.07 2 87.03 89

15


	Introduction
	Problem of Data Forgetting
	Alignment in Data Forgetting

	Our Approach
	Twin Unlearning Problem
	Discriminative Features
	Distance Feature (DF)
	Adversarial-attacking Feature (AF)
	Curriculum-learning-loss Feature (CF)

	Binary Classifier

	Evaluation
	Experimental setting
	Implementation Details

	Main Results
	Ablation Study
	Forgetting More Data

	Conclusion
	Appendix
	Class-wise Results for Data Forgetting
	Results on CIFAR-10 and CIFAR-100 Dataset
	Results on VGGFaces2 Dataset

	Forgetting More Data
	Comparison with the Fisher Forgetting Method


