
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZER-DEPENDENT GENERALIZATION BOUND
FOR QUANTUM NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantum neural networks (QNNs) play a pivotal role in addressing complex tasks
within quantum machine learning, analogous to classical neural networks in deep
learning. Ensuring consistent performance across diverse datasets is crucial for un-
derstanding and optimizing QNNs in both classical and quantum machine learning
tasks, but remains a challenge as QNN’s generalization properties have not been
fully explored. In this paper, we investigate the generalization properties of QNNs
through the lens of learning algorithm stability, circumventing the need to explore
the entire hypothesis space and providing insights into how classical optimizers
influence QNN performance. By establishing a connection between QNNs and
quantum combs, we examine the general behaviors of QNN models from a quantum
information theory perspective. Leveraging the uniform stability of the stochastic
gradient descent algorithm, we propose a generalization error bound determined
by the number of trainable parameters, data uploading times, dataset dimension,
and classical optimizer hyperparameters. Numerical experiments validate this
comprehensive understanding of QNNs and align with our theoretical conclusions.
As the first exploration into understanding the generalization capability of QNNs
from a unified perspective of design and training, our work offers practical insights
for applying QNNs in quantum machine learning.

1 INTRODUCTION

Quantum computing leverages the laws of quantum mechanics to solve complex problems more
efficiently than classical computers, offering notable quantum speedups in areas such as cryptogra-
phy (Shor, 1997), and quantum simulations (Lloyd, 1996; Childs et al., 2018). Recent advancements
in quantum hardware have demonstrated quantum advantages in specific tasks (Arute et al., 2019;
Zhong et al., 2020; Wu et al., 2021), catalyzing the exploration of quantum computing’s potential
in artificial intelligence. This interdisciplinary connection has given rise to quantum machine learn-
ing (Biamonte et al., 2017; You et al., 2023; Tang & Yan, 2022; Liu et al., 2022; Caro et al., 2022b;
Cerezo et al., 2022; Huang et al., 2022b; Qian et al., 2022a; Yu et al., 2022a; Tian et al., 2023; Li
et al., 2019; 2022; Jerbi et al., 2023a; Li & Deng, 2022; Huang et al., 2022a).

One of the leading frameworks in quantum machine learning is the quantum neural network (QNN),
which represents the quantum analog of classical artificial neural networks and typically refers
to parameterized quantum circuits that are trainable based on quantum measurement results. A
well-known architecture within QNNs is the data re-uploading QNN (Pérez-Salinas et al., 2020;
Gil Vidal & Theis, 2020), which integrates multiple training and data encoding layers within a single
quantum circuit. This approach significantly enhances the expressivity of the models, allowing them
to approximate functions more effectively (Pérez-Salinas et al., 2020; Pérez-Salinas et al., 2021; Yu
et al., 2022b; Manzano et al., 2023; Jerbi et al., 2023b; Yu et al., 2023). Such characteristics make the
data re-uploading QNN a suitable quantum machine model for supervised learning tasks.

Despite these advancements in quantum machine learning, critical challenges remain, particularly in
understanding and predicting the performance of models in practical settings. A fundamental criterion
for evaluating the performance of any learning algorithm is the generalization gap (Kawaguchi et al.,
2022). This gap essentially measures the difference between a model’s accuracy on training data
and its expected accuracy on unseen data, providing essential theoretical guidance on determining
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Figure 1: Overview of our work. (a) We investigate the relationship between QNNs and quantum
combs, highlighting how this connection informs our understanding of QNN dynamics. (b) We
demonstrate that QNNs utilizing the SGD algorithm and trained for T iterations exhibit βm-uniform
stability. This stability metric quantifies the maximum change in the QNN’s output due to alterations in
a single training example. (c) Leveraging the uniform stability, we derive a generalization error bound
that assesses the QNN’s performance on unseen data, thereby better understanding the performance
of QNNs in practical applications.

the amount of training data required and informing the design of the model’s architecture to ensure
robust generalization capabilities.

QNNs typically update trainable parameters using classical optimizers, where classical optimizers
play a crucial role in the training process by adjusting the parameters based on quantum measurement
results. However, the integration of various classical optimizers with quantum processes introduces
additional complexity, particularly in ensuring that these updates contribute positively to minimizing
the generalization gap. Hence, providing theoretical guidance on the design and training of QNNs
with regard to the strategic use of specific optimizers is of fundamental importance. Among these
optimizers, stochastic gradient descent (SGD) algorithm is the most commonly used. Understanding
the effects of SGD is vital as it not only enhances our comprehension of this optimizer but also
informs the uses of its advanced variants in QNN applications.

To deepen our understanding of QNNs, our work establishes theoretical guarantees on how classical
optimizers impact their generalization performance. To summarize, our contributions include:

• We introduce a more general perspective in the study of QNNs by conceptualizing them as a
special form of trainable quantum combs (cf. Sec. 3.1). This approach allows us to leverage
the rich theoretical framework of quantum combs to analyze the properties and dynamics of
QNNs.

• We then investigate the stability of QNNs based on the quantum comb perspective to
show that QNNs are uniformly stable (cf. Fig.1). We further establish an upper bound
on generalization error for data reuploading model (cf. Sec.3.3). This bound not only
informs the control of QNN expressivity power through the number of layers and trainable
parameters during the designing of QNNs, but also offers new insights into training QNNs
with input data dimensions and classical optimizer-dependent parameters. Importantly, the
bound introduces a new training guideline suggesting that the learning rate and the number
of trainable gates should be designed to be inversely proportional to enable stable training.

• To substantiate our theoretical claims, we have conducted extensive numerical experiments
focused on assessing changes in the expressivity and stability of QNNs. These experiments
underscores the importance of stable learning for the practical training of these networks
and hence draw a guideline for future QNN developments.
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1.1 RELATED WORK

Currently, the theory of generalization in QNNs mainly focuses on the complexity measures. Du et al.
(2022) derives an upper bound for generalization error with the dependence of the number of trainable
quantum gates and the operator norm of the observable by leveraging covering number (Vapnik,
2013) to quantify the expressivity of VQAs. Later, (Caro et al., 2022a) uses quantum channels
to derive more general results and (Du et al., 2023) extends it to multi-class classification tasks.
Abbas et al. (2021b) uses the effective dimension (Berezniuk et al., 2020; Abbas et al., 2021a) as
another complexity measure for the parameter space of QNN. Gyurik et al. (2023) uses Vapnik-
Chervonenkis dimension (Vapnik & Chervonenkis, 2015) that investigates the balance of empirical
and generalization performance on the dimension of inputs and the Frobenius norm of the observable.
Besides, Caro et al. (2021), Bu et al. (2021; 2022) and Qi et al. (2023) derives an upper bound
based on Rademacher complexity (Bartlett & Mendelson, 2002), where the bound in (Bu et al.,
2021; 2022) is based on the circuit depth and the amount of non-stabilizerness in the circuit for both
noise and noiseless models, and Qi et al. (2023) mainly investigates the generalization of variational
function regression models using tensor-network encodings. Furthermore, the information-theoretic
bound (Banchi et al., 2021) based on Rényi mutual information and the generalization behavior of
a specific class of QNN (Chen et al., 2021; Kübler et al., 2021; Du et al., 2021; Wang et al., 2021;
Huang et al., 2021a) are also established.

The study of generalization bounds in relation to stability in classical machine learning has laid the
substantial groundwork for understanding how small changes in the training set can impact the outputs
of learning algorithms (Feldman & Vondrak, 2018; Bousquet et al., 2020; Klochkov & Zhivotovskiy,
2021; Yuan & Li, 2024). From seminal contributions by Bousquet and Elisseeff (Bousquet & Elisseeff,
2002), stability has been demonstrated to yield dimension-independent generalization bounds for
both deterministic learning algorithms (Mukherjee et al., 2006; Shalev-Shwartz et al., 2010) and
randomized approaches such as stochastic gradient descent (SGD) (Elisseeff et al., 2005; Hardt
et al., 2016; Verma & Zhang, 2019). However, despite these significant advances, the analysis
of generalization guarantees from the perspective of stability remains largely unexplored in the
context of QNNs. Also, existing generalization bounds for QNNs do not account for the impact of
the classical optimizer, leading to a significant gap in unified designing and training guidance for
effectively implementing powerful QNNs.

2 PRELIMINARY

2.1 QUANTUM COMPUTING BASICS AND NOTATIONS

Notations. We use ∥ · ∥p to denote the lp-norm for vectors and the Schatten-p norm for matrices.
A† is the conjugate transpose of matrix A and AT is the transpose of A. tr[A] represent the trace of
A. The µ-th component of the vector θ is denoted as θ(µ) and the derivative with respect to θ(µ) is
denoted as ∂

∂θ(µ) . We employ O as the asymptotic notation of upper bounds.

Quantum state. In quantum computing, the basic unit of quantum information is a quantum bit
or qubit. A single-qubit pure state is described by a unit vector in the Hilbert space C2, which is
commonly written in Dirac notation |ψ⟩ = α|0⟩+ β|1⟩, with |0⟩ = (1, 0)T , |1⟩ = (0, 1)T , α, β ∈ C
subject to |α|2 + |β|2 = 1. The complex conjugate of |ψ⟩ is denoted as ⟨ψ| = |ψ⟩†. The Hilbert
space of N qubits is formed by the tensor product “⊗” of N single-qubit spaces with dimension
d = 2N . General mixed quantum states are represented by the density matrix, which is a positive
semidefinite matrix ρ ∈ Cd×d subject to tr[ρ] = 1.

Quantum gate. Quantum gates are unitary matrices, which transform quantum states via matrix-
vector multiplication. Common single-qubit rotation gates include Rx(θ) = e−iθX/2, Ry(θ) =

e−iθY/2, Rz(θ) = e−iθZ/2, which are in the matrix exponential form of Pauli matrices,

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1)

Common two-qubit gates include controlled-X gate CX = I ⊕X (⊕ is the direct sum), which can
generate quantum entanglement among qubits.
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2.2 QUANTUM NEURAL NETWORK

The quantum neural network typically contains three parts, i.e. an N -qubit quantum circuit U(θ,x),
observables M ∈ Cd×d and a classical optimizer, where x ∈ RD is the encoding of classical data
and θ ∈ RK are trainable parameters. The optimization of the parameterized quantum circuit is
based on the feedback from the quantum measurements using the classical optimizer. By assigning a
predefined loss function ℓ(·), the parameter update rule at iteration t is θt+1 = θt− η ∂ℓ(f(θt,x,M),y)

∂θ ,
where η is the learning rate, y is the target label, and f(·) is the output of the quantum circuit for
the given quantum measurement. The gradient information can be obtained by the parameter shift
rule or other methods (Mitarai et al., 2018; Schuld et al., 2019; Stokes et al., 2020) and the design of
observables is related to the presense of barren plateaus (Cerezo et al., 2021).

Basic setup. In this work, we consider the classification problem, where the training dataset
S := {zi = (xi, yi)}mi=1 consists of m = |S| samples independently and identically drawn from an
unknown probability distribution D. The objective of the machine learning algorithm A is to utilize
S to infer an optimal hypothesis or an optimal classifier f∗AS

(·) that minimizes the expected risk
R(AS) := E(x,y)∼D[ℓ(fAS

(x),y)] (Kawaguchi et al., 2022), considering the inherent randomness in
A and S. Given that the probability distribution behind data space D is generally inaccessible, directly
minimizing R(AS) becomes intractable. Consequently, a more practical way involves inferring
f∗(·) by minimizing the empirical risk R̂S(AS) := 1

m

∑m
i=1 ℓ(f(xi), yi) on the training dataset

S. The difference between the empirical risk and the expected risk, known as generalization gap
R(AS) − R̂S(AS), elucidates when and how minimizing R̂S(AS) effectively approximates the
minimization of R(AS).

3 MAIN RESULT

In this section, we develop our main result of the generalization bound in quantum machine learning
models under the discussion of stability. In short, we make connection between quantum comb
and data re-uploading QNNs by expressing the output function via a more general form. Then
using the characterization of quantum combs in the output function, we derive an upper bound on
the generalization gap for data re-uploading QNN that depends on several QNN parameters and
hyperparameters that associated with the classical optimizer. We will first introduce the quantum
combs and their connection to data re-uploading QNN in Section. 3.1, then we present that QNNs are
βm-uniform stable in Section. 3.2 and the generalization bound with its implications in Section. 3.3.

3.1 QUANTUM COMBS AND DATA RE-UPLOADING QNNS

A native quantum classifier initially encodes classical data into the quantum state and utilizes a
quantum circuit for classification tasks (Mitarai et al., 2018). However, this naive approach faces
limitations, even with single qubit classifiers, where a single rotation fails to adequately separate
complex data patterns. To overcome these limitations, the data re-uploading QNN is proposed (Pérez-
Salinas et al., 2020; Gil Vidal & Theis, 2020), drawing inspiration from classical feed-forward
neural networks, in which the classical data is entered and processed in the network several times.
The data re-uploading QNN have shown its universality of function approximation (Pérez-Salinas
et al., 2020; Pérez-Salinas et al., 2021; Yu et al., 2022b; Manzano et al., 2023) and strong learning
performances (Jerbi et al., 2023b; Yu et al., 2023), making it a suitable quantum machine model for
supervised learning tasks.

Typically, the model repeatedly encodes classical data into the parameters of quantum gates throughout
the quantum circuit. For simplicity, we can assume that the initial input state is denoted as ρin,
followed by tunable gates U(θ) that are interspersed with data encoding operations U(x). An
L-layer data re-uploading QNN repeats this process L times. We find that the data re-uploading
QNN in quantum machine learning is naturally a sequential quantum comb (Chiribella et al., 2008).
In the following, we show the output of data re-uploading QNNs f(C, x,M) with respect to the
measurement operator M in quantum circuits can be well represented by a sequential quantum comb
C with the separation of trainable parts and classical data x. Hence, the generalization bound is
straightforward to analyze and bounded as shown in Section 3.2.
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Using the basic definition of quantum combs and the link product property of Choi–Jamiołkowski
isomorphism (Choi, 1975; Jamiołkowski, 1972), we have the following proposition derived from
Appendix 8 that characterizes the output of the general quantum comb,

Proposition 1 For a general L-slot sequential quantum comb C with classical-data encoding unitary
U(x) and measurement-channel M, we can represent the output of the quantum comb as

f(C,x,M) = tr
[
C · ρTin ⊗

(
JU (x)

⊗L
)T ⊗M)

]
, (2)

where JU (x) refers to the Choi representation of unitary U(x).

The quantum comb C can describe a wide range of quantum operations, from simple quantum gates
to complex processes that involve multiple steps and interactions and it basically can express any
quantum operations that may apply on the QNNs. However, deriving a meaningful generalization
bound requires detailed information about the parameters of the QNNs. The general comb formulation,
while robust, may not retain all the necessary parameter-specific information needed for this purpose.

We then systematically narrow its scope to investigate the process composition, focusing on a structure
with L layers of tunable quantum layers interspersed with classical data encoding channels. In the
following, we show the evolution of data re-uploading QNNs can be well represented by a sequential
quantum comb with the separation of parameters and re-uploaded data.

Corollary 2 For the data re-uploading QNN with depth L, we have the output function f(θ,x,M)
in Choi representation as follows:

f(θ,x,M) = tr

[
L+1⊗
l=1

JU (θ
(l)) ·

(
ρTin ⊗

(
JU (x)

⊗L
)T ⊗M

)]
, (3)

where JU (θ
(l)) denotes the Choi representation of parameterized gates in the l-th layer and θ(l) ∈ θ

refers to the parameters used in the l-th layer.

This formulation is particularly adept at utilizing quantum dynamics to characterize the output of
QNN models. This capability stems from the comb’s structured integration of quantum operations,
which systematically manipulate and evolve the quantum states based on input data through a series
of interconnected dynamics. In the following section, we will demonstrate how this formulation aids
in analyzing the stability of QNNs.

3.2 SGD STABILITY OF QNNS

Stability in machine learning is determined by analyzing how sensitive the learning algorithm is
to modifications in the dataset, such as removing or replacing a data point. For the convenience of
this work, we will focus on the scenario where data is replaced and we also note that the concepts
of removing and replacing data are essentially interchangeable in the context of stability analysis.
This approach allows us to systematically explore how small changes in the dataset influence the
performance and reliability of the learning algorithm. Denoting the dataset with replacement on i-th
data with z

′
:= (x′, y′) as Si for x′ ∈ RD and y′ ∈ R, where Si := {z1, · · · zi−1, z

′
, zi+1, · · · zm},

the uniform stability is formally defined as follows:

Definition 1 (Uniform Stability (Bousquet & Elisseeff, 2002)) For a randomized learning algo-
rithm AS , it is said to be βm-uniformly stable with respect to a loss function ℓ(·), if it satisfies,

sup
S,z

|EA[ℓ(AS , z)]− EA[ℓ(ASi , z)]| ≤ 2βm. (4)

It basically quantifies the maximum change in the output function due to a change in one training
example, uniformly over all possible datasets. A randomized algorithm A is uniformly stable,
implying that the models it learns from any two datasets, which differ by only one element, will yield
nearly identical predictions across inputs.
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In the context of QNNs, the training procedure typically employs stochastic gradient descent (SGD)
algorithm (Zhang et al., 2020; Qian et al., 2022b; Sweke et al., 2020). For a given training set S, the
objective function to be minimized can be expressed as,

min
θ

1

m

m∑
i=1

ℓ(f(θS ,xi,M), yi). (5)

The stochastic gradient update rule for SGD at iteration t is given by

θ
(j)
S,t+1 = θ

(j)
S,t − η

∂

∂θ
(j)
S,t

ℓ(f(θS,t,xi,M), yi), j = 1, · · · ,K, (6)

where η > 0 is the learning rate, xi and yi are the input and output of the randomly selected training
example chosen uniformly at each iteration t and K is the number of trainable parameters. The SGD
algorithm executes these stochastic gradient updates iteratively, refining the model parameters to
minimize the loss over the training set.

We also assume the loss function ℓ is Lipschitz continuous and smooth with constants C1 and C2
respectively. This assumption is considered to be quite lenient, as the loss functions used in QNNs
typically exhibit Lipschitz continuity and are subject to an upper limit defined by the constant. This
characteristic is extensively used to investigate the performance capabilities of QNNs (Huang et al.,
2021b; Du et al., 2022; McClean et al., 2018; Yu et al., 2023). Drawing on concepts from stability
investigations in classical neural networks (Verma & Zhang, 2019; Hardt et al., 2016), we present a
proof sketch that demonstrates the uniform stability of the QNN.

Theorem 3 (Uniform stability of data reuploading QNN) Assume the loss function ℓ is Lipschitz
continuous and smooth. An L-layer data re-uploading QNN trained using the SGD algorithm for T
iterations is βm-uniformly stable, where

βm ≤ LD∥M∥∞
m

O
(
(ηK∥M∥∞)T

)
. (7)

K denotes the number of trainable parameters in the model, M is the selected measurement operator,
η is the learning rate, m refers to the size of the training dataset, and D is the dimension of the data.

Proof Sketch. A sketch version of the proof is as follows, with the details in Appendix 10. In order
to prove this theorem, we analyze the output of the QNNs when evaluated on two datasets, S and
Si, which differ by a single sample. Given that the loss function is Lipschitz continuous for each
example zi, we leverage the linearity of the expectation and the proposition of the difference in the
output function (cf. Appendix 10, Lemma S4), we have,

|ESGD[ℓ(AS , z)− ℓ(ASi , z)]| ≤ C1ESGD[|f(θS,t,x,M)− f(θSi,t,x,M)|]

≤ 2C1∥M∥∞
K∑

k=1

ESGD[|θ(k)S,t − θ
(k)
Si,t|].

(8)

Therefore, it is sufficient to analyze how the parameters θS,t and θSi,t diverge and bound the change
in parameters recursively in the function of iteration t.

Based on the training process of SGD, there are two cases to consider the change of parameters.
The first case is that SGD selects the example at step t that is identical in S and Si with probability
(m− 1)/m. Since the parameters θS and θSi may differ and the gradient will also differ, we provide
an upper bound for the loss-derivative function,∣∣∣∣∣∣ ∂

∂θ
(j)
S,t

ℓ (f(θS,t,x,M), y)− ∂

∂θ
(j)
Si,t

ℓ
(
f(θSi,t,x,M), y

)∣∣∣∣∣∣ ≤ 2C2∥M∥∞
K∑

k=1

|θ(k)S,t − θ
(k)
Si,t|. (9)

The derivation is based on the parameter change bound (cf. Appendix 10, Lemma S5) and a full
derivation is in Lemma S5.
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The other case is that SGD selects one example to update in which S and Si differ and it happens with
probability 1/m. Following the same logic, one can similarly derive the difference loss-derivative
function with respect to the different samples as follows,∣∣∣∣∣∣ ∂

∂θ
(j)
S,t

ℓ (f(θS,t,x,M), y)− ∂

∂θ
(j)
Si,t

ℓ
(
f(θSi,t,x

′,M), y′
)∣∣∣∣∣∣ ≤ 2C2∥M∥∞(

K∑
k=1

|∆θ(k)|+
LD∑
j=1

|∆x(j)|),

where D is the data dimension, and we adopt the short notations |∆θ(k)| = |θ(k)S,t − θ
(k)
Si,t|, |∆x

(j)| =
x(j) − x′(j)|, respectively. A full derivation is in Lemma S6. Finally, by taking the probability into
consideration and plugging the above results into equation 8, one arrives at equation 7. ■

Recall that an algorithm is considered stable when the value of βm diminishes in proportion to
1/m (Bousquet & Elisseeff, 2002). Accordingly, Theorem 3 explicitly demonstrates that QNNs
trained using SGD algorithms exhibit uniform stability. This is characterized by the bounded
maximum change in the output function in response to altering a single training example, applicable
uniformly across all possible datasets, with the bound scaling as 1/m. In Section 3.3, we will further
explore the implications of the stability with relation to the generalization error.

3.3 GENERALIZATION ERROR BOUND AND ITS IMPLICATIONS

The generalization error essentially measures the difference between a model’s accuracy on training
data and its expected accuracy on new data, serving as a key indicator of the model’s performance.
Here, we use uniform stability to derive the generalization bound of QNNs. Especially, we apply
Theorem 3 to obtain the following corollary, with the proof detailed in Appendix 10.

Corollary 4 (SGD-dependent Generalization Gap) Assume the loss function ℓ is Lipschitz contin-
uous and smooth. Consider a learning algorithm AS that uses the data re-uploading QNN, trained
on the dataset S using stochastic gradient descent optimization algorithm over T iterations. Then,
the expected generalization error of AS is bounded as follows, holding with probability at least 1− δ
for δ ∈ (0, 1),

ESGD[R(AS)− R̂(AS)] ≤
LD∥M∥∞

m
O
(
(ηK∥M∥∞)T

)
+
(
LD∥M∥∞O

(
(ηK∥M∥∞)T

)
+M

)√ log 1
δ

2m
,

(10)

where K denotes the number of trainable parameters in the model, M is the selected measurement
operator, η is the learning rate, m refers to the size of the training dataset, D is the dimension of
data and M is a constant depending on the loss function.

Corollary 4 directly connects the generalization error with respect to the dimension of datasets,
the number of layers, and the number of trainable parameters of data re-uploading QNN. We also
consider the depolarizing noise effect on the generalization error, which we remain in the Appendix 12.
Corollary 4 also provides additional implications for choosing a suitable learning rate and the number
of iterations for training with comparable performance as following.

Vanishing on the number of samples. Our generalization bound demonstrates a O( 1√
m
) scaling

with the number of training samples m, highlighting that an increase in m directly enhances the
generalization performance. It is important to note that for the generalization bound to be meaningful,
it must converge to zero as m in the limit m → ∞ and this convergence is contingent upon βm
decaying at a rate faster than O( 1√

m
). Hence, our generalization bound is a non-trivial bound and its

scaling in relation to the number of samples aligns with current literature.

Trade-off between expressivity and generalization. On the design of QNNs’ architecture, our
findings also reveal that the generalization bound demonstrates a linear dependence on both the
number of data re-uploading times L, and the dimension of the data D. This linear relationship
indicates that as the number of times data L is re-uploaded increases, or as the dimension of the
data D grows, there is a corresponding increase in the bound, suggesting that more complex data
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or more frequent re-uploading could potentially lead to larger errors on unseen data. However, the
increase in the number of data re-uploading times L implies a higher expressivity of QNNs (Pérez-
Salinas et al., 2020; Yu et al., 2022b; Manzano et al., 2023). This directly comes with a trade-off
between the expressivity and generalization of data re-uploading QNNs, particularly when dealing
with limited training data, which shows the analogy with the bias-variance trade-off in classical
neural networks (Geman et al., 1992; Hastie et al., 2009). It is noted that while previous work (Du
et al., 2021; Qi et al., 2023) considers the number of parameters as a measure of expressivity, bound
which focus on the data re-uploading times L poses a more direct form of expressivity. Below,
we demonstrate how the combination of explicit expressivity and optimizer parameters provides
additional insights into understanding the performance of QNN models.

Stable training. On the training of QNNs, our generalization bound also have an exponential
dependence T on the operator norm of the measurement operator ∥M∥∞, the learning rate η and the
number of parameters K. It is imperative to carefully choose these parameters such that the term is
normalized to be less than 1, i.e. ηK∥M∥∞ < 1 to maintain a low generalization error. In practice,
the operator norm of measurement practically is bounded by 1 such that 0 ≤ ∥M∥∞ ≤ 1 and it is
normally chosen as Pauli strings, i.e. ∥X∥∞ = ∥Y ∥∞ = ∥Z∥∞ = 1. Then, balancing the number
of parameters and the learning rate is critical. A larger K can be counterbalanced by a smaller η to
ensure that each step in the learning process is small enough to prevent instabilities that could arise
from complex models. To optimize generalization performance with a fixed number of parameters
or learning rate, our bound suggests configuring the learning rate as O(1/K), where K is the fixed
number of parameters, or setting the number of parameters as O(1/η), where η is the fixed learning
rate. This careful tuning helps to mitigate the risk of overfitting by allowing the model to explore
the parameter space more thoroughly and settle into a stable configuration that generalizes well. By
incorporating expressivity, our generalization bound unifies the learning and training phases, offering
more practical insights for the design and optimization of QNNs.

4 NUMERICAL SIMULATIONS

Previous sections theoretically characterize the generalization of QNNs via stability using SGD
optimizers. In this section, we verify these results by conducting numerical experiments on the
perspectives of varies in expressivity and the status of stable training. All evaluations are performed
on a desktop with Intel Core i5 CPU (1.4 GHz and 8GB RAM) using python 3.8.
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Figure 2: This ansatz template describes a quantum circuit with N qubits and L layers. Each layer
is structured into two distinct blocks: a trainable block and an encoding block, represented in blue
and red, respectively. The trainable blocks consist of repeated Ry rotation gates and CX gates. In
contrast, each encoding block comprises an n-tensor product of Ry(x

(i)) gates, designed to encode
an D-dimensional classical data vector x = (x(1), · · · , x(D))T .

Simulation Setups. Following the seminal QML benchmark study (Bowles et al., 2024), we choose
to use three public datasets: Breast Cancer (Wolberg, 1995), MNIST (LeCun et al., 2010), and
Fashion MNIST (Xiao et al., 2017) to examine the generalization ability via SGD optimizer on data
re-uploading QNN. The Breast Cancer dataset has 569 examples described by 30 features. (Fashion)
MNIST dataset includes a training set of 60,000 examples and a test set of 10,000 examples. Each
example is a 28x28 grayscale image, associated with a label from 10 classes. For simplicity, each
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image is reduced to 4x4 for QNNs. We conduct the binary classification tasks on diagnosis B/M, digit
0/1, and class T-shirt/Trouser for the three datasets. The training and testing examples are randomly
sampled and the size of training examples are 114, 500, 500, while the size of testing examples are
455, 2000, 2000, respectively. The following table 1 provides a overview of each dataset.

Table 1: Datasets used in experiments
Dataset Dimension Class Number Training Samples Testing Samples
Breast Cancer 30 2 114 455
MNIST (4×4 reduced) 16 10 500 2000
Fashion MNIST (4×4 reduced) 16 10 500 2000

For the architecture of QNNs, we use data re-uploading QNNs with the ansatz in Figure. 2, followed
by a Pauli-Z measurement on the first qubit. Adopting the most commonly used ansatz (Kandala
et al., 2017; Nakaji & Yamamoto, 2021; Sim et al., 2019), tunable gates are depicted in blue, where
the ansatz is considered to be single-qubit rotations with two-qubit CX gates. Also, all trainable
parameters are initialized within [0, 2π]. The classical information x is encoded via angle encoding as
depicted in red. We repeated the experiments with varying L settings 5 times and varying η settings
10 times to obtain statistical results. The error bars represent the standard deviation.
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Figure 3: Generalization gap estimation with the varies on the number of data re-uploading change
L ∈ [2, 8, 16] for three datasets with learning rate η = 0.01, with the error bar representing the
statistical uncertainty in experiments. Direct comparisons reveal that the generalization gap is smallest
when L = 2, whereas, for L = 8 or L = 16, the gap continues to increase. This observation aligns
with our theorem, which suggests that increasing the model’s expressivity does not necessarily lead
to a convergence in the generalization error.

Varies on data re-uploading times. We first study the generalization gap between training and
testing loss in binary classification by varying the number of data re-uploading times L ∈ [2, 8, 16]
of the mentioned three datasets with the learning rate η = 0.01. It is clear to be seen in Figure 3 that
as the number of data re-uploading times increases, the generalization gap also increases. Especially
with L = 2, the generalization bound could achieve relatively better results. This echoes with
Theorem 4 that the increase of K and L will increase the generalization gap and it will not be
guaranteed to be converged due to the exponential dependence on the iterations.

Varies on Learning Rate. We then investigate the generalization gap of stable training by varying
the magnitude of learning rate η ∈ [0.1, 0.05, 0.01] of the mentioned three datasets. The number
of data re-uploading times is set to be L = 8. It is depicted in Figure 4 that with the learning rate
η increases, the generalization gap is not guaranteed to converge. With the learning rate η = 0.01,
the generalization gap achieves relatively better results as the scaling of the number of parameters
closely approximates O(1/K). However, with higher learning rates such as η = 0.05 and η = 0.1,
the exponential term is not bounded, implying that the generalization gap may not converge. This
observation reinforces the insights from Theorem 4, highlighting the complex relationship between
learning rate, parameter scaling, and generalization performance.
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Figure 4: Generalization gap estimation with the varies on the learning rate η ∈ [0.01, 0.05, 0.1] for
three datasets, with the error bar representing the statistical uncertainty in experiments. (a), (b), and
(c) show the loss of various sampled classical datasets. This figure illustrates that increasing the
learning rate does not ensure convergence of the generalization gap. It also demonstrates that the
generalization gap tends to converge when the learning rate is chosen to be approximately inversely
proportional to the number of parameters.

Additional Experiments and Remarks. For completeness, we have also conducted additional
experiments on the number of training samples, detailed in Appendix 11 Figure S1. While previous
simulations focused on the generalization error gap between training and testing accuracy, we also
provide detailed training and testing accuracy results. These results presented in a similar setting
to those in Figure 3 and 4 and can be founded in Appendix figure S2 and S4 respectively. We also
remark that the generalization bound tends to become too loose as training progresses, particularly in
cases where the model’s hyperparameters and learning rate are not properly chosen. Observations
from several simulations show that the generalization gap converges to a certain value, but the bound
fails to capture this phenomenon and instead continues to increase as training progresses.

5 CONCLUSION AND FUTURE WORK

In this paper, we have initiated steps towards a deeper theoretical understanding of quantum neural
networks by the lens of stability. We have demonstrated that the generalization of data re-uploading
QNNs via stability is contingent upon the number of trainable parameters, data re-uploading times,
data dimension, and optimizer dependent parameters. While the overall decay of the generalization
error in relation to the sample size aligns with results from previous studies, our result provides a
distinct perspective on the stable training concept, specifically regarding the impact of learning rate
η, parameter count K and measurement operator ∥M∥∞ on training over T iterations, given by the
exponential term O(ηK∥M∥∞)T . This offers new insights into training QNNs that the learning
rate and the number of trainable gates should be chosen to be inversely proportional to ensure stable
training and minimize generalization error.

From the technical perspective, we have utilized the quantum information theoretic methods such
as quantum comb architecture and Choi–Jamiołkowski isomorphism to analyze the performance
of QNNs. This theoretical framework offers numerous tools for analysing the stability of data
re-uploading models. Future research could explore a broader form of the quantum comb and employ
semidefinite programming to identify optimal QNNs (Quintino et al., 2019). This approach may offer
deeper insights into the fundamental limits that QNNs can achieve in terms of generalization errors.
It would also be intriguing to extend our analysis to include other well-known optimizers such as
RMSProp and Adam (Ruder, 2016). We believe that our findings deepen the understanding of QNNs’
learnability (Anschuetz, 2024) by considering both design and training processes, paving the way for
the implementation of powerful QNNs across various machine learning tasks.
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6 APPENDIX

In the table below, we summarize the notations used throughout the paper:

Symbol Definition
HA,HA′ , · · · Hilbert space of quantum system A,A′, · · ·
H⊗n

A , · · · Hilbert space of quantum system An, · · ·
Lin(HA) Set of linear operators acting on HA

id Identity map on the space D(HA)

I Identity operator on a suitable space
JN Choi representation of the map N
(·)T Transpose of an operator
v(j) The j-th element of vector v
θ(j) The j-th batch taken from the parameter set θ
m Numbers of data
D Dimension of data
K Numbers of parameters
L Layers of Quantum Neural Network
T Iterations
N Number of qubits
θS,t Parameters trained from training dataset S after t iterations
M Measurement operator
η Learning rate

Table 1: Overview of notations.

7 AUXILIARY LEMMAS

In this section, we introduce several auxiliary concepts from quantum information theory on quantum
circuits or parameterized quantum gates and fundamental definitions from statistical learning theory
that are essential for understanding the main proof.

Lemmas on parameterized quantum gates. Parameterized quantum circuits (PQCs) are a crucial
framework in quantum computing, particularly for variational quantum algorithms. These circuits
consist of a sequence of parameterized unitary U(θ) can be adjusted, enabling adaptation to specific
tasks or optimization objectives. Common parameterized gates include rotation gates like Rx(θ),
Ry(θ), and Rz(θ) , which perform rotations on qubits, alongside entangling gates such as the CNOT
gate. The parameters are often optimized using classical algorithms to minimize a cost function
related to tasks like state preparation or energy estimation. Here we introduce a bound on the distance
between two U(θ) with different parameter settings.

Lemma S1 (Bound in parameters change) Suppose a parameterized unitary U(θ) :=∏K
k=1 Uke

−iα(k)Pk/2VK+1, we have the upper bound on two different parameter sets α,β ∈ RK

∥U(α)− U(β)∥∞ ≤
K∑

k=1

|α(k) − β(k)|, (S1)

where Uk and VK+1 are fixed quantum gates, Pk ∈ {X,Y, Z} denotes a single-qubit Pauli gate, and
identity gates are omitted.

Proof First, we are going to demonstrate the following inequality:

∥U(α)− U(β)∥∞ ≤
K∑

k=1

∥∥∥e−iα(k)Pk/2 − e−iβ(k)Pk/2
∥∥∥
∞
. (S2)
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By definition, we have

∥U(α)− U(β)∥∞ =

∥∥∥∥∥
K∏

k=1

Uke
−iα(k)Pk/2VK+1 −

K∏
k=1

Uke
−iβ(k)Pk/2VK+1

∥∥∥∥∥
∞

. (S3)

Without loss of generality, observing the case of K = 2, that is,

∥U(α)− U(β)∥∞ =
∥∥∥U1e

−iα(1)P1/2U2e
−iα(2)P2/2V3 − U1e

−iβ(1)P1/2U2e
−iβ(2)P2/2V3

∥∥∥
∞

≤
∥∥∥U1e

−iα(1)P1/2U2e
−iα(2)P2/2V3 − U1e

−iβ(1)P1/2U2e
−iα(2)P2/2V3

∥∥∥
∞

+
∥∥∥U1e

−iβ(1)P1/2U2e
−iα(2)P2/2V3 − U1e

−iβ(1)P1/2U2e
−iβ(2)P2/2V3

∥∥∥
∞

=
∥∥∥e−iα(1)P1/2 − e−iβ(1)P1/2

∥∥∥
∞

+
∥∥∥e−iα(2)P2/2 − e−iβ(2)P2/2

∥∥∥
∞
,

(S4)
where the inequality follows the triangle inequality, and the last equality refers to the isometric
invariance of the spectral norm. Recursively, in the general case of K ≥ 2, the inequality equation S2
holds.

Additionally, the sub-term
∥∥∥e−iα(k)Pk/2 − e−iβ(k)Pk/2

∥∥∥
∞

in equation S2 can be further bounded∥∥∥e−iα(k)Pk/2 − e−iβ(k)Pk/2
∥∥∥
∞

=
∥∥∥I − ei(α

(k)−β(k))Pk/2
∥∥∥
∞

= max
k

∣∣∣1− ei(α
(k)−β(k))·λk(Pk)/2

∣∣∣
= max

k

√
2− 2 cos

[
(α(k) − β(k)) · λk(Pk)/2

]
=
√

2− 2 cos
[
(α(k) − β(k))/2

]
,

≤
∣∣∣α(k) − β(k)

∣∣∣ ,
(S5)

where λk(A) denotes the k-th eigenvalue of a Hermitian operator A, the first equation applies the
isometric invariance on

∥∥∥e−iα(k)Pk/2 − e−iβ(k)Pk/2
∥∥∥
∞

=
∥∥∥e−iα(k)Pk/2(I − ei(α

(k)−β(k))Pk/2)
∥∥∥
∞

,

and the last inequality holds from the fact that cos(θ) ≥ 1 − 2θ2. Finally, plugging this form in
the equation S2 yields the result shown in equation S1, which completes the proof. ■

Definitions and lemmas from statistical learning theory. Here, we outline the assumptions under-
lying our work, provide basic definitions of stability, and show its relationship to the generalization
gap.

We will assume the loss function ℓ is Lipschitz continuous and smooth with constants C1 and C2
respectively. The definition is as follows,

Definition 2 A loss function ℓ(·) is said to be Lipschitz-continuous and smooth, if it satisfies,

|ℓ(f(·), y)− ℓ(g(·), y)| ≤ C1|f(·)− g(·)|,
|∇ℓ(f(·), y)−∇ℓ(g(·), y)| ≤ C2|∇f(·)−∇g(·)|. (S6)

This assumption is extensively used to investigate the performance capabilities of QNNs (Huang
et al., 2021b; Du et al., 2022; McClean et al., 2018; Yu et al., 2023). Denoting the dataset
with replacement on i-th data with z

′
:= (x′, y′) as Si for x′ ∈ RD and y′ ∈ R, where

Si := {z1, · · · zi−1, z
′
, zi+1, · · · zm}. The uniform stability is defined as follows,

Definition 3 (Uniform Stability (Bousquet & Elisseeff, 2002)) For a randomized learning algo-
rithm AS , it is said to be βm-uniformly stable with respect to a loss function ℓ(·), if it satisfies,

sup
S,z

|EA[ℓ(AS , z)]− EA[ℓ(ASi , z)]| ≤ 2βm. (S7)
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Uniform stability essentially provides an upper bound on the variation in losses resulting from the
alteration of a single data sample. A randomized learning algorithm with uniform stability directly
yields the following bound on the generalization error,

Theorem S2 (Generalization Bound based on Stability (Elisseeff et al., 2005)) A βm-uniform
stable randomized algorithm with a bounded loss function 0 ≤ ℓ(·) ≤ M , satisfies the following
expected generalization bound with probability at least 1− δ with δ ∈ (0, 1) over the random draw
of S, z,

EA[R̂(AS)−R(AS)] ≤ 2βm + (4mβm +M)

√
log 1

δ

2m
. (S8)

8 BASIC ON QUANTUM COMB

In this section, the method quantum combs (Chiribella et al., 2008) will be introduced. Briefly, let
Lin(H1) denote the space of linear operators acting on the Hilbert space H1, and Lin(H1,H2) be the
space of linear transforms from H1 to H2. It is not trivial to map a linear operator X ∈ Lin(H1,H2)

into its vector X̃ ∈ H1 ⊗H2:
X̃ =

∑
i,j

Xi,j |i⟩ ⊗ |j⟩, (S9)

where Xi,j is the element of X and |i⟩, |j⟩ are two bases on H1 and H2, respectively. Vectorization
of linear operator leads to Choi-Jamiołkowski isomorphism of quantum operators. Namely, a CPTP
quantum channel N ∈ Lin(H1,H2) corresponds to its Choi representation JN as:

JN = idH1 ⊗N (ΩH1) =
∑
i,j

|i⟩⟨j| ⊗ N (|i⟩⟨j|) , (S10)

with ΩH1
=
∑

i,j |i⟩⟨j| ⊗ |i⟩⟨j| as the unnormalised maximally entangled state in H⊗2
1 .

For any two given processes, they can be connected whenever the input system of one matches the
output system of the other. In the Choi representations, the composition of two quantum operators
N ◦M with M ∈ Lin(H0,H1) and N ∈ Lin(H1,H2) follows link product, denoted as ⋆:

JN◦M = JN ⋆ JM = trH1
[(1H0

⊗ JN ) · (J TH1

M ⊗ 1H2
)], (S11)

with trH1
and TH1

denotes taking partial trace and transpose on H1. More properties and detailed
discussion about link product and Choi representation are referred to (Chiribella et al., 2009). It is
worth mentioning that link product exhibits both associative and commutative properties:

J1 ⋆ (J2 ⋆ J3) = (J1 ⋆ J2) ⋆ J3,

J1 ⋆ J2 = J2 ⋆ J1.
(S12)

A quantum comb is the Choi representation associated with a quantum circuit board and is obtained
as the link product of all component operators.

Lemma S3 (quantum comb (Chiribella et al., 2008)) Given a matrix C ∈ Lin(P⊗In⊗On⊗F),
it is the Choi representation of a quantum comb C if and only if it satisfies C ≥ 0 and

C(0) = 1, trIi
[C(i)] = C(i−1) ⊗ IO(i−1)

, i = 1, · · · , n+ 1, (S13)

where C(n+1) := C, C(i−1) := trIiOi−1
[C(i)]/d, IH is the identity operator on H and In+1 := F ,

O := P .

P I1 O1
· · ·

C

Ii Oi F
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Proposition 1 For a general L-slot sequential quantum comb C with classical-data encoding unitary
U(x) and measurement-channel M, we can represent the output of the quantum comb as

f(C,x,M) = tr
[
C · ρTin ⊗

(
JU (x)

⊗L
)T ⊗M)

]
, (S14)

where JU (x) refers to the Choi representation of unitary U(x).

Proof A general sequential L-slot quantum comb C with L times of input unitary U(x) can be
represented in link product as

CU = C ⋆ JU (x)
⊗n = trI,O

[
C ·
(
IP ⊗ (JU (x)

⊗n)T ⊗ IF
)]
, (S15)

where trI,O refers to partial trace on systems {Ii,Oi}Li=1. By considering the initial state ρin, we
then have the output state ρout as,

ρout = trP [(ρ
T
in ⊗ IF ) · CU ]

= trP
[
(ρTin ⊗ IF ) · trI,O

[
C ·
(
IP ⊗ (JU (x)

⊗n)T ⊗ IF
)]]

= trP,I,O
[
C · ρTin ⊗ (JU (x)

⊗n)T ⊗ IF )
]
.

(S16)

Followed by the further measurement M, we have the output of quantum comb as

f(C,x,M) = tr
[
C · ρTin ⊗

(
JU (x)

⊗L
)T ⊗M)

]
. (S17)

■

Overall, quantum combs describe a more general kind of transformation by taking several input
operations and output a new operation. It has shown its advantage for applying quantum comb in
solving process transformation problems and optimizing the ultimate achievable performance, includ-
ing transformations of unitary operations such as inversion (Chen et al., 2024; Yoshida et al., 2023),
complex conjugation, control-U analysis (Chiribella & Ebler, 2016), as well as learning tasks (Bisio
et al., 2010; Sedlák et al., 2019). It can also be used for analyzing more general processes (Zhu
et al., 2024) and has also inspired structures like the indefinite causal network (Chiribella et al., 2013;
Oreshkov et al., 2012).

9 DATA RE-UPLOADING QNN IN CHOI REPRESENTATION

A usual data re-uploading QNN has the following form:

1 2 3 4 5 · · ·ρin U(θ(1)) U(x) U(θ(2)) U(x) U(θ(L))

(S18)

For classical data encoding into U(x), a universal data re-uploading QNN with circuit depth L can
be defined as

U(θ,x) = U(θ(L+1))U(x)U(θ(L)) · · ·U(θ(2))U(x)U(θ(1))

= U(θ(L+1)) ·
L∏

l=1

(
U(x)U(θ(l))

)
.

(S19)

where x is the uploaded data and θ(l) is the l-th batch taken from the model parameter set θ.

Proposition 2 For the data re-uploading QNN with depth L, we have the function f(θ,x,M)
defined as the output of QNN, then in Choi representation followings,

f(θ,x,M) = tr

[
L+1⊗
l=1

JU (θl) ·
(
ρTin ⊗

(
JU (x)

⊗L
)T ⊗M

)]
, (S20)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof As it is mentioned in the Appendix 8, utilizing the link product of Choi representation and its
commutative property, we first evaluate JU (θ

(2) ⋆ JU (x) ⋆ JU (θ
(1)). In this proof, it is helpful to

label the systems with respect to the indices in equation S18. Notice that

JU (θ
(2)) ⋆ JU (θ

(1)) = JU (θ
(2))⊗ JU (θ

(1)). (S21)
It can be verified that

JU (θ
(2),x,θ(1)) := JU (θ

(2)) ⋆ JU (x) ⋆ JU (θ
(1))

= tr2,3

[[
JU (θ

(1))⊗ JU (θ
(2))
]
· (I ⊗ J T

U (x)⊗ I)
]
,

(S22)

Considering the data encoding with L-slot, we recursively derive the Choi representation of the
quantum circuit U(θ,x) as J (θ,x), and

J (θ,x) = tr2,...,2L+1

[
L+1⊗
l=1

JU (θ
(l)) ·

(
I ⊗

(
JU (x)

⊗L
)T ⊗ I

)]
, (S23)

which can be found to match our previous discussion in equation S14. Then, the output function is
given as,

f(θ,x,M) = tr[M ⋆ J (θ,x) ⋆ ρin]

= tr
[
J (θ,x) · (I1 ⊗M) ·

(
ρTin ⊗ I2L+2

)]
= tr

[
L+1⊗
l=1

JU (θ
(l)) ·

(
ρTin ⊗

(
JU (x)

⊗L
)T ⊗M

)]
.

(S24)

This completes the proof. ■

10 PROOF OF MAIN THEORY

We will first present several useful lemmas for deriving the main theorem.

Lemma S4 Let θS,t and θSi,t represent the parameters learned after t iterations on training sets S
and Si, respectively, then the difference in the output function of a data re-uploading QNN is bounded
by,

|f(θS,t,x,M)− f(θSi,t,x,M)| ≤ 2∥M∥∞ ·
K∑
j=1

∣∣∣θ(j)S,t − θ
(j)
Si,t

∣∣∣ , (S25)

where K denotes the total number of parameters.

Proof As it is shown in equation S20 from Corollary 2, the difference between the two output
functions can be represented in quantum comb formalism as it is shown in equation S20 and further
bounded as follows,

|f(θS,t,x,M)− f(θSi,t,x,M)|

=

∣∣∣∣∣tr
[(

L+1⊗
l=1

JU (θ
(l)
S,t)−

L+1⊗
l=1

JU (θ
(l)
Si,t)

)
·
(
ρTin ⊗

(
JU (x)

⊗L
)T ⊗M

)]∣∣∣∣∣
=
∣∣tr [(J (θS,t,x)− J (θSi,t,x)

)
· (I ⊗M) · (ρTin ⊗ I)

]∣∣
(i)
=
∣∣tr [(id⊗ U(θS,t,x)(Ω)− id⊗ U(θSi,t,x)(Ω)

)
· (I ⊗M) · (ρTin ⊗ I)

]∣∣
(ii)

≤
∥∥U†(θS,t,x)MU(θS,t,x)− U†(θSi,t,x)MU(θSi,t,x)

∥∥
∞

(iii)
= ∥U†(θS,t,x)MU(θS,t,x)− U†(θS,t,x)MU(θSi,t,x)∥∞
+ ∥U†(θS,t,x)MU(θSi,t,x)− U†(θSi,t,x)MU(θSi,t,x)∥∞

(iv)
=
∥∥MU(θS,t,x)−MU(θSi,t,x)∥∞ + ∥U†(θS,t,x)M− U†(θSi,t,x)M

∥∥
∞

(v)

≤ 2 ∥M∥∞ ·
∥∥U(θS,t,x)− U(θSi,t,x)

∥∥
∞ ,

(S26)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where (i) recalls the Choi representation of a unitary with Ω denoting the unormalised maximally
entangled state and U denoting the corresponding quantum channel of the choi representation
as equation S10, (ii) uses Hölder’s inequality, (iii), (iv), (v) consider triangle inequality, isometric
invariance, and submultiplicativity of spectrum norm, respectively. Without loss of generality,
assuming all parameters are located on single Pauli rotations, we implement Lemma S1 to complete
the proof. ■

Lemma S5 Assume the first order derivative of the loss function ℓ be C2-Lipschitz continuous and
smooth. Then, the change in parameter difference of QNNs trained with SGD for t iterations on
dataset S and Si with respect to the same sample can be bounded by,∣∣∣∣∣∣ ∂

∂θ
(j)
S,t

ℓ (f(θS,t,x,M), y)− ∂

∂θ
(j)
Si,t

ℓ
(
f(θSi,t,x,M), y

)∣∣∣∣∣∣ ≤ 2C2∥M∥∞
K∑

k=1

|θ(k)S,t − θ
(k)
Si,t|.

Proof For convenience, we abbreviate f(θS,t,x,M) and f(θSi,t,x,M) as fθ(x) and fθi(x),
respectively. Denote θj +

π
2
:= (θ

(1)
S,t, · · · , θ

(j)
S,t + π/2, · · · , θ(K)

S,t )
T , θj − π

2
:= (θ

(1)
S,t, · · · , θ

(j)
S,t −

π/2, · · · , θ(K)
S,t )

T . θi
j +

π
2

and θi
j −

π
2

have similar definitions. Then, we have

∣∣∣ ∂

∂θ
(j)
S,t

ℓ (f(θS,t,x,M), y)− ∂

∂θ
(j)
Si,t

ℓ
(
f(θSi,t,x,M), y

) ∣∣∣
(i)

≤ C2

∣∣∣∣∣∣ ∂

∂θ
(j)
S,t

f(θS,t,x,M)− ∂

∂θ
(j)
Si,t

f(θSi,t,x,M)

∣∣∣∣∣∣
(ii)
= C2

∣∣∣∣12(fθj+
π
2
(x)− fθj−π

2
(x))− 1

2
(fθi

j+
π
2
(x)− fθi

j−
π
2
(x))

∣∣∣∣
(iii)

≤ C2
2

∣∣∣fθj+
π
2
(x)− fθi

j+
π
2
(x)
∣∣∣+ C2

2

∣∣∣fθj−π
2
(x)− fθi

j−
π
2
(x)
∣∣∣

(iv)

≤ C2∥M∥∞
(
∥U(θ + π/2)− U(θi + π/2)∥∞ + ∥U(θ − π/2)− U(θi − π/2)∥∞

)
(v)

≤ 2C2∥M∥∞
K∑

k=1

|θ(j)S,t − θ
(k)
Si,t|,

(S27)
where the inequality (i) follows from the condition of Lipschitz continuity and smoothness, equation
(ii) is derived from parameter shift rules (Mitarai et al., 2018), and (iii) uses triangle inequality.
Taking results from Lemma S1, we have the inequalities (iv), (v) hold, which completes the proof.

■

Lemma S6 Assume the first order derivative of the loss function ℓ be C2-Lipschitz continuous and
smooth. Then, the change in parameter difference of L-layers data re-uploading QNNs trained with
SGD for t iterations on dataset S and Si with respect to the different sample can be bounded by,∣∣∣∣∣∣ ∂

∂θ
(j)
S,t

ℓ (f(θS,t,x,M), y)− ∂

∂θ
(j)
Si,t

ℓ
(
f(θSi,t,x

′
,M), y

′
)∣∣∣∣∣∣ ≤ 2C2∥M∥∞

(
K∑

k=1

|∆θik|+
LD∑
k=1

|∆xik|

)
,

(S28)
where D denotes the dimension of data x and x′, ∆θik := |θ(k)Si,t − θ

(k)
S,t | and ∆xik := x′

(k) − x(k).
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Proof We consider the same settings mentioned in Lemma S5. Then, we have

∣∣∣∣∣∣ ∂

∂θ
(j)
S,t

ℓ (f(θS,t,x,M), y)− ∂

∂θ
(j)
Si,t

ℓ
(
f(θSi,t,x

′
,M), y

′
)∣∣∣∣∣∣

(i)

≤ C2

∣∣∣∣∣ ∂∂θj fθ(x)− ∂

∂θij
fθi(x′)

∣∣∣∣∣
(ii)
= C2

∣∣∣∣12(fθj+
π
2
(x)− fθj−π

2
(x))− 1

2
(fθi

j+
π
2
(x′)− fθi

j−
π
2
(x′))

∣∣∣∣
≤ C2

2

∣∣∣fθj+
π
2
(x)− fθi

j+
π
2
(x′)

∣∣∣+ C2
2

∣∣∣fθj−π
2
(x)− fθi

j−
π
2
(x′)

∣∣∣
(iii)

≤ C2
2

( ∣∣∣fθj+
π
2
(x)− fθi

j+
π
2
(x)
∣∣∣+ ∣∣∣fθi

j+
π
2
(x)− fθi

j+
π
2
(x′)

∣∣∣
+
∣∣∣fθj−π

2
(x)− fθi

j−
π
2
(x)
∣∣∣+ ∣∣∣fθi

j−
π
2
(x)− fθi

j−
π
2
(x′)

∣∣∣ )
(iv)

≤ 2C2∥M∥∞

(
K∑

k=1

|∆θik|+
LD∑
k=1

|∆xik|

)
,

(S29)

where (i) is due to the Lipschitz continuous, (ii) follows from the parameter shift rules, (iii) is taken
from triangle inequality and (iv) holds due to Lemma S1. ■

In the following analysis, we demonstrate that a data re-uploading QNN, when trained using the SGD
algorithm, exhibits βm uniform stability. This stability criterion necessitates bounding the difference
in the expected value of the learned parameters resulting from a single data perturbation. While this
analytical approach aligns with established strategies (Hardt et al., 2016), it is specifically adapted
here to the unique context of quantum neural networks.

Theorem 3 Assume the loss function ℓ is Lipschitz continuous and smooth. A L-layer data re-
uploading QNN trained using the SGD algorithm for T iterations is βm-uniformly stable, where

βm ≤ LD∥M∥∞
m

O
(
(ηK∥M∥∞)T

)
. (S30)

K denotes the number of trainable parameters in the model, M is the selected measurement operator,
η is the learning rate, m refers to the size of the training dataset, and D is the dimension of data.

Proof Using the fact that the loss are Lipschitz continuous, the linearity of expectation and Lemma S4,
we have,

|ESGD[ℓ(AS , z)− ℓ(ASi , z)]| ≤ C1ESGD[|f(θS,t,x,M)− f(θSi,t,x,M)|]

≤ 2C1∥M∥∞ ·
K∑
j=1

ESGD[|θ(j)S,t − θ
(j)
Si,t|].

(S31)

Then, we will focus on the term
∑K

j=1 ESGD[|θ(j)S,t − θ
(j)
Si,t|]. Specifically, consider in the training

process, SGD optimizer randomly selects a sample that is identical in both training set with probability
(1− 1/m). Then, it will select the sample that is differed in the training set with probability 1/m.
Given an iteration step t and denoting ∆θjt+1 := θ

(j)
S,t − θ

(j)
Si,t, f(θS,t,x) := f(θS,t,x,M) for short,
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we have the bound on ESGD[|θjt+1|],
ESGD[|∆θjt+1|]

≤ (1− 1

m
)ESGD[|(θ(j)S,t − η

∂ℓ(f(θS,t,x), y)

∂θ
(j)
S,t

)− (θ
(j)
Si,t − η

∂ℓ(f(θSi,t,x), y)

∂θ
(j)
Si,t

)|]

+
1

m
ESGD[|(θ(j)S,t − η

∂ℓ(f(θS,t,x
′), y′)

∂θ
(j)
S,t

)− (θ
(j)
Si,t − η

∂ℓ(f(θSi,t,x
′′), y′′)

∂θ
(j)
Si,t

)|]

= ESGD[|∆θjt |] + (1− 1

m
)ηESGD[|∂ℓ(f(θS,t,x), y)

∂θ
(j)
S,t

−
∂ℓ(f(θSi,t,x), y)

∂θ
(j)
Si,t

|]

+
1

m
ηESGD[|∂ℓ(f(θS,t,x

′), y′)

∂θ
(j)
S,t

−
∂ℓ(f(θSi,t,x

′′), y′′)

∂θ
(j)
Si,t

|].

(S32)

According to Lemma S5 and Lemma S6 respectively, we have the following two inequalities,

ESGD[|∂ℓ(f(θS,t,x), y)
∂θ

(j)
S,t

−
∂ℓ(f(θSi,t,x), y)

∂θ
(j)
Si,t

|] ≤ 2C2∥M∥∞
K∑

k=1

ESGD[|∆θkt |] (S33)

ESGD[|∂ℓ(f(θS,t,x
′), y′)

∂θ
(j)
S,t

−
∂ℓ(f(θSi,t,x

′′), y′′)

∂θ
(j)
Si,t

|] ≤ 2C2∥M∥∞

(
K∑

k=1

ESGD[|∆θkt |] +
LD∑
k=1

|∆xik|

)
.

(S34)

Without loss of generality, we set x(k) ∈ [0, 2π], which implies the inequality i.e. |∆xik| ≤ 4π.
Consequently, we derive the following inequality:

ESGD[|∆θjt+1|] ≤ ESGD[|∆θjt |] + 2ηC2∥M∥∞
K∑

k=1

ESGD[|∆θkt |] +
8πηC2∥M∥∞LD

m
, (S35)

which also implies that
K∑
j=1

ESGD[|∆θjt+1|] ≤ (1 + 2ηC2K∥M∥∞)

K∑
j=1

ESGD[|∆θjt |] +
8πηC2K∥M∥∞LD

m
. (S36)

By recursion for each t, we have
K∑
j=1

ESGD[|∆θjT |] ≤
8πηC2K∥M∥∞LD

m

T∑
t=1

(1 + 2ηC2K∥M∥∞)t−1. (S37)

By definition of uniform stability as shown in Definition. 1, we have,

βm ≤ LD∥M∥∞
m

O
(
(ηK∥M∥∞)T

)
, (S38)

which completes the proof. ■

Based on the relationship between uniform stability and the generalization gap, as detailed in
Theorem S2, we then establish the following,

Corollary 4 Assume the loss function ℓ is Lipschitz continuous and smooth. Consider a learning
algorithm AS that uses the data re-uploading QNN, trained on the dataset S using stochastic gradient
descent optimization algorithm over T iterations. Then, the expected generalization error of AS is
bounded as follows, holding with probability at least 1− δ for δ ∈ (0, 1),

ESGD[R(AS)− R̂(AS)] ≤
LD∥M∥∞

m
O
(
(ηK∥M∥∞)T

)
+

(
LD∥M∥∞O

(
(ηK∥M∥∞)T

)
+M

)√ log 1
δ

2m
,

(S39)

where K denotes the number of trainable parameters in the model, M is the selected measurement
operator, η is the learning rate, m refers to the size of the training dataset, D is the dimension of
data and M is a constant depending on the loss function.
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11 ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results on the generalization gap, varying the
number of samples. We also present the training and testing accuracies to more clearly illustrate the
concepts discussed.

Varies on number of examples. We check the convergence of the generalization gap with the
increase of training data size m in alignment with Corollary. 4. The experiment is implemented by
varying the size of train dataset m ∈ [100, 500, 1000] on MNIST and Fashion MNIST datasets. The
size of the testing dataset is set to be 2000. The number of data re-uploading times is set to be L = 16,
with learning rate η = 0.1 to achieve better performance on the classification task. It is depicted in
Figure S1 that with the examples of training data m increases, the generalization gap is guaranteed to
converge.
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Figure S1: Generalization gap estimation with the varies on a number of examples m ∈
[100, 500, 1000] for three datasets, with the error bar representing the standard deviation in 5 shots of
experiments.

Training and testing accuracy. In addition to the experiments presented in the main text, we
further demonstrate the training and testing accuracy under settings similar to those depicted in
Figures 3 and 4, providing a clearer illustration of performance.
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Figure S2: Model performances with varying the learning rate η for three datasets, where solid and
dashed lines denote training and testing errors, respectively. Errorbars are removed for visibility.
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Figure S3: Model performances with varying on the layers L ∈ [2, 8, 16] for three datasets, where
solid and dashed lines denote training and testing errors, respectively.

Varies of learning rate and data re-uploading times. In addition to the experiments in the main
text, which vary the data re-uploading times from [2, 8, 16] and learning rate from [0.1, 0.05, 0.01], we
have conducted additional experiments to further illustrate the transition from stability to instability.
In the learning rate experiments, it is observed that as the learning rate increases slightly, the model
begins to exhibit unstable behavior. A similar behavior is observed in the experiments varying the
number of data re-uploading layers. Additionally, we note that once the model transitions into the
unstable phase, the variance increases significantly, which is another characteristic phenomenon
associated with instability.
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Figure S4: (a) Model performances with varying on learning rate η ∈ [0.01, 0.025, 0.035, 0.05, 0.1].
(b) Model performances with varying on the numer of layers L ∈ [2, 4, 6, 8, 16] for three datasets.

12 DEPOLARIZING NOISE

We now consider the scenario where the data re-uploading model is subject to practical noise, specifi-
cally the effects of the local depolarizing channel. In this setting, a depolarizing channel (Nielsen &
Chuang, 2010) Np acts after each gate in the data reuploading model. Under this noise model, with
probability 1− p, the input state remains unchanged, while with probability p, the information is lost
and the output becomes the maximally mixed state. This noise model effectively simulates practical
imperfections in quantum devices and are common in experimental implementations.

The analysis of the robustness of the generalization bound in the presence of standard quantum
noise models, such as depolarizing noise, can be easily extended from our previous results. For
completeness, we present the following key lemma,
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Lemma S7 Let θS,t and θSi,t represent the parameters learned after t iterations on training sets
S and Si, respectively, then the difference in the output function of a data re-uploading QNN that
experiencing local depolarizing channel is bounded by,

|f(θS,t,x,M)− f(θSi,t,x,M)| ≤ 2(1− p)K∥M∥∞ ·
K∑
j=1

∣∣∣θ(j)S,t − θ
(j)
Si,t

∣∣∣ , (S40)

where K denotes the total number of parameters.

Proof By combining the lemma from (Du et al., 2021) with the proof technique used Lemma S4, it
can be verifed the above lemma holds. ■

Following a similar procedure as in the proof of the generalization bound, we first examine the effects
of depolarizing noise from the perspective of QNN stability,

Theorem 4 Assume the loss function ℓ is Lipschitz continuous and smooth. A L-layer data re-
uploading QNN under local depolarizing noise level p and trained using the SGD algorithm for T
iterations is βm-uniformly stable, where

βm ≤ (1− p)LDLD∥M∥∞
m

O
(
((1− p)KηK∥M∥∞)T

)
. (S41)

K denotes the number of trainable parameters in the model, M is the selected measurement operator,
η is the learning rate, m refers to the size of the training dataset, and D is the dimension of data.

Proof Using the loss are Lipschitz continuous, the linearity of expectation and Lemma S7, we have,
|ESGD[ℓ(AS , z)− ℓ(ASi , z)]| ≤ C1ESGD[|f(θS,t,x,M)− f(θSi,t,x,M)|]

≤ 2(1− p)KC1∥M∥∞ ·
K∑
j=1

ESGD[|θ(j)S,t − θ
(j)
Si,t|].

(S42)

Analogous to the proof of Lemma S5 and Lemma S6, we have the following two inequalities which
characterize the behavior of the model under local depolarizing noise,

ESGD[|∂ℓ(f(θS,t,x), y)
∂θ

(j)
S,t

−
∂ℓ(f(θSi,t,x), y)

∂θ
(j)
Si,t

|] ≤ 2(1− p)KC2∥M∥∞
K∑

k=1

ESGD[|∆θkt |] (S43)

ESGD[|∂ℓ(f(θS,t,x
′), y′)

∂θ
(j)
S,t

−
∂ℓ(f(θSi,t,x

′′), y′′)

∂θ
(j)
Si,t

|] (S44)

≤ 2C2∥M∥∞

(
(1− p)K

K∑
k=1

ESGD[|∆θkt |] + (1− p)LD
LD∑
k=1

|∆xik|

)
. (S45)

By recursion for each t and following the definition of uniform stability as shown in Definition. 1, we
have,

βm ≤ (1− p)LDLD∥M∥∞
m

O
(
((1− p)KηK∥M∥∞)T

)
, (S46)

which completes the proof. ■

Corollary 5 (SGD-dependent Generalization Gap under Depolarizing Noise) Assume the loss
function ℓ is Lipschitz continuous and smooth. Consider a learning algorithm AS that uses the data
re-uploading QNN, trained on the dataset S using stochastic gradient descent optimization algorithm
over T iterations under local depolarizing noise level p. Then, the expected generalization error of
AS is bounded as follows, holding with probability at least 1− δ for δ ∈ (0, 1),

ESGD[R(AS)− R̂(AS)] ≤
(1− p)LDLD∥M∥∞

m
O
(
(η(1− p)KK∥M∥∞)T

)
+
(
(1− p)LDLD∥M∥∞O

(
(η(1− p)KK∥M∥∞)T

)
+M

)√ log 1
δ

2m
,

(S47)
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where K denotes the number of trainable parameters in the model, M is the selected measurement
operator, η is the learning rate, m refers to the size of the training dataset, D is the dimension of
data and M is a constant depending on the loss function.
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