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ABSTRACT

With the ever-increasing popularity of pretrained Video-Language Models
(VidLMs), there is a pressing need to develop robust evaluation methodologies
that delve deeper into their visio-linguistic capabilities. To address this challenge,
we present VILMA1), a task-agnostic benchmark that places the assessment of
fine-grained capabilities of these models on a firm footing. Task-based evaluations,
while valuable, fail to capture the complexities and specific temporal aspects of
moving images that VidLMs need to process. Through carefully curated counter-
factuals, VILMA offers a controlled evaluation suite that sheds light on the true
potential of these models, as well as their performance gaps compared to human-
level understanding. VILMA also includes proficiency tests, which assess basic
capabilities deemed essential to solving the main counterfactual tests. We show that
current VidLMs’ grounding abilities are no better than those of vision-language
models which use static images. This is especially striking once the performance
on proficiency tests is factored in. Our benchmark serves as a catalyst for future
research on VidLMs, helping to highlight areas that still need to be explored.

1 INTRODUCTION

Video-language models (VidLMs) have received increasing attention from the research commu-
nity (Lei et al., 2021; Luo et al., 2022; Xu et al., 2021; Zellers et al., 2021; Luo et al., 2020; Fu et al.,
2021; Ma et al., 2022; Bain et al., 2021; Ge et al., 2022; Lei et al., 2022; Zhu et al., 2022; Cheng et al.,
2023). In principle, VidLMs can visually ground linguistic phenomena which are beyond the reach of
image-language models (ILMs),2 since videos include dynamically evolving phenomena (e.g., events,
actions, physical processes). Nonetheless, this temporal dimension makes learning more complex.
Most efforts to gauge what VidLMs can do rely on tasks such as video captioning (Yu et al., 2016),
text-to-video retrieval (Wang et al., 2021), and video question answering (Yu et al., 2019). While
such evaluations shed light on task performance and support comparative analysis, they are limited in
their ability to reveal the specific visuo-linguistic capabilities that models exhibit across tasks.

∗Corresponding author. Email: ikesen16@ku.edu.tr
1Project page: https://cyberiada.github.io/ViLMA
2Image-language models are trained on images and text, and have shown strong performance on many

tasks (Mogadala et al., 2021; Du et al., 2022; Agrawal et al., 2022; Chen et al., 2023).
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Figure 1: An overview of VILMA. A proficiency test first evaluates basic understanding skills of a
model, followed by a more complex main test for a specific temporal reasoning capability.

In this study, we present VILMA (Video Language Model Assessment), a task-agnostic bench-
mark that proposes a behavioural evaluation for VidLMs focusing on fine-grained phenomena. We
draw inspiration from related benchmarks for ILMs (e.g. Parcalabescu et al., 2022; Hendricks &
Nematzadeh, 2021; Thrush et al., 2022). However, VILMA focuses on tests that require strong
temporal understanding and reasoning, as time is a unique aspect present in VidLMs but not in ILMs.
We adopt a common structure for each test: (i) We harvest high-quality examples from existing
video-language datasets; (ii) we create counterfactual examples or ‘foils’ (Shekhar et al., 2017b),
so that a test requires distinguishing correct from counterfactual video+text pairs; (iii) we create a
proficiency test to gauge if a model learns the capabilities we deem necessary to solve the main test;
(iv) we apply automatic and manual validation of the examples and their counterfactuals to control
for biases and to ensure a high-quality evaluation benchmark; (v) finally, we test whether existing
VidLMs can solve the proficiency tests and distinguish correct from counterfactual examples in the
main tests (see Figure 1). Our main contributions can be listed as follows:

• We propose VILMA, a zero-shot benchmark for evaluating VidLMs, designed to require strong
temporal understanding. To the best of our knowledge, this is the first behavioural benchmark to
test VidLMs for temporal visuo-linguistic capabilities.

• We devise a proficiency test for each main test in our benchmark, to probe for basic capabilities we
deem essential for solving the task correctly.

• We report experiments that demonstrate the usefulness of VILMA to evaluate VidLMs on different
criteria. In particular, our results also show that current VidLMs are not significantly better at
temporal reasoning than ILMs.

• We show that accounting for proficiency tests leads to a significant decrease in performance,
suggesting that many apparently correct predictions by VidLMs could be accidental or spurious.

The rest of this paper is structured as follows: In §2, we briefly review the relevant literature. In §3,
we describe our data generation methodology in detail. In §4, we report our experimental setup and
results. Finally, in §5, we summarise our conclusions.

2 RELATED WORK

In this section, we categorise pretrained video-language models (VidLMs) (§2.1), review recent
efforts that investigate the capabilities of pretrained image-language models (ILMs) (§2.2), and
position our work in relation to existing video-language benchmarks (§2.3).
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2.1 PRETRAINED VIDLMS

We categorise VidLMs along five distinct dimensions: modality considered for pretraining, pretraining
datasets, pretraining objectives, strategies for temporal modelling and multi-modal fusion schemes.
See §4 for detailed descriptions of models used in our experiments.

Modalities. Pretraining of VidLMs can be performed on images (Lei et al., 2021), videos (Li et al.,
2020; Zhu & Yang, 2020; Xu et al., 2021; Zellers et al., 2021; Seo et al., 2022; Wang et al., 2022a; Li
et al., 2022a; Luo et al., 2022) or both (Bain et al., 2021; Fu et al., 2021; Wang et al., 2022b; Li et al.,
2022c; Lei et al., 2022; Li et al., 2023b). A handful of models (Akbari et al., 2021; Lin et al., 2022;
Zellers et al., 2022) also incorporate speech and audio.

Datasets. Training data is often chosen in view of the type of pretraining used for the visual modality.
Early VidLMs (Zhu & Yang 2020; Li et al. 2020; Xu et al. 2021) use HowTo100M (Miech et al.,
2019), which offers the linguistic modality in form of automatic speech recognition (ASR) output
or manually written subtitles. Recent models are pretrained on the WebVid-2M dataset (Bain et al.,
2021), which follows a similar approach to Conceptual Captions (CC3M; Sharma et al., 2018) in
filtering items based on the quality of the textual modality. Next to video-text data, recent VidLMs
also leverage large image-text datasets, e.g. SBU captions (Ordonez et al., 2011), CC3M or CC12M
(Changpinyo et al., 2021).

Objectives. Some pretraining objectives for VidLMs have been derived from the pretraining objec-
tives employed by ILMs. The most prominent among these are video-text contrastive loss (VTC),
video-text matching (VTM), masked language modelling (MLM) and masked frame modelling
(MFM). A few models employ natural language generation (NLG) (Seo et al., 2022; Wang et al.,
2022b), masked visual-token modelling (MVM) (Li et al., 2022c), or temporal reordering (Zellers
et al., 2021).

Temporal Modelling. Only a few methods use joint space-time attention (Bertasius et al., 2021;
Bain et al., 2021; Wang et al., 2022b) to process video. Some approaches (Zellers et al., 2021;
Luo et al., 2022; Yang et al., 2022) rely on language at this stage, and implement a multi-modal
attention mechanism between patches and word embeddings. Fu et al. (2021); Li et al. (2022c) extract
spatio-temporal features using the Video Swin Transformer (Liu et al., 2022) with shifted window
attention (Liu et al., 2021).

Multi-modal Fusion. Models relying exclusively on the VTC objective do not perform multi-modal
fusion (Xu et al., 2021; Bain et al., 2021; Luo et al., 2022; Lin et al., 2022). Others either include
an additional multi-modal transformer (Luo et al., 2020; Lei et al., 2022; Seo et al., 2022) or fuse a
visual prefix into text-only LMs (Zellers et al., 2021; Fu et al., 2021).

2.2 BENCHMARKS FOR PRETRAINED IMAGE-LANGUAGE MODELS (ILMS)

ILMs are usually tested on downstream tasks such as image question answering (Goyal et al., 2017b),
visual reasoning (Suhr et al., 2019) or image retrieval (Lin et al., 2014; Plummer et al., 2015).
Some benchmarks measure task-overarching capabilities of ILMs (e.g., their understanding of verbs;
Hendricks & Nematzadeh, 2021), or compositionality (Thrush et al., 2022). A specific way of
testing ILMs is foiling (Shekhar et al., 2017b; Gokhale et al., 2020; Bitton et al., 2021; Parcalabescu
et al., 2021; Rosenberg et al., 2021), where a caption is turned into a counterfactual (i.e., foil) by
minimal edits, such that it does not correctly describe the image anymore (Shekhar et al., 2017b;a).
Alternatively, the image can be exchanged such that it does not match the caption anymore (Rosenberg
et al., 2021; Wang et al., 2023). A key consideration in creating counterfactuals is to target specific
linguistic elements, which are assumed to reflect specific model capabilities (e.g. by altering a
preposition, a model’s ability to distinguish caption from foil should reflect its understanding of
spatial relations). For example, the VALSE benchmark (Parcalabescu et al., 2022) tests the linguistic
grounding capabilities of ILMs targeting six linguistic phenomena: existence, plurality, counting,
spatial relations, actions, and entity coreference. ILMs are tested zero-shot on image-text alignment,
one of the ILM’s pretraining objectives.

An alternative strategy is to test pretrained models on multiple choice questions designed to probe
specific capabilities (cf. the recent SEED-Bench Li et al., 2023c).
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Bugliarello et al. (2023) tested recent encoder-only ILMs on several benchmarks mentioned above:
SVO probes (Hendricks & Nematzadeh, 2021), VALSE, and Winoground (Thrush et al., 2022).

2.3 BENCHMARKS FOR PRETRAINED VIDLMS

Like ILMs, VidLMs are evaluated on numerous downstream tasks, primarily action recognition
(Kuehne et al., 2011; Soomro et al., 2012), video-text retrieval (Xu et al., 2016; Hendricks et al.,
2017), and video question answering (VidQA) (Xu et al., 2017; Lei et al., 2018). Lei et al. (2022)
show that a non-temporal model can perform better than temporal models in these benchmarks.
Newer VidQA benchmarks (Lei et al., 2020; Xiao et al., 2021) offer stronger tests for VidLMs to
probe their temporal and commonsense reasoning capabilities. In our benchmark, we also prioritise
these aspects. However, we cast the tasks in a zero-shot setting using a counterfactual setup, to probe
the pretrained models’ inherent capabilities.

Foiling benchmarks have also been proposed to evaluate VidLMs. Park et al. (2022) devise two tests.
In the first one, foils are created by swapping the character entities in the caption. In the second,
an LM replaces the verb phrase of the caption. On the other hand, Bagad et al. (2023) create a
benchmark consisting of synthetic video-caption-foil triplets (e.g. a red circle appears after/before
a yellow circle) to test how well VidLMs localise the events happening in the video. Bagad et al.
(2023) also propose a consistency test to probe whether the models localise the events correctly or
just predict the correct answers. One of the tasks in VILMA is similar to Park et al. (2022), but we
build it upon the Situation awareness task, which tests for models’ ability to reason about actors,
actions, and their relationships (see § 3.3). Similar to the consistency task of Bagad et al. (2023),
we propose a proficiency test for each of our main tests. In contrast to earlier foiling benchmarks,
VILMA is also more comprehensive as it is designed to examine the models’ grounding capabilities
for different linguistic phenomena.

Another notable benchmark is VALUE (Li et al., 2021). VALUE follows the design of the (Super)
GLUE evaluation suites (Wang et al., 2019a;b) for NLU, offering 11 datasets covering 3 different
downstream tasks. Unlike VALUE, VILMA is a zero-shot foiling benchmark with particular focus
on linguistic phenomena that emphasise temporal reasoning.

3 CONSTRUCTING VILMA

VILMA is designed as a probing benchmark divided into five main tests, summarised in Table 1 and
described in detail below. It is intended as a zero-shot evaluation benchmark. For each test, we define
specific foiling functions that target central characteristics of VidLMs, focusing on their temporal
understanding capabilities.

First, we introduce proficiency tests (§3.1). They test criteria that can be considered as prerequisites
for solving the main tests, by assessing the VidLMs’ capability to successfully navigate and solve
simpler objectives before attempting the more demanding main tests. We then introduce our main
tests, which focus on: accurately recognising events that display temporal regularity/periodicity and
recurrence, i.e., action counting (§3.2); the recognition of specific actions or action participants
(§3.3); the recognition of action or event subphases, especially when they induce a change of state
(§3.4); the influence of model biases and frequency effects in VidLM’s understanding of rare actions
(§3.5); and distinguishing spatial relations (§3.6), since these often exhibit temporal evolution (e.g.
in the case of an object moving towards another) and thus alter in their visual appearance over time.
Finally, in §3.7 we discuss how we use human validation to guarantee VILMA’s quality.

3.1 PROFICIENCY TESTS

Proficiency tests can be considered a preliminary criterion for each of the five main tests below.
These tests assess a VidLM’s ability to solve simpler visuo-linguistic tasks that do not require strong
temporal modelling, as the main tests do. In contrast, VidLMs are expected to address the primary
tests by effectively modelling temporal dynamics. Consequently, foils in the proficiency test are less
challenging compared to the main tests, and serve as an additional evaluation criterion.

The rationale behind conducting proficiency tests is as follows: When a model can effectively tackle
the main test but falls short of passing its corresponding proficiency test, it raises a crucial point of
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Table 1: Overview of data and foiling methods used in each test in VILMA.

Test
(#exs.) Video Caption (blue) / Foil (orange) Foil

Generation Sample Frames

Action
Counting

(1432)
Someone lifts weights exactly two / five times. Number

replacement

Situation
Awareness

(911)

A policeman / blond man holds a blond man / po-
liceman against a wall.

Actor
swapping

A man in blue holds / chops up a man in green. Action
replacement

Change of
State
(998)

Someone folds / unfolds the paper.
Action
replacement

Initially, the paper is unfolded / folded.
Pre-state
replacement

At the end, the paper is folded / unfolded.
Post-state
replacement

Initially, the paper is unfolded / folded. Then, some-
one folds / unfolds the paper. At the end, the paper
is folded / unfolded.

Swap-and-
replacement

Rare
Actions

(1443)

Drilling into / Calling on a phone.
Action
replacement

Drilling into a phone / wall.
Object
replacement

Spatial
Relations

(393)
Moving steel glass towards / from the camera. Relation

replacement

concern. This discrepancy hints that the VidLM may potentially be relying on heuristics that exploit
biases inherent within the modalities. These biases, in turn, should presumably be traced back to the
early pretraining phase of the models.

Given the individual characteristics of the tests, the proficiency test focuses on specific objectives in
each case: For the Spatial Relations (§3.2), Change of State (§3.4), and Situation Awareness (§3.3)
tests, the aim of the proficiency test is to identify objects mentioned in the captions. On the other
hand, in the Action Counting (§3.2) and Rare Actions (§3.5) tests, we shift our attention to action
recognition and object existence, respectively.

We use SpaCy’s3 dependency parser to localise and mask the target words. These words are then
replaced with foil words generated via Masked Language Modelling (MLM)4. To ensure the validity
of our proficiency tests we rely on manual evaluation as well as further constraints in the creation
process. For the details we refer readers to Appendix C.1.

3.2 ACTION COUNTING

The Action Counting test probes the ability of models to accurately count the occurrences of actions
within a given video input stream. This test requires spatio-temporal reasoning, presenting a novel
and interesting challenge. To this end, we use the QUVA dataset (Runia et al., 2018), which comprises
100 videos. Within each video, every occurrence of the target action is annotated with a corresponding
frame number that specifies the end of each action.

The dataset lacks any textual annotations. Consequently, we curate multiple textual templates per
video, incorporating a placeholder for the numerical value (<number>). Our templates incorporate

3https://github.com/explosion/spaCy
4We use RoBERTa-large to fill the mask token in the modified captions with the most contextually appropriate

token.
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the term exactly to indicate precise counting (e.g., someone performs exactly <number> push-ups);
cf. Parcalabescu et al. (2022) for a similar strategy. We avoid overly specific terms, opting for more
general descriptors (e.g., lifting weights instead of skull-crushers arm exercise). A native English
speaker checked the manually curated templates and fixed potential syntax errors in them.

We replace the number placeholder with the correct numerical value to create captions, and with
an incorrect one to create foils. We discard all instances with counts exceeding a predetermined
threshold Tc, set at 10. For the counting test, we created the following two subtests: In the Easy
subtest, we deliberately opt for small numbers C ∈ {1, 2, 3} in the captions. The choice of these
small numbers is motivated by the observation that models frequently encounter such quantities
during pretraining, making them more likely (and possibly more easily recognisable). In the Difficult
subtest, by contrast, we favour these same small numbers in the foils. This presents a challenge for
VidLMs as it tests the models’ ability to overcome biases towards numbers frequently present in
pretraining. In this way, we aim to assess the models’ true abilities to handle counting tasks in diverse
contexts. We describe our data collection process in detail in Appendix C.2.

3.3 SITUATION AWARENESS

The Situation Awareness test shows how effectively VidLMs grasp the interaction between visual
clues and verbal context by testing whether they recognise actors, actions, and their relationships. To
this end, we use the VidSitu (Sadhu et al., 2021) dataset consisting of 10-second video sequences
annotated with information regarding verbs, semantic roles, entity co-references, and event relations.
To add captions to this dataset, we use ChatGPT to refine and enhance the template-based sentences
generated from the existing annotations.

Unlike tests which target verb-argument structure in ILMs, such as SVO-Probes Hendricks &
Nematzadeh (2021) and the verb replacement and actant swap tests in VALSE (Parcalabescu et al.,
2022), this video-language task adds a temporal dimension, encapsulating dynamic actions. Unlike
static images, videos illustrate unfolding events and track their temporal dynamics via sequences
of frames. VidLMs must grasp frame coherence, temporal context, and story structure, assessing
the order of occurrences. In contrast, ILMs focus on static imagery with less temporal emphasis.
Furthermore, videos introduce audio and motion, which gives the current task broader scope and
presents novel challenges for contextual integration.

Our Situation Awareness test consists of the Action Replacement and Actor Swapping subtests.
Action Replacement tests whether VidLMs can distinguish various activities, by contrasting phrases
that differ only in action verbs. To that end, we mask the verb in a caption with a <MASK> token and
generate foils via masked language modelling. Subsequently, we employ natural language inference
(NLI) filtering to validate the foils, using an ALBERT model (Lan et al., 2020). We only consider
foils that are predicted as ‘contradiction’ or ‘neutral’ with respect to the original caption by the NLI
model. Finally, we compute a grammaticality score for all foils using GRUEN (Zhu & Bhat, 2020)
and only retain as valid cases where the GRUEN grammatically exceeds 80%.

Actor Swapping tests the VidLMs’ ability to recognise the role played by (human) actors in diverse
actions, thereby probing the ability to discern the semantic roles of arguments in complex relations.
To generate foils for the Actor Swapping subtest, we interchange the action participants in a caption.
We do not apply NLI or GRUEN grammatically filters. Please refer to Appendix C.3 for further
details on the construction of this test.

3.4 CHANGE OF STATE

The Change of State test examines the ability of VidLMs (i) to recognise and distinguish different
sub-phases of actions, especially those that induce a change of state (CoS) of objects or entities
involved in it; and (ii) to align the beginning and ending phases of these actions across modalities.
Cross-modal alignment of the begin- and end-states of CoS actions is challenging, as they are typically
textually implicit while being visually explicit.

We define as CoS verbs those verbs that refer to actions that include (or textually imply) an initial
situation (or state) that is modified to an outcome situation (or state) (e.g., “to open (a bottle)” implies
that an initial state of “(the bottle) being closed” changes to an outcome state of “(the bottle) being
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open” as a result of an opening action). We further assume that the outcome must differ from the
initial state.

We collect our target CoS verbs starting from a codebase by Warstadt et al. (2019). While the authors
only provide the initial-state for each verb, we expand the list by identifying appropriate outcomes
for all actions. Leveraging the list of CoS verbs as targets, we collect candidate sentence-video pairs
by parsing various multimodal datasets: Something-Something V2 (Goyal et al., 2017a), YouCook2
(Zhou et al., 2018), COIN (Tang et al., 2019), RareAct (Miech et al., 2020), and STAR (Wu et al.,
2021). We extract the subject and object from the collected sentences, and generate a caption
according to a pre-defined template. We generate foils by replacing one or more sub-phases (action,
pre-state or post-state) with their respective opposite expressions.

We design four different subtests, in each of which we foil an expression describing a specific element:
Action subtest, Pre-state subtest, Post-state subtest, and Reverse subtest, where we swap pre-state
and post-state and replace the action with its antonym. This reverses the original linguistic sequence,
e.g. turning ‘closed–open-open’ to ‘open-close-closed’, which serves as a linguistically coherent foil
for the original action in the video. For more details, please see Appendix C.4.

3.5 RARE ACTIONS

The Rare Actions test probes how well VidLMs identify novel compositions and recognise unusual
interactions between human beings and objects. We leverage the RareAct dataset (Miech et al.,
2020) consisting of videos accompanied by action-object pairs describing events within the videos.
These action-object pairs are extracted by analysing co-occurrence statistics from the widely used
HowTo100M (Miech et al., 2019) dataset.

To enrich this dataset, we generate simple captions based on the action-object pairs. For instance,
given the action-object pair cut-keyboard, we create the descriptive caption cutting a keyboard. This
test offers two subtests: In Action Replacement, we substitute the original action with a more
plausible alternative that can be applied to the given object, e.g. type on for the previous keyboard
example. To generate foils in this subtest, we employ T5 (Raffel et al., 2020), as it enables us to
produce foils with phrasal verbs, e.g., talk about, place at, etc. As for Object Replacement, we
focus on replacing the object in the action-object pair. For instance, revisiting the previous example,
we replace the object keyboard with bread. Here, we prefer to use a set of token-based MLMs (Devlin
et al., 2019; Lan et al., 2020; Liu et al., 2019). To further enhance the quality of the foils, we opt for
an ensembling approach in the object replacement test. More details are given in Appendix C.5.

3.6 SPATIAL RELATIONS

The Spatial Relations test focuses on the ability of models to distinguish different spatial and
spatio-temporal relations related to the actions carried out in a video (e.g. moving an object ‘over’, or

‘towards’ another object). It is similar to the relation task introduced in Parcalabescu et al. (2022),
with the notable difference that the model must use temporal information to accomplish the task. We
create the foils starting from the Something-Something V2 validation set (Goyal et al., 2017a) which
contains 174 pre-defined actions with everyday objects. To create a candidate foil, we replace the
spatial preposition with an in-distribution alternative, drawn from the set of spatial prepositions in
the validation set. We rank the candidate foils by scoring their plausibility using T5 (Raffel et al.,
2020) and select the top 10 best-scoring foils. We then use the GRUEN pretrained model (Zhu &
Bhat, 2020) to score the foils for grammaticality, keeping foils with scores higher than 0.6. We filter
caption-foil pairs with an NLI model, keeping only foils classified as neutral or contradiction with
respect to the caption. Finally, we smooth out the foil distribution to match the original validation
distribution. This mitigates distribution biases arising in the foil generation process, which could be
exploited by the tested models. Full details are provided in Appendix C.6.

3.7 HUMAN VALIDATION

A central requirement for VILMA is to ensure validity, that is, humans should agree that captions are
true of the videos, while foils are not. We validated the entire VILMA dataset in two separate stages.
For the simpler proficiency tests, we manually checked every video-caption-foil sample, retaining
only those in which the foil was unambiguously false with respect to the input video. This resulted
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in the removal of 1278 (15.11%) of samples in the proficiency tests. The main tests were validated
independently, in a study conducted on AMTurk. Each sample was evaluated by three independent
annotators, who were asked to judge which text (caption or foil), if any, was true of the video. See
Appendix B for details on method, annotators and qualification tasks. We retained only samples for
which at least two out of three independent annotators judged only the caption as true of the video,
resulting in a final set of 5177 (61.19%) of the initial set. See Appendix B.1 for details by task.

4 EXPERIMENTS

4.1 PRETRAINED MODELS

We analyse the performance of 12 architecturally diverse, state-of-the-art VidLMs: ClipBERT (Lei
et al., 2021), UniVL (Luo et al., 2020), VideoCLIP (Xu et al., 2021), FiT (Bain et al., 2021),
CLIP4Clip (Luo et al., 2022), VIOLET (Fu et al., 2021), X-CLIP (Ma et al., 2022), MCQ (Ge et al.,
2022), Singularity (Lei et al., 2022), UniPerceiver (Zhu et al., 2022), Merlot Reserve (Zellers et al.,
2021), VindLU (Cheng et al., 2023), InternVideo (Wang et al., 2022c), mPLUG-2 (Xu et al., 2023),
Otter (Li et al., 2023b) and Video-LLaMA (Zhang et al., 2023). The models were trained on different
tasks and data. We also benchmark two commonly used ILMs: CLIP (Radford et al., 2021) and
BLIP-2 (Li et al., 2023d), alongside two unimodal baselines: GPT-2 (Radford et al., 2019) and OPT
(Zhang et al., 2022). See Appendix A for a detailed overview of models.

4.2 EVALUATION METRICS

For our evaluation, we rely on the straightforward yet informative metric of pairwise ranking
accuracy denoted as accr. This metric essentially measures the proportion of samples where
the video-caption matching score surpasses the video-foil matching score. The primary choice
of pairwise accuracy allows us to directly compare all 12 VidLMs, including VidLMs that were
pretrained using both VTC and NLG objectives. We report accr scores for both the main tests (T)
and their respective proficiency tasks (P). Additionally, we introduce a more strict combined score
(P+T), wherein a model’s success on the main test is only deemed correct if it also succeeds on its
proficiency test. Finally, we take the average of combined scores (P+T) among each task to provide a
summary score for each model.

4.3 RESULTS AND ANALYSIS

Table 2 offers a concise overview of our results. For a more in-depth analysis, including per-subtest
outcomes, we refer readers to the Appendix C. ‘ .

Unimodal Results. The unimodal baselines perform close to the random baseline in Counting and
Change of State, but not in the remaining tests. In Rare Actions, this outcome is expected given that
the captions inherently describe less likely events. Similarly, within the proficiency test for the Change
of State, we introduce the foiling of low-frequency nouns (e.g., hyponyms) with high-frequency ones
(e.g., hypernyms), which inadvertently biases the model towards favouring the foils. In contrast,
unimodal models exhibit a notably superior performance compared to the random baseline in Situation
Awareness and Spatial Relations. This can be partially attributed to plausibility biases (Madhyastha
et al., 2019; Parcalabescu et al., 2022) introduced during foil generation. The shared linguistic context
between the caption and foil constrains the selection of foiling actions/relations, often leading to the
introduction of unlikely or unnatural alternatives.

Image-Language Model Results. Much like the unimodal baselines, the performance of ILMs in
the Counting and Change of State tasks is close to random. However, we note that ILMs exhibit
proficiency in detecting objects and capturing semantics, as shown in the proficiency test results
for Rare Actions and Counting, where the former requires object detection capabilities, and the
latter hinges on precise action recognition. In several tasks, ILMs even outperform their VidLM
counterparts. For instance, BLIP2 is the best-performing model in Situation Awareness, while in the
Rare Actions task, CLIP performs better than all the other models excluding VindLU.

Video-Language Model Results. In the majority of tasks, VidLMs deliver performance levels that
closely resemble those of ILMs. This observation raises a critical point: the temporal reasoning capa-
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Table 2: Pairwise ranking accuracy (accr) performance of 12 Video-Language Models on the
VILMA benchmark on the proficiency (P), main (T), and combined (P+T) tasks. In the combined
task P+T, a success in T only counts if P is also successful. The final column Avg. is the taskwise
average of combined scores P+T among each task. Best (second-best) model per metric are marked
in boldface (underlined). More in-depth analysis of the experiments are given in Appendix C.

Model Action Counting Situ. Awareness Change of State Rare Actions Spatial Relations Avg.
P T P+T P T P+T P T P+T P T P+T P T P+T P+T

Random 50.0 50.0 25.0 50.0 38.0 19.0 50.0 50.0 25.0 50.0 50.0 25.0 50.0 50.0 25.0 23.8

GPT-2† 50.3 53.3 27.6 44.6 66.6 31.7 18.0 52.4 10.8 58.4 25.9 17.7 49.1 72.8 43.0 26.2
OPT† 56.2 54.6 31.0 51.7 71.4 38.7 23.1 48.0 12.9 59.0 23.9 14.9 59.0 84.7 55.7 30.6

CLIP‡ 90.5 50.9 46.2 71.0 45.6 33.7 93.0 55.2 52.2 92.7 93.9 87.8 78.6 58.3 44.8 52.9
BLIP2‡ 80.9 54.5 43.7 73.4 75.4 55.8 74.5 52.1 38.1 93.8 74.5 70.5 91.1 86.0 79.4 57.5

ClipBERT 56.4 49.6 28.0 54.1 57.0 31.9 63.7 50.0 33.5 43.5 40.7 17.7 39.7 39.8 14.1 25.0
UniVL 73.4 43.6 32.2 52.9 46.7 24.1 81.3 54.3 43.0 77.5 78.0 59.9 62.5 51.7 33.2 38.5
VideoCLIP 79.1 46.4 36.5 61.7 40.4 24.9 49.8 50.8 25.9 84.0 77.8 67.5 67.9 54.7 39.7 38.9
FiT 83.9 52.4 44.6 69.8 40.1 29.2 93.0 52.1 47.8 89.7 89.4 80.7 70.5 51.9 38.7 48.2
CLIP4Clip 91.2 52.3 48.0 73.9 49.1 37.7 94.8 54.1 52.1 83.0 94.1 78.7 79.8 56.7 44.2 52.1
VIOLET 79.6 50.6 36.5 70.3 44.5 32.5 88.2 54.6 49.1 87.1 86.6 74.6 73.3 50.4 38.7 46.3
X-CLIP 84.1 55.1 46.4 63.6 44.9 31.1 85.7 52.7 46.0 83.9 85.7 72.3 74.8 56.2 43.5 47.8
MCQ 81.4 50.4 41.5 67.1 37.1 26.3 90.3 50.3 45.3 91.3 88.7 82.3 79.4 48.9 39.4 47.0
Singularity 79.6 51.1 41.5 68.8 40.9 30.2 92.8 54.6 50.3 92.7 88.4 83.1 80.7 46.8 38.9 48.8
UniPerceiver 50.6 46.4 23.0 51.5 42.2 21.2 67.5 46.1 29.1 58.2 58.8 34.7 45.5 48.0 20.1 25.6
Merlot Reserve 84.2 56.0 46.9 70.6 35.7 25.4 93.4 53.6 50.4 83.8 90.6 77.6 63.1 41.9 29.2 45.9
VindLU 84.5 51.2 43.5 70.6 41.6 31.3 85.4 52.6 45.6 94.2 93.1 88.0 83.2 45.6 39.4 49.5
InternVideo 90.2 54.3 48.7 71.6 41.1 29.5 95.6 57.7 55.1 95.6 96.7 92.7 76.6 59.8 45.3 54.2
mPLUG-2 57.7 49.7 27.7 49.6 37.4 21.5 39.5 47.7 20.8 50.8 47.0 24.0 46.6 48.1 26.5 24.1
Otter 59.4 52.7 30.7 58.8 51.0 29.3 65.7 53.0 34.3 56.1 58.8 35.6 62.9 71.3 47.6 35.5
Video-LLaMA 84.6 56.3 47.3 78.2 67.0 54.0 81.4 59.0 46.8 78.7 71.0 58.6 88.6 88.8 79.6 57.3

bilities of current VidLMs are evidently far from adequate. Remarkably, in the Counting, Situation
Awareness, and Change of State tests, many VidLMs do not show a notably higher performance
than the random baseline. Our findings highlight the urgent need for the community to prioritise and
enhance the temporal reasoning abilities of these models.

Proficiency Results. The results reveal that both ILMs and VidLMs tend to consistently perform
better in the simpler proficiency test, with few exceptions. These tests provide valuable insights by
enabling a more robust evaluation of models. An intriguing insight emerges from the evaluation of
models in the combined setting, where a striking performance drop occurs. This suggests that in a
substantial number of cases, when models predict correct answers in the main tasks, they do so by
chance or due to reliance on spurious features, rather than due to a robust understanding of the input.

5 CONCLUSION

We introduced VILMA, a video-language foiling benchmark, which probes the capabilities of
pretrained VidLMs where both commonsense and temporal reasoning take centre-stage. We have
conducted a comprehensive evaluation and comparison of numerous VidLMs as well as ILMs
and text-only LMs on our benchmark. Our experiments show that, as far as visually grounded
temporal reasoning abilities are concerned, VidLMs do not differ substantially from ILMs. To further
refine our benchmark, we introduced proficiency tests, which not only enhance granularity but also
provide deeper insights into the models’ aptitude. Strikingly, our proficiency task results reveal
that a considerable portion of correct predictions appears to be accidental rather than indicative of
robust understanding. This highlights that current VidLMs struggle with the intricacies of temporal
reasoning. It also underlines the importance of benchmarks like VILMA to identify weaknesses of
current VidLMs that need improvement.
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APPENDIX

Appendix A provides further descriptions of the models that we include in the benchmark together
with implementation details. Appendix B presents a detailed report of our data validation process,
annotator selection criterion, annotation statistics, inter-annotator agreements, bias check, and annota-
tion costs. Appendix C gives additional details of each test (e.g. data sources, foiling methods), and
presents in-depth analysis of the evaluated models on our tests. Finally, in Appendix D, we present
additional analyses detailing how model performance varies in response to various factors.

A PRETRAINED MODELS

Here, we describe the models used in this benchmark. Next to the pretrained video-language
models (§A.3), we also experimented with pretrained unimodal models (i.e. text-only LMs) and
image-language models (§A.1 and §A.2).

A.1 UNIMODAL MODELS

We test a couple of decoder-only or encoder-decoder LMs on the benchmark. These models are
GPT-2 (Radford et al., 2019), OPT (Zhang et al., 2022), T5 (Raffel et al., 2020) and BART (Lewis
et al., 2020). Similar to VALSE, we calculate the perplexity values for both caption and foil, and
select the text input with smaller perplexity score. For our experiments with GPT-2 and OPT, we use
GPT-26 with 124M parameters and OPT-6.7B7.

A.2 IMAGE-LANGUAGE MODELS

We also conducted experiments involving two prominent Image-Language Models: CLIP (Radford
et al., 2021) and BLIP-2 (Li et al., 2023d). CLIP employs a dual-encoder architecture, with a
contrastive loss as objective to facilitate the training of image-caption pairs. On the other hand,
BLIP-2 represents a subsequent advancement of BLIP (Li et al., 2022b), harnessing the potential of
frozen pretrained image encoders and large language models to bolster the vision-language learning
process. For CLIP and BLIP-2 experiments, we use the largest version of CLIP8 and BLIP-29 with
OPT-6.7B.

A.3 VIDEO-LANGUAGE MODELS

In this section, we share the details of the pretrained video-language models previously listed in §4.1.
Table 3 gives a systematic overview of these models based on their architectures and pretraining
procedures, which are categorised in Section 2.1. §A.4 shares the implementation details of these
models.

ClipBERT (Lei et al., 2021) uses BERT (Devlin et al., 2019) as text encoder and ResNet-50 (He
et al., 2016) as video encoder. Unlike others, it is pretrained using solely images (Lin et al., 2014;
Krishna et al., 2016). Moreover, ClipBERT is unable to learn temporal ordering: the video-text
similarity score is the average frame-text similarity score.

UniVL (Luo et al., 2020) is a two-stream encoder-decoder model. A pretrained BERT encodes the
textual input, whereas visual features are extracted via S3D and processed by a transformer encoder.
Modalities are fused via a cross-encoder. UniVL is pretrained on HowTo100M and, unlike many
VidLMs, it is also trained on a generative task.

VideoCLIP (Xu et al., 2021) uses BERT as text encoder and S3D (Xie et al., 2018) as video encoder.
VideoCLIP is pretrained on HowTo100M. Like ClipBERT, it uses mean pooling to fuse modalities.

6https://huggingface.co/gpt2
7https://huggingface.co/facebook/opt-6.7b
8https://huggingface.co/openai/clip-vit-large-patch14
9https://huggingface.co/Salesforce/blip2-opt-6.7b
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Table 3: A systemic comparison of the VidLMs included in VILMA. We categorise these methods
based on their model architectures and pretraining procedures. The last column contains the task-wise
average P+T scores. The terms and acronyms are defined in the table footer.

Method
Model Pretraining

Score
Temporal
Modeling

Multimodal
Fusion

Pretraining
Objectives Dataset Size Modality

ClipBert Mean Pooling BERT MLM+VTM COCO+VG 0.2M I 25.0
UniVL Temp. Att. 2-layer TR VTC+VTM+MLM+MFM+NLG HT 136M V 38.5
VideoCLIP 1D-Conv+TR - VTC HT 136M V 38.9
FiT Temp. Att. - VTC C5M 5M I+V 48.2
CLIP4Clip Late TR - VTC CLIP 400M I 52.1
VIOLET Window Att. BERT VTC+VTM+MLM+MVM YT+C5M 185M I+V 46.3
X-CLIP Temp. Att. - VTC CLIP 400M I 47.8
MCQ Temp. Att. 12-layer TR MLM+VTC C5M 5M I+V 47.0
Singularity Late Temp. Att. 3-layer TR VTC+VTM+MLM C17M 17M I+V 48.8
UniPerceiver Temp. Att. BERT VTC Custom 45M I+V 25.6
Merlot Reserve Temp. Att. 24-layer TR. MLM+MAM+FOM YT 20M V+A 45.9
VindLU Temp. Att. 3-layer TR VTC+VTM+MLM C25M 25M I+V 49.5
InternVideo Temp. Att. Decoder TR VTC+NLG+MVM Custom 12M I+V 54.2
mPLUG-2 Temp. Att. 6-layer TR VTC+MLM+NLG C17M 17M I+V 24.1
Otter - MPT NLG Custom 2.8M I+V 35.5
Video-LLaMA Late TR Vicuna/LLaMA NLG Custom 5M A+I+V 57.3

TR: Transformer; Late: Late fusion; Att: Attention. V: Video; I: Image; A: Audio. VTC: Video-text contrastive;
VTM: Video-text matching; MLM: Masked language modeling; MVM: Masked video modeling; MFM: Masked frame
modeling; NLG: Natural language generation. MPT: MosaicML Pretrained Transformer (Team et al., 2023). HT:
HowTo100M (Miech et al., 2019); C5M: CC3M (Sharma et al., 2018) and WebVid-2M (Bain et al., 2021); C17M:
Combination of C5M, COCO, VG, SBU captions (Ordonez et al., 2011) and CC12M (Changpinyo et al., 2021) datasets.
YT: YT-Temporal-1B (Zellers et al., 2021); COCO: (Lin et al., 2014), VG: Visual Genome (Krishna et al., 2016);
Custom: A custom dataset, please see the original work.

FiT (Bain et al., 2021) encodes text using BERT like many others. As video encoder, TimeSFormer
(Bertasius et al., 2021) is preferred. FiT is pretrained on both images (CC3M) and videos (W2). It
creates a shared video-text space via contrastive learning. The authors also collected the W2 dataset.

CLIP4Clip (Luo et al., 2022) model seeks to utilise the CLIP (Radford et al., 2021) model’s
knowledge for end-to-end video-language retrieval. The authors carry out empirical research to
answer significant issues, such as whether image features are sufficient for video-text retrieval, how
post-pretraining using CLIP affects a large video-text dataset, how to model temporal dependency
between video frames, and how hyperparameters affect video-text retrieval.

VIOLET (Fu et al., 2021) is a dual-stream encoder-only architecture. The textual module is initialised
from pretrained BERT-base. Video frames are uniformly sampled and processed by a Video Swin
Transformer (Liu et al., 2022) encoder. Spatial and temporal dimensions of the video inputs are
modelled by positional embeddings considering both spatial and temporal ordering. VIOLET
is pretrained on videos (YT-Temporal, WebVid) and images (CC3M). All modules are tuned in
training.results

X-CLIP (Ma et al., 2022) is a video-text retrieval model that offers a new approach to address
the challenge of similarity aggregation. By employing a multi-grained contrastive mechanism, the
model encodes sentences and videos into coarse-grained and fine-grained representations, facilitating
contrasts across different levels of granularity. Moreover, the model introduces the Attention Over
Similarity Matrix (AOSM) module, enabling it to focus on essential frames and words while reducing
the impact of irrelevant ones during retrieval.

MCQ (Ge et al., 2022) introduced a novel pretraining task, Multiple Choice Questions (MCQ) for the
VidLMs based on a dual-encoder mechanism. They used a parametric module called BridgeFormer,
which connects local features from VideoFormer (Dosovitskiy et al., 2020) and TextFormer (Sanh
et al., 2019) to answer multiple-choice questions via contrastive learning objective. It enhances
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semantic associations between video-text representations and improves fine-grained semantic as-
sociations between two modalities. Additionally, it maintains high efficiency for retrieval and the
BridgeFormer can be removed for downstream tasks.

Singularity (Lei et al., 2022) showed the effectiveness of single-frame training in the context of
VidL tasks, such as video question answering and text-to-video retrieval, by incorporating a vision
encoder (Dosovitskiy et al., 2020), a language encoder (Devlin et al., 2019), and a multi-modal
encoder with cross-attention fusion mechanism. On the other hand, they have implemented a new
benchmark to overcome focusing on models temporal learning abilities. This contribution brings to
light a significant static appearance bias prevalent in current video-and-language datasets.

UniPerceiver (Zhu et al., 2022) is primarily concerned with pretraining a single framework for
general perception tasks. The model is designed to handle zero-shot and few-shot learning situations.
It integrates the capabilities of transformers with neural perceptrons to enable successful learning
using a variety of modalities, including texts, audio, and images. UniPerceiver does this through the
use of a common encoder-decoder structure, which allows it to capitalize on the correlations between
multiple modalities throughout pretraining.

Merlot Reserve (Zellers et al., 2021) improves video comprehension by combining audio, subtitles,
and video frames. The model learns by substituting bits of text and audio with a MASK token and
selecting the proper masked-out piece. MERLOT Reserve’s training aim beats alternatives, and the
model obtains outstanding scores when used for challenges like Visual Commonsense Reasoning
(Zellers et al., 2019), TVQA (Lei et al., 2018), and Kinetics-600 (Carreira et al., 2018).

VindLU (Cheng et al., 2023) followed a comprehensive approach for enhancing VidL pretraining to
fine the most effective VidL framework design. The methodology begins by employing image (Bao
et al., 2021) and text (Devlin et al., 2019) encoders, trained on video and caption pairs through a
visual-text contrastive objective. Subsequently, the framework progressively incorporates additional
components while analyzing the significance of each one. The final recipe encompasses six steps,
which involve the inclusion of temporal attention, integration of a multimodal fusion encoder,
adoption of masked modeling pretraining objectives, joint training on images and videos, utilization
of additional frames both in fine-tuning and inference stages, model-parameter and data scaling.
These steps collectively contribute to an effective VidL pretraining process, facilitating improved
performance and understanding in multimodal video question answering tasks.

InternVideo (Wang et al., 2022c) proposes a novel approach addressing limitations in existing vision
foundation models by focusing on video-level understanding tasks. InternVideo combines generative
and discriminative self-supervised video learning, utilizing masked video modeling and video-
language contrastive learning as pretraining objectives. By coordinating representations from these
frameworks, InternVideo significantly improves performance across diverse video applications. It
achieves state-of-the-art results on 39 video datasets, including tasks like action recognition/detection,
video-language alignment, and open-world video applications, attaining 91.1% and 77.2% top-1
accuracy on Kinetics-400 (Carreira & Zisserman, 2017) and Something-Something V2 (Goyal et al.,
2017a) benchmarks respectively.

mPLUG-2 (Xu et al., 2023) is a foundational model, which aims to unify several modalities including
language, image and video, similar to UniPerceiver (Zhu et al., 2022). To do so, they implement
cross-modal transformer layers, which produce visually-aware textual features and textually-aware
visual features. Afterwards, a fusion module (Li et al., 2022a) jointly processes these features.
Finally, a text decoder is employed to adapt the method to the generative tasks. mPLUG-2 processes
14M image-text pairs (COCO+VG+SBU+CC3M) and 2.5M video-text pairs (WebVid2M) during its
pretraining phase.

Otter (Li et al., 2023b) is a multimodal model based on OpenFlamingo (Awadalla et al., 2023)
framework and specialized in multi-modal in-context instruction tuning, using the MIMIC-IT (Li
et al., 2023a) dataset to enhance its ability to process and respond to instructions both for video
and multiple image inputs. After finetuned on MIMIC-IT with 2.8 million multimodal instruction-
response pairs, Otter shows improved instruction-following abilities compared to OpenFlamingo.

Video-LLaMA (Zhang et al., 2023) is a conversational VidLM , which can follow the given instruc-
tions. Its foundations are based on BLIP2 (Li et al., 2023d): two separate query-formers (Q-Former)
process video and audio modalities to produce their query embeddings, which are prepended into a
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Figure 2: Form used in the human validation. The general instructions on the left-hand side are
always visible to the annotator.

frozen language model as its prefix. Vicuna (Zheng et al., 2023) and LLaMA models (Touvron et al.,
2023) are used as language models. During the pretraining phase, WebVid2M and a subset of CC3M
are used as data resources. Later, it is fine-tuned on the Video-Chat instructions dataset (Li et al.,
2023e). We used the Video-LLaMA model with LLaMA-7B in our experiments.

A.4 IMPLEMENTATION DETAILS

We try to use each model as-is based on the provided official implementations in a zero-shot setting.
We directly use Huggingface implementations (Wolf et al., 2019) of GPT-2, OPT, CLIP, BLIP2 and X-
CLIP. The majority of VidLMs sample a model-specific number of frames K to construct video input.
Specifically, X-CLIP, InternVideo and Video-LLaMA utilise K = 8, while ClipBERT operates with
K = 16. Meanwhile, the other tested models maintain a value of K = 4. VideoCLIP, CLIP4Clip,
and UniVL process the entire video using a S3D video encoder (Xie et al., 2018). The distinctive
methodology employed by the Merlot Reserve model involves the selection of a time interval, wherein
the input video is systematically partitioned into segments according to this predetermined temporal
span. Subsequently, the model meticulously captures the middle frame within each interval. We
set time interval as 5 seconds as used in Merlot Reserve. In cases where the video duration falls
below the specified 5-second interval, we captured the central frame. To calculate video-caption
match scores for ILMs, we perform mean pooling over the image-caption match scores obtained
using multiple frames, setting K = 8. We run experiments on single Tesla T4, Quadro P4000 or
V100 GPUs using half precision.

B VILMA VALIDATION

We run a thorough human validation of VILMA, validating both the main test cases (detailed
description in §B.1) and the proficiency tests (described in detail in § B.2). We report the total number
of valid cases for all the tests in Table 6.

B.1 AMAZON MECHANICAL TURK ANNOTATION AND EVALUATION

Setup We ran a human validation of each test and subtest in VILMA. Annotators were shown an
instance composed of a video and two descriptions, namely a caption and a foil as shown in Figure 2.
The annotators received the following general instructions:

You will see a series of videos, each accompanied by two short texts.
Your task is to judge which of the two texts accurately describes what
can be seen in the videos. You can see the video as many times as you
need.
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For each case, along with the general instructions, the video, and the two descriptions, the annotator
was instructed as follows: “These sentences are almost identical, but differ in a few words highlighted
in boldface. Choose the text which describes the video correctly". Following this, five possible
answers were given: (1) The first one, but not the second, (2) The second one, but not the first, (3)
Neither of the two, (4) Both of them, (5) I cannot tell. The order of the two descriptions (caption and
foil) were randomised so that the caption appeared in the first position 50% of the time. We collect
three annotations for each sample.

Annotator Selection We used the proficiency test present in each test in VILMA as a qualification
task to recruit qualified annotators for our validation. As mentioned in Section 3.1, the proficiency
test in VILMA, can be considered as a preliminary criterion for each test and therefore, it is a natural
selection strategy to identify potential good annotators. Note that, apart from their use for annotator
selection, proficiency tests were also independently validated (see § B.2.

For each test, we chose 1 subtest and we asked the annotators to assess the proficiency test annotations,
by using the same setup shown in Figure 2. We use 5 proficiency tests in total (i.e. Change-State-
Reverse, Counting-Easy, Rare Action-Action Replacement, Spatial Relations-Prepositions, Situation
Awareness-Action Replacement), with an additional sanity check consisting of a proficiency test (i.e.
Spatial Relations-Prepositions) where all the videos and the caption-foil pairs were mismatched (and
thus the annotators were always expected to answer (3) “Neither of the two”). The whole setup
accounts for a total of 4977 instances for which we collected 3 annotations each.

Moreover, we asked two expert annotators to manually annotate a batch of 10 randomly sampled
instances per proficiency test. The purpose of this manual annotation was two-fold: (i) produce gold
annotations to use as further filtering in the recruitment process, (ii) identify baseline accuracy scores
for the proficiency tests. We observed an average accuracy between the expert annotators of 80%.

We recruited annotators who had an approval rating of 90% or higher on Amazon Mechanical Turk
and had correctly identified the caption in the proficiency test at least 90% of the time (higher than
the observed baseline accuracy of 80%) with a minimum of 7 instances annotated. Based on this, we
recruited a total of 101 annotators who finally participated in the VILMA test validation.

Results In Table 4 we show the statistics relevant to the human validation of our tests. For each
subtest, we report the number of valid instances, namely instances where 2 out of 3 annotators chose
the caption but not the foil, as well as the number of unanimous annotations, namely when 3/3
annotators chose the caption. The proportion of valid instances can vary according to the test, but
overall we observe that the 70% of the total number of instances in VILMA are judged valid by
humans, and thus they can be considered high-quality caption-foil pairs.

Annotator Agreement Table 4 also reports the inter-annotator agreement between annotators in
the validation, using Krippendorff’s α Krippendorff (1989) computed overall and over the valid
instances. The agreement for the valid instances is higher and ranges from 0.1 to 0.4. The low to
medium agreement is due to two main reasons: first, we compute the agreement over the whole pool
of annotators, who may have annotated quite different numbers of samples (ranging from 7 to 103);
second, during the validation task, annotators had to choose one out of 5 responses. This is different
from VILMA, where all tests are binary tasks.

Bias Check Although distributional biases between foils and caption were taken into account in
the construction of VILMA (as described in §3), after the human validation such biases may be
reintroduced. To check for this, we compare the word frequency distributions between the original
tests and the human-validated ones. We report the Jensen-Shannon divergence (JS) of the two
distributions in Table 4, while caption foil distributions for each test are reported in Figures 3-10.

The Jensen-Shannon Divergence is defined as follows:

JS(f ∥ c) =

√
KL(f ∥ m) +KL(c ∥ m)

2

where f is the normalized word frequency for foils, c the normalized word frequency for captions, m
is the point-wise mean of f and c, and KL is the Kullback-Leibler divergence.
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Table 4: Manual validation results for each test in VILMA. #Inst.: number of instances related
to a linguistic phenomenon. #Valid (%): number (percent) of cases for which at least 2 out of 3
annotators chose the caption; #Unan. (%): number (percent) of cases for which all annotators chose
the caption; #Lex.It.: number of phrases or lexical items in the vocabulary that differ between foils
and captions; JS: Jensen-Shannon divergence between foil-caption distributions for all instances in
the whole subtest; JS Val.: Jensen-Shannon divergence between foil-caption distribution for the valid
instances of the subtest, after sub-sampling; α: Krippendorff’s α coefficient computed over all the
instances; α valid: Krippendorff’s α coefficient computed over the Valid instances.

Test Subtest #Inst. #Valid (%) #Unan. (%) #Lex.it. JS JS Val. α α Valid

Change of State

Action 624 466(74.68) 201(32.21) 50 0.311 0.301 0.183 0.303
Pre-State 624 286(45.83) 80(12.82) 2 0.146 0.129 0.017 0.106
Post-State 624 383(61.38) 111(17.79) 1 0.146 0.151 0.059 0.145
Reverse 624 342(54.81) 109(17.47) 48 0.148 0.138 0.070 0.183

Action Counting Easy 959 774(80.71) 428(44.63) 0 0.085 0.084 0.340 0.453
Difficult 895 682(76.20) 274(30.61) 2 0.077 0.076 0.148 0.251

Rare Actions Action Replacement 978 781(79.86) 353(36.09) 9 0.485 0.479 0.222 0.333
Object Replacement 972 739(76.03) 307(31.58) 6 0.450 0.442 0.186 0.299

Spatial Relations Prepositions 708 436(61.58) 132(18.64) 2 0.030 0.039 0.067 0.167

Situation Awareness Action Replacement 1000 838(83.80) 377(37.70) 60 0.176 0.175 0.224 0.313
Actor Swapping 452 207(45.80) 61(13.50) 5 0.025 0.022 0.026 0.204

Overall 8460 5934(70.14) 2433(28.76)
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Figure 3: Caption and foil distribution of Action Counting test, before and after Amazon Mechanical
Turk validation process.
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Figure 4: Caption and foil distribution of Situation Awareness main test, before and after Amazon
Mechanical Turk validation process.

As shown in Table 4, the JS marginally changes after the human validation. Moreover, we observe
minimal lexical differences (see the #Lex. it. column) in the vocabulary distributions. This suggests
that biases are not significantly present in the validated data, that is, there are few if any lexical cues
that could be used by a model to spuriously identify a foil versus a caption in the tests.
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Figure 5: Caption and foil distribution of Rare Actions test, before and after Amazon Mechanical
Turk validation process.
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Figure 6: Caption and foil distribution of Spatial Relations test, before and after Amazon Mechanical
Turk validation process.
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Figure 7: Caption and foil distribution of Change of State - Actions test, before and after Amazon
Mechanical Turk validation process.

Annotation Costs Annotators were paid $0.05 per item (i.e. per HIT on Mechanical Turk). The
whole validation – including the qualification task – cost around $2100.

B.2 PROFICIENCY TEST VALIDATION

Setup In contrast to the main tests, we opt for internal validation of the proficiency tests in VILMA.
This decision stems from the lower complexity of the proficiency tests, both in its creation process
and in its definition.

25



Published as a conference paper at ICLR 2024

se
pa

ra
te

d

in
 a

 h
ig

he
r p

os
iti

on

in
 a

 lo
we

r p
os

iti
on

hi
dd

en

vi
sib

le

in
 p

ie
ce

s

wh
ol

e

at
ta

ch
ed

fo
ld

ed

em
pt

y

fu
ll

co
m

bi
ne

d

dr
y

we
t

de
ta

ch
ed

un
wr

ap
pe

d

wr
ap

pe
d

lo
os

e

tig
ht

clo
se

d

op
en

ou
ts

id
e

in
sid

e

sm
al

le
r

bi
gg

er

un
fo

ld

un
fo

ld
ed of

f

on co
ld

di
rty ho

t

cle
an

at
tc

he
d

clo
se

r

fu
rth

er
 a

wa
y0

10

20

30

40

Change of State (Pre-State)
Captions
Foils
Captions after MTurk
Foils after MTurk

Figure 8: Caption and foil distribution of Change of State - Pre-State sub-phases before and after
Amazon Mechanical Turk validation process.
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Figure 9: Caption and foil distribution of Change of State - Post-State sub-phases before and after
Amazon Mechanical Turk validation process.
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Figure 10: Caption and foil distribution of Change of State - Reverse test before and after Amazon
Mechanical Turk validation process.

Results In Table 5 we show the statistics of the internal validation process for the proficiency
tests. Also in this case, we check for potential distributional biases, measuring the Jensen-Shannon
divergence of the word frequency distribution before and after the validation. We do not observe any
significant change (see column JS and JS Val. in Table 5). The majority of the proficiency tests pass
the internal manual validation, accounting for a total of 7182 (84.89%) of the original instances.

Finally, in Table 6, we summarise the statistics for VILMA combining the validation of proficiency
and main tests. For our experiments, we only rely on samples where both the main test and
corresponding proficiency test item have passed the validation.
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Table 5: Manual internal validation results for proficiency tests in VILMA. #Inst.: number of
instances for linguistic phenomenon. #Valid (%): number (percent) of cases for which the annotator
has chosen the caption; #Lex.It.: number of phrases or lexical items in the vocabulary that differ
between foils and captions; JS: Jensen-Shannon divergence between foil-caption distributions for all
instances in the whole subtest; JS Val.: Jensen-Shannon divergence between foil-caption distribution
for the valid instances of the subset, after sub-sampling; α: Krippendorff’s α coefficient computed
over all the instances; α valid: Krippendorff’s α coefficient computed over the Valid instances.

Test Subtest #Inst. #Valid (%) #Lex.it. JS JS Val.

Change of State All 624 412(66.03) 293 0.391 0.372

Action Counting Easy 959 939(97.91) 9 0.234 0.235
Difficult 895 884(98.77) 11 0.224 0.226

Rare Actions Action Replacement 978 940(96.11) 0 0.335 0.334
Object Replacement 972 907(93.31) 0 0.342 0.342

Spatial Relations Prepositions 708 633(89.41) 59 0.239 0.241

Situation Awareness Action Replacement 1000 837(83.70) 127 0.108 0.108
Actor Swapping 452 394(87.17) 54 0.102 0.101

Overall 8460 7182(84.89)

Table 6: VILMA statistics after Amazon Mechanical Turk and internal validation. #Inst.: number
of instances for linguistic phenomenon. #Valid Prof.: number of valid cases in the proficiency test
for which the annotator has chosen the caption; #Valid Test.: number of valid cases in the subtest for
which 2 out of 3 annotators have chosen the caption; #Both. Valid(%).: number (percent) of valid
cases for which both, the proficiency and test and the test case, are valid.

Test Subtest #Inst. #Valid. Prof. #Valid. Test #Both. Valid.(%)

Change of State

Action

624 412

466 314(37.82)
Pre-State 286 194(31.08)
Post-State 383 254(40.70)
Reverse 342 236(37.82)

Action Counting Easy 959 939 774 757(78.94)
Difficult 895 884 682 675(75.42)

Rare Actions Action Replacement 978 940 781 751(76.79)
Object Replacement 972 907 739 692(71.19)

Spatial Relations Prepositions 708 633 436 393(55.51)

Situation Awareness Action Replacement 1000 837 838 704(70.40)
Actor Swapping 452 394 207 207(45.80)

Overall 8460 7182 5934 5177(61.19)

C BENCHMARK CREATION

VILMA is intended as a zero-shot benchmark for Video-Language Models, divided into a number of
main tests, each of which probes a model’s capabilities in a specific phenomenon related to temporal
reasoning and grounding. Main tests can be divided into sub-tests. Each main test is accompanied
by a proficiency test, which probes the model’s capabilities on a simpler task, which is considered a
prerequisite to solving the main task.

C.1 PROFICIENCY TESTS

We designed the proficiency tests to assess the ability of VidLMs’ to solve simpler visio-linguistic
tests that do not require strong temporal modelling. We consider proficiency in these tests to be an
essential prerequisite for a VidLM to effectively tackle the main tests. A model succeeding on the
main test but failing its corresponding proficiency test is a cause for concern: the model might rely on
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signals within modalities that are easier to exploit instead of using the dynamic temporal information
– likely due to the model’s pretraining biases.

Data sources. Since proficiency tests supplement the main tests, we create them from the same
data instances used to develop the samples for the corresponding main test.

Foiling method. We employ a consistent approach to create caption-foil pairs for all proficiency
tests. When a proficiency test requires a model to identify objects or actions, or to verify the existence
of an entity in the visual modality, we follow these steps: first, we use spaCy’s10 dependency parser to
localise the target phrases. Target phrases can differ according to the main test’s objective (e.g. nouns
for Spatial Relations and verbs for Rare Actions). Then, we generate foil candidates by masking the
relevant element (e.g. nouns) in the original sentence and predict the masked token using a Masked
Language Modelling (MLM) by using either RoBERTa or T5 (t5-large). Then, we select the three
most probable tokens from the model’s output to create three candidate foil captions.

To ensure the quality of the foils, we employ a two-step procedure. In the first step, we use an
ALBERT11 model finetuned on Natural Language Inference (NLI). Given a caption and a foil, we
expect a valid foil to not be true of the video. If the model predicts the foil to be entailed by the
caption (E), we discard the sample. If the model predicts the foil to be neutral (N) or contradictory
(C) with respect to the caption, we accept as a valid foil and proceed with the second step.

In the second step, we compute the GRUEN score via a BERT model finetuned on the Corpus
of Linguistic Acceptability (CoLA). GRUEN (Zhu & Bhat, 2020) is a learned metric originally
intended for use in Natural Language Generation, which returns a score based on an aggregate of
Grammaticality, non-Redundancy, Discourse focus, Structure and coherence scores. If some sample
has a GRUEN score lower than a certain threshold (e.g. 80%) we reject the sample, as it is not a valid
foil.

For a candidate foil to be considered valid, it must pass both the NLI and GRUEN assessments
together. If multiple candidates for a given sample pass both tests, we select the foil-caption pair that
has the highest GRUEN score.

As a result, each instance in any main test has one caption-foil proficiency test pair. If none of the
candidate sentences pass both steps, we discard that instance.

C.2 ACTION COUNTING

The Action Counting test aims to probe the ability of models to accurately count the occurrences
of actions within a given input video. Distinct from its image-based counterpart in the prior work
VALSE (Parcalabescu et al., 2022), this test requires spatio-temporal reasoning, presenting a novel
and interesting challenge.

Data sources. We use the QUVA dataset (Runia et al., 2018), comprising 100 videos. Within
each video, every occurrence of the target action is annotated with a corresponding frame number,
specifying the end of each action. The QUVA dataset lacks any textual annotations. Consequently,
we curate multiple textual templates per video, incorporating a placeholder for the numerical value
(<number>). Emulating the approach in VALSE, our templates incorporate the term exactly to indicate
precise counting (e.g., someone performs exactly <number> push-ups). We take care to avoid overly
specific terms, opting for more general descriptors (e.g., lifting weights instead of skull-crushers arm
exercise). A native English speaker checked the manually collected templates and fixed potential
syntax errors in them. We set the videos’ frame per second rate to 30, since VideoCLIP (Xu et al.,
2021) only works with 30-FPS videos.

Foiling method. To create captions and foils, we replace the number placeholder with the correct
numerical value and an incorrect one. We discard all instances with counts exceeding a predetermined
threshold Tc, set at 10. For the Action Counting test, we created the easy and the difficult subtests. In
the easy subtest, we deliberately opt for small numbers C ∈ {1, 2, 3} in the captions. The choice of

10spacy.io/
11https://huggingface.co/ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli
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Figure 11: Categorical evaluation on the counting main tests. We simplify this analysis by computing
average performances for each model category, the unimodal LMs, ILMs and VidLMs. The standard
deviation values are illustrated with the colour filled areas.
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Figure 12: WebVid2M dataset (Bain et al., 2021) number distribution. The indefinite articles (a/an)
are opted out. Numbers 6, 7, 8, 9 and 10 are merged into single category 6-10.
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these small numbers aligns with the notion that models frequently encounter such quantities during
pretraining (see Figure 12), making them more recognisable and interpretable. In the difficult subtest,
by contrast, we favour these same small numbers in the foils. This presents a challenging test for
VidLMs as it tests the models’ ability to overcome any bias towards numbers frequently encountered
during pretraining. In this way, we aim to assess the models’ true abilities to handle Action Counting
tests in diverse contexts.

Proficiency Test. In the proficiency test, we assess how well the models recognise the actions
repeated in the videos. To create the proficiency captions, we remove number-specific phrases. For
instance, we change “a man performs exactly <number> push-ups." to “a man performs push-ups".
To create proficiency foils, we implement a procedure that has 4 main stages:

1. We mask the verb phrases and generate text for the masked spans using T5 (t5-large) (Raffel
et al., 2020). To obtain the initial foil candidates, we filter out generations that include
personal pronouns (e.g. I, they, etc.) and conjunctions (e.g. and, but). We then perform
GRUEN and NLI filtering (Zhu & Bhat, 2020). Similar to the other tests’ proficiency test,
we discard candidates that have a GRUEN score lower than a threshold of 0.80 and the
entail the proficiency caption. As a last step, we perform manual intervention and discard
implausible foil candidates.

2. We mask the subject and noun phrases in the captions and then we repeat the first step using
RoBERTa (Liu et al., 2019) for the examples that do not have a single foil. We repeat the
first stage’s GRUEN/NLI and manual filtering steps again.

3. For the videos without any valid foils, we randomly sample captions from the other videos.
We restrict this sampling process categorically: For the exercise videos, we only sample
captions from other exercise videos. We exclude the captions that comprise “the same
exercise" phrase. We then replace the subject phrases with the ground-truth caption’s subject
phrase to make it similar to the true caption. We perform an NLI filtering as a final step to
finalise the foil candidates.

4. To obtain the foil, we randomly sample from the candidate set.

We employ this 4-stage procedure because of the captions’ degree of specificity for some examples.
For instance, if we mask the verb or noun phrases of the sentence “a man performs push-ups.", LMs
naturally fail to come up with different phrases. We can observe the same phenomena for sentences
“a kid jumps on a trampoline" and “somebody pushes a button".

In-Depth Results. Table 7 shows the model results on the Action Counting tests.

UNIMODAL RESULTS. We notice a notable bias among the unimodal baselines, specifically LMs,
towards smaller numbers. This inclination aligns with our expectations, considering that these models
lack visual input processing capabilities. Predictably, their performance in the combined setting
closely mirrors that of a random baseline.

IMAGE-LANGUAGE MODEL RESULTS. Unlike LMs, ILMs achieve a good performance in the
proficiency tests, demonstrating their proficiency in visual comprehension. That being said, they
are incompetent to count actions because of their nature. Interestingly, BLIP2 heavily favours small
numbers like ILMs, indicating that it overlooks the visual modality to a significant degree.

VIDEO-LANGUAGE MODEL RESULTS. We tested several kinds of VidLMs and CLIP4Clip (Luo
et al., 2022) achieved the best results in the proficiency subtest (P), significantly outperforming the
other models. On the other hand, when evaluating performance in the main test (T), Merlot Reserve
(Zellers et al., 2022) took the lead, giving the best results. However,CLIP4Clip gives the best results
in the combined results (P+T) among all models we tested for the Action Counting test. Figure 11
illustrates their overall count-specific performance. As it can be seen from this figure and Table 7,
their average performance is close to a random baseline, revealing that these models are far away
from being proficient to excel such a challenging spatio-temporal grounding problem.

Test Examples. In Figure 13 we show some sample validated examples from the action counting
main tests.
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Table 7: Action Counting subtest results using pairwise accuracy (accr) metric. P, T and P+T stand for
the scores achieved on the proficiency tests, the main tests only and the combined tests, respectively.

Model Easy Difficult All
P T P+T P T P+T P T P+T

Random 50.00 50.00 25.00 50.00 50.00 25.00 50.00 50.00 25.00

GPT-2 50.46 70.67 35.54 50.07 33.78 18.67 50.30 53.30 27.60
OPT 55.48 93.79 52.44 56.89 10.67 6.96 56.20 54.60 31.00

CLIP 91.28 51.65 45.71 89.63 50.07 46.67 90.50 50.90 46.20
BLIP2 80.71 93.79 75.03 81.04 10.37 8.44 80.90 54.50 43.70

ClipBERT 56.80 12.42 7.27 56.00 91.26 51.26 56.40 49.60 28.00
UniVL 71.60 47.29 31.70 71.70 46.81 40.00 73.40 43.60 32.20
VideoCLIP 78.60 31.57 25.36 79.70 62.96 49.04 79.10 46.40 36.50
FiT 84.81 52.44 44.91 82.81 52.30 44.15 83.90 52.40 44.60
CLIP4Clip 91.55 76.35 69.62 90.81 25.33 23.70 91.20 52.30 47.97
VIOLET 73.45 50.86 40.42 75.41 50.37 37.33 79.60 50.60 36.50
X-CLIP 84.68 68.16 57.07 83.41 40.44 34.52 84.10 55.10 46.40
MCQ 81.37 30.65 28.01 81.33 72.44 56.59 81.40 50.40 41.50
Singularity 79.92 61.16 48.35 79.26 39.70 33.78 79.60 51.10 41.50
UniPerceiver 50.99 22.06 11.36 50.07 73.63 36.00 50.56 46.37 22.97
Merlot Reserve 83.62 53.37 44.39 84.74 58.96 49.63 84.15 56.01 46.86
VindLU 85.73 65.13 57.60 83.11 35.56 27.70 84.50 51.20 43.50
InternVideo 90.62 63.94 48.74 89.63 43.56 48.74 90.15 54.33 48.74
mPLUG-2 57.10 53.70 31.70 58.40 45.30 23.10 57.70 49.70 27.70
Otter 59.45 90.75 54.16 59.41 14.67 7.26 59.43 52.71 30.71
Video-LLaMA 85.47 66.84 56.01 83.56 44.44 37.48 84.57 56.28 47.28

31



Published as a conference paper at ICLR 2024

Proficiency Test: a man skips / climbs a rope.
Main Test: a man skips rope exactly three / nine times.

Proficiency Test: someone peels a melon / lemon.
Main Test: someone peels a melon in exactly two / five moves.

Proficiency Test: a toddler in a playground swings on a swing / rope.
Main Test: a toddler in a playground swings on a swing exactly three / ten times.

Proficiency Test: each table tennis player hits / catches the ball.
Main Test: each player hits the ball exactly three / five times using their rackets.

Proficiency Test: a performer whirls / walks around.
Main Test: a man on a bike spins exactly two / five times.

Figure 13: Sample instances from the action counting tests. We only show examples from the easy
subtests, since larger counts become difficult to perceive, when videos are represented in limited
number of frames.
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C.3 SITUATION AWARENESS

In the Situation Awareness test, we devise two subtests known as Actor Swapping and Action
Replacement. With the Action Replacement subtest, we assess the effectiveness of video-language
models in distinguishing diverse actions within a particular video stream. This evaluative approach
involves juxtaposing two sentences that differ only in the action verbs used. The model’s ability to
recognise and distinguish different activities is assessed by comparing the model’s consequent scores
ascribed to these statements.

The Actor Swapping subtest is intended to assess a model’s ability to recognise key individuals in the
footage. The evaluation involves presenting a pair of sentences in which the actors and actants are
switched, resulting in a different syntactic configuration. The model’s ability to recognise and identify
the actors engaged is demonstrated by a comparison of the scores assigned to these statements.

These evaluative tools are critical for assessing model performance because they provide for a more
sophisticated understanding of the model’s capacity to distinguish semantic roles and relational
dynamics within video-language situations.

Data sources. For the SA subtests, we leverage the VidSitu (Sadhu et al., 2021) dataset, a vast
collection of 10-second videos from movies that show intricate scenarios annotated with verbs,
semantic roles, entity co-references, and event relations at 2-second intervals.

To create captions for Situation Awareness subtests, we use ChatGPT (OpenAI, 2021). We give the
prompt below to ChatGPT with raw sentences that we obtained from the VidSitu (Sadhu et al., 2021)
dataset:

I want you to act as an English spelling corrector and improver. I will speak to you in English and
you will answer in the corrected and improved version of my text, in English. I want you to replace
my simplified A0-level words and sentences with more beautiful and elegant, upper-level English
words and sentences. Keep the meaning same, but make them more literary. I want you to only reply
with the corrections, the improvements, and nothing else, do not write explanations. Your responses
should be enumerated. Each sentence is separated by a dot (.). My sentences are: <sentences>

We evaluated the readability scores of generated sentences with the Flesch-Kincaid (Kincaid et al.,
1975) and Flesch Reading Ease (Flesch, 1948) methods. According to the Flesch-Kincaid and Flesch
Reading Ease methods, the produced text received scores of 4.54 and 83.27, representing grade levels
of 5 and 6, respectively.

Foiling method. We construct alternative foils for each caption by picking the top 32 most probable
tokens from RoBERTa RoBERTa-base12 outputs. We conduct a dual-phase review to determine their
validity. First, using an ALBERT13 model, we use Natural Language Inference (NLI) to evaluate the
foils’ conformity to video content. We reject those identified as entailment and keep those labelled as
neutral or contradiction. Following that, we assess grammatical integrity with the GRUEN score and
eliminate foils with less than an 80% GRUEN score. Foils must succeed in both NLI and GRUEN
trials, ensuring contextual in-congruence and linguistic coherence.

Proficiency Test. In the Proficiency test of Situation Awareness, our primary focus is on object
identification, which plays a critical role in assessing the model’s ability to recognise actions and
actors. This emphasis on object identification is essential because it serves as the cornerstone for
understanding actions within given scenarios and identifying the individuals or entities involved,
which are essential aspects of situational comprehension. Our approach involves masking objects
based on the transitivity of verbs: when a verb takes an object, we substitute it with a counterfactual
created by RoBERTa (Liu et al., 2019), allowing us to assess the model’s understanding of the object’s
role in actions. Conversely, if a verb cannot have a direct object, we mask the subject, ensuring a
comprehensive assessment of the model’s capability to identify actors. Object identification, in this
context, enables a holistic understanding of scenes, helping the model comprehend the broader context
and relationships between elements in dynamic scenarios, aligning perfectly with the objectives of
the Situation Awareness test.

12https://huggingface.co/roberta-base
13https://huggingface.co/ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli
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Table 8: Situation Awareness subtests results using pairwise accuracy (accr) metric. P, T and P+T
stand for the scores achieved on the proficiency tests, the main tests only and the combined tests,
respectively.

Model Action Replacement Actor Swapping All
P T P+T P T P+T P T P+T

Random 50.00 34.42 17.21 50.00 50.00 25.00 50.00 37.96 18.98

GPT-2 43.03 67.47 31.68 49.76 63.77 31.88 44.57 66.63 31.72
OPT 50.14 71.88 38.49 57.00 69.57 39.61 51.70 71.35 38.75

CLIP 70.74 45.03 33.66 71.98 47.34 33.82 71.02 45.55 33.70
BLIP2 72.30 78.12 57.24 77.29 66.18 50.72 73.44 75.41 55.76

ClipBERT 53.41 55.11 29.69 56.52 63.29 39.61 54.12 56.97 31.94
UniVL 53.98 44.46 23.86 49.28 54.11 25.12 52.91 46.65 24.15
VideoCLIP 62.78 37.36 22.59 57.97 50.72 32.85 61.69 40.40 24.92
FiT 68.47 38.64 27.56 74.40 44.93 34.78 69.81 40.07 29.20
CLIP4Clip 73.15 46.59 35.51 76.33 57.49 44.93 73.87 49.07 37.65
VIOLET 69.32 41.19 29.69 73.43 55.56 42.03 70.25 44.46 32.49
X-CLIP 64.91 43.32 30.68 58.94 50.24 32.37 63.56 44.90 31.06
MCQ 65.20 33.10 22.44 73.43 50.72 39.61 67.07 37.10 26.34
Singularity 67.05 38.78 27.70 74.88 48.31 38.65 68.83 40.94 30.19
UniPerceiver 52.13 29.12 14.35 49.28 86.47 44.44 51.48 42.15 21.19
Merlot Reserve 68.89 30.97 21.16 76.33 51.69 39.61 70.58 35.68 25.36
VindLU 69.46 39.63 29.40 74.40 48.31 37.68 70.58 41.60 31.28
InternVideo 70.88 39.20 28.12 73.91 47.34 34.30 71.57 41.05 29.53
mPLUG-2 47.60 34.70 18.32 56.50 46.40 32.40 49.60 37.40 21.50
Otter 58.10 39.63 23.86 59.42 62.32 34.78 58.76 50.98 29.32
Video-LLaMA 77.56 67.61 53.55 80.19 64.73 55.56 78.15 66.96 54.01

In-Depth Results. We share detailed results of Situation Awareness subtests in Table 8.

UNIMODAL RESULTS. In both the Action Replacement and Actor Swapping subtests, we observe
that GPT-2 and OPT tend to perform slightly below or near the random baseline in the proficiency test.
This intriguing pattern hints at the inherent challenge these models face when tasked with grasping
fundamental knowledge about objects or actions within the scenes. However, when it comes to the
Main Tests, a noteworthy distinction emerges: GPT-2 significantly surpasses the random baseline,
demonstrating its ability to comprehend and execute the task to a certain degree. In contrast, OPT
performs much worse in the Main Test, possibly due to challenges in capturing crucial contextual
details and disparities in data distribution.

IMAGE-LANGUAGE MODEL RESULTS. In every subtest, CLIP and BLIP2 perform much better
than random performance, demonstrating their exceptional capacity to understand and work with
both textual and visual information. Their design, which integrates cutting-edge vision and language
models, enables them to perform well in tasks that call for comprehension and content creation in
both modalities.

VIDEO-LANGUAGE MODEL RESULTS. Most Video-Language Models perform slightly better than
random in these subtests, indicating some level of comprehension of video content, likely due to
their ability to process temporal information and recognise visual cues. However, they are generally
outperformed by Image-Language Models which may be attributed to the latter’s specialised focus
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Proficiency Test: A shirtless man opens the window / door hurriedly.
Main Test: A shirtless man opens / smashes the window hurriedly.

Proficiency Test: The man in a navy blue coat drags the man in the green coat off the ledge / ground.
Main Test: The man in a navy blue coat drags / tosses the man in the green coat off the ledge.

Proficiency Test: A girl, wearing a yellow top, forcefully pushes her body / away.
Main Test: A girl, wearing a yellow top, forcefully pushes / covers her body.

Proficiency Test: A man, dressed in a black outfit, aims his gun at a man in a brown shirt / SUV.
Main Test: A man, dressed in a black outfit, aims / discharges his gun at a man in a brown shirt.

Proficiency Test: A man with a face mask breathes oxygen with difficulty / goggles.
Main Test: A man with a face mask breathes / measures oxygen with difficulty.

Figure 14: Sample instances from the Situation Awareness (Action Replacement) test.

on multimodal understanding, enabling them to excel in tests that require both textual and visual
reasoning. Video-Language Models might need further refinement to fully leverage the richness of
video data and match the performance of their image-based counterparts.

Test Examples. In Figure 14 and Figure 15, we show some sample validated examples from the
Situation Awareness – Action Replacement and Actor Swapping subtests.
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Proficiency Test: The man in a tan coat clasps the woman with blonde hair / locks outside.
Main Test: The man in a tan coat / woman with blonde hair clasps the woman with blonde hair /

man in a tan coat outside.

Proficiency Test: The woman in red looks upward at the man in a hat / wheelchair.
Main Test: The woman in red / man in a hat looks upward at the man in a hat / woman in red.

Proficiency Test: A gentleman dressed in a tan suit pulls a man in a green shirt by the arms / collar.
Main Test: A gentleman dressed in a tan suit / man in a green shirt pulls a man in a green shirt /

gentleman dressed in a tan suit by the arms.

Proficiency Test: The girl with the ponytail suddenly pushes the boy with glasses / her.
Main Test: The girl with the ponytail / The boy with glasses suddenly pushes the boy with glasses /

the girl with the ponytail.

Proficiency Test: A young man sitting in a car notices a person wearing a dinosaur costume near a
van / tree and a parked car.

Main Test: A young man sitting in a car / person wearing a dinosaur costume notices a person
wearing a dinosaur costume / young man sitting in a car near a van and a parked car.

Figure 15: Sample instances from the Situation Awareness (Actor Swapping) test.
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C.4 CHANGE OF STATE

The Change of State test explores VidLMs’ capacity to recognise and distinguish various sub-phases
within actions, especially those involving Change of State (CoS) verbs. We also assess their ability to
align these sub-phases across both textual and visual modalities. Aligning CoS actions, pre-state and
post-states across modalities presents a unique challenge. While these states are typically implicit in
text, they are explicit in the visual modality. The sequence of sub-phase events represents an instance
of common-sense knowledge that is often not explicitly encoded in text, with pre- and post-states
frequently assumed as logical outcomes of an action, or necessary preconditions for that same action
to happen. Unimodal models may struggle to meaningfully model these sequences. In contrast,
multimodal models equipped with visual and temporal perception modules such as VidLMs can
bridge this knowledge gap, effectively transferring information encoded in the visual domain to the
language domain and vice versa by successfully modelling a cross-modal space.

Data sources. In total, we collect 624 caption-video pairs from five different datasets:

1. Something-Something V2 (Goyal et al., 2017a) is a collection of 220,847 labelled video
clips of humans performing pre-defined, basic actions with everyday objects. The dataset
contains 168,913 videos in the training set, 24.777 in the validation set, and 27,157 in the
test set. For our purposes, we focus solely on the validation set, from which we extract 312
caption-video pairs.

2. YouCook2 (Zhou et al., 2018) is an instructional video dataset with 2000 untrimmed videos
from 89 cooking recipes. Each video has temporal annotations and imperative English
descriptions. Videos are from YouTube, shot in third-person view, and depict unconstrained
cooking scenarios worldwide. From this dataset we extract 154 caption-video pairs.

3. COIN (Tang et al., 2019) is an instructional dataset with 11,827 videos covering 180 tasks
across 12 domains. It utilises a hierarchical structure with three levels: domain, task, and
step. Domains include nursing, vehicles, gadgets, and more. Tasks are linked to domains
(e.g., “replace a bulb” is linked to “electrical appliances”). Steps further detail tasks, like
“remove the lampshade” for “replace a bulb.”. From this dataset we extract 281 caption-video
pairs.

4. RareAct (Miech et al., 2020) is a video dataset of unusual actions. It contains 122 different
actions obtained by combining verbs and nouns rarely co-occurring together in the large-
scale textual corpus from HowTo100M (Miech et al., 2019), but that frequently appear
separately. From this dataset we extract 21 caption-video pairs.

5. STAR (Wu et al., 2021) is a benchmark for Situated Reasoning that provides challenging
question-answering tasks, symbolic situation descriptions, and logic-grounded diagnosis
via real-world video situations. It aims to capture the present knowledge from surrounding
situations and reason accordingly. The dataset consists of four question types for situated
reasoning: Interaction, Sequence, Prediction, and Feasibility. In order to construct captions
from this dataset we extract the subject and the object from the question and combine them
with the verb contained in the correct answer. From this dataset we extract 44 caption-video
pairs.

Foiling method. For each subtest in the Change of State test, we generate distinct caption-foil pairs.
However, the initial process is shared across all settings. We select candidates CoS verbs from a
codebase initially developed by Warstadt et al. (2019) and later expanded by Warstadt et al. (2020).
The codebase14 includes over 3000 lexical items annotated by human experts with grammatical
features. From this set of items, we select 49 verbs labelled as change of state. Alongside their
grammatical features, we also retain the initial state, whenever available. Finally, for each CoS verb
we retrieve a set of candidate final states (or post-states) as well as of antonyms. Specifically, we
leverage ConceptNet (Speer et al., 2017), WordNet (Miller, 1995), and NLTK (Bird, 2006) to collect
a set of appropriate candidates. Afterwards, we select the most appropriate one through manual
validation. Consequently, each change of state can be represented as a 4-tuple consisting of the
pre-state, the CoS verb, the post-state, and the reverse CoS verb (e.g., <“open”, “to close”, “closed”,

“to open”>). We use the CoS verbs as targets when parsing the textual data of various existing VidL

14https://github.com/alexwarstadt/data_generation
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datasets. If any of the selected CoS verbs appears as a verb in a sentence, we retrieve that sentence
along with its corresponding video item and metadata, if available. Each of caption-foil pairs within
the subtests of the Change of State test is generated based on a template that specifies the linear order
of the constituents in the sentence. The script for the pairs generation is available in the VILMA
GitHub repository. For the generated caption, we define the following templates:

1. Action caption template: “Someone <change-of-state-verb> the <object>.” for transitive
change-of-state verbs, “The <subject> <change-state-verb>.” for intransitive ones;

2. Pre-State caption template: “Initially, the <subject/object> is <pre-state>.”;

3. Post-State caption template: “At the end, the <subject/object> is <post-state>.”;

4. Reverse caption template: “Initially, the <object> is <pre-state>. Then someone <change-
state-verb> the <object>. At the end, the <object> is <post-state>.” for transitive change-
of-state-verbs. “Initially, the <subject> is <pre-state>. Then the <subject> <change-state-
verb>. At the end, the <subject> is <post-state>.” for intransitive ones.

To generate the corresponding foiled versions, we replace the target sub-phase with its “opposite”
sub-phase retrieved from the extended codebase. Specifically, for the action sub-phase, we replace it
with the “reverse” element; for the pre-state sub-phase, we replace the “pre-state” with the “post-
state”, and vice-versa for the post-state sub-phase; finally for the reverse-foiling, targeting all of the
sub-phases, we swap “pre-state” and “post-state” as well as replace the “action” with the “reverse”
element.

Proficiency Test. In the proficiency test for Change of State, our focus is on the object identifica-
tion task. For each unique video, we mask either the subject or the object of the caption, depending
on the transitivity of the verb. If the verb can take an object as an argument, we mask it and replace it
with a counterfactual generated by RoBERTa (Liu et al., 2019). If the verb cannot take a direct object,
we mask the subject of the sentence instead.

In-Depth Results. In Table 9 , we report the in depth-results obtained by the models on all of the
Change of State subtests.

UNIMODAL RESULTS. In the Action and Reverse subtests (T), unimodal models perform close
to the random baseline. In these settings, text-only LMs are unable to identify the foiled version
by processing the textual modality alone. However, in the Pre-State and Post-State settings (T), the
performance levels deviate from the random guess, with a preference for the foiled version in the
former, and the caption in the latter. This observation supports our assumption: change-of-state verbs
often occur together with their respective Post-State, while their preconditions (i.e., the Pre-State) are
typically implied rather than explicitly stated in text corpora. This biased distribution is reflected in
the performance of unimodal LMs in these two subtests, where the model tends to blindly attribute a
lower perplexity score to the sentence containing the post-state condition. However, if we take into
account the combined results (P+T), all of the results shows that text-only LMs are generally unable
to correctly solve the tests, despite GPT-2 achieving the best score on the board (T).

IMAGE-LANGUAGE MODEL RESULTS. The same general trend applies to ILMs, as well. Both
ILMs achieve slightly higher results on the Action subtests, while results on the Reverse one remain
mixed (T). The ability to integrate static visual information is not sufficient to correctly distinguish
between an action unfolding in one temporal direction instead of the other. ILMs still exhibit a bias
towards sentences containing the Post-State phase rather than those containing the Pre-State one.
Results obtained on the combined (P+T) tests reveal the necessity of multimodal information in order
to meaningfully solve the tests when compare to the Unimodal (P+T) results.

VIDEO-LANGUAGE MODEL RESULTS. Across the board, VidLMs exhibit some minor improve-
ments over other types of models in the Reverse (T) subtest. When the unfolding of the action is
completely explicit, VidLMs outperform unimodal and ILMs ones (i.e., best and second-best scores
are obtained by InternVideo and Merlot Reserve, respectively). However, VidLMs second best result
(Merlot Reserve) on the combined subtest (P+T) is matched by CLIP.
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Table 9: Change of State results using pairwise accuracy (accr) metric. P, T and P+T stand for the
scores achieved on the proficiency tests, the main tests only and the combined tests, respectively.

Model Action Pre-State Post-State Reverse All
P T P+T P T P+T P T P+T P T P+T P T P+T

Random 50.0 50.0 25.0 50.0 50.0 25.0 50.0 50.0 25.0 50.0 50.0 25.0 50.0 50.0 25.0

GPT-2 18.5 51.3 11.8 19.1 40.2 8.8 16.1 65.8 11.0 18.2 52.5 11.4 18.0 52.4 10.8
OPT 24.2 54.1 17.5 23.2 37.6 7.7 22.4 59.8 15.0 22.5 40.2 11.4 23.1 48.0 12.9

CLIP 93.0 60.2 57.3 93.3 46.9 43.8 93.3 57.1 53.5 92.4 56.8 54.2 93.0 55.2 52.2
BLIP2 75.2 56.4 41.4 73.2 40.2 29.9 74.8 65.0 47.6 75.0 47.0 33.5 74.5 52.1 38.1

ClipBERT 63.1 47.5 33.1 62.4 41.8 26.3 63.4 53.1 33.5 66.1 57.6 41.1 63.7 50.0 33.5
UniVL 81.5 58.0 46.5 80.4 47.4 34.5 81.5 55.9 47.2 81.8 55.9 43.6 81.3 54.3 43.0
VideoCLIP 48.7 51.0 25.8 50.5 52.6 32.5 46.1 51.2 19.7 53.8 48.3 25.9 49.8 50.8 25.9
FIT 93.0 56.7 52.2 93.3 42.8 38.1 94.1 53.9 52.0 91.5 55.1 48.7 93.0 52.1 47.8
CLIP4Clip 94.3 56.7 55.1 95.4 46.9 44.9 94.9 57.5 55.5 94.5 55.5 53.0 94.8 54.1 52.1
VIOLET 87.9 55.1 50.0 90.7 47.4 43.3 86.2 57.5 49.2 88.1 58.5 53.8 88.2 54.6 49.1
X-CLIP 85.7 51.3 45.9 85.0 49.0 39.2 87.0 55.1 50.8 85.2 55.5 48.3 85.7 52.7 46.0
MCQ 91.7 53.2 50.0 88.1 42.3 34.0 91.3 54.3 50.0 89.8 51.3 47.0 90.3 50.3 45.3
Singularity 93.6 61.1 56.7 91.8 44.3 40.7 94.5 60.6 57.5 91.5 52.1 46.2 92.8 54.6 50.3
UniPerceiver 68.5 43.3 27.1 63.9 43.8 23.2 69.7 53.1 41.3 67.8 44.1 25.0 67.5 46.1 29.1
Merlot Reserve 93.0 62.4 58.9 94.8 34.5 32.5 93.7 58.7 55.9 92.0 58.9 54.2 93.4 53.6 50.4
VindLU 85.7 63.1 54.1 84.0 46.9 39.7 84.7 51.2 45.3 87.3 49.1 43.2 85.4 52.6 45.6
InternVideo 95.5 60.5 55.1 95.4 47.4 55.1 95.7 55.9 55.1 95.8 64.4 55.1 95.6 57.7 55.1
mPLUG-2 38.9 51.3 23.0 39.7 43.3 17.0 40.2 50.8 22.4 39.4 43.2 19.1 39.5 47.7 20.8
Otter 66.6 57.0 39.2 61.3 44.3 25.8 67.3 60.2 40.2 67.4 50.4 31.8 65.7 53.0 34.3
Video-LLaMA 82.2 65.0 51.9 80.9 45.9 39.7 81.9 62.2 48.4 80.1 58.5 44.1 81.4 59.0 46.8

VidLMs still struggle on the Pre-State subtest stressing their inability to align the visual and textual
modalities. Even models pretrained with NLG tasks, such as UniVL, do not perform better than the
random baseline. However, most of the VidLMs tend to closer approximate the random guessing (T)
allowing us to hypothesise that the textual bias toward pre-state sentences exhibited by Unimodal and
ILMs is slightly reduced.

On the other hand, this leads to lower results in the Post-State (T) subtest. Surprisingly, in the
Action subtest (T), where VidLMs are not provided with the explicit textual Pre-State and Post-State
information, models do not perform significantly better than ILMs.

However, in all of the subtests, when we consider the combined tests (P+T) we can better appreciate
the information provided by the visual modality. Nevertheless, the performance gap between VidLMs
and ILMs is neither pronounced nor consistent, with CLIP scoring the second-best result on the
aggregated results for the combined metric (P+T), and Video-LLaMA and InternVideo showing only
marginal improvement over the best ILM.

Test Examples. In Figure 16 - 19, we present some sample validated examples from the Change of
State – Action, Pre-State, Post-State and Reverse subtests.
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Proficiency Test: Someone throws the bag / ball.
Main Test: Someone throws / pulls the bag.

Proficiency Test: Someone tears the pink paper / curtain.
Main Test: Someone tears / assembles the pink paper.

Proficiency Test: Someone spreads the grapes / word.
Main Test: Someone spreads / assembles the grapes.

Proficiency Test: Someone attaches the pen drive / camera to the cd player.
Main Test: Someone attaches / detaches the pen drive to the cd player.

Proficiency Test: Someone reveals the battery / truth.
Main Test: Someone reveals / covers the battery.

Figure 16: Sample instances from the Change of State (Action) tests.
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Proficiency Test: The skier / jet skies.
Main Test: Initially, the skier is in a higher / lower position.

Proficiency Test: Someone digs the seeds / body out.
Main Test: Initially, the seeds are inside / outside.

Proficiency Test: Someone empties the cup / trash.
Main Test: Initially, the cup is full / empty.

Proficiency Test: Someone pulls the spray / phone out.
Main Test: Initially, the spray is inside / outside.

Proficiency Test: Someone pulls a baby baby toy / gun.
Main Test: Initially, a baby toy is further away / closer.

Figure 17: Sample instances from the Change of State (Pre-State) test.
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Proficiency Test: Someone connects the chair and the base / dots.
Main Test: At the end, the chair and the base is attached / detached.

Proficiency Test: Someone folds the paper / laundry.
Main Test: At the end, the paper is folded / unfolded.

Proficiency Test: Someone uncovers the bulb / truth.
Main Test: At the end, the bulb is visible / hidden.

Proficiency Test: Someone plugs the usb / plug.
Main Test: At the end, the usb is inside / outside.

Proficiency Test: Someone soaks the wakame / car.
Main Test: At the end, the wakame is wet / dry.

Figure 18: Sample instances from the Change of State (Post-State) test.
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Proficiency Test: Someone wraps the pizza / presents.
Main Test: Initially, the pizza is unwrapped / wrapped. Then, someone wraps / unwraps the pizza.

At the end, the pizza is wrapped / unwrapped.

Proficiency Test: Someone fills the glass / gap.
Main Test: Initially, the glass is empty / full. Then, someone fills / empties the glass. At the end, the

glass is full / empty.

Proficiency Test: Someone chops an onion / apple.
Main Test: Initially, an onion is whole / in pieces. Then, someone chops / connects an onion. At the

end, an onion is in pieces / whole.

Proficiency Test: Someone wipes the screen / floor.
Main Test: Initially, the screen is dirty / clean. Then, someone wipes / stains the screen. At the end,

the screen is clean / dirty.

Proficiency Test: Someone fixes the new string / problem.
Main Test: Initially, the new string is separated / attached. Then, someone fixes / detaches the new

string. At the end, the new string is attached / separated.

Figure 19: Sample instances from the Change of State (Reverse) test.
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C.5 RARE ACTIONS

In the Rare Actions test, we investigate the ability of VidLMs to identify novel compositions and
recognise unusual events, such as a computer keyboard is being cut using a chainsaw by someone
described. These events are described by a verb-noun pair, e.g. “cutting a keyboard". We choose
foils from more likely events taking place in videos.

Data sources. We leverage the RareAct dataset (Miech et al., 2020), which consists of videos
accompanied by action-object pairs describing events within the videos. These action-object pairs
are extracted by analysing co-occurrence statistics from the widely used HowTo100M (Miech et al.,
2019) dataset for VidLM pretraining. To enrich this dataset, we generate simple captions based on the
action-object pairs. For instance, given the action-object pair cut-keyboard, we create the descriptive
caption cutting a keyboard. We avoid subject phrases in captions since some videos do not comprise
a human being as an actor.

Foiling method. This test offers two subtests: the Action Replacement and the Object Replace-
ment subtest. In the Action Replacement subtest, we substitute the original action with a more
plausible alternative that can be applied to the given object, e.g. type on for the previous keyboard
example. To generate foils in this subtest, we employ T5 (Raffel et al., 2020), as it can produce
foil candidates with compound verbs, e.g., talk on, place at, etc. We discard foil candidates with
some general actions (e.g. use, have etc.) or actions that imply some form of touching (e.g. hold,
reach etc.). We then perform an NLI and GRUEN score filtering. In this stage, we perform a manual
intervention and abandon the low quality candidates. As for the Object replacement subtest, we focus
on replacing the object in the action-object pair. For instance, revisiting the previous example, we
replace the object keyboard with bread. Here, we prefer to use a set of token-based MLMs (Devlin
et al., 2019; Lan et al., 2020; Liu et al., 2019). To further enhance the quality of the foils, we opt
for an ensembling approach in the object replacement test. Particularly, we use three MLMs which
are BERT, RoBERTa and ALBERT (Devlin et al., 2019; Liu et al., 2019; Lan et al., 2020). We also
run an object detector called End-to-End Object Detection model (DETR) (Carion et al., 2020) and
discard the foil candidates that contain the detected objects. We use facebook/detr-resnet-101
DETR in Huggingface’s transformers package (Wolf et al., 2019). We uniformly sample K = 8
frames and run the object detector on these sampled frames. We classify an object detected if its
confidence threshold exceeds 0.80.

Proficiency Test. The proficiency test of the Rare Actions focuses on the existence of objects in
the given input videos, similar to the VALSE existence instrument. This time we do not use negated
foils: We replace the correct object with another. To create captions, we create a statement about
the existence of the ground truth object, e.g. “there is at least one keyboard.". To create foils, we
randomly sample from the objects appear in ground-truth captions, e.g. “there are some flowers".
Similar to the main test, we implement the same object detection filtering process.

In-Depth Results. Table 10 presents the model performance achieved on the Rare Actions test.

UNIMODAL RESULTS. Unimodal baselines GPT-2 and OPT (Radford et al., 2019; Zhang et al.,
2022) perform very poorly on the main tests as expected since the captions describe less likely events.
We observe that the models consistently perform better in object replacement tests in comparison
to action replacement. This is inline with previous work where the models are more biased towards
nouns and they fail to process verbs sufficiently (Momeni et al., 2023; Park et al., 2022; Lei et al.,
2022).

IMAGE-LANGUAGE MODEL RESULTS. CLIP consistently outperforms random in all individual
and combined tests, showcasing its effectiveness in understanding and executing the given tasks. In
contrast, BLIP2, while excelling in proficiency tests, demonstrates lower performance in the main
test and combined test compared to CLIP, implying potential limitations or challenges in action
replacement subtest for BLIP2. Additionally, CLIP outperforms all VidLMs except VindLU and
InternVideo, which demonstrates its ability to handle novel compositions is superior to these models.
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Table 10: Rare Actions subtest results using pairwise accuracy (accr) metric. P, T and P+T stand for
the scores achieved on the proficiency tests, the main tests only and the combined tests, respectively.

Model Action Replacement Object Replacement All
P T P+T P T P+T P T P+T

Random 50.00 50.00 25.00 50.00 50.00 25.00 50.00 50.00 25.00

GPT-2 61.25 17.98 9.85 55.20 34.39 26.16 58.35 25.85 17.67
OPT 60.99 20.51 10.79 56.79 27.60 19.36 58.97 23.91 14.90

CLIP 92.81 93.74 86.95 92.63 94.08 88.73 92.72 93.90 87.80
BLIP2 93.21 64.98 60.19 94.51 84.83 81.65 93.83 74.50 70.48

ClipBERT 38.75 27.96 7.99 40.75 52.60 20.81 39.71 39.78 14.14
UniVL 77.23 78.83 60.59 77.75 77.17 59.25 77.48 78.04 59.89
VideoCLIP 84.15 75.10 62.98 83.82 80.64 72.40 83.99 77.75 67.50
FiT 89.21 86.55 76.30 90.17 92.49 85.55 89.67 89.40 80.73
CLIP4Clip 82.95 93.07 78.16 82.94 95.23 79.19 82.95 94.10 78.65
VIOLET 86.68 85.49 73.50 87.57 87.86 75.87 87.10 86.63 74.64
X-CLIP 82.69 86.28 70.57 85.12 84.97 74.13 83.85 85.65 72.28
MCQ 91.48 86.82 79.09 91.18 90.75 85.69 91.34 88.70 82.26
Singularity 92.14 85.22 78.16 93.21 92.77 88.44 92.65 88.84 83.09
UniPerceiver 57.12 55.12 31.02 59.39 62.71 38.72 58.21 58.76 34.71
Merlot Reserve 83.75 96.27 80.42 83.81 84.39 74.56 83.78 80.57 77.61
VindLU 94.01 92.14 86.42 94.36 94.08 89.60 94.18 93.07 87.94
InternVideo 95.47 95.87 92.65 95.81 97.54 92.65 95.63 96.67 92.65
mPLUG-2 52.50 43.10 21.70 49.00 51.30 26.50 50.80 47.00 24.00
Otter 56.06 58.85 30.89 56.21 58.67 40.32 56.14 58.76 35.61
Video-LLaMA 78.70 58.19 47.00 78.76 84.97 71.10 78.73 71.01 58.56

VIDEO-LANGUAGE MODEL RESULTS. All VidLMs, consistently outperform random in all indi-
vidual and combined tests, showcasing their effectiveness in understanding and performing the given
tasks. The high accuracy scores across proficiency, main, and combined tests suggest the capability of
these models in achieving accurate results in Rare Actions subtests. However, UniPerceiver struggles
with accurately comprehending and replacing actions or objects in the given scenarios compared to
other VidLMs, potentially indicating a need for improvements in its ability to understand nuanced
visual and contextual information.

Test Examples. In Figure 20 and Figure 21, we show some sample validated examples from the
Rare Actions – Action Replacement and Object Replacement subtests.
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Proficiency Test: there is at least one fridge / chocolate
Main Test: washing some fridges / eating from a fridge

Proficiency Test: there is at least one banana / blender
Main Test: weighing / eating a banana

Proficiency Test: there is at least one shirt / are some peppers
Main Test: rolling / putting a shirt

Proficiency Test: there are some spoons / is at least one car
Main Test: throwing / serving with some spoons

Proficiency Test: there is at least one laptop / car
Main Test: measuring / accessing a laptop

Figure 20: Sample instances from the Rare Actions (Action Replacement) test.
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Proficiency Test: there are some corns / is at least one blender
Main Test: peeling some corns / a lemon

Proficiency Test: there is at least one phone / egg
Main Test: hammering a phone / some nails

Proficiency Test: there is at least one door / towel
Main Test: spraying a door / an area

Proficiency Test: there is at least one phone / bicycle
Main Test: microwaving a phone / some food

Proficiency Test: there is at least one chocolate / are some corns
Main Test: drinking a chocolate / some tea

Figure 21: Sample instances from the Rare Actions (Object Replacement) test.
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C.6 SPATIAL RELATIONS

In the Spatial Relations test, we investigate the capabilities of VidLMs to understand spatial as well
as spatio-temporal relations in a video (e.g. moving something towards or from something).

Data sources We create the foils starting from the Something-Something V2 dataset Goyal et al.
(2017a), which contains a collection of 220, 847 labelled clips of 174 pre-defined basic actions
performed by humans with common objects, such as putting something into something or turning
something upside down. Since this dataset is often used to pretrain VidLMs models, we leverage only
the video-caption pairs present in the validation set.

Foiling method. In order to create a foil, we generate several candidates for each caption by
replacing a preposition in the caption with others drawn from the set of prepositions in the validation
set itself. This ensures that foils and captions express relations with prepositions from the same
distribution. Each candidate is scored for perplexity using T5-base15. We test also with T5-large, but
we obtain similar results, therefore we use the base version for better efficiency.

In order to facilitate the model in the scoring stage, we prepend a subject to the candidate before
feeding it into the model. Therefore a sentence like, rolling a can onto a flat surface becomes
someone rolling a can onto a flat surface. We observe that with this format, the model produces better
perplexity scores, probably because the data T5 was trained on tends to contain full sentences with
explicit subjects, rather than verb phrases only. However, this is carried out only for scoring purposes.
Once a candidate is selected, the version included in the main test does not have any prepended
subject.

We select the top 10 best-scoring candidates for each sample and we run them through a state-of-
the-art NLI model based on RoBERTa16, using the caption as premise and the candidate foil as a
hypothesis. Similarly to Parcalabescu et al. (2022), we keep only the candidates predicted as neutral
or contradiction. The candidate foils are checked for grammaticality, by computing the GRUEN
score and filtering out candidates with scores lower than 0.6. Finally, we adjust the distribution of
prepositions in the foils to match the caption distribution. This is achieved by removing foil candidates
containing prepositions with frequencies that exceed the frequency of the caption distribution. This
mitigates distribution biases arising in the foil generation process, which could be exploited by the
tested models.

Proficiency Test. We focus on the object identification task for the proficiency test of Spatial
Relations, similar to Change of State proficiency tests. We use RoBERTa (Liu et al., 2019) to
generate the foil by either masking the subject or the object of the caption, again, depending on the
transitivity of the verb as we did in Change of State.

In-Depth Results. We report in Table 11 the results for Spatial Relations.

UNIMODAL RESULTS. Unimodal models, namely GPT-2 and OPT show higher performance on
the main test (T) than on the proficiency test (P) where they are close to random chance. The quite
decent result on the main test (T) suggests that the models can still exploit some spurious correlations
in the text. This may be due to the design choice to include only in-distribution relations in the foil
construction which although, filtered for grammaticality may still be detected as less likely than
the actual caption. This can certainly be seen as a potential limitation of the Spatial Relations test.
However, this is less visible in the combined test (P+T) where both perform better than the random
baseline.

IMAGE-LANGUAGE MODEL RESULTS. Both CLIP and BLIP2 perform well on the proficiency
test (P). This is expected as this test heavily relies on object identification and it is known that ILMs
are usually trained with object-centric texts. On the other hand, we observe a drop in performance on
the main test (T) for both models and, to a greater extent on CLIP. This is also expected since the task
is designed to exploit temporal information, which cannot be exploited by these models.

15https://huggingface.co/t5-base
16https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
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Table 11: Spatial Relations results using pairwise accuracy (accr) metric. P, T and P+T stand for the
scores achieved on the proficiency tests, the main tests only and the combined tests, respectively.

Model Spatial Relations
P T P+T

Random 50.0 50.0 25.0

GPT-2 49.1 72.8 43.0
OPT 59.0 84.7 55.7

CLIP 78.6 58.3 44.8
BLIP2 91.1 86.0 79.4

ClipBERT 44.0 65.1 30.0
UniVL 62.5 51.7 33.2
VideoCLIP 67.9 54.7 39.7
FiT 70.5 51.9 38.7
CLIP4Clip 79.8 56.7 44.2
VIOLET 73.3 50.4 38.7
X-CLIP 74.8 56.2 43.5
MCQ 79.4 48.9 39.4
Singularity 80.7 46.8 38.9
UniPerceiver 45.5 48.0 20.1
Merlot Reserve 63.1 41.9 29.2
VindLU 83.2 45.6 39.4
InternVideo 76.6 59.8 45.3
mPLUG-2 46.6 48.1 26.5
Otter 62.9 71.3 47.6
Video-LLaMA 88.6 88.8 79.6

Despite that, BLIP2 keeps performing decently in both the main test (T) and the combined one
(P+T), setting the best performance on the spatial relations among the evaluated models. This raises
questions regarding the capability of VidLMs to ground visio-temporal and textual information.

VIDEO-LANGUAGE MODEL RESULTS. Apart from UniPerceiver and ClipBERT (which perform
below chance), all the VidLMs perform decently on the proficiency test (P). However, their per-
formance consistently drops for both the main (T) and the combined test (P+T). Video-LLaMA
is the best-performing VidLM. That being said, the performance of the remaining models is far
from both unimodal and ILMs. This suggests a consistent lack of grounding in VidLMs concerning
spatial relations and the need for VidLMs to design better strategies to properly leverage the temporal
information in video-language tasks.

Test Examples. In Figure 22, we show some sample validated examples from the Spatial Relations
test.

D FURTHER ANALYSIS

In Figure 23, we present two subplots depicting pertinent insights regarding model performance in
relation to video length. The left subplot illustrates the dynamics of model accuracy across various
video duration segments. The data comprises six distinct time groups, each corresponding to the
performance metrics of ten different VidLMs. Conversely, the right subplot visually represents the
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Proficiency Test: rolling a can on a flat surface / screen
Main Test: rolling a can on / onto a flat surface

Proficiency Test: pouring water onto a chair / table
Main Test: pouring water onto / out of a chair

Proficiency Test: pulling keys out of a lock / drawer
Main Test: pulling keys out of / on a lock

Proficiency Test: pushing small sunscreen lotion from right to left / bottom
Main Test: pushing small sunscreen lotion from / on right to left

Proficiency Test: holding a pen over scissors / paper
Main Test: holding a pen over / with scissors

Figure 22: Sample instances from the Spatial Relations test. The descriptions are quite similar
except for a small lexical variation (in blue) for the caption and (in orange) for the foil.

distribution of samples categorised within the aforementioned time groups. This graphical depiction
provides an intuitive understanding of how the dataset is distributed across different video length
categories. Our preliminary analysis suggests that the majority of the implemented VidLMs perform
worse as the video length increases. The reason behind this issue is how these models process
input videos, where many of them uniformly sample a limited number of frames and discard time
information at the same time.
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Figure 23: Analysis of performance variation across video length (left) and distribution of samples
based on video length in log-scale (right).
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