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Abstract

We present our method for automatically marking Physics ex-
ams. The marking problem consists in assessing typed stu-
dent answers for correctness with respect to a ground truth
solution. This is a challenging problem that we seek to tackle
using a combination of a computer algebra system, an SMT
solver and a term rewriting system. A Large Language Model
is used to interpret and remove errors from student responses
and rewrite these in a machine readable format. Once for-
malized and language-aligned, the next step then consists in
applying automated reasoning techniques for assessing stu-
dent solution correctness. We consider two methods of au-
tomated theorem proving: off-the-shelf SMT solving and a
term rewrite system tailored for physics problems involving
trigonometric expressions. We report on experiments with
these two systems on a rich pool of real-world student exam
responses from the 2023 Australian Physics Olympiad.

1 Introduction
Many teachers across Australia are ‘burning out’ and leav-
ing the profession due to excessive workload (Windle et al.
2022). As marking is one of the largest contributions to
teacher workload, teachers are seeking AI marking solutions
to make their workload more sustainable (Ogg 2024). Auto-
mated Essay Grading (Ramesh and Sanampudi 2022) and
Automated Short Answer Grading (Weegar and Idestam-
Almquist 2024) are longstanding areas of research.

Until recently, there were no effective strategies to mark
free-form physics problems, as they could contain diverse
inputs including text, equations and diagrams. Devel-
opments in generative AI have changed this and recent
works have evaluated the potential of Large Language Mod-
els (LLMs) in grading physics exams (Kortemeyer 2023;
Kortemeyer, Nöhl, and Onishchuk 2024; Mok et al. 2024;
Chen and Wan 2025; McGinness and Baumgartner 2025a).

However, there are no guarantees of the correctness of
LLM reasoning (Kambhampati et al. 2024). We propose
a new framework, called AlphaPhysics (see Figure 1), that
uses a combination of LLMs and automated reasoning en-
gines. AlphaPhysics uses the strong pattern recognition abil-
ities of LLMs to translate student responses into a standard-
ized format before applying more rigorous reasoning en-
gines, specifically Term Rewriting Systems (TRSs), to evalu-
ate student responses.

Term rewriting is a well-established framework for
equation-based theorem proving(Dershowitz and Jouannaud
1990; Baader and Nipkow 1998). We propose a tai-
lored TRS for automating marking tasks in the pre-calculus
physics domain. The main reasoning task is simplification of
algebraic expressions to a normal form. Normalization then
acts as a semantics-preserving “translation” service. The
normal form of a student’s expression and a solution can be
compared to determine if they are semantically equivalent.

Our rule language features addition, multiplication, ex-
ponentiation and trigonometric functions (sine and cosine).
The language supports built-in arithmetic, which is very use-
ful in the physics domain. This poses challenges as it re-
quires reasoning on infinite domains and in presence of com-
mutativity and other axioms.

We describe our methods for dealing with necessarily in-
complete equational logic over trigonometric and arithmetic
operators. The theorem proving core of AlphaPhysics com-
prises four term rewrite systems (TRSs) that are chained
for normalizing a given equation. We developed additional
technical concepts beyond the scope of this paper for ver-
ifying termination and checking confluence of our TRSs.1
In this paper we focus on the applications, grading student
typed equations that may contain errors by comparing these
to correct answers provided by a marking scheme.

Main contributions. In this paper we describe the cur-
rent state of our AlphaPhysics framework (See Figure 1).
We introduce our TRS tailored to pre-calculus physics with
trigonometric expressions. We report on experiments with
our implemented system using a generic TRS interpreter for
our rule language. We also compare our results with those
obtained by a state-of-the-art automated theorem prover
Z3 (Bjørner and Nachmanson 2024).

Related work in Term Rewriting. Term rewriting with
built-in operations and numeric constraints has a long tradi-
tion (Kaplan and Choppy 1989; Avenhaus and Becker 1994;
Kop and Nishida 2013) but adding term order constraints for
controlling termination is not commonly featured in avail-
able systems. As an alternative to term rewriting, one could

1Checking these properties is not trivial as our TRS language
supports ordering constraints and infinite domains. We show our
TRS is terminating and sound but not confluent nor complete.
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v2 = u2 + 2as
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Figure 1: In the AlphaPhysics pipeline a student response is parsed
by an LLM before a symbolic reasoning engine determines the cor-
responding grade.

consider first-order logic automated theorem proving (ATP)
over built-in domains. For instance, the hierarchic superpo-
sition calculus (Baumgartner and Waldmann 2013) and its
implementation features search space restrictions by means
of term ordering constraints. While the termination and con-
fluence analysis for a TRS is expected to be done once and
forall as an offline step, superposition-based ATPs generate
formulas for restoring confluence by deriving formulas dur-
ing proof search. This involves inferences among the ax-
ioms, which typically is not finitely bounded.

The rest of this paper is structured as follows. Section 2
describes the use of LLMs for pre-processing student equa-
tions. In Section 3, we introduce the architecture of our TRS.
Section 4 introduces the specific marking problem that we
are trying to solve. Section 5 shows the results of exper-
iments comparing our TRS to an SMT solver. Section 6
discusses the limitations of our system and how it could be
extended to mark a wider variety of physics problems.

2 Large Language Model Pre-processing
AlphaPhysics is designed to meet the Australian AI Ethics
Framework which include environmental well-being, trans-
parency and privacy protection (Department of Industry Sci-
ence and Resources 2024). To address these requirements
we use local open source LLMs to extract features, such as
equations, from student responses so they can be parsed by
our TRS. This approach maintains student privacy by keep-
ing data on a local system. Our proposed framework sup-
ports transparency as errors in the LLM feature extraction
can be easily seen, contested and corrected by a student or
teacher. The Alpha Physics approach makes teachers aware
of the compute that they are using by running local models,
exposing the normally hidden electricity usage and environ-
mental cost of their usage.

The local LLM is given the task of extracting student
equations from typed student responses and converting these
into a standardised format. The student may make syntax
errors or use incorrect or undefined variables. The LLM is
expected to compensate for these errors in a way similar to a
human marker in order to extract what the student intended
to write. For example a student may write:

m1 x v0 + m2 = m1 x v1 + m2 x v2
which the LLM converts to correct SymPy syntax:

Eq(m 1*v 0 + m 2, m 1*v 1 + m 2*v 2)
A previous study (McGinness and Baumgartner 2025a)

tested LLMs’ capabilities to extract equations using the
typed student responses to the 2023 Australian Physics
Olympiad. A 14 billion parameter model, Phi 4 (Abdin and
Zhang 2024), was able to complete the task of translating

student equations with 73% accuracy by using an ‘LLM-
Modulo’ (Kambhampati et al. 2024) prompting technique
where Z3 is used as a syntax checker. If the equation pro-
vided by the LLM fails the Z3 check, then the LLM is
prompted again with feedback on its previous response to
repair the equations.

This paper focuses on the application of the AlphaPhysics
TRS to the ground truth equations for each student response.
The next section defines our TRS tailored for pre-calculus
physics problems.

3 Term Rewriting Framework
Preliminaries. We assume standard notions of first-order
logic theorem proving and term rewriting, see (Harrison
2009; Baader and Nipkow 1998). A signature Σ is a collec-
tion of function and predicate symbols of given fixed and fi-
nite arities. 0-ary function symbols are also called constants.
In this paper we fix “arithmetic” signatures Σ to comprise of
the binary function symbols +, ×, ∧ (exponentiation), / (di-
vision), unary function symbols sin, cos, a unary function
symbol quote explained below, the constant π , and all inte-
ger and finite decimal concrete number constants, e.g., −1,
3.141.

Physics equations often contain universally quantified
variables x,y,z,θ etc. In order not to confuse them with the
meta-variables of logic, we consider extensions of Σ with
finitely many (Skolem) constants Π representing these vari-
ables and call them parameters. We write ΣΠ for the ex-
tended signature.

Let ΣΠ(V ) denote the extension of ΣΠ by a denumerable
set of variables. Unless noted otherwise, we assume the
signature ΣΠ(V ), for some Π left unspecified. Terms are
defined as usual, but we use infix notation and parentheses
for writing terms made with arithmetic function symbols. A
parameter-free term is a term without occurrences of param-
eters. We write var(t) for the set of variables occurring in
a term t. A ground term is a term t with var(t) = /0. We
use notions of substitutions, instance, ground instance and
(term) matching in a standard way. The notation tp[u] means
that t has a, not necessarily proper, subterm u at position p.
The position index p is left away if clear from the context
or not important. We use the letters γ , δ and σ for substi-
tutions, and s and t for terms. A ground substitution γ for
t is a substitution such that tγ is ground. We often assume
t is clear from the context and leave “for t” away. As for
semantics, let Aπ be a ΣΠ-Algebra with the reals as carrier
set that maps all arithmetic function symbols in Σ to the ex-
pected functions over the reals, and maps every parameter
in Π to some real number as per the parameter mapping π .
An assignment α is a mapping from the variables to the re-
als. We write Aπ(α) for the usual interpretation function on
terms, where variables are interpreted according to α . For
ground terms we can unambiguously write Aπ(t) instead of
Aπ(α)(t).

Quoted terms and simplification. The signature includes
the distinguished unary function symbol “quote”. For better
readability we write a quote-term quote(t) as JtK and call t



the quoted term. A term is quote-free if it is not a quoted
term and does not contain a quote-term.

Quote-terms are our mechanism for building-in arithmetic
on numbers. Ground quoted terms are simplified to a num-
ber constant (like J2K for J1+ 1K), and non-ground quoted
terms can be replaced by a semantically equivalent terms
(like J2× x+1K for Jx+ x+1K). Formally, we define a sim-
plifier2 as a total function simp on quote-free and parameter-
free terms such that

(i) if simp(t) = s then, for all assignments α , A(α)(t) =
A(α)(s),

(ii) for every number n, simp(n) = n,
(iii) if t is ground then simp(t) is a number.

Condition (i) is a soundness requirement and forbids simp
to equate two semantically different terms (“no confusion”).
Condition (iii) is needed for completeness of theorem prov-
ing by rewriting.

We extend simp homomorphically to all terms as follows:

t↓simp =


t if t ∈V or t ∈ Π

Jsimp(u)K if t = JuK
f (t1↓simp, . . . , tn↓simp) if t = f (t1, . . . , tn)

We say that t is (fully) simplified iff t = t↓simp
By design of our rewrite systems, in all derivations from

ground terms, all quote-terms in all rule instances are always
parameter-free, ground and quote-free, hence can be simpli-
fied to a number. Non-ground quote-terms are needed only
for confluence and termination analysis.

The vast majority of the literature on term-rewriting over
built-in domains uses rules with constraints. What we
achieve with a quote-term JtK can be expressed by replac-
ing it in the rule with a sorted variable x and adding the
constraint x = t. See (Kop and Nishida 2013) for a dis-
cussion and overview of rules with constraints. Notice that
our approach makes explicit typing unnecessary as quot-
ing achieves the same. We found that this simple approach
works well for our use case.

Constrained rewrite rules and normal forms. A (con-
strained rewrite) rule ρ is of the form l → r |C where l and
r are terms such that var(r) ⊆ var(l), and the constraint C
is a finite set of formulas whose free variables are contained
in var(l). Notice that var(ρ), the set of (free) variables oc-
curring in ρ , is just var(l). If C = /0 we just write l → r.
We assume the signature of the constraint language contains
conjunction, so that constraints can be taken as the conjunc-
tion of their elements. We model evaluation of constraints by
assuming a satisfaction relation I on constraints. We write
I |=C instead of C ∈ I. Notice that I |= /0, as expected. We
require that constraint satisfaction is stable under substitu-
tion: if I |=C then I |=Cδ .3 If I |=Cδ we call the resulting
unconstrained rule lδ ⇒ rδ an ordinary instance (of ρ) (via

2A simplifier plays a similar role as a “canonizer” in (Shostak
1984).

3For soundness reasons; the free variables are used in a univer-
sal quantification context, so instances better be satisfied, too.

δ ). (We choose lδ ⇒ rδ as lδ → rδ is our convention for a
rule with an empty constraint.)

The constraints C can be purely operational, in the NORM
TRS, or term ordering constraints in the CANON and SIMP
TRSs. As an example for the latter, one of our rules is
x+ y → y+ x | x ≻ y which orders +-terms but the order-
ing constraint prevents unbound application of the rule. The
ordering ≻ is defined as both an extension (to the infinite do-
main of quote-terms) and an instantiation of a weighted path
ordering (WPO) (Yamada, Kusakari, and Sakabe 2015).

Let ρ = (l → r | C) be a rule. We say that s is obtained
from t by (one-step) rewriting (with simplification) and write
t →ρ s if t = tp[u] for some non-variable term u and po-
sition p, u = lδ for some substitution δ , lδ ⇒ rδ , and
s = tp[(rδ )↓simp]. A rewriting step is ground iff t is ground
(and hence s is ground, too).

A rewrite system R is a finite set of rewrite rules. We
define the R-rewrite relation →R as t →R s iff t →ρ s for
some ρ ∈ R. Let →∗

R be the transitive-reflexive closure of
→R. We say that s is an R-normal form of t iff t →∗

R s but
s ↛R s′ for any s′. We define the R-normal form relation ↓R
as t ↓R s iff s is an R-normal form of t.

3.1 Proving Physics Equations by Normalization
Theorem proving, the validity problem for Σ(V )-equations
∀(s = t), is phrased in our setting as “does Aπ(ssk) =
Aπ(tsk) hold for all parameter mappings π?”, where ssk and
tsk are ΣΠ-terms obtained from s and t by uniquely replacing
every variable by a parameter from Π. This problem is, of
course, not solvable in general. Our TRS method approxi-
mates solving it in an incomplete but sound way by combin-
ing four rewrite systems into one procedure for normaliza-
tion. If the normalized versions of s and t are syntactically
equal then the answer is “yes”, otherwise “unknown”.

The four rewrite systems are NORM, CANON, SIMP and
CLEAN, collectively called the ARI rewrite systems. For
normalization, the systems are chained, each exhaustively
applying rewrite rules on the result of the previous one.
More formally, we define the ARI normalization relation as
→ARI = ↓NORM ◦ ↓CANON ◦ ↓SIMP ◦ ↓CLEAN. The composition
operator, ◦, stands for application from left to right. We say
that a term u is an ARI-normal form of s iff norm(s)→ARI u.
We say that s and t are algebraically equal, written as s ≈ t,
if s and t have a common ARI-normal form u. If the set of
rewrite rules is complete then equations which can be con-
verted from one to the other by standard algebraic operations
should have the same normal form. In this case we say that
the normal form is unique.

Let us explain the design and intention of the ARI rewrite
systems and how they work together. The NORM system,
see Table 1, implements several conceptually simple “pre-
processing” operations. They are triggered by decorating a
target term s as norm(s).

NORM expands exponentiation terms x∧n where n is an
integer number into a term pwr n(x,s(s(...(J0K)))) where
the second argument encodes n as n-fold “successor” of 0.
Similar special cases are sin(n× x) and cos(n× x). These
translate into similar terms with sin n and cos n, respec-
tively. These patterns are recognized with type-checking



Table 1: The NORM rewrite system. The rule conditions in the
rightmost column are in Python syntax.

N1.1 norm(JxK) → JxK
N1.2 norm(x) → JxK is(x,number)
N1.3 norm(x) → J1K× (x∧J1K) is(x,parameter)
N2.1 norm(sin(n× y)) → norm(sin n(n,y)) if is(n, int)

and n ≥ 0
N2.2 norm(sin(x× y)) → sin(norm(x× y)) if not (is(x, int)

and x ≥ 0)
N2.3 norm(sin(x)) → sin(norm(x)) if not (is funterm(x)

and x.fun == ×)
N2.4 norm(cos(n× y)) → norm(cos n(n,y)) if is(n, int)

and n ≥ 0
N2.5 norm(cos(x× y)) → cos(norm(x× y)) not (is(x, int)

and x ≥ 0)
N2.6 norm(cos(x)) → cos(norm(x)) not (is funterm(x)

and x.fun == ×)
N3.1 norm(sin n(n,x)) → sin n(to succ(n),norm(x))
N3.2 norm(cos n(n,x)) → cos n(to succ(n),norm(x))
N4.1 norm(x+ y) → norm(x)+norm(y)
N4.2 norm(x× y) → norm(x)×norm(y)
N4.3 norm(x∧y) → norm(x)∧norm(y) not (is(y, int)

and y ≥ 0)
N5.1 norm(x∧n) → norm(pwr n(x,n)) is(n, int) and n ≥ 0
N5.2 norm(pwr n(x,n)) → pwr n(norm(x), to succ(n))
N5.3 to succ(0) → J0K
N5.4 to succ(n) → s(to succ(n−1)) n > 0
N6.1 norm(x− y) → norm(x+uminus(y))
N6.2 norm(uminus(x)) → J−1K×norm(x)
N7.1 norm(x/y) → norm(x)× (norm(y)∧J−1K)

constraints that are evaluated by the host language Python.
Unary minus and division are eliminated in terms with mul-
tiplication by −1 and exponentiation by −1, respectively.
NORM also replaces every number n by JnK, and every pa-
rameter a by J1K× a∧J1K.

The CANON and SIMP rewrite systems are defined in Ta-
bles 2 and 3, respectively. Their A1.2, A1.5, S1 and S2 rules
have term ordering constraints of the form x ≻ y between
variables. As an outlier, the rule T1.7 is the only rule not
oriented with our term ordering. This circumstance did not
lead to non-termination in our experiments but should cer-
tainly be addressed rigorously.

The CANON system (see Table 2) has rules for addition,
multiplication, exponentiation, distributivity, and for evalu-
ating quote-terms that are combined by arithmetic operators.
It is not hard to see that every quoted term in every derivable
term is initially given as a number (by NORM) or will be
simplified to a number as part of rewriting steps. CANON
has rules for “sorting” factors of products in increasing or-
der wrt. ≻ , for example x× (y× z) → y× (x× z) | x ≻ y.
Sorting is important for collecting like-terms as then only
adjacent terms need to be considered. CANON has rules for
trigonometric identities, and for expanding exponentiation
with integer constants. For example (a+b)∧3 will be fully
multiplied out in the obvious way.

The main task of SIMP is to sort sums of monomials so
that like-monomials can be collected, e.g., with (JaK× x)+
(JbK× x)→ Ja+bK× x as one of these rules.4

Finally, CLEAN consists of the three rules JxK → x, 1×
x → x and x∧1 → x for a more simplified presentation of the
final result.

4SIMP cannot be integrated with CANON as SIMP needs a right-
to-left status for multiplication instead of left-to-right so that lead-
ing number coefficients are ignored for sorting. Their combination
into one system leads to problems in proving termination.

Table 2: CANON rewrite rules

A1.1 (x+ y)+ z → x+(y+ z)
A1.2.1 x+ y → y+ x x ≻ y
A1.2.2 x+(y+ z) → y+(x+ z) x ≻ y
A1.3.1 J0K+ x → x
A1.3.2 JaK+ JbK → Ja+bK
A1.3.3 JaK+(JbK+ z) → Ja+bK+ z
A1.3.4 (JaK× x)+(JbK× x) → Ja+bK× x
A1.3.5 (JaK× x)+((JbK× x)+ z) → (Ja+bK× x)+ z
A1.4 (x× y)× z → x× (y× z)
A1.5.1 x× y → y× x x ≻ y
A1.5.2 x× (y× z) → y× (x× z) x ≻ y
A1.6.1 J0K× x → J0K
A1.6.2 JaK× JbK → Ja×bK
A1.6.3 JaK× (JbK× z) → Ja×bK× z
A1.7.1 x× (y+ z) → (x× y)+(x× z)
A1.7.2 (y+ z)× x → (y× x)+(z× x)
A1.8.1 (x∧y)∧z → x∧(y× z)
A1.8.2 (x∧y)× (x∧z) → x∧(y+ z)
A1.8.3 (x∧y)× ((x∧z)× v) → (x∧(y+ z))× v
A1.9.1 JaK∧JbK → Ja∧bK
A1.9.2 pwr n(x,J0K) → J1K
A1.9.3 pwr n(x,s(n)) → x×pwr n(x,n)
A1.9.4 (x+ y)∧J1K → x+ y
A1.9.5 (x× y)∧JaK → (x∧JaK)× (y∧JaK)
A1.9.6 x∧J0K → J1K
T1.1 sin(J−1K× x) → J−1K× sin(x)
T1.2 cos(J−1K× x) → cos(x)
T1.3 sin(x1 + x2) → sin(x1)× cos(x2)+

cos(x1)× sin(x2)
T1.4 cos(x1 + x2) → cos(x1)× cos(x2)

+J−1Ksin(x1)× sin(x2)
T1.5 cos n(s(s(n)),x) → J2K× (cos(x)× cos n(s(n),x))

+(J−1K× cos n(n,x))
T1.6 sin n(s(s(n)),x) → J2Kcos(x)× sin n(s(n),x)

+(J−1K× sin n(n,x))
T1.7 sin(x)∧J2K → J1K+ J−1K× cos(x)∧J2K Not oriented
T2.1 cos n(s(J0K),x) → cos(J1K× x)
T2.2 cos n(J0K,x) → cos(J0K)
T2.3 sin n(s(J0K),x) → sin(J1K× x)
T2.4 sin n(J0K,x) → sin(J0K)
T2.5 sin(JxK) → Jsin(x)K
T2.6 cos(JxK) → Jcos(x)K

Table 3: SIMP rewrite system rules.

S1 (JaK× x)+(JbK× y) → (JbK× y)+(JaK× x) x ≻ y
S2 (JaK× x)+((JbK× y)+ z) → (JbK× y)+((JaK× x)+ z) x ≻ y
S3 (JaK× x)+(JbK× x) → Ja+bK× x
S4 (JaK× x)+((JbK× x)+ z) → (Ja+bK× x)+ z

Example 1 (ARI-normal form). Consider the following
ARI-normal form computation s →ARI t which has param-
eters b ≻ a. It uses standard mathematical notation for better
readibility; multiplication · is left associative. In the exam-
ple we use · instead of × to save space.

norm(s) = norm(2 ·b ·3 · a ·5 ·b+5) (1)

→∗
NORM J2K · J1K ·bJ1K · J3K · J1K · aJ1K · J5K · J1K ·bJ1K + J5K

(2)

→∗
CANON J5K+ J6K · J5K · J1K · J1K · aJ1K · J1K ·bJ1K ·bJ1K (3)

→∗
CANON J5K+ J30K · aJ1K ·bJ2K (4)

→∗
SIMP J5K+ J30K · aJ1K ·bJ2K (5)

→∗
CLEAN 5+30 · a ·b2 = t (6)

Line (2) demonstrates the replacements (a) and (b) men-
tioned above with NORM. It achieves that every monomial
over parameters is either a number or a product of (at least
one) number and parameters with exponents. This form is
assumed and exploited by the CANON rules by moving all
numbers to the left with aggregated multiplication, and sort-
ing all parameters with exponents in increasing order wrt.



≻. The ordering ≻ is such that every quote-term is smaller
than every non-quote term, e.g., a ≻ J1K. Line (3) is a snap-
shot of the CANON process before reaching CANON-normal
form on line (4). Notice that two occurrences of the b∧J1K
term have been like-collected into b∧J2K. The SIMP rewrite
system has no effect in this example, see line (5). Finally,
line (6) simplifies and unquotes numbers. ARI-normal form
computation hence uses quoting only as an intermediate de-
vice for triggering built-in evaluation of arithmetic terms.

Some examples for normalization of trigonometric terms:

sin(a+b)→ARI cos(a) · sin(b)+ cos(b) · sin(a)
sin(3 · c)→ARI −1 · sin(c)+4 · cos(c) · cos(c) · sin(c)

sin(π/2−φ)→ARI

−1 · sin(φ) · cos(0.5 ·π)+ cos(φ) · sin(0.5 ·π)

Note 2 (Uniqueness and confluence). The intention behind
CANON is to sort the parameters with exponents by their
bases only, for collecting like-terms. Unfortunately, this is
not always possible. For example, bd ≻ ae is sorted as in-
tended, where b ≻ a. However, abd ≻ bd is not. This phe-
nomenon can lead to non-confluence. Notice, it required an
exponent bd that is equal to (or greater than) another factor.
Luckily, such cases are rare in physics exams.

3.2 Termination of Rewriting
A rewrite system R is terminating if there is no infinite
rewrite derivation. This means there is no sequence of one-
step rewrites t →R t1 →R t2 →R · · · , for any term t. A stan-
dard way to prove termination of rewrite systems over a fi-
nite signature is to define a reduction ordering ≻ such that
all rules are oriented, i.e., l ≻ r for every standard rule l → r.
The counterpart for our constrained rules is to show that ev-
ery rule ρ (in ARI) is oriented wrt. ordinary instances (for
≻), i.e., that every ordinary instance s⇒ t of ρ satisfies s≻ t.
This requires specific analysis for each constrained rule. For
example, x+ y → y+ x | x ≻ y is oriented in this sense if the
symbol “+” has left-to-right lexicographic status: it holds
that, for every ordinary instance s+ t ⇒ t + s, where s ≻ t,
the term s+ t is greater than t + s wrt. ≻. The ordinary in-
stance is not oriented if the order in the tuple were reversed.

Our concrete reduction ordering used for showing orient-
edness is both an extension (by quote-terms) and instantia-
tion of Weighted Path Ordering (WPO) (Yamada, Kusakari,
and Sakabe 2015).

4 The Dataset
We examined student responses to the Australian Physics
Olympiad exam of 2023. There were a total of 1526 typed
student responses (including blank responses) to each of the
45 questions. The marking team’s grade for each student
response was also provided. Approximately 10% of the
responses were hand-written, scanned and attached as im-
ages. The hand-written responses were not considered in
this study and therefore we changed students scores for these
responses to 0.

We focus on grading two questions. Question 25 requires
flexible marking, as there were multiple forms of the correct

answer. Question 26 requires students to use trigonometric
functions.

4.1 Question 25
Question 25 is worded as follows:

Consider two solid, spherical masses, one with mass m1, and
one with mass m2. Assuming that m2 is initially at rest, and
that m1 is incident on m2 with some energy E0, the parti-
cles will scatter with final energies E1 and E2 respectively
(as shown). Write an equation for conservation of energy for
this process. Only include the following variables in your an-
swer:

• m1 – the mass of the incoming particle
• m2 – the mass of the originally stationary target
• E0 – the kinetic energy of m1 before the collision
• E1 – the kinetic energy of m1 after the collision
• E2 – the kinetic energy of m2 after the collision

The question has a simple correct answer: E0 = E1 + E2.
However many students are taught to substitute expressions
for kinetic energy (KE = mv2

2 ) when writing conservation of
energy equations. Therefore many students gave answers
such as m1v2

0 = m1v2
1 + m2v2

2 which are equivalent to the
correct answer and markers would be able to determine the
physical/algebraic equivalence of this student response.

To allow our system to mimic this grader behavior, the
substitutions in Table 4 were applied to the student expres-
sions exhaustively as the final step of pre-processing. After
this, both Z3 (an SMT solver) and our TRS determined the
equivalence of the student answer and the correct solution
and assigned a grade to the student.

Table 4: Expressions for energy and momentum of particles before
and after an interaction

Original New Description
Quantity Expression

E0 →
m1v2

0
2 Initial kinetic energy of particle 1

p0 → m1v0 Initial momentum of particle 1

E1 →
m1v2

1
2 Final kinetic energy of particle 1

p1 → m1v1 Final momentum of particle 1

E2 →
m2v2

2
2 Final kinetic energy of particle 2

p2 → m2v2 Final momentum of particle 2

The Z3 Grading process of Question 25 is as follows.
We define the trigonometric axiom set T as a set of equations
corresponding to trigonometric axioms where x is a variable
implicitly universally quantified within each formula. See
Section 5.1 for an example of set T .

Let Di = {di1,di2, . . . ,dip} be the set of equations con-
tained in the ith student’s response and C = {c1,c2, . . . ,cq}
be the set of equations required in the marking scheme. We
generate a set of additional inequalities, which we call non-
zero constraints, Z = {z1,z2, . . . ,zl} which prevent expres-
sions from being undefined. For example, expressions in
denominators are not allowed to equal 0.



We define two equations d and c as z3-equivalent, d ≡Z3
c, if T |= ∀(Z → (d ≡ c)). We then break the equivalence
checking task into two unsatisfiability checks for Z3.

For Question 25, C consists only of one equation, C =
{E0 = E1 +E2} to which the Table 4 rules are applied. We
refer to this equation as c1. The Z3 assigned mark for the ith
student is given by:

MZ3i =

{
1 if ∃dip ∈ Di such that dip ≡Z3 c1

0 otherwise

The TRS grading procedure for Question 25 was differ-
ent. We define solving an equation e for a parameter x as
the process of performing valid algebraic operations to the
equation such that the LHS consists only of x and the RHS
does not contain x. In general, not all equations are solvable.

We made the choice to solve all student equations di j for
the parameter v0 because the pre-processing substitutions in
Table 4 guarantee that a correct answer must contain this
parameter. Therefore equations were expressed in the form
v0 = e j where e j is an expression containing numbers, pa-
rameters and well founded function symbols but not v0.

We define a solving function, f , such that:

f (di j) =


e j if di j can be solved by our computer

algebra system for v0

NaN otherwise
Where NaN is a special expression with the property NaN ≈
c = ⊥ any expression c. See Section 3.1 for definition of
algebraically equal, ≈.

We implemented the solving function f () using the
SymPy algebra system (Meurer et al. 2024). We note that
there were no cases where SymPy was unable to solve for
v0. The rewrite system mark for the ith student was given
by:

MTRSi =

{
1 if ∃di j ∈ Di| f (di j)≈ f (c1)

0 otherwise
Intuitively this means that students were awarded a mark

if any of the equations that they wrote were equivalent to the
correct answer. We note that this may not be an appropriate
way to mark complex questions which require students to
demonstrate understanding through correct working, how-
ever it is sufficient for this one-mark question.

4.2 Question 26
Question 26 was worded as follows:

Write two equations for conservation of momentum, ac-
counting for the scattering angles φ and θ .
The same LLM pre-

processing was applied
to student responses to
Question 26 to stan-
dardize their format and
remove syntax errors.

However as the
marking scheme for
Question 26 was more complex, a different formula was
used to grade the student responses.

The Z3 Grading Procedure for Question 26 was as fol-
lows. Let W = {w1,w2, ...,wq} be the marking weights cor-
responding to each required equation c ∈ C. We define the
identity function, I(φ) as:

I(φ) =
{

1 φ =⊤
0 φ =⊥

The Z3 mark assigned to the student is given by:

MZ3i =
q

∑
k=1

wk · I(∃di j ∈ Di|di j ≡Z3 ck)

Note that for Question 26 q = 2 and w1 = w2 = 0.5. In-
tuitively, students were awarded 0.5 marks if any of their
equations matched the correct x-momentum equation, and
0.5 marks if any of their equations matched the correct y-
momentum equation. In Sections 5.1 and 5.2 we describe
how this technique enabled Z3 to assign the correct marks
to most of the student responses.

The TRS grading procedure for Question 26 was sim-
ilar. The rewrite system awarded points to the students in
Question 26 as follows:

MTRSi =
q

∑
k=1

wk · I(∃di j ∈ Di| f (di j)≈ f (ck))

This means that students were awarded marks according to
the weight on the marking scheme for each equation they
wrote which was algebraically equivalent to a corresponding
article on the scheme. This mirrors the behavior of the ma-
jority of markers for most physics questions. Both the term
rewriting system and Z3 were applied to these questions and
the results are shown in Section 5.

5 Results and Discussion
A series of experiments were performed to evaluate the per-
formance of our TRS using Z3 as a control. The results of
these experiments are described in detail in Sections 5.1, 5.2
and 5.3. A summary of all of the experimental results can
be found in Table 5. If the marking method failed to assign
a grade or assigned a student grade different to the ground
truth grade, this was counted as a fail.

All experiments were run on a local machine with an
Intel Core-i9-13900K CPU (3-5.8GHz), 64GB of DDR5
(4800MT/s) and an NVIDIA GeForce RRTX 4060Ti GPU
with 16GB of dedicated GPU memory.

5.1 Initial Z3 experiments

One of the first problems when applying Z3 is to find an ap-
propriate trigonometric axiom set T that allows Z3 to under-
stand the trigonometric functions but does not quickly lead
to time-out or memory limits. By default we use trigono-



Table 5: Summary of experimental results for Questions 25 and 26.

Method Q25 Q26

CPU Time Number CPU Time Number
(seconds) of fails (seconds) of fails

Z3 + trig. 550 18 5000 355
axiomsa

Z3 + custom 16 0 40 5
sqrt tacticb

TRSc 1140 0 612 1
TRS + T ′ d 1210 0 870 0

a Fails if student equation contains trigonometric functions or
square root symbols. In most of the observed failure cases
returns timeout error.

b Fails on non-linear combinations of trigonometric expres-
sions and cases requiring angle-addition formulas. In four of
the five observed failure cases returns unknown so the user
is aware of the fail.

c There was a failure case because the system was missing
trigonometric identities, resulting in a false negative.

d There were no observed failures after the extra T ′ axioms
were added.

metric axioms that correspond to our rewrite rules:

T =



sin(−x) =−sin(x)
cos(−x) = cos(x)
sin2(x) = 1− cos2(x)
sin(x1 + x2) = sin(x1)cos(x2)+ cos(x1)sin(x2)

cos(x1 + x2) = cos(x1)cos(x2)− sin(x1)sin(x2)

cos((n+2)x) = 2cos(x)cos((n+1)x)− cos(nx)
sin((n+2)x) = 2cos(x)sin((n+1)x)− sin(nx)

These rules were used to mark the student responses to
Question 25. Z3 was able to process the 1526 examples in
approximately 10 minutes, successfully classifying all but
18 results. In these cases Z3 was not able to return sat or un-
sat within a 100 second timeout. Further investigation shows
that there were two distinct failure cases.

The first type of failure case occurred when students in-
cluded trigonometric functions in their responses, for exam-
ple m1v0 = m1v1 cos(θ) +m2v2 cos(φ). In these 14 cases
the reason Z3 gives for its unknown result is ‘timeout’. The
solver statistics for each of these problems show that the uni-
versal quantifiers in the trigonometric rules caused the num-
ber of quantified instantiations, added equations and clauses
to approach the millions. In these cases the Z3 memory us-
age quickly grew to tens of gigabytes before hitting hard
resource limits.

The second type of failure case occurred when square root
symbols or fractional powers were included in student re-
sponses. For example:

v2 = (((m1v2
0)− (m1v2

1))/m2)
1/2

In these cases, Z3’s reason for the unknown result was that
the SMT tactic was incomplete, and Z3 failed quickly (less
than 0.01 seconds) using less than 20MB of memory. Look-
ing at the solver statistics from these cases shows that Z3

attempts to use Gröbner Bases and other Non-Linear Arith-
metic (NLA) tools. These tools fail to reduce the problem
to a state where Z3 is able to prove unsatisfiability or find a
satisfying example.

The results were similar for Question 26; Z3 gave a time-
out error for any expression which contained a trigonomet-
ric expression. This resulted in 355 fails. For Z3 to progress
it is clear that a simpler set of trigonometric axioms would
need to be provided. We note that in each of these examples
Z3 fails gracefully, providing an unknown result to alert the
user.

5.2 Further Z3 Experiments
The universally quantified T axioms for the uninterpreted
functions sin and cos force Z3 to solve a very difficult prob-
lem. We performed further experiments where we removed
some of the axioms from T to try to improve its grading per-
formance.

Removing these axioms meant that Z3 would not be able
to show the equivalence of some expressions such as sin(2θ)
and 2sin(θ)cos(θ). However, if most student answers do
not require operations to be applied to the arguments of the
trig functions then Z3 would be able to correctly grade the
responses.

First we consider applying a reduced set of axioms to
Question 25. When the final four of the original seven T
axioms are removed, timeout errors no longer occur. How-
ever the sin2(x) = 1− cos2(x) axiom causes the system to
fail quickly when student responses contain trig functions.
In these cases Z3 recognizes that these cases contain non-
linear arithmetic and therefore its solvers are incomplete.
Removing the third axiom fixes this problem and Z3 was
quickly able to provide a sat response for the Question 25
examples that contained trigonometry. Note that such (sat)
counter examples become increasingly unreliable as axioms
are removed.

Radical Elimination: After removing the last five ax-
ioms, only the four examples which contained square roots
caused problems. In these cases, the NLA solver quickly
decides that the system is incomplete and gives up. To pre-
vent this, we implement a radical elimination procedure as a
pre-processing step. Each square root is replaced with a new
variable and two additional constraints, thus converting the
problem to be polynomial which can be handed to the NLA
solver. For example, consider this student response:

E0 = m1 cos(θ)+(m2 −m1)
1/2

In this case (m2 −m1)
1/2 is identified as a radical and the

system creates a new variable to represent it, r0. Then
we remove the original equation from the solver and re-
place it with the following three: r0 ≥ 0, r0 × r0 =
(m2 −m1), E0 = m1 cos(θ)+ r0.

Once implemented, this allowed Z3 to correctly grade all
responses in Question 25. This same approach was applied
to Question 26 and resulted in only five fails. The first
was that no points were awarded for: m1v0 = sin(π/2 −



φ)m2v2 + cos(θ)m1v1. This fail occurred because the an-
gle addition axioms were removed. Note that the follow-
ing response would have resulted in a similar fail: m1v1 =
m1v1 cos(θ)+m2v2 sin(π/2− φ), except this response was
incorrect as it contains a v1 in the place of v0.

The other four fails were for expressions such as

v2 = (m2(v0 cos(θ))2 +(v0 sin(θ))2)1/2

This example contains non-linear combinations of unin-
terpreted functions, a type of problem where Z3 is incom-
plete. In these cases the solver statistics show that only
20MB of memory was used and Z3 makes approximately
5 quantifier instantiations with a number of calls to NLA
components. This indicates that in these instances Z3 is not
‘blowing-up’ and exhausting resources, but after creating a
few quantifier instantiations stopped because none of them
helped progress the proof. This is possibly because each
new instantiation adds a term that contains an uninterpreted
function (trig function) which are treated by the solver as
fresh variables.

Since very few properties of the trigonometric functions
were given to Z3, it is unable to solve non-linear combina-
tions of these functions. Overall the reduced axiom set al-
lowed Z3 to quickly find unsat, but as soon as non-identical
comparisons of trig functions are required, it lacks the ax-
ioms to resolve these instances.

5.3 Our TRS Results
Using the method described in Section 4.1, our rewrite sys-
tem was able to correctly grade all 1526 examples for Ques-
tion 25 in a total CPU time of approximately 1140 seconds.
It took 612 seconds for our system to grade Question 26,
with one fail occurring. The fail response contained this
equation:

m1v0 = sin(π/2−φ)m2v2 + cos(θ)m1v1

This equation matches the x-momentum equation. Our
rewrite system contains the rule:

sin(X1 +X2)→ sin(X1)cos(X2)+ cos(X1)sin(X2).

Which should reduce sin(π/2 − φ) to sin(π/2)cos(φ)−
cos(π/2)sin(φ). However to make the final step
sin(π/2)cos(φ)− cos(π/2)sin(φ)→ cos(φ) would require
our system to know that sin(π/2) = 1 and cos(π/2) = 0. To
solve this issue, the following axioms, T ′ were added:

T ′ =

{
sin(π)→ 0, sin(π/2)→ 1
cos(π)→ 1, cos(π/2)→ 0

Adding these extra trigonometric axioms increased the ap-
proximate CPU time to 870 seconds but allowed our TRS to
correctly grade all student responses.

One advantage of our TRS compared to SMT solvers is
that adding additional unused axioms only has a minimal im-
pact on the run time. We reran the Question 25 set with the
additional four T ′ axioms, this increased the CPU run-time
from 1140 seconds to 1210, an approximately 6% increase.
This is a stark contrast to Z3 where adding the additional
axioms caused the system to timeout and fail.

6 Conclusions and Future Work
In this paper, we presented our approach for supporting
marking physics exams by combining LLMs, computer al-
gebra systems, and a custom term rewriting system.

Our TRS is able to successfully normalize student equa-
tions which contain addition, multiplication, exponentiation
and trigonometric functions. The TRS approach scales well
when redundant rules are added, with minor penalty in CPU
time for normalization. In contrast, the SMT solver perfor-
mance degraded when we added redundant axioms.
Some limitations and ideas for future work. Currently
the LLM stage of the pipeline is only able to achieve 73%
accuracy, even using techniques which provide the model
with feedback. To improve, larger LLMs could be used or
models could be fine-tuned to improve performance.

Our TRS was sufficiently terminating, con-
fluent and complete for grading two 2023
Australian Physics Olympiad problems.

a+b
a+b

a
a+b +

b
a+b 1

However, this is not enough
for all physics problems. A
natural example for expected
convergence where our system
fails to join is on the right.

One significant drawback of the TRS is that in general
there is no well defined canonical form for arbitrary equa-
tions. This means that the TRS is not able to prove that
a student’s answer is incorrect and leaves the possibility of
false negatives. A clear example of this is the response that
was incorrectly graded in Question 26, requiring the T ′ ax-
ioms to be added. In future we will specify the exact func-
tional forms of equations which our TRS can reduce to a
unique canonical form, this will define the situations where
the system will fail.

Our TRS could be further improved by adding axioms
for complicated expressions involving exponentiation by
variables, logarithms and inverse trigonometric functions.
The scope of problems which can be graded could also be
widened, beyond simply checking for algebraic equivalence,
to verify student proofs.

Currently our system requires SymPy to first solve the
equation for a specific parameter before applying the TRS.
This means our system is only able to determine the equiva-
lence of two equations if Sympy is able to solve the equation
for at least one variable. This means that the rewrite system
can only be as good as the chosen algebra system’s solving
capabilities.

Future work will use a confluence analysis tool to exam-
ine critical pairs and add rules to improve confluence. Fi-
nally, our system is implemented in Python, a slow inter-
preted language, and in a non-optimized way. Performance
was sufficient for our purpose. Re-implementation in a faster
compiled language and/or using efficient data structures, for
example term indexing.
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Kortemeyer, G.; Nöhl, J.; and Onishchuk, D. 2024. Grading
assistance for a handwritten thermodynamics exam using ar-
tificial intelligence: An exploratory study. Physical Review
Physics Education Research 20(2):020144.
Kortemeyer, G. 2023. Toward AI grading of student prob-
lem solutions in introductory physics: A feasibility study.
Physical Review Physics Education Research 19(2):020163.
McGinness, L., and Baumgartner, P. 2025a. Can Large Lan-
guage Models Correctly Interpret Equations with Errors?
arXiv:2505.10966 [physics.ed-ph]
Meurer, A.; Smith, C.; Paprocki, M.; and Scopatz, A.
2024. SymPy: Symbolic computing in Python. https:
//www.sympy.org/en/index.html.
Mok, R.; Akhtar, F.; Clare, L.; Li, C.; Ida, J.; Ross, L.;
and Campanelli, M. 2024. Using AI Large Language Mod-
els for Grading in Education: A Hands-On Test for Physics.
arXiv:2411.13685 [physics.ed-ph]

Ogg, M. 2024. Brisbane AI edtech Edexia accepted into Y
Combinator. http://www.businessnewsaustralia.com.html.
Ramesh, D., and Sanampudi, S. K. 2022. An automated
essay scoring systems: A systematic literature review. Arti-
ficial Intelligence Review 55(3):2495–2527.
Shostak, R. E. 1984. Deciding Combinations of Theories.
J. ACM 31(1):1–12.
Weegar, R., and Idestam-Almquist, P. 2024. Reducing
Workload in Short Answer Grading Using Machine Learn-
ing. International Journal of Artificial Intelligence in Edu-
cation 34(2):247–273.
Windle, J.; Morrison, A.; Sellar, S.; Squires, R.; Kennedy, J.;
and Murray, C. 2022. Teachers at Breaking Point. University
of South Australia.
Yamada, A.; Kusakari, K.; and Sakabe, T. 2015. A uni-
fied ordering for termination proving. Science of Computer
Programming 111:110–134.

https://www.microsoft.com/en-us/research/publication/phi-4-technical-report/
https://www.microsoft.com/en-us/research/publication/phi-4-technical-report/
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
http://www.businessnewsaustralia.com.html

	Introduction
	Large Language Model Pre-processing
	Term Rewriting Framework
	Proving Physics Equations by Normalization
	Termination of Rewriting

	The Dataset
	Question 25
	Question 26

	Results and Discussion
	Initial Z3 experiments
	Further Z3 Experiments
	Our TRS Results

	Conclusions and Future Work

