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Despite the excellent capabilities of machine learning algorithms, their performance deteriorates when the
distribution of test data differs from the distribution of training data. In medical data research, this problem is
exacerbated by its connection to human health, expensive equipment, and meticulous setups. Consequently,
achieving domain generalizations and domain adaptations under distribution shifts is an essential step in the
analysis of medical data. As the first systematic review of domain generalization and domain adaptation on
functional brain signals, the article discusses and categorizes various methods, tasks, and datasets in this field.
Moreover, it discusses relevant directions for future research.
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1 INTRODUCTION

Machine Learning (ML) is the process of guiding a computer system on how to make accurate
predictions for a specific task when fed with data. Given the popularity of previous ML approaches,
the main challenge in using them is how to choose features that fit more information and over-
lap less before learning. Deep Learning (DL) is a subset of ML techniques that achieve accurate
performance and flexibility in several learning tasks, such as medical data analysis, without the
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need to specify features before the learning process; in these models, the data used for both train-
ing and testing is assumed to come from the same distribution, known as identically and inde-
pendently distributed. In other words, the training and testing data behave similarly [153]. The
identically and independently distributed assumption, together with the fact that there are vari-
ous datasets in every ML task, makes it difficult for a model trained on the data from one domain
to perform well on the data from another domain. The lack of domain generalization (DG),
which is the ability of the model to work well on new data samples from different domains, makes
many deep neural networks and traditional ML models impractical and unusable for real-world
applications.

The generalization issue is even more apparent in medical data analysis. On the one hand, it
is often not practical for the model to work on data measured in a different situation or from a
different subject because of the wide range of conditions, priors, and factors affecting each data
sample. On the other hand, considering that the study of medical data directly concerns people’s
health, even small mistakes are unacceptable and can lead to severe consequences. Hence, in these
tasks, the ability to adapt the model trained on source domains into a new target domain, known
as domain adaptation (DA), and train generalizable models, known as DG, is crucial.

This work presents the first comprehensive review of methods establishing DG/DA for medical
data, focusing on functional brain data. Each model is categorized by Approach, the main idea for
DG/DA, Domain, the type of domain defined in the generalization/adaptation task, Task, the main
task that the model is required to solve in a DG/DA fashion, and Multi-/single source, whether
the work tackles the situation in which we have multiple sources (multi-source) or not (single
source). We also collect the popular and mainly used datasets in the literature and provide a brief
explanation of each and a comparison by different properties, such as the number of subjects and
size of the dataset. Extra content, tables, and figures are available at http://git.dml.ir/behnamnia.a/
DG_DA_fMedical_Survey.

There are several review papers on DG/DA methods in the general concept [33, 99, 153, 183],
and one survey paper specialty on DA in medical data [41] which mainly focuses on models built
for structural brain data such as Magnetic Resonance Imaging (MRI). Nevertheless, this work
focuses on functional brain data, which is more inclusive and vital, and it also investigates recent
models more thoroughly and systematically.

In conducting this review, we have systematically gathered, categorized, and explained recent
methods pertinent to DG/DA in EEG and fMRI data, which are two of the most prevalent modali-
ties in functional brain data studies. The focus is primarily on research papers published on these
modalities between 2019 and the end of 2022. The selection process involved filtering papers
based on their performance, novelty, and scientific value. To establish a standardized approach for
method selection and presentation to the audience, papers exclusively relying on private datasets
have been omitted from this study. These criteria include 98 papers on EEG data and 24 papers on
fMRI data, as detailed in Section 4. Subsequently, Section 5 delves into categorizing and discussing
popular publicly available datasets in this field featured in the papers mentioned previously.

This article is organized as follows. In Section 2, we briefly review the concepts, notations, and
fields related to DG/DA and medical data analysis. Section 3 describes the applications and studied
tasks of DA and DG in medical data analysis. Next, Section 4 reviews remarkable recent DA and
DG methods used to process medical data. This section provides a comprehensive hierarchy of
the approaches followed in the literature that semantically categorizes recent studies in this field.
In Section 5, we go through the popular public datasets used as benchmarks for DG/DA of med-
ical data. Last, in Section 6, we propose potential future works that are suggested to be followed
according to our studies, and in Section 7, we conclude the article.
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2 BACKGROUND

This section briefly describes issues, notations, and categories in DA and DG. In addition, we de-
scribe tasks and problems associated with medical data analysis.

2.1 DA and DG

With increasing data, DL models are being pushed to get the most accurate results in many fields.
However, a significant portion of the available data is unlabeled, and preparing and labeling proper
data for deep neural networks is costly and time consuming [159]. Furthermore, in some fields, like
medical data analysis, acquiring data is challenging, and tagging the data requires the collaboration
of several experts. Deep models may be trained using labeled datasets and used directly on the
target dataset for inference to address this problem. However, this does not effectively transfer
knowledge between datasets. It has been demonstrated by Zhao et al. [177] that direct transfer fails
in digit recognition and semantic segmentation as well as traditional supervised learning methods.
Performance deterioration occurs due to the domain shift between the source and target datasets.
Alternatively, transfer learning can resolve the problem by transferring a well-trained model on
a dataset with many labeled samples to a target dataset with fewer labels. Figure 1(a) illustrates
the different subcategories of transfer learning. DA is referred to a group of ML methods that can
transform learned information from one or several fully labeled source datasets to a target dataset
defined on the same task, considering the existence of domain shift, which refers to the change in
the marginal distribution of the data.

In DG, however, no information about the domain of the target sample is known. So the goal is
to develop models that work well on new data without prior knowledge about its domain.

2.1.1 Notation. To define the DA problem, we should explain the source and target domains.
Suppose that a shared space X × Y = {(x ,y)|x ∈ X,y ∈ Y}, where X is the space of feature
values and Y is the space of label values. A domain D ⊂ X × Y is a collection of paired data
and labels. Training or test data samples come from their corresponding domains. Assume that

Ds = {(x
(i)
s ,y

(i)
s )}

Ns

i=1 is a domain where (x
(i)
s ,y

(i)
s ) is sampled from joint distribution PXs Ys

defined
on X ×Y.

Consider that there are N source domains Si , where N ≥ 1, and one target domainT . Note that
in some scenarios, we can have several target domains, but for simplicity, we consider a single-

target domain problem. Each source domain is denoted by Dsi
= {(x

(j)
si
,y(j)si

)}
Nsi

j=1 , where (x
(j)
si
,y(j)si

)

is drawn from the joint distribution PXsi
Ysi

on X × Y. We consider the target domain denoted as

Dt = {(x
(i)
t ,y

(i)
t )}

Nt

i=1, drawn from distribution PXt Yt
on X × Y. For the task of unsupervised DA,

which is the focus of this study, we only have the unlabeled target domain Du
t = {x

(i)
t }

Nt

i=1.
In the DA problem, unlike other categories of transfer learning, the conditional distribution of

the source and target domain is the same (i.e., P(Ysi
|Xsi

) = P(Yt |Xt )) but the marginal distribution
(PXsi

for i ∈ {1, 2, . . . ,N } and PXt
) is different—in other words, P(Xsi

) � P(Xt ). This discrepancy is
known as domain shift. Note that this discrepancy also exists among each pair of source domains:
P(Xsi

) � P(Xsj
) for i, j ∈ {1, 2, . . . ,N } and i � j.

The goal of DA is to reduce the negative effects caused by domain shifts between source and tar-
get domains. In other words, given DDA = {Du

t ,Ds1 ,Ds2 , . . . ,DsN
}, a domain adaption algorithm

LDA : DDA → YX , where YX is the space of functions from X to Y, proposes a generalizable
and robust function f : X → Y that gets the minimum prediction error on unseen samples which
are drawn from the target domain, which can be shown as minf E(x,y)∈Dt

[l (f (x),y)] , where l is
a loss function that measures the error in the prediction.
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Fig. 1. Definition and categorization of DA.

The same notation applies to DG. The only difference is that the target domain is unknown and
can be drawn from an arbitrary distribution onX×Y. So here the DG algorithm LDG : DDG → YX

uses only the set of source domains DDG = {Ds1 ,Ds2 , . . . ,DsN
} = DDA − {Du

t } to estimate a
generalizable robust function f : X → Y which minimizes the prediction error on any arbitrary
target domain, denoted by minf maxDt

E(x,y)∈Dt
[l (f (x),y)].

2.2 DA and DG Categories

DG/DA methods can be categorized based on several factors, scenarios, limitations, and algorithms.
Based on three different settings—labeled data availability, source domain number and distribution,
and label space distribution—we discuss the most significant categories related to our issue.

2.2.1 Labeled Data Availability. According to the availability of labeled target data, we can have
three classes of DG/DA methods: supervised DG/DA, semi-supervised DG/DA, and unsupervised
DG/DA. This article refers to DG/DA as unsupervised DG/DA, where there is no labeled data in
the target domain.

2.2.2 Number of Source Domains. DG/DA methods can be divided into two varieties based on
the number of source domains: single source and multi-source. In single source, only one source
domain is available. In contrast, a multi-source context involves multiple distinct source domains
that consist of data with different distributions, so considering them as a single domain will de-
crease the model’s performance.

2.2.3 Label Distribution. Based on He and Wu [49], labels of source and target domains can
consist of the same or different classes. As illustrated in Figure 1(b), the variability of this differ-
ence creates several scenarios for DG/DA methods. In closed set DG/DA, labels of source and target
domains come from the same classes. Partial DG/DA describes the situation where the target do-
main’s classes are a subset of the source domains’ classes, which means that all labels in the target
domain are available in the source domain. In open set DG/DA, the target domain has labels that
the source domain does not [118]. It is called universal DG/DA when the target domain’s label
set is unknown and might have several common classes with the source domains’ label set [166].
Last, different set DG/DA deals with the situation where the domain classes between the source
and target are entirely different.

2.3 Medical Data Analysis

Medical data analysis is carried out to diagnose various medical conditions intelligently. Due to
the development of systems based on artificial intelligence and the rapid increase in computational
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Fig. 2. Distributions of recent DG and DA studies based on tasks.

power, it has become more common to process high-resolution medical data intelligently. Medical
data can be analyzed faster and more accurately using ML systems trained on large datasets of
medical recordings. Doctors can use these models when they are unsure about their diagnosis or
miss a critical clue.

There are two types of medical data: structural and functional. Structural medical data are
the ones that only record the state of the body in a single unit of time. They focus on the spa-
tial structure of the body part. They include computed tomography, MRI, pathology, endoscopy,
colonoscopy, automated breast volume scan, gastroscopy, cytology, and x-ray images. Functional
medical data contain both spatial and temporal information, capturing measurements of body pro-
cesses rather than body states. Most of these measures are captured from the brain, such as EEG,
fMRI, MEG, and fNIRS. Some functional medical signals are not measured from the brain, such
as ECG (electrocardiogram) (from the heart) and EOG (from the eyes). Structural medical data
have been used to diagnose cancers and abnormalities in body organs, including brain tumors,
breast tumors, and lung, liver, and kidney diseases. This review focuses on functional medical
data.

Brain-Computer Interface (BCI) models are the systems that analyze and use brain-related
medical data, which constitute the majority of models based on functional medical data. We have
categorized different tasks in brain signal analysis. Motor Imagery (MI) is a mental process in
which the patient imagines moving a part of their body (e.g., imagines moving their hand or finger
without actually moving them. Brain-related disease diagnosis involves the detection of brain-
related diseases and conditions such as Parkinson’s disease, Alzheimer’s disease, schizophrenia,
Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and
motion sickness. Emotion Recognition (ER) is also one of the most popular tasks on functional
medical data, as well as Seizure Analysis (SA) and Mental State Diagnosis (MSD), utilized
in seizure and epilepsy prediction and detection, mental workload classification and assessment,
mental state prediction, and diagnosis of some mental diseases such as tinnitus. Awareness Moni-

toring (AM) includes driver awareness validation, fatigue and drowsiness detection, and vigilance
estimation. In Sleep Diagnosis (SD), brain signals are utilized to recognize different sleep stages
or events or detect sleep disorders. The studies in Visual Perception Analysis (VPA), which is
the analysis of human visual imagination and understanding of the surroundings, are focused on
the study of Steady-State Visual-Evoked Potential (SSVEP) and visual recognition. Behavioral
state estimation, neural decoding, working memory analysis, and subject variability modeling are
among the least common tasks studied in this field. There are also interesting ongoing studies based
on Human Thought Analysis (HTA), such as creative drawing and imagined speech recogni-
tion. However, these areas of study are still at a very primitive stage. The distribution of the most
frequently used tasks in recent DG/DA-related EEG and fMRI papers is shown in Figure 2(a) and
(b), respectively.
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Fig. 3. Distributions of recent DG and DA studies based on domains.

3 DA AND DG FOR MEDICAL DATA ANALYSIS

ML techniques in medical field analysis usually suffer from domain shift. Different centers, devices,
subject populations, or experimental conditions can cause this problem. Moreover, gathering con-
siderable medical data can be very time consuming and expensive. Some medical signals require
costly measurement devices (e.g., MEG), whereas others need a meticulous and stable experimen-
tation setup (e.g., EEG). Hence, gathering a reasonable amount of data on every new site or subject
is not usually affordable. Thus, the challenge of domain shift is unavoidable in the case of medical
data analysis. Medical diagnoses directly affected by this problem make DA an undisputed neces-
sity. ML models should also perform well on newly collected data, which is a common challenge.
This will be more relevant in the medical field due to the frequency of encountering data from new
domains. As a result, DG is also crucial.

3.1 DG and DA Tasks in Medical Data Analysis

Different DA or DG tasks can be defined among different domains, such as subjects, datasets, and
sessions. The cross-subject task is the most common in DG/DA on medical data, which considers
the variability of data across subjects and tries to eliminate discrepancies between different sub-
jects. The cross-dataset is another common DG/DA task on the medical data addressing domain
shifts between datasets. This task aims to learn various aspects of these differences across medical
datasets. The cross-session task is also frequent in medical data analysis. It is defined when the goal
of DA or DG is to consider intra-subject data variabilities emerging during different experimental
circumstances.

There are other less common DA or DG tasks—for instance, the cross-day task is analogous to the
cross-session task. Additionally, it is worth noting that the cross-device task may also be studied,
which considers the data variability caused by different devices used to measure the subject’s
signals. Figure 3(a) and (b) show the distribution of the most frequently used medical domains in
recent DG/DA-related EEG and fMRI studies, respectively.

3.2 DG vs. DA in Medical Data Analysis

There are fundamental differences between DA and DG, which cause different applications. As
mentioned before, high performance for unseen medical data is almost vital, as it is very time
consuming to learn a different model for a new subject or patient. Nevertheless, generalization
is not always the desired goal in the medical field; sometimes we face specific domains, such as
data from the same organ acquired by different devices or from different subjects. The key to
minimizing domain shifts between these related but different domains is DA in these situations,
either with all target data being unknown or with a few seen samples available. To conclude, the
main difference between adaptation and generalization is access to target data during the training
process. In other words, in adaptation, we take advantage of our current knowledge of source data
and the structure of target data for the analysis of related target data. In contrast, in generalization,
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we can only use our knowledge of the source data and extend it to propose a model that works
well on any domain with an arbitrary structure.

Research in medical data analysis is often driven by the desire to generalize models. As men-
tioned, the better our model performs on new and unseen data, the more reliable it is, and it will
become more valuable and practical. Hence, the importance of generalization is inevitable, even
when the main task is adaptation. To handle this, some papers with the main task of adaptation
also exploit generalization ideas. Therefore, we will explain both their adaptation task and the
different ideas used for generalization.

4 METHODS

The most recent methods used to adapt and generalize tasks on functional medical data are cate-
gorized and introduced in this section. The case studies covered in these methods are as follows.
In each of them, one specific task (e.g., the ones introduced in Section 2.3) is considered, which
are all practical tasks inspired by real-world applications and medical procedures. As pointed out
in Section 3, depending on the nature of the task, the dataset, and the problem under study, the
“domain” is defined, such as subjects, sessions, or other characteristics causing distribution shifts
in the practically gathered data samples. Then, the proposed DG/DA idea and the approach used
for the downstream task are applied. Subsequently, the performance of the downstream task is an-
alyzed when the proposed method is used on unseen samples with noticeable domain shifts from
train samples. This performance is usually shown to have improved compared to cases where no
DG/DA ideas are considered. As a result, the decline in performance under domain shift on medi-
cal applications is tackled in the literature on this topic, which is a significant and valuable benefit
for using ML in real-world situations. These methods are explained based on two perspectives, DA
and DG, in the following.

4.1 DA Approaches

We have studied the latest research seeking DA in the context of functional medical data. Based on
their design ideas, these methods are classified as in the hierarchy depicted in Figure 4, including
alignment, data manipulation, feature disentanglement, and pseudo-label training. Summarized
information about the methods discussed in this section can be found in Tables 1 and 2, where
Table 1 contains papers related to DA and DG methods on EEG modality and Table 2 summarizes
mentioned methods in the fMRI modality. In this section, these approaches and works following
their ideas are described.

4.1.1 Alignment. One of the most common DA strategies arises from aligning the model’s in-
put at test time with previously seen data or features. A majority of approaches rely on these
techniques so that the inputs (or secondary features) to the model are kept aligned with a fixed net-
work architecture. Consequently, the same architecture can yield relatively similar performance
for source and target data. Alignment-based methods consist of adversarial alignment (alignment
using an adversarial objective), domain alignment (aligning the distribution of target and source
data), instance alignment (aligning source and target sample by sample), and classifier alignment
(adapting the classifier model to the target domain).

4.1.1.1 Adversarial Feature Alignment. This approach is implemented in a substantial number
of papers focusing on aligning source and target domain features. The objective of these methods
is to extract features that are similar between target and source data using an adversarial training
setup. Inspired by the Domain Adversarial Neural Network (DANN) [37], in most of them, a
common feature encoder is trained in a min-max game with a domain classifier. Essentially, the
feature encoder learns to extract features such that the domain classifier is unable to distinguish
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Fig. 4. Hierarchy of DA approaches in functional medical data analysis.

between source and target data. This procedure results in achieving a common feature space be-
tween data from different domains.

In the work of Zhao et al. [175] and Lebedeva [75], the idea of DANN is applied by training a do-
main classifier whose loss is inverted by a Gradient Reversal Layer (GRL) [36] and forcing the
feature extractor to remove domain-variant features while improving the classification accuracy
of the main task. Likewise, the idea of the GRL as a domain adversary was practiced in the work of
Xueqi et al. [161], where the proposed architecture predicts the domain by each channel and uses
the entropy of prediction as an attention weight to discard domain-dependent channels from the
target task prediction. Su et al. [144] employ an adversarial discriminator that is trained to be chal-
lenged by a pre-trained feature extraction for brain anomaly detection on fMRI data. Heremans
et al. [53] adopt an akin approach to enhance the performance of common neural networks used for
sleep stage classification by using an adversarial domain classifier on the feature extraction back-
bone. In the work of Zhao et al. [179], multi-view features are extracted in the time and frequency
domain and then, combined with the original data, are used in an adversarial learning module
with two generators for separating patient and seizure features alongside discriminators ensuring
this separation. Additionally, in the work of He et al. [51], an Adversarial Discriminative Tempo-
ral Convolutional Network (AD-TCN) is proposed, where initially an encoder and a classification
layer are trained on the source data. As well, the adversarial loss is employed via a domain classi-
fier applied to the source encoded features and a distinct target encoder, making the target encoder
able to be combined with this new classifier for target inference. In the work of Liu et al. [102], in
one branch, features obtained from a pure-info encoder are fed into a classifier and an adversarial-
side discriminator so that data from the two ears are aligned and processed efficiently together
in the classifier. In another branch, after applying a domain-variance encoder, the resulting fea-
tures plus the ones from the first branch are combined to reconstruct the data, where a domain
discriminator is further adversarially trained. Wang et al. [151] propose adversarial adaptation in
a multi-source setup by first selecting the source samples most correlated with the target sample
and then mapping their corresponding features in a common space, with the aid of a discriminator
intended not to be able to differentiate domains. In the work of Pominova et al. [122], the Fader
network method is used for DA and removing task-irrelevant features in fMRI data. In this method,
an auto-encoder is utilized whose output encoding is used for the final classification task, as well
as the domain classification in an adversarial manner. Furthermore, Li et al. [91] use an adversarial
subject classifier to ensure the subject independence of the extracted features for ER. Moreover,
two different Recurrent Neural Networks (RNNs) are also employed for the right and left brain
hemispheres in each of the two vertical and horizontal streams over the electrodes to maintain
structural information. Eldele et al. [32] utilize adversarial training along with self-attention and
self-training in their method, where the extracted features are passed through unshared attention-
based modules to retain domain-specific features as well as task-related ones, as domain-specific
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features may also be helpful for label prediction. The adversarial domain classifier may further
encourage data alignment while preserving domain-related features. Bao et al. [7], in addition to
Maximum Mean Discrepancy (MMD) [39] minimization, further use a domain classifier so that
it fails to separate source and target domains, as they mention that merely MMD will not guaran-
tee multi-source DA. Wang et al. [157] use two different modalities, which are the EEG signal and
the eye movement, to find a shared feature representation in both source and target domains, and
further align the representations through separate discriminators for each modality. In their work,
the common features in each domain are obtained using cycle-consistency loss (measured by the
distance of the encoder-decoder output given the original and the reconstructed data) and assum-
ing that the multiplication of their prior Gaussian distribution is also Gaussian. Additionally, in
the work of Avramidis et al. [4], separate branches are designed for extracting features from EEG
data and the music used for data collection. The representation from these two branches is fur-
ther aligned by a modality classifier inserted with a GRL, enabling adversarial alignment among
modalities as in DANN. Rayatdoost et al. [126] also introduces a domain and a subject classifier im-
plemented with GRLs that perform domain and subject classification and are trained adversarially
so that features extracted from topological maps obtained from Power Spectral Density (PSD)

features are free of dataset or subject priors.
Multiple works have further added modifications to DANN to make it more applicable for their

purpose. Ding et al. [29] extend DANN by designing two label predictors instead of one. Using
pre-trained label predictors on the source data, the two fully connected classifiers are tuned by the
Maximum Classifier Discrepancy (MCD) criterion [131]. First, target outliers are detected, and
MCD is maximized to achieve broader classification boundaries. After relocating target samples
to new boundaries, MCD is minimized for better adaptation. Tang and Zhang [146] extend the
concept of DANN by applying the domain discriminator to the conditional features (i.e., multiply-
ing the features by the softmax output), thereby capturing a 2D matrix (outer product) that can
be inputted into a GRL and a domain discriminator. A similar approach is taken in the work of
Hong et al. [55], where both global (marginal) and local (conditional) domain discriminators are
adversarially trained against the main classifier, with a dynamic weight ω adjusting their impor-
tance. Some works also perform DANN on the shallower representation of the data. In the work of
Cai et al. [13], features from shallow layers are used for domain discrimination, which is trained
adversarially to align the marginal distributions, while deeper features are fed into two different
classifiers whose prediction difference is aimed to be maximized to detect target samples close to
the decision boundary. Similarly, the work of Li et al. [85] benefits from an adversarial adaptation
by feeding shallower representations to a domain discriminator, as earlier layers typically produce
more task-invariant features that reflect the difference in data domains. Additionally, the associa-
tion strategy computes the probability of transition between the source and target domain based on
their features in each batch and introduces a loss in these transitions to encourage them to return
to the same class. Li et al. [92] employ a domain classifier in an adversarial scheme after extracting
horizontal and vertical flows between channels in horizontal and vertical directions using separate
RNNs. Here, also, a loss function is introduced, simulating the similarity between the source and
target features by encouraging a hypothetical walk from one domain to the other and then back
to the initial domain, alongside a regularizer that guarantees each target sample is visited in these
transitions. Ye et al. [165] integrate the idea of a DANN with an attention mechanism. A Graph

Convolutional Neural Network (GCNN) is exploited with numerous stacked Convolutional

Neural Network (CNN) layers, creating multi-level features from the GCNN and CNNs. The con-
catenated representations are inputs to separate adversarial domain classifiers, which help extract
more domain-invariant features. For the final label predictor, the feature regions are multiplied
by attention weights indicating how difficult it was for the classifier to classify the domains in

ACM Comput. Surv., Vol. 56, No. 10, Article 255. Publication date: June 2024.



255:10 G. Sarafraz et al.

each region. Zeng et al. [168] combine a GAN with a DANN to seek DA. First, a GAN is trained to
achieve a robust target data generator and an accurate target data discriminator. Then, the closest
source samples to the target distribution, as specified by the discriminator, are further augmented
with fake target data and are used in the DANN to adversarially train the final fatigue prediction
network against a domain classifier. In the work of Li et al. [90], the idea of the adversarial domain
discriminator is integrated into a federated learning framework that has pre-trained site-specific
feature generators that are further trained to confuse the discriminator.

In some cases, a min-max game is performed to separate features in the data. Zhu et al. [186] ad-
versarially train two classifiers on features from an auto-encoder. After training the auto-encoder
and classifiers, their prediction discrepancy is maximized. Following that, in a min-max game, the
auto-encoder is optimized to decrease this discrepancy. Jeon et al. [60] design a common point-
wise convolutional encoder producing class-relevant and class-irrelevant features and a network
estimating the mutual information of these two features that are optimized in a min-max manner
to guarantee the omission of subject-specific features from the input of the classification network.

An adversarial scheme may also be used to fit the data to certain priors or prototypes. In the work
of Peng et al. [120], a Manifold Adversarial Auto-Encoder (MAAE) is developed to fit a manifold
prior distribution to the distribution of the auto-encoder latent space. Peng et al. [119] also discard
the data specific to patients by presuming a Laplace prior distribution on different patients and
considering them as real data. Inspired by GANs, the VAE outputs are regarded as fake data and
are fed alongside the real data to a discriminator, aiming to deceive the discriminator. Wang et
al. [158] create source and target prototypes and classify samples based on distance from these
prototypes using a domain classifier trained in a min-max game with the generator (the symmetric
and positive definite matrix network applied to the data covariance matrix).

Some works consider private encoders per domain in adversarial domain alignment. Luo and
Lu [105] propose two variants of Wasserstein-distance-based Multi-source Adversarial Domain

Adaptation (wMADA) for DA in vigilance estimation and ER. The first variant, wMADA-α , adver-
sarially trains k different private discriminators on the Wasserstein distance between source and
target outputs. In the second variant, wMADA-β , source features are inputs to a public discrimi-
nator as well. Additionally, Qu et al. [125] utilize private and common feature extractors in source
and target domains plus a domain classifier (with a GRL unit) to separate sleep-related features
from unrelated ones for insomnia detection. A difference loss also forces the two networks to ob-
tain orthogonal features. To improve accuracy, reconstruction losses are embedded in the network,
and the target common classifier’s features are fed into an LSTM and then the final classifier.

Adversarial training may also be applied to transform source data into the target distribution.
Huang et al. [57] propose a generator network that attempts to generate samples similar to target
data from source samples by using an adversarial domain discriminator, as in GANs. Overall, the
sample data is first transformed to have the target distribution. Finally, an emotion classifier is
trained on this data, allowing the target data to be used directly at test time.

Adversarial domain alignment is broadly used in a great number of works due to its general
framework that can be combined with various feature encoding modules, making the backbone fea-
ture encoding model more robust. Moreover, another benefit that adversarial methods bring about
is that they may be applied to unlabeled source data as well, in an unsupervised manner. Despite
the numerous improvements adversarial approaches bring about, using them can also be challeng-
ing. First of all, training them can be unstable, as finding an equilibrium between the two modules
adversarially trained against each other may not be practical. In other words, these two modules
may end up with a suboptimal solution where their performance is not satisfying for the final
task. The performance of an adversarial model might be limited by the mode collapse issue—that
is, if there is no proper alignment between features and classes in different domains, the separate
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design of the task classifier and domain discriminator may degrade the model’s performance [48].
Additionally, adversarial scenarios demand a larger number of data samples to provide meaningful
results in comparison with other methodologies. This issue can be problematic in medical data
analysis, where the volume of data and providing neat data is labor intensive and expensive.
Additionally, adversarial methods have the problem of being time consuming at the training stage.

4.1.1.2 Domain Alignment. A non-adversarial source and target features alignment can be
achieved using domain alignment techniques. In this regard, subspace alignment is one of the most
straightforward methods. In the context of subspace alignment, the initial concept is to learn a com-
mon intermediate representation shared between domains. It has been found that most adaptation
approaches in this category start by creating a low-dimensional representation of original data
using a variety of deep or non-deep methods and then use distinct objectives such as Kullback–
Leibler divergence, Bregman matrix divergence [127], and MMD to reduce the discrepancy be-
tween marginal and conditional distributions in a new subspace, as in other works [7, 38, 135]. Ju
and Guan [67] also followed this approach by minimizing the mean of the conditional and marginal
distributions of target and source data on the SPD space created by the channel covariance matrix
of the EEG data. To find the shared space, various deep neural network models are used. For exam-
ple, Chen et al. [17] proposed a model consisting of an ANN-based common feature extractor and
multiple domain-specific feature extractors, with one network per pair of source and target, which
is designed to minimize MMD to transform each pair into a different subspace. Likewise, Zhao et al.
[178] provide domain-invariant feature extraction modules built on a Common EEGNet-based

Network (C-EEGNet) [74] as well as domain-specific feature extraction in each pair of sources
and targets by using N CNN-based subnets (S-CNNs). A novel alignment algorithm called Local

Label-based MMD (LLMMD) is proposed in this work to diminish the discrepancy between source
and target domains, which explores local label-based fine-grained structure information across all
domains and extracts label-based domain-invariant features. In the work of Liu et al. [98], MMD
is applied to align source and target features produced using a CNN backbone, where frequency
filters are learned using 1D convolution and applied over time, convolutions over timestamps are
performed on the resulting features, and, finally, features are extracted using point-wise convo-
lution plus average pooling and softmax weights. To extract discriminative features from EEG
signals, Li et al. [93] introduced an ANN-based Dynamic Domain Adaptation (DDA) to mini-
mize the local subdomain and global domain shift. Unlike previous methods, DDA reduces local
discrepancy by considering each category domain as a local domain in unsupervised and semi-
supervised settings. Additionally, Yang et al. [163] use a CNN network that receives connectivity
features as an input to align multiple source domain sites and the target domain data into the latent
feature space and minimize their Wasserstein distance to reduce their distribution differences. In
the work of Shi et al. [139], the Dempster-Shafer [26] evidence theory and rough adjoint inconsis-
tency are applied to derive weight coefficients for each domain. Afterward, the target domain class
proportion and optimal coupling distribution set are solved iteratively. Last, each source domain
is aligned with the target domain and is used to train the final classifier. As well, Han et al. [44]
utilize a DeepConvNet as a feature extractor that constrains learning to a shared space between
the subject’s motion sickness state and resting-state features, and by doing so, they better make
use of distance-based techniques in a well-represented embedding space.

To extract features, Lee et al. [79] use a single-layer gated recurrent unit embedded in a semantic
manifold and used Multi-Kernel MMD (MK-MMD) as a divergence metric. Moreover, Peng et al.
[119] use an auto-encoder and MMD on time-frequency images for the mentioned purpose.

Feature extraction can also be conducted using tensors. Shen et al. [137] proposed a tensor-based
alignment model in their work. This model uses Tucker decomposition to tensorize EEG channel
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data. As a result of tensor network summation, features of training and testing tensor samples
are derived from corresponding subspace matrices. A Deep Domain Adaptation Network (DDAN)
is proposed by Hang et al. [46] that employs a CNN to automatically detect features, MMD to
minimize distribution discrepancy, and a Center-based Discriminative Feature Learning (CDFL)
method to force the deep features closer to their respective class centers and to make the inter-
class centers more distinguishable. As well, in the work of Meng et al. [109], a novel method, Deep
Subdomain Associate Adaptation Network (DSAAN), is described that combines the advantages of
both subdomain adaptation and associate loop calculation. This model uses ResNet [50] to extract
features. Additionally, in the work of Xu and Li [123], the features are extracted using ResNet50
for each source domain, and they are weighted by assigning the normalized mutual information,
which is obtained with the informative samples of the target domain, and at the next step, the
weighted source domain is transferred to the training set of the target domain to form the aligned
source domain. Third, domain-specific distribution alignment is achieved via MMD.

It is also possible to extract meaning from EEG signals by using GNNs. Kuang et al. [73] offer
a Multi-Spatial Domain Adaptive Network (MSDAN). Through MSDAN, the original EEG
data is mapped into multiple graph-based spaces, and the distribution of the source and target
domains in those spaces is narrowed by the use of MMD. Furthermore, Chu et al. [21] used a GCN
as a feature extractor and the node attention mechanism to explore the contribution weight of
nodes/ROIs automatically. In their model, the differences in data distribution between sites are
adapted through the constraint of mean absolute error and covariance.

Attention mechanisms can also be useful in solving excessive alignment problems. As an exam-
ple, in the work of Ning et al. [112], a CBAM-based module was designed to extract the common
features of the source and target. The MMD in RKHS is also used to align the two domain dis-
tributions. In this work, to overcome the excessive alignment problem in which the samples of
the two domains are mixed, and the categories within each domain cannot be distinguished well,
the few-shot learning module is introduced to retain the domain-specific information. Moreover,
Chen et al. [18] suggest CS-DASA, which learns the common features from multi-frame EEG im-
ages using the convLSTM. Additionally, the model uses a subject-specific module using 2D-CNN
with MK-MMD loss in the RKHS to perform adaptation. Furthermore, a subject-to-subject spa-
tial attention mechanism focused on the discriminative spatial features from the target data is
used.

Other classic ML techniques are similarly useful for reducing dimension and finding shared sub-
spaces. As a dimensionality reduction technique, Transfer Component Analysis (TCA) [116]
aims to minimize distribution discrepancies by learning a set of transfer components. In the work
of Liu et al. [100], a transfer learning-enabled classifier consisting of a TCA is implemented to mit-
igate the mismatch among distributions. It anticipates a projection to a latent subspace where the
projected source and target data achieve a reduced MMD in RKHS. Similarly, Zhou et al. [185] use
TCA, Joint Distribution Adaptation (JDA) [103], Balanced Domain Adaptation (BDA) [152],
and Transfer Joint Matching (TJM) [104] with an MMD distance measure to adapt the domains.
Wang et al. [156] use a JDA-based adaptation module that joints the marginal distribution align-
ment and conditional distribution alignment to minimize the data distance between the source
and the target domains with an MMD measure. Very similarly, Transport-Based Joint Distribution
Alignment (T-JDA) blocks are proposed in the work of Zhang et al. [170] that can propagate fea-
tures or labels from source to target by minimizing the global transportation cost between the
empirical joint distribution of a pair of source and target domains. An independent component
analysis [22] method is employed to determine the independent components of unlabeled and
labeled EEG signals in the work of Qu et al. [124]. In this work, the energy features of indepen-
dent components are extracted as the source and target domains. As a final step, the marginal
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distributions of the source subspace base vectors are aligned with the base vectors of the target
subspace using linear mappings.

Alternatively, another category of methods assumes that there exists a manifold of transforma-
tions between the source and target domains which consists of a space of parameters where each
point generates a possible domain. For instance, Zhang and Wu [173] proposed a Manifold Embed-
ded Knowledge Transfer (MEKT) approach by aligning the covariance matrices of the EEG trials
in the Riemannian manifold, extracting tangent features, and then performing DA by minimizing
the joint probability distribution shift between the source and target domains. Moreover, Liu et
al. [97] align source and target domains in the Riemannian manifold by minimizing the Bregman
matrix divergence. In the work of Ye et al. [164], an improved version of class centroid matching
is presented. This model consists of three main steps in the Riemannian manifold: cluster the tar-
get data to find a proto-class center, minimize the discrepancy between two domains using class
centroid matching, and learn discriminant information from source class labels. Jiang et al. [62]
have also proposed a kernel-based Riemannian Manifold Domain Adaptation technique (KMDA)
in which the covariance matrices are aligned in the Riemannian manifold and then mapped to a
high-dimensional space by a log-Euclidean metric Gaussian kernel, which is then reduced by MMD.
Additionally, Liu et al. [101] utilize the Sample Covariance Matrix (SCM) with a Riemannian-based
kernel to obtain the common feature space, which is invariant to all subjects.

Despite the fact that domain alignment techniques are powerful and widely used for DA issues,
these techniques need a significant amount of parameters for adaption, and the constraints they are
subject to could cause a distortion of semantic feature structures and a loss of class discriminability.

4.1.1.3 Instance Alignment. Target domains can also be aligned with source domains at the in-
stance level. In some studies, pairs of source and target data samples are directly guided to become
closer to each other.

Optimal transport has been used to find the least costly alignment between source and target
domain samples (e.g., [16, 107, 163]). For cross-subject alignment, Lyu et al. [107] first aligned the
samples within the source domain based on their session, then aligned them with the samples of
each session in the target domain separately.

From a representation learning aspect, Lee et al. [77] and Wang et al. [154] represent each sam-
ple of every source domain by a low-rank transformation of target samples. A shared transforma-
tion further generates a new representation for target samples. Similarly, Lee et al. [80] follow a
contrastive approach by decreasing the distance between pairs of samples in the same class and
different subjects compared to samples with different classes and the same subject.

It is also common to represent target samples or predictions based on their similarity to source
samples. For instance, in the work of Zhao et al. [176], after training source-shared and source-
specific encoders and decoders and a target-specific encoder, the final prediction on target data
results as a combination of target model prediction and source model predictions, weighted by their
feature similarity to the target sample. Likewise, Li et al. [87] duplicate the batch normalization
layer for each source. In the test phase, for new target samples, the average of batch normalization
branches is computed and further weighted by layer statistics similarities of the target and each
one of the source domains. From a slightly different viewpoint, Lin et al. [94] train task and subject
predictor networks, and select samples from the most similar subjects to train the model on a new
domain. Moreover, Wang et al. [151], using direct transfer accuracy, select only related source
domains to be used for the main adaptation module.

There are also studies conducted on aligning source and target samples based on their discrimi-
native statistics. For example, Tao and Dan [147] align kernel-based classifiers for each domain to
match the label structure of the samples and match the distribution of source and target domains.
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In a similar manner, Shen et al. [136] learn a transformation on samples for each source domain
so that their covariance matrix becomes as close as possible to the covariance matrix of the target
domain samples. Santana et al. [132] proposed a multi-objective optimization method based on
genetic programming. This method scores instances in source domains based on their similarity
to target samples. Moreover, they introduced metrics to measure the model’s adaptability.

As a more general form of domain alignment, instance alignment aligns domains at the sample
level. This extension allows for more accurate adaptation when it is successful, but it also fails
more often. Instance alignment requires the target domain data to be represented by the source
domain or vice versa and can be adversely affected by outliers. Additionally, via these approaches,
similarity-based methods cannot adapt to target spaces significantly different from source
spaces.

4.1.1.4 Classifier Alignment. Classifiers trained on features extracted from different sources
may result in misaligned predictions for target samples close to the domain boundaries in a multi-
source setting. By minimizing specific classifier costs, the classifiers are better aligned, resulting
in more accurate and generalized models. As an example, Zhang et al. [170] adapt multi-source
domains to a single target and penalize decision inconsistency among diverse classifiers trained
on paired joint distribution aligned features by minimizing the consistency loss between classi-
fiers trained on source-target domain pairs. In addition, in the work of Chen et al. [17], a dis-
crepancy loss is introduced to achieve convergence of predictions from N classifiers trained on N
domain-adapted sources. Moreover, Zhao et al. [178] integrate the probability distribution from N
classifiers by a weighted mechanism. Each classifier’s prediction probability distribution is used to
calculate the weights; the employed global optimization strategy also removes the negative impact
of significant individual differences.

Unlike the described methods, classifier alignment is used with a different purpose by Xia et al.
[160]. In their presented model, to have a more robust target classifier, different perturbation of
target data is fed into some auxiliary classifiers, which are aligned to each other and to the fixed
source classifier using consistency regularization loss.

Classifier alignment methods are useful, especially when the target domain samples are at the
decision boundary. In this case, the variance of predictions will be high, significantly affecting the
results. While these techniques can provide high-accuracy results, they require the extraction of
source and target common features for the classifier’s input.

4.1.2 Data Manipulation. In this group of methods, data is changed and manipulated for adap-
tation purposes. The major subtype in these approaches is preprocessing, given that solutions to
DA can be injected into data preprocessing steps.

For example, Albuquerque et al. [2] show that feature normalization has a relevant effect on the
conditional shift, and by performing z-score normalization, the conditional and marginal shifts can
be reduced. Another approach that can be categorized as preprocessing is subject clustering. Con-
cerning this, Liu et al. [96] propose Domain Adaptation with the Subject Clustering (DASC), which
clusters the subjects according to their inter-subject similarity of emotion-specific EEG activities
and only uses the source cluster that matched the target better for adaptation to the target. Api-
cella et al. [3] investigated the effects of different normalization methods on EEG data to achieve
DA in the emotion classification task.

Applying this approach as a data manipulation method provides independence from the ne-
cessity of training and makes it directly applicable. Additionally, preprocessing is integrable with
other DA methods. On the contrary, information loss and error propagation through the whole
pipeline are disadvantages of this approach.
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4.1.3 Feature Disentanglement. One of the recently popular techniques in DA is to disentan-
gle input data into domain-specific and domain-invariant features. By defining appropriate objec-
tives for each part, domain-specific information can be removed from the data, and thus, domain-
invariant feature extraction can be used in a new domain for prediction.

Jeon et al. [60] force class-invariant and class-relevant features to contain the least common
information by minimizing their mutual information. Liu et al. [102], aside from guiding each
part to predict its own information, use adversarial training to prevent them from estimating each
other’s information. Furthermore, the separated parts are used to reconstruct the original data to
ensure that there is a minimum loss of information during disentanglement.

In the context of multi-source DA, Zhao et al. [176] disentangle data from each source into
domain-private and shared features and then reconstruct the original data via a shared decoder.
The new target domain uses a private encoder that is trained with the reconstruction objective.
During the inference phase, data from the target domain can be classified using both private and
shared encoders.

When data samples are inherently a combination of multiple parts mixed together, the disentan-
glement technique is useful. Brain signals are a complex mixture of the brain’s response to various
stimuli in the environment. Usually, only one of them (class-relevant response) is intended to be
analyzed in DA for medical analyses. Hence, disentanglement is a very intuitive and natural way
of dealing with complex brain data. Nonetheless, it is important to note that disentanglement re-
quires a significant amount of data to work well due to the need to extract irrelevant features as
well.

4.1.4 Pseudo-Label Training. The generation of pseudo-labels from the source model is a com-
mon DA approach in medical data analysis. In this approach, a model is trained on source domain
data, then its predictions on target domain data are considered pseudo-labels for the model, are
exploited to adjust the model to the target domain.

Since pseudo-labels are noisy and not completely accurate, some studies apply them iteratively,
and as the model produces better predictions, it uses its more accurate pseudo-labels from the
previous iteration. This strategy can be used to transform any transfer learning method that uses
the target labels into an unsupervised DA one.

Some examples of this type of iterative self-supervision are the works of Zhang and Wu [173],
Eldele et al. [32], Shi et al. [140], Jiang et al. [62], Shen et al. [135], and Wang et al. [156]. While
aligning source and target samples, these works iteratively generate pseudo-labels for use in the
next step. Additionally, Edele et al. [32] ignore target classification loss in early iterations to tackle
the cold start problem. Shi et al. [140] perform JDA iteratively and enhance pseudo-labels using the
label propagation algorithm (e.g., [174]). The idea to enhance the pseudo-labels is also proposed by
Han et al. [45], where they apply a single step of the k-means algorithm to the extracted features
to form more coherent and less uncertain labels.

In some studies, pseudo-labels are directly treated as target data labels, along with other ob-
jectives imposed to guide the model in the correct direction. Jiménez-Guarneros and Gómez-Gil
[64] retrain their source model on target data using pseudo-labels with an additional loss term
controlling the uncertainty and increasing the diversity of predictions. Zoumpourlis and Patras
[188], Zhao et al. [175], and Heremans et al. [53] use pseudo-labels for target domain classifica-
tion alongside their generalization objective. Tao and Dan [147] also generate pseudo-labels and
consider the target domain as one of the sources and adapt all of them together.

Pseudo-labels may also be used indirectly, primarily for an objective other than classification.
Hong et al. [55] use pseudo-labels to approximate the class probability of target samples for
conditional discrimination between samples of source and target domains. Additionally, Zhou
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Fig. 5. Hierarchy of DG approaches in functional medical data analysis.

et al. [185] utilize JDA as one of their experimented methods which requires target data labels,
derived from pseudo-labels, to calculate class conditional distributions. Moreover, Meng et al.
[109] use pseudo-labels to partition target domain samples into subdomains and estimate the
similarity of samples in source and target domains.

As a result of pseudo-label-based DA, useful information held by the source model is retained
during the transition to the target domain. Despite its ability to prevent the forgetting of source
domain information, it may not be able to eliminate domain bias. In particular, the performance
of this approach is relatively weak when the difference between the source and target domains
is very significant that iterative fine-tuning or additional objectives are not effective. Moreover,
convergence is a critical concern when using iterative methods, since negative feedback in the
self-supervision process may prevent the model from eventually reaching its optimal state.

4.1.5 Hybrid Methods. Some studies combine multiple DA approaches. In particular, as pseudo-
labeling can be conducted independently, it can be easily integrated with other adaptation methods.
Thus, as discovered in this study, the most common combination is pseudo-labeling and domain
alignment (e.g., [45, 62, 64, 109, 135, 156, 173, 185]). Pseudo-labeling is also used alongside adver-
sarial feature alignment (e.g., [32, 53, 55, 175]).

Furthermore, classifier alignment is mostly accompanied by domain alignment (e.g., [17, 170,
178]). There are also other combinations in the literature. Bao et al. [7] and Peng et al. [119] try
to adapt their model using adversarial feature alignment and domain distribution alignment to-
gether. Liu et al. [102] use adversarial training to train their feature disentanglement model. Zhao
et al. [176] incorporate disentanglement along with instance alignment. Wang et al. [151] utilize
adversarial training in conjunction with instance alignment. Additionally, in the work of Tao and
Dan [147], pseudo-labels are used to employ instance alignment.

4.2 DG Approaches

Various DG methods have been suggested to process functional brain signals. These approaches
include representation learning, data manipulation and preprocessing, learning scenarios, and em-
bedded architectures, which can also be merged to enhance performance on various tasks. Our
design hierarchy for these methods and the motivations behind it is shown in Figure 5. In the re-
mainder of this section, we explain DG-specific approaches and techniques presented as part of
a DA method where adaptation techniques are improved via generalization ideas. A precise sum-
mary of these explanations is also provided in Tables 1 and 2; as mentioned before, Table 1 consists
of DG/DA papers on the EEG modality and Table 2 summarizes DG/DA methods concerning the
fMRI modality.
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4.2.1 Representation Learning. An overall strategy for DG is representation learning, aiming to
ensure that the learned representations are domain invariant, meaning that they do not contain
much knowledge about the domain from which they originate. In other words, feature extraction
is guaranteed to be generalizable to all domains as long as they include similar semantics about the
studied task. In the following, the representation learning methods are grouped into adversarial
training, domain alignment, and feature weighting. Most of these ideas are designed for multi-
source DG scenarios.

4.2.1.1 Adversarial Training. Learning a generalizable representation needed for DG may be
achieved through adversarial training. It should be noted that most methods that use an adver-
sarial setting for such a purpose have multi-source setups. Derived from DANN, in most of these
methods, common feature extraction is applied to different sources; afterward, a domain classifier,
as a discriminator, tries to distinguish domains. By min-max training, the discriminator will fail to
identify the domain from the extracted features, meaning that features are global among different
source domains. Hence, these features can make the main model generalizable.

Many works employ variations of the preceding strategy for gaining a domain-generalizable
feature extraction model. Bethge et al. [10] and Özdenizci et al. [114] propose an adversary net-
work that tries to output the source domain identity (i.e., the given dataset or subject) from the
encoded features. Training this domain discriminator adversarially with the main classifier results
in a generalized pipeline where the learned features are domain invariant and, hence, accurately
classifiable. Similarly, in the work of Jia et al. [61], a domain discriminator is used and is designed to
fail at distinguishing the incoming domain while maintaining task-relevant parts in the extracted
features obtained via spatial and temporal graph convolutions. Hagad et al. [42] employ a DANN,
consisting of a domain and emotion classifier, alongside a beta-VAE [54], treating each of the mul-
tiple sources as a single domain and feeding the DANN with outputs of bilateral convolution on
the concatenated VAE outputs of the two hemispheres. Albuquerque et al. [1] propose a general-
ization approach that theoretically guarantees a generalization bound on unseen domains. From a
practical viewpoint, they implement this method by using one-vs.-all classifiers, each of which is
responsible for computing a divergence score between every source and all other sources. By ad-
versarially training these classifiers with a feature encoder and a task classifier, they demonstrate
the generalizability of their given method for EEG ER. In the work of Han et al. [43], a domain
classifier is used to force encoders in two different branches to extract features that diminish the
distinguishability of domains. Ma et al. [108] suggest that biased network weights in source feature
extractors can be regarded as domain-relevant clues and therefore incorporate separate encoders
for each domain, having shared unbiased weights and specific biased weights for each domain.
They further use the encoded features as inputs to a label predictor and an adversarial domain
classifier.

Adversarial training may also be useful for enforcing a low-dimensional distribution of the data.
Inspired by GANs, Ming et al. [110] propose an adversarial scheme to align multiple sources with
an artificial empirical distribution in low dimensions. To this end, they design a discriminator
considering samples from the artificial domain as “real” data and the encoder’s output as “fake.”
These two networks are further adversarially trained so that eventually data from all sources is
mapped in a coherent low-dimensional representation space. To avoid a lack of information for
further classification tasks due to the artificial distribution, the generator is split into an adapter
and a mapper, and the intermediate output from the adapter is used for the final task.

Although adversarial training can remarkably help generalize the representation learning step
and may be implemented in integration with various feature encoding methods, they still face
challenges such as time-consuming training and mode collapse, as pointed out in Section 4.1.
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Additionally, most notably, being data hungry, it may be hard for these methods to obtain their
best performance, especially in DG in medical use cases, where data collection is tricky.

4.2.1.2 Feature Weighting. Some works apply feature weighting to obtain domain-invariant fea-
tures from different sources. These methods’ features are associated with some learnable weights
during representation learning. Fusing the features concerning these weights will result in a more
general representation of features. It is critical to keep in mind that some features might be
weighted to zero during the learning process, resulting in some features being omitted. As an ex-
ample of this category, Cui et al. [24] present Feature Weighted Episodic Training (FWET), which
consists of feature weighting to determine the importance of various features and episodic train-
ing for DG. Feature weighting, regarding the different significance of various brain areas, assigns
a weight to each feature. Feature weighting provides the ability to determine different levels of
importance for various features. By doing so, we can improve the value of more generalizable fea-
tures. However, in some cases, it might be better to use a combination of features instead of setting
different weights for features.

4.2.1.3 Multi-Source Domain Alignment. Similar to feature alignment in DA, extracted features
from multiple source domains can be aligned to remove the shift between them, thereby general-
izing the final model.

To reach a shared space, some works apply TCA algorithms, RKHS-based approaches, or MMD-
based losses. For example, Ayodele et al. [5] utilize a modified version of the multi-TCA algorithm
based on an RKHS approach to extract a common subspace of the datasets. Moreover, Bethge
et al. [9] design a multi-source learning framework for domain-invariant representation learning,
including a private feature encoder per domain and a cross-domain shared classifier, for which
an MMD-based domain alignment loss is leveraged across private feature encoders to decrease
domain-specific deficiency within the learned representations.

In the work of Musellim et al. [111], a prototype-based framework is proposed that forces cross-
instance style invariance in each domain.

Zhang et al. [169] present a novel Convolutional Recurrent Attention Model (CRAM) that en-
codes timepieces extracting the spatio-temporal information. They apply a recurrent-attention
network to explore the temporal dynamics among various time portions and focus on the most
discriminative ones.

Common feature extraction may also be done in two steps to align source features. For example,
Yousefnezhad et al. [167] propose a Shared Space Transfer Learning (SSTL) that first finds common
features for all subjects in each site and maps them to a site-independent shared space. Next, it uses
a scalable optimization procedure that uses a single iteration multi-view approach to extract the
common features for each site and then maps them to the site-independent shared space. There are
also some ideas in this arena that take advantage of graph structures to align sources. For instance,
Li et al. [89] propose a graph decoding model in which a cross-subject graph showing the simi-
larities across subjects is used. By further regularization, developing a kernel-based optimization,
which enables the extraction of non-linear features, would be possible.

In the work of Wang et al. [155], a similarity-driven multi-view linear reconstruction model is
designed to learn latent representations and perform subject clustering within each label. Next,
a nested singular value decomposition method is used to mitigate inter-site heterogeneity and
extract features by learning local cluster-shared features across sites within each label and global
category-shared features across classes.

In this category, some models extract features from the intermediate space that can be recon-
structed from the original data. It is pertinent to note that in this intermediate space, no information
is removed. Accordingly, Huang et al. [58] present the Manifold-Regularized Multiple Decoder,
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AutoEncoder (MRMD-AE) network, which extracts common latent space representations from
multiple sources while respecting the individual data geometry by a pre-computed PHATE embed-
ding while maintaining the ability to decode individual raw fMRI signals. Additionally, Zhang et
al. [171] have proposed a low-rank subspace built on low-rank representation theory on fMRI data.
They initially encode all domains in a common lower-dimension space. The graph-based data is
then loaded into the graph convolution network module, followed by a classification head for ASD
diagnosis. Peng et al. [120] adopt the auto-encoder approach to align the mean of the covariance
matrix of the latent features of the domains together.

Although multi-source domain alignment is an approach that increases model generalization
by concentrating on more common features between various sources and constructing shared
subspaces, it could also cause a scarcity of discriminative features among different classes.

4.2.2 Learning Scenarios. Some methods use learning-based approaches for DG. These methods
are categorized into ensemble learning, meta-learning, and self-supervised learning.

4.2.2.1 Ensemble Learning. One learning-based idea for generalization is ensemble learning,
boosting the final model’s performance and accuracy by combining various networks and specify-
ing the main output by majority voting. For example, Li et al. [86] propose a novel decomposition-
based ensemble CNN framework. The outputs are integrated with an ensemble architecture em-
ployed in two modes, Train CNNs Together (TT) and Output Fusion (OF). Moreover, in the test
phase of Zhao et al. [176], predictions of the shared classifier integrated with those of individual
classifiers are ensembled after modulation by similarity weights. Additionally, a two-stage ensem-
ble architecture was proposed in the work of Zoumpourlis and Patras [188] with K (K > 2) models;
at the first stage, they specify a subset of subjects for each model, and at the other stage, they try
to control diversity by utilizing an intra-ensemble loss.

However, Zhu et al. [187] first evaluate the feasibility of utilizing EEGNet models [74] with var-
ious kernel numbers to decode SSVEP in ear-EEG signals. Then, due to the difficulty of separating
useful information from background noise caused by weak SSVEP in ear-EEG, they employ en-
semble learning to combine EEGNet models with different kernel numbers to enhance ear-EEG
signals classification. Roots et al. [129] propose a model called EEGNet Fusion, a multi-branch 2D
CNN utilizing various hyperparameters for each branch, which is more flexible across subjects.

As multiple networks are capable of extracting a wider range of features and processing them
in a more varied manner, ensemble learning can significantly improve domain-invariant results.
However, this approach cannot reveal the unknown differences between various samples and pop-
ulations. Additionally, such models are not easy to interpret.

4.2.2.2 Meta-Learning. The main goal of meta-learning is learning to learn, meaning that the
model observes how different ML methods perform various tasks and uses their metadata to learn
how the learning procedure is performed. For example, Luo et al. [106] propose Pseudo Domain
Adaptation via Meta-Learning (PDAML) to reduce the time, cost, and storage usage of their emo-
tion predictor model in the test phase.

Some works utilize the Model-Agnostic Meta-Learning (MAML) [35] framework. For in-
stance, Lemkhenter and Favaro [82] introduce a meta-learning method for sleep scoring built on
top of MAML. Additionally, Duan et al. [31] propose Meta-Learning on Constrained transfer Learn-
ing (MLCL). They utilize the MAML algorithm under a novel constrained setting, which preserves
adequate flexibility to adapt to a new subject where the number of must-transfer parameters is
decreased substantially. In addition, Li et al. [88] propose Multi-Domain MAML (MDMAML) to
meta-learn DA process across multiple source subjects. Furthermore, Lee et al. [77] try to learn
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the adaptation of feature representations within a meta-learning framework by using an episodic-
learning strategy.

Using meta-learning leads to more generalization in the model, together with a faster and
cheaper training process, because fewer experiments are used in learning. However, the rule set
utilized in this approach may be incomplete; additionally, in some of its approaches, there is a limit
to the volume of information that meta-features can capture.

4.2.2.3 Self-Supervised Learning. Self-supervised learning is an ML method used to extract use-
ful information from data that has not been labeled. Therefore, it is reasonable to address the lack
of sufficient labeled data in medical domains using this method. In this area, two general types
of self-supervised methods are contrastive and non-contrastive methods. In contrastive methods,
the similarity between two augmented versions of a data sample is maximized in a positive pair,
whereas the difference between each of these two samples and samples in negative pairs is min-
imized. However, in non-contrastive methods, there are no negative pairs, and self-supervised
learning is performed only within positive pairs [148].

Self-supervised contrastive learning can be used to solve domain shift problems, and several
novel works have been proposed to perform DG. Shen et al. [138] propose Contrastive Learning

for Inter-Subject Alignment (CLISA), a self-supervised contrastive learning method to address
the issue of inter-subject variability. CLISA is grounded on a neuroscientific inspection which
assumes that the neural activity state of subjects is similar when they receive indistinguishable
stimuli.

Cheng et al. [19] present a subject-aware learning method, which combines adversarial train-
ing with self-supervised contrastive learning to reduce the inter-subject variability in bio-signals
such as EEG and ECG. With this method, they manage to achieve competitive results in var-
ied kinds of downstream tasks. Wagh et al. [150] propose three novel self-supervised pre-text
tasks, which exploit known patterns in scalp EEG signals and enable the learning of features
that could be transferred to other domains and tasks. In their method, pre-text tasks are de-
signed to examine the spatial similarities between the left and right hemispheres of the brain,
the behavior of the brain, and changes related to brain activity. In the work of Banluesombat-
kul et al. [6], sleep stage classification (sleep scoring) is performed using MAML, a meta-learning
method based on few-shot DAs. The MAML model, however, is vulnerable to overfitting even
on datasets with many samples. A self-supervised stage was introduced to MAML by Lemkhenter
and Favaro [82] to solve the overfitting problem without using newly labeled target data (zero-shot
learning).

A similar idea to contrastive self-supervised learning is applied in the work of Xia et al. [160],
where features extracted by an encoder from unlabeled target data were perturbed and then were
used as input of a number of classifiers to train a robust and adaptable model for MI classification
task in the cross-subject setting. The proposed approach is different from other mentioned self-
supervised DG methods, as the pre-training is applied on target data instead of source data.

Self-supervised learning methods have the advantage of reducing the need for labeled data.
These types of methods have also shown considerably high performance in different areas. One of
the limitations of this method is that it takes time to prepare a proper pre-trained model, and the
model also might need additional data sources for pre-training.

4.2.3 Data Manipulation. By manipulating the input data, a number of studies have been able
to increase the generalizability of their models. Some attempt to augment the input data, mostly
through adversarial approaches, whereas others try to eliminate unimportant or redundant data.
Furthermore, data normalization has been shown to reduce domain bias in some studies.
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4.2.3.1 Data Augmentation. In general, more data results in more generalizability because the
model can explore a greater proportion of the data space. Consequently, adding new data samples
to the available dataset can enhance the generalization capability of the model.

Heremans et al. [52] extend their previous work [53] to empower their model’s adaptability us-
ing different data augmentation techniques, such as temporal/frequency cutout, adding Gaussian
noise, signal mixing, frequency warping, and temporal/frequency recombination. Cheng et al. [19]
define augmentations such as channel dropout and temporal cutout and extract features based on
contrastive learning. Similarly, Xia et al. [160] enhance the generalization of the source model
by using channel dropout during the training. Kim et al. [70] employ a data augmentation tech-
nique by perturbing the style information of EEG signals of instances from multiple domains to
improve the performance of their model. Additionally, Han et al. [43] equip their model with a set
of augmentation functions. Aside from Gaussian noise, scaling, and temporal cutout, they shift the
signal’s amplitude, roll it in time, and upsample intervals in the signal.

One of the common methods to add new data samples is through adversarial training. In the
work of Song et al. [143], adding new data samples to the dataset is accomplished this way. Ad-
ditionally, they add constraints, such as covariance matrix alignment, to the training objective to
ensure that generated data is similar to the original ones.

A consistency-diversity tradeoff always exists in the context of data augmentation. On one hand,
there is a risk that the augmented samples will be inconsistent with the real distribution of the
data. On the other hand, if the augmented data are too similar to the original ones, it will not
allow the model to explore much more of the data space, therefore making them ineffective. Even
though appropriate augmentation methods can increase diversity while maintaining consistency,
the evaluation of such methods is not straightforward, as the actual data space is unknown.

4.2.3.2 Feature Selection. Prior to the advent of DL, selecting important and essential features
from data was one of the most common strategies. This approach is useful even when there are
deep models present, as it prevents the model from overfitting to the data. In some studies, feature
selection is applied as a preprocessing step. In the work of Pan et al. [115], graph pooling is used
to select important nodes in the brain network. Graph pooling reduces redundancy by discarding
nodes close to the average of their neighbors. To preserve only the important brain regions, Subah
et al. [145] used standard brain atlases and reduced the number of features by averaging values in
these important brain regions.

Statistical selection of important features has also been addressed in the literature. Yang et al.
[162] calculate a statistical comparison between the distribution of the values for each of the fea-
tures, separately for positive and negative data (binary classification), and only retain the features
with significant differences.

Manual feature selection has the ability to insert prior or expert knowledge into the system,
although in many cases it is not available or is very limited. Contrary to this, automatic (learning-
based or statistical) feature selection methods can be used in most cases, but their associated cri-
teria are very simple and can only be applied to discard obviously useless features. Information
redundancy and sharing are two of the major challenges in feature selection, as all of the features
may contain some useful information.

4.2.3.3 Other Preprocessing Methods. As another data-driven approach for DG, the normaliza-
tion of data values can help reduce domain biases in the data. Every successful medical data analy-
sis study includes a series of preprocessing steps, so here we only focus on those which are directly
aimed at DG.

In the work of Fdez et al. [34] and Liu et al. [102], each subject’s data values were normalized
into the [0, 1] interval to remove subject-specific information that affected the scale and position
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of the data. Chen et al. [18] use the preprocessing proposed in EEGNet to start with generalizable
features, considering the good generalization power of EEGNet.

Numerous preprocessing methods have been employed to remove data noise and various arti-
facts available in functional brain signals. When it comes to EEG signals, preprocessing becomes
more important since they have a low signal-to-noise ratio, meaning that there is a lot of trial-
specific, unwanted information. Preprocessing is essential for any kind of adaptation model since
the datasets in this field are typically too small for the model to detect and remove data artifacts by
itself. Although preprocessing is essential, its performance is always dependent on the prediction
model and usually needs other methods to perform well.

4.2.4 Architecture Embedded. Some methods exploit architectures that are naturally capable of
more generalizable learning of the task. Additionally, using particular layers inside the network,
such as batch normalization layers, can help reduce the unwanted variability of data within the
network. Such ideas have been investigated in multiple works. In this category, some methods
try to bring extra values to conventional CNNs used for feature extraction. Two different CNN
architectures were proposed by Dissanayake et al. [30] for predicting epileptic seizures from EEG
signals. As a result of the use of a customized convolutional architecture, it is possible to learn
major features from data much more efficiently and robustly. On the CHB-MIT-EEG [141] dataset,
the proposed models performed well when compared to the existing models. Additionally, they
use interpretability methods to understand how these models work. Cui et al. [23] developed In-
terpretableCNN, a CNN architecture for driver drowsiness recognition in cross-subject settings,
and an interpretation technique to uncover what happens inside the model. Compared with other
models, the model achieved competitive results by incorporating separable convolutions to process
the spatio-temporal aspects of EEG signals. Additionally, the proposed interpretation technique
can provide meaningful insights into the model and input data. Zhang et al. [172] take advantage
of the generalizability of a novel Separated Channel Attention Convolutional Neural network (SC-
CNN-attention), which enables good performance in the leave-one-site-out scenario. To this end, a
separated channel CNN yields temporal features of brain regions, followed by an attention-based
network learning temporal dependencies and a fully connected classifier for ADHD diagnosis.
Jiang et al. [63] proposed 4DResNet, an architecture that combines 4D convolution with 3D atten-
tion modules to extract temporo-spatial information from fMRI signals. The attention mechanism
improved the framework’s ability to recognize distinct features and enhanced its performance.
They used their proposed model in different settings, including cross-task and cross-dataset.

In a study published by Jana et al. [59], the capsule network [130] is utilized to recognize emo-
tional states across subjects by exploiting spatial and temporal information from EEG signals. To
create a spatio-temporal frame group for EEG recordings, spatial frames were stacked with time
frames (temporal frames). A particular data-splitting method was also used to make the model
perform better on unseen data.

Some methods exploit graph structures to provide a generalizable representation. Self-
Organizing Graph Neural Networks (SOGNNs) were introduced by Li et al. [84] for cross-subject
ER on EEG signals. With the help of a self-organized graph construction module, their proposed
architecture can dynamically generate specific graph structures for each signal. Cross-subject per-
formance of the model is enhanced by aggregating connections between channels and temporal
features. In another work, Cao et al. [14] introduced a framework consisting of a 16-layer deep
graph convolutional neural network (DeepGCN) with ResNet and DropEdge [128] units for the
task of ASD diagnosis in a cross-site scenario on the Autism Brain Imaging Data Exchange

(ABIDE) I dataset. Based on their experiments, their proposed method is robust to vanishing gra-
dients, overfitting, and oversmoothing.
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In the work of Joshi et al. [66], several machine learning methods are trained with a cross-dataset
scenario on SEED, DEAP, and IDEA [65] datasets, using different types of EEG signal features
like PSD, Hjorth parameters, and Linear Formulation of Differential Entropy (LF-DE). They
conclude that the bidirectional LSTM with LF-DE features performs best in inter-dataset mode.

The Sub-Epoch-wise Feature Encoder (SEFE), developed by Lee et al. [76], can be added
to well-known deep models for EEG signals to extract temporal information from input data. By
using SEFE in DeepConvNet [133], ShallowConvNet [133], and EEGNet, the performance of the
model improves in the task of visual imagery classification in a subject-independent setting.

Some works benefit from the generalization obtained by combining multiple known struc-
tures. To detect emotion in Parkinson’s disease patients, Dar et al. [25] combined a 1D Con-

volutional Recurrent Neural Network (CRNN) with an Extreme Learning Machine (ELM)
classifier and used several preprocessing methods. They demonstrated that their proposed frame-
work is reliable in cross-subject and cross-dataset scenarios by testing it on cross-dataset data. In
the work of Lin et al. [95], a CRNN is proposed that is applied in subject-level cross-validation.
First, BOLD signals, calculated from covariance and standard deviation from fMRI time series,
are calculated and further passed through a network with spatial and temporal convolutions fol-
lowed by an LSTM, which captures relations between consecutive neighboring windows. Giv-
ing this output to the final classifier leads to a generalizable model for Alzheimer’s disease
classification.

To reduce inter-subject variability in EEG signals, Li et al. [86] employ the Component-Specific
Batch Normalization (CSBN) layer in their proposed ensemble model. Kobler et al. [71], after ex-
tracting features as a SPD matrix from EEG signals, apply multi-source batch normalization di-
rectly on the space of SPD matrices, and model the whole pipeline as an end-to-end neural net-
work. Jiménez-Guarneros and Gómez-Gil [64] use Adaptive Batch Normalization (AdaBN) to re-
duce cross-subject variability and normalize extracted features from different domains. To improve
generalization in cross-subject settings, Kim et al. [70] used alignment loss to reduce the distance
between the intra-class labels as a regularization term in the loss function.

Huang et al. [58] propose MRMD-AE), which can extract shared features from a number of differ-
ent subjects’ fMRI data and reconstruct specific data for each subject with its numerous decoders.
Furthermore, a special kind of regularization and penalties have been used to extract more pre-
cise shared representations. Harrison et al. [47] proposed the PROFUMO framework, which can
be used to model rfMRI properties in spatial and temporal domains. Furthermore, it can capture
differences in levels of activity and generate additional summaries of this kind of data.

DG methods based on an architecture-embedded approach perform well on specific tasks and
datasets because of their specialized structure and architecture. However, one of their disadvan-
tages is that they cannot be used for multiple downstream tasks and settings. In the case of having
a single specified task for the final performance of the model is the goal, these types of methods
are optimal. However, if a general framework is needed for several tasks and datasets, it might be
better to use another approach.

4.2.5 Hybrid Methods. DG approaches can be fused together to produce a more generalizable
model. Among different combinations, data augmentation and self-supervised learning have been
tried together (e.g., [19, 160]). Additionally, Huang et al. [58] not only attempt to match source
domain distributions but also account for DG when training their models through regularization.
As well, Li et al. [86] carry out ensemble learning while embedding adaptive batch normalization
layers in their model architecture, and Lemkhenter and Favaro [82] integrate meta-learning with
self-supervised learning. Moreover, Zoumpourlis and Patras [188] utilized pseudo-labeling along-
side ensemble learning.
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5 DATASETS

This section provides general information about the most common datasets used in the papers,
including attributes and experimental procedures.

5.1 Main EEG Datasets

This section introduces the most commonly used EEG datasets, which are organized according to
their tasks. In Table 3, a summary of these datasets is presented. Additionally, it is worth mention-
ing that for the most frequent ones, the state-of-the-art papers are presented in Table 1.

5.1.1 Emotion Recognition. DEAP [72] is a multi-modal ER dataset consisting of 32 subjects
(16 males and 16 females, between 19 and 37 years old, with an average of 26.9 years). This
dataset includes 32-channel EEG signals alongside 13 peripheral physiological signals. Participants
rated several music video clips from five aspects: arousal, valence, like/dislike, dominance, and
familiarity.

DREAMER [68] is a multi-modal dataset including EEG and ECG signals from 23 healthy partic-
ipants. Each subject watched 18 emotional film clips and rated their emotional response based on
valence, arousal, and dominance. Participants were between 23 and 33 years old (the mean age is
26.6 years).

SEED [181] is a dataset consisting of two main sections: SEED_EEG, which includes EEG data,
and SEED_Multimodal, which consists of EEG and eye movement data. The EEG signals were
recorded as 62-channel samples. Generally, there are 15 Chinese subjects in this dataset consisting
of seven males and eight females who are 23.27 years old on average. All subjects underwent
three recording sessions with 2-week breaks between successive sessions. There were 15 trials per
subject in each session, and during each of the trials, 4-minute movie excerpts were used to induce
positive, negative, and neutral emotions.

SEED-IV [180], which expands the original SEED dataset, has four emotion classes: happy, neu-
tral, sad, and fear. The dataset’s subject population is almost identical to the original SEED. Each
subject participated in three recording sessions held on different days. There were 24 trials per
subject in each session, and during each of these trials, the subject watched a 2-minute clip, and
their 62-channel EEG signals and eye movement data were collected.

5.1.2 Motor Imagery. BCI Competition IV 1 provides five datasets, two of which are used fre-
quently in the papers: dataset 2a [12], and dataset 2b [81]. In dataset 2a, 22-channel EEG signals
were recorded from nine subjects in two sessions on different days. This dataset has four classes,
including the imagination of movement of the left hand, right hand, both feet, and tongue. Dataset

2b contains three bipolar-channel EEG signals gathered from nine subjects with two classes: left
hand and right hand.

5.1.3 Awareness Monitoring. SEED-VIG [182] is a multi-modal dataset consisting of 12- and 6-
channel EEG, 4-channel forehead EEG, and EOG signals of 23 subjects made up of 11 males and
12 females with an average age of 23.3 years old. A four-lane highway was shown to subjects
controlling the wheel and the gas pedal of a vehicle in front of an LCD screen. Most experiments
were conducted immediately after lunch. The simulated road was straight and monotonous, and
the experiment duration was about 2 hours. Finally, from eye tracking data, they acquired labels
ranging from 0 for drowsy to 1 for wakeful.

1https://www.bbci.de/competition/iv/
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Table 1. Summary of Papers Related to DA and DG Methods on the EEG Modality
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[3] 2022 - × × × SS ER Subject
[93] 2022 - × × × × SS ER Subject/Session
[70] 2022 - × × × × MS ER Subject
[44] 2022 - × × × MS MoSD Subject
[188] 2022 link × × × × MS MI Subject
[161] 2022 - × × × SS AM Subject
[71] 2022 - × × MS MSD Subject/Session
[67] 2022 - × MS MI Session
[98] 2022 - × × × SS MI Subject
[123] 2022 - × × × MS MI Subject/Dataset
[52] 2022 - × × × × SS SD Dataset
[157] 2022 - × × SS ER Modality
[92] 2022 - × × × SS ER Subject
[88] 2022 - × × × MS MI Subject
[23] 2022 link × × × SS AM Subject
[9] 2022 - × × × × × × MS ER Subject
[59] 2022 - × × × SS AM Subject
[160] 2022 link × × × × SS MI Subject
[66] 2022 - × × × × × SS ER Dataset
[80] 2022 link × × × MS VPA Subject
[62] 2022 - × × × × SS MI Subject
[25] 2022 - × × × × × × MS ER Dataset
[120] 2022 - × × × × × MS SA Subject
[102] 2022 - × × × × MS MSD Dataset
[10] 2022 link × × × × × × × MS MSD Dataset
[57] 2022 - × × × SS ER Subject
[86] 2022 - × × × × SS AM Subject
[109] 2022 - × × × × SS ER Subject/Session
[124] 2022 - × × × MS MSD Session
[82] 2022 - × × × × SS SD Subject/Dataset
[53] 2022 - × × × × SS SD Dataset
[111] 2022 - × × × SS MI Subject
[4] 2022 link × × × SS ER Subject

[185] 2022 - × × × × SS MSD Task/Subject
[186] 2022 - × × × SS ER Session
[179] 2022 - × × × × SS SA Subject
[34] 2021 - × × × MS ER Subject
[61] 2021 link × × × × SS SD Subject
[158] 2021 - × × × × × MS ER Subject
[30] 2021 - × × × SS SA Subject
[176] 2021 - × × × × × × MS ER Subject
[7] 2021 - × × × × MS ER Day/Subject
[84] 2021 link × × × × SS ER Subject
[64] 2021 - × × × × × SS HTA Subject
[168] 2021 - × × × SS FAM Subject
[187] 2021 - × × × SS VPA Session
[55] 2021 - × × × × SS MI Session
[126] 2021 link × × × SS ER Subject/Dataset
[17] 2021 link × × × × × MS ER Subject/Session
[87] 2021 - × × × SS AM Subject
[151] 2021 - × × × × SS ER Subject
[147] 2021 - × × × × × MS ER Subject/Dataset
[178] 2021 - × × × × × MS MSD Subject
[136] 2021 link × × × MS AM Subject
[51] 2021 - × × × × SS ER Subject/Dataset
[96] 2021 - × × × MS ER Subject
[43] 2021 - × × × × SS MI Subject/Session
[42] 2021 - × × × × SS ER Subject
[29] 2021 - × × × SS ER Subject/Phase
[138] 2021 - × × × × MS ER Subject
[156] 2021 - × × × × × SS ER Session
[79] 2021 link × × × MS VPA Subject
[73] 2021 - × × × SS ER Subject/Device
[119] 2021 - × × × × SS SA Subject
[112] 2021 - × × × × × SS ER Subject
[165] 2021 - × × × × MS ER Subject
[13] 2021 - × × × SS ER Subject/Session
[76] 2021 - × × × SS ND Subject
[150] 2021 - × × × SS BSE Subject/Session/Dataset
[143] 2021 - × × × MS MI Subject
[125] 2021 - × × × MS SD Dataset
[32] 2021 link × × × × × SS SD Dataset
[94] 2021 - × × × SS ER Subject
[135] 2021 - × × × × SS ER Session/Trial
[106] 2021 - × × × SS ER Subject
[105] 2021 - × × × SS AM Subject
[18] 2021 - × × × × × SS MSD Subject
[114] 2020 - × × × SS MI Subject
[19] 2020 - × × × × × SS ND Subject
[129] 2020 - × × × SS MI Subject
[175] 2020 - × × × × × SS MI Subject
[146] 2020 - × × × SS MI Subject
[31] 2020 - × × × × MS MI Subject
[5] 2020 - × × × × MS SA Dataset

[137] 2020 - × × × × SS AM Session
[75] 2020 - × × × × SS ER Subject/Session/Dataset
[85] 2019 - × × × × SS ER Subject/Session
[169] 2019 link × × × × SS MI Subject
[1] 2019 link × × MS ER Subject
[91] 2019 - × × × × × SS ER Subject
[162] 2019 - × × × × SS ER Subject
[173] 2019 link × × × SS MI Subject
[24] 2019 - × × × MS AM Subject
[46] 2019 - × × × SS MI Subject
[108] 2019 - × × × × MS ER Subject
[100] 2019 - × × × SS AM Subject
[110] 2019 - × × × SS AM Subject/Session
[60] 2019 link × × × SS MI Subject
[2] 2019 - × × MS MSD Subject

SS, single source; MS, multi-source; ND, neural decoding; BSE, behavioral state estimation; MoSD, motion sickness

diagnosis. The state-of-the-art papers in cross-subject and cross-session settings are shown by red and blue crosses in

the dataset columns, respectively.
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Table 2. Summary of Papers Related to DA and DG Methods on the fMRI Modality
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Task Domain (Cross-X)

[21] 2022 - × × × × ASD-D Site
[163] 2022 - × × × × ASD-D Site
[155] 2022 - × × × ASD-D Site
[139] 2022 - × × × × ASD-D Site
[45] 2022 - × × × × × ASD-D Site
[14] 2021 - × × × ASD-D Site
[145] 2021 - × × × ASD-D Site
[122] 2021 link × × × × × ASD-D Site
[115] 2021 link × × × ASD-D Site
[140] 2021 - × × × ASD-D Site
[58] 2021 - × × × × VPA Subject
[144] 2021 - × × × × AD Site
[63] 2021 - × × × × HTA Subject/Task/Dataset
[171] 2021 - × × × ASD-D Site
[95] 2021 - × × × × AD-D Subject
[77] 2021 - × × ASD-D Site
[90] 2020 link × × × ASD-D Site
[154] 2020 - × × ASD-D Site
[47] 2020 link × × MSV Subject
[172] 2020 - × × × × ADHD-D Site
[170] 2020 - × × × × ASD-D Site
[167] 2020 - × × × HTA Site
[38] 2020 - × × × WM / HTA Subject
[89] 2020 - × × HTA Subject

ASD-D, autism spectrum disorder diagnosis; AD, anomaly detection; AD-D, Alzheimer’s disease diagnosis; ADHD-D,

attention deficit hyperactivity disorder diagnosis; MSV, modeling subject variability; WM, working memory; Sc-D,

schizophrenia diagnosis. The state-of-the-art papers in cross-subject and cross-site settings are shown by red and

green crosses in the dataset columns, respectively.

5.2 Main fMRI Datasets

Some of the most commonly used fMRI datasets are categorized by their usage in different tasks.
These datasets are overviewed in Table 4. Additionally, the state-of-the-art papers are marked in
Table 2 for the most frequent ones.

5.2.1 ASD Diagnosis. ABIDE2 contains two main groups: ABIDE I [28] and ABIDE II [27]. Each
group involves several sites sharing datasets with R-fMRI (resting-state functional magnetic reso-
nance imaging, anatomical, and phenotypic data types. These datasets have the same labels, includ-
ing ASD and Typical Controls (TCs); it is worth noting that the scanning procedure is almost
identical in two groups of ABIDE across different sites. While ABIDE I is gathered from 17 interna-
tional sites and yields a 1,112-member dataset comprising 539 subjects with ASD and 573 subjects
with TC problems aged from 7 to 64 years and 14.7 years old as the median, ABIDE II is assembled
from 19 sites and yields a 1,114-member dataset including 521 subjects with ASD and 593 subjects
with TC problems aged between 5 and 64 years old.

5.2.2 Human Thought Analysis. The Human Connectome Project (HCP) [149] is a dataset
consisting of 1,206 adult subjects who are healthy and aged between 22 and 35 years from families
with and without siblings. This dataset has five data types: structural MRI, R-fMRI, T-fMRI (task
fMRI, dMRI (diffusion MRI, and MEG. During the experiments, participants were asked to follow
these instructions: first, process different types of information like words, images, voices, or letters;
second, utilize various thinking skills like memory, language generation, and decision making; and
finally, respond in various ways, such as shouting the answer or pressing some buttons.

2https://fcon_1000.projects.nitrc.org/indi/abide/
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Table 3. Most Common EEG Datasets

Dataset Name
Subject

#

Total

Sample

Count

Channel

#
Task Class #

Link +

Availability
Article References

SEED [181] 15 675 62 ER 3
Access
Request

[1, 7, 9, 10, 13, 17, 29, 31, 34, 40,
42, 66, 83–85, 91, 94, 105, 106,

108, 109, 112, 138, 147, 151, 162,
165, 176, 186]

DEAP [72] 32 1,280 32 ER 5
Access
Request

[4, 9, 10, 31, 40, 42, 51, 57, 59, 66,
75, 85, 96, 112, 147, 158, 162]

DREAMER [68] 32 414 14 ER 3
Access
Request

[9, 10, 51, 158]

SEED-IV [180] 15 1,080 62 ER 4
Access
Request

[9, 10, 17, 25, 84, 91, 135, 156]

CHB-MIT [141] 22 664
Mostly
23 or
24–26

SA 4 Available [5, 30, 119, 120, 179]

ISRUC-Sleep [69] 100, 8, 10 126 6 SD 3 Available [61, 82]

MASS [113] 200 200
4, 17, 19,

20
SD 5

Access
Request

[16, 53, 61, 125]

Taiwan Driving
Dataset [15]

27 81,576 32 AM 3
Raw

Preprocessed
[23, 86, 87]

BCI Competition
IV: 2a [12]

9 5,184 22 MI 4 Available [31, 43, 46, 55, 62, 143, 169, 175]

BCI Competition
IV: 2b [81]

9 6,480 3 bipolar MI 2 Available [55, 175]

THU-EP [56] 80 2,240 32 ER 9 Available [138]

MAHNOB-HCI
[142]

27 540 32 ER 2
Access
Request

[126]

SEED-VIG [182] 23 885 6, 12 AM 2
Access
Request

[105, 108]

KU [78] 54 5,400 62 MI 2
Access
Request

[60]

GIST [20] 52
5,200 ≤≤

6,240
62 MI 2 Available [60]

Note that for each dataset, information like the reference to the paper in which the dataset was first published, the

number of subjects whose data is available in the dataset, the number of all sample trials that are provided in the dataset,

the number of EEG channels used for signal acquisition, the type of task that the dataset is used for, the number of

different classes covered by the dataset, the availability state of the dataset, and the references to articles that utilize the

dataset are provided.

The OpenfMRI 3 database is a repository for human brain imaging data gathered using MRI
and EEG techniques. This database provides several datasets, one of which is used frequently in
the papers: the balloon analog risk-taking task dataset [134]. The balloon analog risk-taking task
dataset contains fMRI data from 16 right-handed and healthy subjects. During the experiment,
subjects must inflate simulated balloons, and for each successive pump during a particular trial,
monetary rewards were assigned to them. The number of trials in this experiment varied for each
subject because the task was self-paced. There were 10-minute scanning runs unless the subject
ran out of balloons.

5.2.3 ADHD Diagnosis. ADHD-200 [11] is a dataset with the R-fMRI type of data acquired from
eight independent sites and composed of 973 subjects, including 176 participants as the test dataset
and 776 participants as the training dataset, which includes 491 ordinary individuals and 285 par-
ticipants with ADHD aged between 7 and 21 years. This dataset has some adjoining phenotypic
data, including diagnostic status, dimensional ADHD symptom measures, age, sex, intelligence
quotient, and lifetime medication status.

3https://openfmri.org/
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Table 4. Most Common fMRI Datasets

Dataset Name
Subject

#
Task Class #

Link +

Availability
Extra Information Article References

ABIDE I [28] 1,112 ASD-D 2
Access
Request

Site #: 17
[14, 45, 77, 90, 115, 139, 140,

145, 154, 155, 170, 171]

ABIDE II [27] 1,114 ASD-D 2
Access
Request

Site #: 19 [122, 155]

HCP [149] 1,206 HTA 2 Available – [38, 47, 63, 144]

OpenfMRI: Balloon
Analog

Risk-Taking Task
[134]

16 HTA 2 Available – [89, 184]

ADHD-200 [11] 973 ADHD-D 3
Access
Request

Site #: 8 [172]

ADNI1 [121] 819 AD-D 3
Access
Request

– [95]

ADNI2 [8] 1,601 AD-D 4
Access
Request

– [95]

ASD-D, autism spectrum disorder diagnosis; ADHD-D, attention deficit hyperactivity disorder diagnosis; AD-D,

Alzheimer’s disease diagnosis.

Note that in this table, for each dataset, information like the reference to the paper in which the dataset was first

published, the number of subjects whose data is available in the dataset, the type of task that the dataset is used for, the

number of different classes covered by the dataset, the availability state of the dataset, some extra information like the

number of sites from which data was gathered or the number of total sample counts, and the references to articles that

utilize the dataset is provided.

5.2.4 Alzheimer’s Disease Diagnosis. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI)4 provides two primary datasets: ADNI1 [121] and ADNI2 [8]. In ADNI1, 1.5T T1-weighted
structural MRI data were acquired from 819 subjects, including 192 with Alzheimer’s disease, 229
who were cognitively normal, and 398 MCI participants. However, ADNI2 added 782 participants
to the 819 recruited by ADNI1. Additionally, ADNI2 added a cohort clinically evaluated as cogni-
tively normal but with subjective memory complaints.

6 FUTURE DIRECTIONS

In this section, we address the attention-worthy tracks that deserve to be investigated more deeply
in the literature on DA and DG in functional medical data in the future. These topics are presented
as follows.

6.1 Interpretation

Interpretability of deep neural networks, specifically in the health and medical domains, has al-
ways been a limiting factor for use cases requiring trust in the obtained results. This has attracted
experts’ attention to unknown factors and causalities. Interpretability and visualization play a crit-
ical role in the generalization and adaptation of methods for health-related data analysis. Even
though only a few interpretable DG/DA models have been proposed to analyze medical data, most
existing approaches remain black boxes. By making a DG/DA model interpretable, it may be possi-
ble to determine each domain’s influential aspects and features, select common elements, eliminate
noise, and improve its reliability for health professionals. Hence, developing effective strategies in
this field is essential, as they have significant real-world implications.

6.2 Incremental and Online Learning

A limited number of data sources are available during the training process for real-world issues,
which means that when a new source, sample, or target becomes available over time, the model

4https://adni.loni.usc.edu/
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needs to be trained based on limited data and then be improved accordingly; as an example, brain
data processing can take on data from a new subject, a new center, or a new trial. As a result, if the
planned model can learn from consistently added data over time, the model will be more accurate
and provide significant benefits, such as the ability to adapt to time-related changes. Taking these
observations into account in practical use cases, it is necessary to establish online and incremental
strategies to address the mentioned scenario promptly.

6.3 Privacy

Many recent works have focused on DG/DA in deep neural networks, where the network is
adapted or generalized without access to the source domain data. In such cases, only the architec-
ture of the network (or, in a more extreme case, only a black-box) is available, so many common
DG/DA approaches that rely on moderating data from the source domains fail. Although privacy-
preserving ideas have been widely applied to the fields like computer vision and natural language
processing, they have not yet been used in medical data analysis to their full potential. Privacy is
an undeniable factor in medical fields of study. Patients’ information is confidential, so keeping
their signals private is necessary. Furthermore, many medical centers might not be willing to share
their data with others to keep their methodologies and sources safe from potential rivals. Hence,
developing methods to exclude data from DG/DA approaches without affecting performance be-
comes essential. Still, to the best of our knowledge, so far, only three works, one on EEG data (i.e.,
[160]) and two on fMRI data (i.e., [45, 90]), have studied source-free DA on EEG data. Thus, there
is a growing demand for DG/DA research that preserves privacy.

6.4 Disentangled Representation Learning

Disentangled representation learning is the process of learning narrowly separable features, often
supervised by specific semantics within the data. Extensive research on image and video feature
disentanglement proves this approach useful for medical data, in which many clues relating to the
subjects and tasks are interwoven. The disentanglement of features in brain data is more complex
than images or videos, which are relatively understandable and easy to visualize. Additionally,
our knowledge about functional brain data is limited, making the decomposition even harder. In
this study, we have noted several works that address disentanglement for DG/DA on functional
medical data (i.e., [60, 102, 176]). Nevertheless, a more profound investigation of disentanglement
for functional medical data remains a challenging problem.

6.5 Multi-Modal Medical Data Processing

Each type of brain signal has its own properties. Hence, a more substantial amount of information
is extracted if we process multiple types of brain signals at the same time. For instance, EEG signals
have a high temporal resolution but lack spatial resolution, whereas fMRI signals have a high
spatial resolution but cannot accurately determine the timestamp of observations. Thus, processing
EEG/fMRI data simultaneously makes better use of EEG’s spatial and fMRI’s temporal resolution.
This is useful in HTA tasks, where immediate detection and local information are vital for reliable
predictions. Furthermore, different types of signals are produced by different biological processes.
Unlike some modalities like image and text, which have much more common information, medical
data can offer more information together, which also makes an efficient fusion of these signals
more difficult. In addition, multi-modal data incurs combined measurement costs, as each signal
has limitations and costs, causing challenges for multi-modal studies. For example, in contrast to
fMRI data, EEG signals can be measured while moving under controlled conditions, like driving,
whereas fMRI signals can only be measured in steady-state ones.
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6.6 Federated Learning of Medical Data

Numerous medical datasets are available for research, but the amount of data generated by medical
institutions and hospitals are well beyond what academics can access. In addition to privacy issues,
the amount of resources required to process, store, maintain, and update the dataset makes it
impractical to gather all data that are continuously measured at medical sites. A high-performance
system that works well in real-world applications can be obtained by processing this data in a
federated learning framework. Local sources (e.g., hospitals) will not be concerned about their
private patient information or statistics being exposed. Furthermore, each source can train and
prepare its model using a relatively cheap computer system, update its data and model according
to its schedule, and use a high-performing model trained based on information from multiple
sources at no extra cost.

7 CONCLUSION

Several methods covering various applications have been developed in the literature to allow med-
ical data analysis models trained on one or more source domains to adapt to unidentified Out-Of-

Distribution (OOD) target data and train generalizable models. This area of research has recently
received considerable attention and is an essential component of deploying many ML algorithms.
We presented a systematic and comprehensive review of DA and DG methods for functional med-
ical data, particularly functional brain data. In addition to OOD generalization and adaptation
fundamentals, we presented the major approaches, architectures, and essential datasets used in
medical data analysis. In this study, we have collected and summarized 98 papers on EEG and 24
papers on fMRI data. Furthermore, a systematic categorization for the collected papers is intro-
duced, providing a comprehensive and detailed description of numerous approaches in the recent
literature. Additionally, details about well-known and publicly available datasets in this research
field are presented. These datasets include 15 EEG and 7 fMRI datasets, covering various appli-
cations such as ER, SD, and MI. Our analysis eventually addresses several potential outstanding
issues like interpretation and privacy, and some promising directions such as federated learning,
multi-modal data processing, and online learning in Section 6, for future research to further expand
this field of study and make it more consistent with real-world applications and trends.
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