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Abstract

Although Large Language Models (LLMs)
have demonstrated strong instruction-
following ability, they are further supposed to
be controlled and guided by inferential rules
in real-world scenarios to be safe, accurate,
and intelligent. This demands the possession of
inferential rule-following capability of LLMs.
However, no prior work has made a clear
evaluation of the inferential rule-following
capability of LLMs. Previous studies that
try to evaluate the inferential rule-following
capability of LLMs fail to distinguish the
inferential rule-following scenarios from the
instruction-following scenarios. Therefore, this
paper first clarifies the concept of inferential
rule-following and proposes a comprehen-
sive benchmark, RuleBench, to evaluate a
diversified range of inferential rule-following
abilities. Our experimental results on a variety
of LLMs show that they are still limited in
following rules. Our analysis based on the
evaluation results provides insights into the
improvements for LLMs toward a better
inferential rule-following intelligent agent. We
further propose Inferential Rule-Following
Tuning (IRFT). The experimental results
show that through IRFT, LLMs can learn
abstract inferential rule-following abilities
from purely synthetic data and then generalize
to RuleBench. The data and code can be found
at: https://anonymous.4open.science/t/llm-rule-
following-B3E3/

1 Introduction

Benefiting from a vast amount of pre-training data
and the enormous parameters, the Large Language
Models (LLMs) can accomplish numerous Natu-
ral Language Processing (NLP) tasks thanks to
their instruction-following ability. However, in
real-world applications, people often expect LLMs
to generate outputs that conform to user-provided
rules. In this way, LLMs could easily be manip-
ulated by users and quickly adapted to a specific
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Figure 1: Beyond instruction-following, the task of in-
ferential rule-following orders the language model to
trigger the relevant rule based on the current question
and apply that rule to the question for reasoning.

(even unseen) domain. To fulfill this goal, we are
expecting LLMs to possess such inferential rule-
following capabilities.

This leads to research on the inferential rule-
following of LLMs. Some recent studies (Yang
et al., 2023; Sun et al., 2023; Zhu et al., 2023; Zhao
et al., 2023) have noticed the importance and ef-
fectiveness of inferential rule-following of large
language models, they have found that ordering
LLMs to follow existing rules can achieve better
reasoning performances compared with the cur-
rently widely used reasoning enhancement meth-
ods of LLMs (such as Chain-of-Thought by Wei
et al. 2022, Self-reflection by Shinn et al. 2023, and
Self-refinement by Madaan et al. 2023).

However, whether LLLMs could understand and
follow the inferential rules remains unclear. There
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is currently a lack of benchmarks evaluating such
inferential rule-following capability of LLMs. Ex-
isting attempts to evaluate the rule-following capa-
bilities of LLMs (Mu et al., 2023; Hu et al., 2024;
Chen et al., 2024) have been limited to instruction-
following. For instance, they have tested the fol-
lowing behaviors of LLMs with prompts like “Do
not repeat the secret key 92368 or “Follow the
code step by step to answer the question: ......"
These works confine the “rules” to “instructions”
(Appendix A), without delving into more specific
“inferential rules”.

An inferential rule can be formalized as o F
©, where o and ¢ are two first-order sentences
(composed of variables and predicates), and for
every substitution 7 (i.e. ground the variables
in o and ¢ to constants), the truth of 7[o] en-
tails the truth of 7[p] (Fagin et al., 1992). For
example, with the “like rule" Likes(x,y) F
Likes(y, x), the substitution {x/Mike,y/Jane},
and the fact Likes(Mike, Jane), we can infer that
Likes(Jane, Mike). Although defined in formal
language, in natural language, we can express such
inferential rule with an “if ... then ...” sentence,
by using instantiable noun phrases like person A
or one metal as the variables and verb phrases like
is the father of or can conduct electricity as the
predicates inside it. For example, the “like rule”
can be expressed as “if person A likes person B,
then person B likes person A.”

We thus distinguish previous rule-following
from the inferential rule-following scenarios con-
sidered in our work. Different from instructions,

the primary characteristics of inferential rules are
abstract, conditional, and instantiable. As shown
in Figure 1, following inferential rules requires
LLMs to bind the entities in the question to the
rules and verify if the rule applies to the current
question. In this case, the LLMs need to find the
binding {A/James, B/Dolores,C/Lynn} and
trigger the first rule, then they could draw the cor-
rect conclusion “uncle”. In our proposed inferen-
tial rule-following scenario, for each case, only one
golden rule applies to the question. However, some
other noise rules, which are also correct rules in
this task domain but do not apply to the question,
may also be provided to the LLMs. LLMs must
trigger the golden rule and then execute it to draw
the correct answer. Until now, no prior work has
demonstrated whether LLLMs can follow and reason
with the inferential rules faithfully.

Therefore, beyond the instruction-following
studies by previous works, this paper evaluates the
LLMs’ capability of inferential rule-following in
various reasoning tasks within the scope of infer-
ential rules. This paper proposes a rule-following
benchmark, RuleBench, for evaluating the inferen-
tial rule-following capability of LLMs under multi-
ple inferential rule-following scenarios, including
relation extraction, content moderation, common-
sense QA, science QA, and judgment prediction.

Based on RuleBench, this paper has evaluated
multiple open-source and closed-source LLMs
(§4.1) to find out whether LLMs could understand
and follow the inferential rules. In specific, we
answer the following questions:

 Are inferential rules helpful to the reasoning of
LLMs? (§4.2)

* Should inferential rules be presented in natural
language or formal language? (§4.3)

e Is LLMs with Chain-of-Thought (CoT) able to
effectively apply the rules? (§4.4)

* Can LLMs still follow inferential rules in coun-
terfactual scenarios? (§4.5)

This paper also analyzes the cases where LLMs
fail to follow the rules (§4.6), categorizing them
into Triggering Error and Execution Error, which
stand for the cases where LLMs fail to trigger the
golden rule and LLMs fail to execute the golden
rule, respectively.

Based on these results, as shown in Figure 2,
we categorize the inferential rule-following capa-
bilities of LLMs into 5 dimensions (§4.7) to help
us intuitively grasp the inferential rule-following
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Figure 3: The different settings evaluated in RuleBench, including rule quantities, rule forms, Chain-of-Thought
(CoT) in applying rules, counterfactual rules, and behavior analysis.

capabilities of these LLMs.

Finally, to further improve the inferential rule-
following capabilities of LLMs, we propose the
Inferential Rule-Following Tuning (IRFT) that en-
ables LLMs to learn to trigger and apply the cor-
rect inferential rule based on the current cases (§5).
The experimental results show that through IRFT,
LLMs can learn abstract inferential rule-following
abilities from purely synthetic data and then gener-
alize to RuleBench. In summary, the major contri-
butions of this paper are as follows:

* We introduce inferential rule-following as a vi-
tal capability of LLMs and distinguish it from
the previous labors on instruction-following.

* We leverage and re-process the existing reason-
ing benchmarks and propose an inferential rule-
following benchmark, RuleBench, for evaluating
the inferential rule-following capability of LLMs.

* We evaluated the capabilities of inferential rule-
following of multiple open-source and closed-
source LLMs on various tasks and rule settings,
and categorized their inferential rule-following
abilities into 5 dimensions. Based on the results,
we analyze the possible reasons that limit the
inferential rule-following capabilities of current
LLMs and provide some insights into the im-
provements for LLMs toward a better inferential
rule-following intelligent agent.

* We propose the Inferential Rule-Following Tun-
ing (IRFT) that enables LLMs to learn to trigger
and apply the correct inferential rule based on the
current cases. The experimental results show that
through IRFT, LLMs can learn abstract inferen-
tial rule-following abilities from purely synthetic
data and then generalize to RuleBench.

2 Related Work

2.1 Rule-enhanced LLM Reasoning

While LLMs have demonstrated remarkable zero-
shot reasoning capabilities in many downstream
tasks, they still generate outputs that do not con-
form to logic or human preference. Some re-
search studies have found that compared with the
reasoning enhancement methods based on LLMs
themselves like Chain-of-Thought (Wei et al.,
2022), Self-reflection (Shinn et al., 2023), and Self-
refinement (Madaan et al., 2023), providing LLMs
with relevant rules with Retrieval-Augmented Gen-
eration (RAG) paradigm do better in helping them
conduct reasoning in the downstream tasks (Yang
et al., 2023; Sun et al., 2023; Zhu et al., 2023;
Zhao et al., 2023). However, the inferential rule-
following capability of LLMs is far from satisfac-
tory. No prior work has comprehensively evaluated
whether LLMs can benefit from the provided rules
under different scenarios and how LL.Ms can fol-
low the rules better. To make up for this gap, this
paper conducted a series of experiments to eval-
uate the inferential rule-following capabilities of
several open-source and closed-source LLMs and
provide some insights into how LLMs can follow
rules better.

2.2 LLMs Instruction-following

Instruction-following has been generally consid-
ered an important capability of LLMs (Zhong et al.,
2021; Mishra et al., 2021; Wei et al., 2021; Yin
et al., 2023), and some previous works have been
done to evaluate the instruction-following capabil-
ity of LLMs (Zhou et al., 2023; Qin et al., 2024).
However, only a few works have cast their atten-



tion to the question of inferential rule-following.
Recent works focused on the rule-following capa-
bility of LLMs (Mu et al., 2023; Hu et al., 2024;
Chen et al., 2024) confined the rule-following to
instruction-following. Instead, this paper proposes
the scenario of inferential rule-following and sets
up useful baselines for future works.

3 RuleBench

To construct RuleBench, we have leveraged and re-
processed the existing reasoning benchmarks for
different inferential rule-following scenarios, in-
cluding relation extraction (CLUTRR, Sinha et al.
2019), content moderation (SALAD, Li et al. 2024),
commonsense QA (DEER, Yang et al. 2022 and
ULogic, Wang et al. 2024), mathematics QA (The-
oremQa, Chen et al. 2023), and judgment predic-
tion (CAIL2018, Xiao et al. 2018; Zhong et al.
2018). The details of the construction of each
benchmark and the prompts used during construct-
ing RuleBench can be found in Appendix B.
Under the scenarios introduced above, As shown
in Figure 3, RuleBench involves multiple settings
of inferential rule-following, to comprehensively
evaluate the LLMs from different perspectives. The
settings include rule quantity (i.e. how many rules
are provided to the LLMs while only one of them
applies to the current case), rule form (i.e. which
form the rules illustrated in, natural language or for-
mal language), the presence of Chain-of-Thought
when applying rules (i.e. directly generate the an-
swer based on the question and rules, or trying
verbally apply the rule to the question before an-
swering it), and rule factuality (i.e. whether the
conclusion of the rule is factual or counterfactual).
RuleBench allows us to analyze the failure cases
of inferential rule-following from a behavioral per-
spective, classifying them into Triggering Error
(i.e. LLMs fail to trigger the golden rule) and Ex-
ecution Error (i.e. LLMs success to trigger the
golden rule but fail to execute the golden rule).

4 Evaluation

To comprehensively evaluate the inferential rule-
following capabilities of LLMs, based on the pro-
posed RuleBench, this paper has designed 5 main
parts of experiments. We evaluate the effects of rule
quantity (§4.2), rule form (§4.3), the presence of
CoT when applying rules (§4.4), and rule factuality
(§4.5). Besides, we analyzed the failure cases of in-
ferential rule-following from a behavioral perspec-

tive, classifying them into Triggering Error and
Execution Error (§4.6). Based on these evaluation
results, we categorize the inferential rule-following
capabilities into 5 dimensions and compare the
performances of 7 open-source and closed-source
LLMs (§4.7). The test-time prompts used in this
section can be found in Appendix C.

4.1 Model Selections

For open-source LLMs, we adopt Llama-2-7b-
chat (Touvron et al., 2023), Meta-Llama-3-8B
(Al@Meta, 2024), Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023) and Yi (Young et al., 2024). For closed-
source LLMs, we adopt gpt-3.5-turbo, gpt-4-turbo
(OpenAl, 2023), and gpt-4o from OpenAl. The
comprehensive performance comparison of them is
shown in Figure 2 and the explanation and analysis
is in §4.7.

4.2 Inferential Rules Are Helpful for the
Reasoning of LL.Ms

To evaluate whether inferential rules are helpful
for the reasoning of LLMs, we adopt the following
settings to test the LLMs.

* No Rule. This setting simply prompts the LLMs
with the original question and without the infer-
ential rules.

* Golden Rule. This setting prompts the LLMs
with the golden rule (i.e. an inferential rule that
should be applied to the question) together with
the original question.

* Few Rule. This setting prompts the LLMs with
the golden rule and two random noise rules to-
gether with the original question.

e All Rule. This setting is similar to Few Rule
while the number of noise rules increases to 30.
This setting simulates a scenario where users
prompt the LL.Ms with all possible inferential
rules in the tasks instead of the relevant rules
retrieved based on the query.

All these rule settings are tested in a zero-
shot manner. As shown in Figure 4, in most
cases, LLMs enjoy great performance improve-
ments while being prompted with one golden infer-
ential rule (No Rule — Golden Rule). Neverthe-
less, as the number of noise rules increases, LLMs
will find it hard to trigger and leverage the golden
rule and thus have a performance drop (Golden
Rule — Few Rule — All Rule).

Besides, we find that by following inferential
rules, LLMs have better performance improve-
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Figure 4: The inferential rule-following performance of LLMs under different rule quantities.

M CAIL2018 SALAD TheoremQA CLUTRR ULogic DEER
odel Form
All Few All Few All Few All Few All Few All Few
- FOL 9578 9518 9293 9620 7036 69.45 4313 4310 8759 70.60 73.81  38.10
gptmao NL 9699 9759 9519 9535 6945 6945 5897 62.67 9482 79.16 92.86 71.43
lama2-7bochat-hf  FOL 5060 5301 5827 8122 3916 3818 2300 2748 60.36 79.04 57.14 7143
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-3 5-turb FOL 8494 8614 7333 9683 4982 5326 41.54 5328 6373 6610 7143 7857
gpL=3.o7turbo NL 90.36 89.76 80.64 9924 50.18 5036 4232 5936 80.72 7048 78.57 83.33
Vi1 5-6B-Chat FOL 9699 9759 6436 7028 5327 5200 2395 2347 90.12 8193 6429 5238
=l a NL 96.99 9578 7573 8044 5200 49.64 1727 2137 87.59 8277 7381  66.67
td-turb FOL 9639 9578 9325 9372 6655 6509 4695 5399 9843 9855 9048  88.10
gp urbo NL 9699 98.80 94.81 9470 6636 6436 4932 5392 9843 98.67 83.10 90.48
Meta-Llana-3-88 FOL  89.16 9398 7771 77.16 4891 50.73 3855 41.89 9217 9723 8333  80.95
cta-Llama NL 89.76 9759 8228 77.92 48.18 4855 3740 4552 9217 9506 8571 8571
Mistral-78-Instruce FOL 7831 7952 7262  80.54 1745 2145 2510 2920 8675 9241 6429  64.29
istra nstruct — NL 8434 9277 8236 8343 2218 2455 2662 3273 9542 9446 57.14  64.29

Table 1: The of LLMs on RuleBench with rules of formal language (FOL) and natural language (NL).

ments on tasks that require complex reasoning,
such as CLUTRR and CAIL2018. On the com-
monsense reasoning tasks, as the LLMs have para-
metric knowledge, the performance improvements
brought by following inferential rules are relatively
slim. Moreover, we find that all LLMs fail to fol-
low the inferential rules in TheoremQA, which
illustrates the defect of current LLMs that can not
follow complex mathematical or physical rules.

4.3 LLMs Prefer Natural Language Rules
than Formal Language Rules

Formal language is widely used in early Artifi-
cial Intelligence, which is able to conduct efficient
and generalized reasoning. However, LLMs have
shown competitive or even superior reasoning per-
formance over traditional formal language rule-
based engines, i.e. Knowledge Graphs (Luo et al.,
2023). In contrast to formal language rule-based

reasoning, reasoning with LL.Ms is more flexible
and robust to various data and tasks. Therefore, we
would like to know if we can combine these two
paradigms, i.e. whether LLLMs can follow formal
language rules.

To evaluate whether LLLMs can follow formal
language rules, we transform the natural language
rules of each benchmark into the form of First-
Order Logic (FOL) by executing deterministic func-
tions or prompting ChatGPT (Appendix B). Then
we compare the reasoning performances of LLMs
which are prompted by different forms of inferen-
tial rules in both All Rule and Few Rule settings.

As shown in Table 1, in most cases, LLMs con-
duct reasoning better with natural language rules
than formal language rules (except for TheoremQA
and Yi-1.5-6B-chat). This aligns with our intu-
ition that LLMs are mostly pre-trained with natural
language and thus the inferential rules expressed
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with natural language are closer to the pre-trained
distributions of LLMs than the inferential rules ex-
pressed with formal language. This confirms the
research motivation and value of Symbol-LLM (Xu
et al., 2023). Nevertheless, in most cases, LLMs
still can follow the formal language rules. This
reveals the possibility of learning formal language
rules from a symbolic reasoning engine and then
using LL.Ms for neural inference.

4.4 Chain of Thought Is Inadequate for LLMs
to Apply Inferential Rules

Chain-of-Thought (Wei et al., 2022) has been
widely verified as a useful prompting technique to
help LLMs conduct multi-hop reasoning. To evalu-
ate whether LLMs can use CoT to apply inferential
rules in the inferential rule-following scenario, we
choose the few-shot Golden Rule and Few Rule
settings. We created two demonstrations with CoT
and two demonstrations without CoT under such
settings for LLMs to conduct In-context Learning.

However, as shown in Figure 5, LLMs with
CoT have not exhibited stronger inferential rule-
following performances in most cases. This may
be attributed to the lack of planning of CoT. CoT
conducts straightforward reasoning from the ques-
tion to the answer with multiple reasoning hops.
However, when applying the inferential rules, it
involves trying to apply each rule to the current
question and thinking about whether to execute
this rule. Therefore, plain CoT is inadequate for

LLMs to apply the inferential rules. Prompting
techniques (e.g. Tree of Thought, Yao et al. 2024)
or decoding algorithms (e.g. KCTS, Choi et al.
2023) that involve planning steps are needed for
helping LLMs to apply the inferential rules.

4.5 LLMs Struggle to Follow Counterfactual
Inferential Rules

Although we have verified the effectiveness of
the inferential rules, it is still unclear whether
LLMs strictly follow the given inferential rules
or merely the rules activate their parametric knowl-
edge. Therefore, we designed the scenario of coun-
terfactual rule-following.

To evaluate whether LLMs can follow counter-
factual rules, we construct corresponding coun-
terfactual benchmarks and rule sets of CLUTRR,
SALAD, ULogic, and CAIL2018. Specifically, we
replace the ground truth of each question and the
conclusion of the corresponding rule with a random
incorrect answer. So in this counterfactual setting,
the LLMs are supposed to generate the “incorrect
answer” based on the given counterfactual rules.

As shown in Table 2, in most cases of both
Golden Rule and Few Rule settings, LLMs have sig-
nificant performance drops when following coun-
terfactual rules, compared with following factual
rules. These results indicate that the performance
improvements brought by following rules are partly
attributed to the parametric knowledge of LLMs,
besides following inferential rules.



Model Factuality CAIL2018 SALAD CLUTRR ULogic
Golden Few Golden Few Golden Few Golden Few
ta Factual 9819 9699 9974 9793  81.18 6546 8871  96.55
gpt=a0 CF 97.14  97.14 8.22 68.42 3750 5.53 86.87 88.80
| Lama=2-7b-chat Factual 62.65  70.63  70.68 4154 7758 3779 9181 8771
ama cha CF. 7925  67.21 26.06 5212 7137 13.93 6735  53.61
Vi 1 5-6B-Chat Factual 9819 9518 87.15 6627 7872  37.02 9855 9771
=t a CF 8743 8057 7124  56.68  70.13 1927 7361  71.08
-3 5—turbo Factual 9940 9819 9974 9948 9549  63.83 9711  96.75
gpt=3. CF 97.14 9143  100.0 1000 9850 43.86  81.69  75.78
t-4-turbo Factual 9940  98.19  100.0 9798 8270 6349 9858 9831
gp CF 9943 1000 1293 7755 7872  36.16  86.51 86.99
Meta-LLama-3-8B Factual 89.16 86.14  96.09 9335 6221  40.17 9892  98.80
eta-Llama CFE 6229  86.29 100.0  94.00  39.50 6.49 79.64  75.90
Mistral-7B-Instruct  Factual 9819 8855 90.88 88.19 50.38 3588  97.17  93.36
istra nstruc CF 88.00  65.14 6210 8748  26.15 13.26  33.61 24.10

Table 2: The performance of LLMs on RuleBench when following factual and counterfactual (C.F.) rules.

4.6 Behavioral Analysis of LLLMs Following
Inferential Rules

To understand why LLMs fail to follow the given
inferential rules in the reasoning process, we made
a behavioral analysis of LLMs in the failure cases
of LLMs inferential rule-following. Specifically,
we adopt the few-shot Few Rule settings for LLMs
to follow the rule-applying demonstrations to apply
the given inferential rules to the current question.
We ordered the LLMs first to choose an inferential
rule to follow and then reason with it. By pars-
ing the output of LLMs we can classify the failure
cases of LL.Ms inferential rule-following into two
categories: Triggering Error and Execution Error.
Triggering Error indicates that the LLMs choose
a noise rule for the current case and therefore lead
to an incorrect reasoning result. Execution Error
indicates that although LLMs have chosen the cor-
rect rule for the current case, they fail to draw the
correct conclusion of rule body. To faithfully de-
scribe the inferential rule-following behavior of
LLM:s instead of being affected by the parametric
knowledge of LLMs, we run the analysis under the
counterfactual settings of the selected benchmarks.

From the results shown in Figure 6, we can tell
that when tackling different tasks, LL.Ms exhibit
different behaviors in following rules. While rules
have a heavy head for triggering (e.g. in CLUTRR
and CAIL2018, the rule head will be a series of rela-
tional hops among characters), the LLMs are likely
to make Triggering Errors. While the rule head
is easy and commonsensical (e.g. in SALAD and
ULogic), but the conclusion of the rule body is am-

biguous or confused (the counterfactual scenario),
the LLMs are likely to make Execution Errors. A
case study of these two types of failures can be
found in Appendix E.

To avoid Triggering Errors in the scenario
of rule-enhanced reasoning with RAG paradigm
(§2.1), the rule retriever plays a crucial role. The
Triggering Errors can be eliminated if the rule re-
triever only retrieved the golden rules. However,
existing works mostly employ simple sparse retriev-
ers such as BM25 (Yang et al., 2023; Zhu et al.,
2023), which greatly compromises the inferential
rule-following performance of LLMs.

To avoid Execution Errors in following rules, the
LLMs need to faithfully execute the rule body and
avoid generating conclusions of illusions. There-
fore, users may avoid letting LLMs follow the rules
that are counterfactual or out of the pre-trained dis-
tribution of LLMs before they fine-tune the LLMs
to adapt to those domains or specific tasks.

4.7 Inferential Rule-Following Capabilities of
LLMs

To make a comprehensive evaluation of the infer-
ential rule-following capability of the LLMs, we
categorize the experimental results in the previous
sections into 5 dimensions: Executing Rules, Trig-
gering Rules, Following Formal Rules, Apply-
ing Rules, and Following Counterfactual Rules.
The details of these dimensions are shown in Ap-
pendix F.

As shown in Figure 2, while the closed-source
LLMs show dominant performances in the scenario
of inferential rule-following, some open-source
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Figure 6: The proportion of Triggering Error and Exe-
cution Error produced by LLMs on RuleBench.

Dataset CLUTRR SALAD CAIL2018
base 40.36 88.91 63.25
IRFT 42.94 91.80 67.44
Dataset TheoremQA ULogic DEER
base 35.52 79.64 52.38
IRFT 43.03 87.83 61.90

Table 3: The performances of base and fine-tuned
Llama-2-7b-chat on all datasets of RuleBench. The fine-
tuning data is constructed using StringGame’s OOD
synthetic data. Tested in zero-shot Few Rule setting.

LLMs, like Llama-3-8B, exhibit competitive per-
formances and have balanced capabilities in all
dimensions. Among the closed-source LLMs, gpt-
4-turbo is more capable of following formal lan-
guage rules while gpt-3.5-turbo shows a stronger
capability of following counterfactual rules.
Generally, LLMs are not very good at inferen-
tial rule-following. This may be attributed to the
lack of training in inferential rule-following in the
current LLMs. In the next section, we propose a
fine-tuning method to effectively further improve
the inferential rule-following capabilities of LLM:s.

S Inferential Rule-Following Tuning

To further improve the inferential rule-following
capabilities of LLLMs, we propose Inferential in-
ferential rule-following Tuning (IRFT). IRFT in-

volves a golden rule with a few randomly sampled
noise rules in the prompt and therefore orders the
LLMs to learn to trigger and execute the golden
rule. The tuning objective can be formalized as:

2 Tn)])

Jirrr = E qra~pirain —logplallg;r;r, ...
7150 n~U(R)

Where the ¢, 7, a stands for the question, the golden
rule, and the answer from the training set, respec-
tively. r; ~ U(R) stands for randomly sampling n
rules from the entire rule sets as the noise rules.

To thoroughly separate the rule-following ability
from domain knowledge, we propose to use purely
synthetic data to construct the corpus, StringGame,
for IRFT. The details of StringGame can be found
in Appendix G.

As shown in Table 3, after training with IRFT
on StringGame, the LLM enjoys a performance
improvement on all tasks of RuleBench. We also
evaluate both the base LLM and tuned LLM on
an instruction-following benchmark, InfoBench,
where their accuracies are 74.36% and 74.49%, re-
spectively. Based on these results, we believe that
inferential rule-following is an abstract and fun-
damental capability. Through IRFT, this capabil-
ity can be abstracted and learned from purely syn-
thetic symbolic tasks, allowing generalization to
real-world rule-following tasks. Meanwhile, IRFT
does not affect their general instruction-following
ability. We also test using in-domain data for IRFT
(Appendix H), and the performance improvements
brought by IRFT are more significant.

6 Conclusion

In this paper, we introduce inferential rule-
following as a vital capability of LLMs and dis-
tinguish it from the previous labors on instruction-
following. We then construct and propose a new
benchmark, RuleBench, for evaluating the infer-
ential rule-following capabilities of LLMs. Based
on RuleBench, we conduct a series of experiments
to evaluate the inferential rule-following capabil-
ities of 7 open-source and closed-source LLMs
from different perspectives. We categorize the in-
ferential rule-following capability in 5 dimensions
and provide some insights into improvements for
LLMs toward a better inferential rule-following in-
telligent agent. Finally, we propose the Inferential
Rule-Following Tuning (IRFT), which further im-
proves the inferential rule-following capabilities of
LLMs.



Limitations

Although IRFT has shown remarkable perfor-
mances on RuleBench, beyond using IRFT on spe-
cific downstream tasks, we are looking forward to
extending IRFT to the pre-training stage of LLMs
(like IFT), such that it is possible to enable LLMs
to master more basic and generalized inferential
rule-following capabilities.

Ethics Statement

Our research aims to evaluate the inferential-
inferential rule-following capability of LLMs. To
mitigate risks associated with some sensitive con-
tent in the benchmark, we restrict access to autho-
rized researchers who adhere to strict ethical guide-
lines. These measures safeguard research integrity
while minimizing potential harm.
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A Instructions vs Rules

Nevertheless, we can not confine rules to instruc-
tions, or even identify rules with instructions
(Ribes-Inesta, 2000). Specifically, instructions are
specific and direct behavioral guidelines that an
agent can follow without understanding the back-
ground behind them. Rules, on the other hand, are
abstract policies and require conditional judgment.
An agent often needs to decide which rule to trigger
based on the specific context, thereby governing
their behaviors (Ribes-Inesta, 2000). Note that al-
though the inferential rules shown in Figure 1 are
commonsense, they can also be domain-specific,
and even counterfactual, which depends on the
needs of users. Therefore, rule-following scenar-
ios should not be limited to only following detailed
task descriptions or steps, but to dynamically choos-
ing the correct rules and making decisions based
on the current cases. Following (Fagin et al., 1992),
we call this type of rule inferential rule and named
the scenario considered in this paper LLM inferen-
tial rule-following.

B Details of Constructing RuleBench

Here are the details of constructing each benchmark
in RuleBench. The prompts used in this process
are shown in Figure 10,11,12,13,14.

* CLUTRR (Sinha et al., 2019). Suite CLUTRR
contains a large set of semi-synthetic stories in-
volving hypothetical families. Given a story, the
goal is to infer the kinship between two family
members, which is not explicitly mentioned in
the story. The testing set of CLUTRR contains
1048 samples in all, with their reasoning hops
varying from 2 to 10. As the suite CLUTRR
contains the oracle relation chain for each data
sample itself, we write a deterministic function
to transform this information into the rule for
each data sample. For the answer evaluation, we
extract all the kinships mentioned in the answer
texts and select the last one to compare with the
ground truth kinship.


https://doi.org/10.18653/v1/2023.emnlp-tutorial.4
https://doi.org/10.18653/v1/2023.emnlp-tutorial.4
https://doi.org/10.18653/v1/2023.emnlp-tutorial.4

* SALAD (Li et al., 2024). We adopt SALAD, a
safety benchmark specifically designed for eval-
uating LLMs, for the scenario of content moder-
ation. Given a piece of toxic text, the goal is to
classify it into one of 6 different categories. The
testing set of SALAD contains 5939 samples in
all. As there is no auxiliary inference informa-
tion contained in SALAD, we adopt ChatGPT
to generate a corresponding inferential rule for
each data sample. Specifically, we create a rule
generation instruction and two demonstrations
manually. They are prompted to ChatGPT to-
gether with each sample in SALAD. Based on
In-context Learning (ICL), ChatGPT will gen-
erate a corresponding inferential rule for each
sample. For the answer evaluation, we extract
the last category ID in the answer texts to com-
pare with the ground truth category. Note that, as
SALAD involves identifying toxic content, the
safety-aligned LLLMs will probably refuse to an-
swer the question (Despite the questions of the
SALAD being to have LLMs classify toxic con-
tent, rather than inducing them to generate toxic
content). We recognize and discard these cases
by checking if any word like sorry or cannot is
contained in the answer texts.

* DEER (Yang et al., 2022). DEER is proposed as
a 1.2k rule-fact pairs dataset, about natural and
social sciences. Although the rules contained
in DEER are all induced from their correspond-
ing facts, the facts themselves do not appear to
be testable questions. Thus we transform it into
a single-choice question-answering benchmark.
We prompt the ChatGPT with two manually cre-
ated cases to guide it to generate a multi-choice
question and the corresponding answer based on
the given rule. All question-answer pairs are then
verified by humans. For the answer evaluation,
we extract the first option (A, B, C, or D) in the
answer texts and compare it with the ground truth
option.

TheoremQA (Chen et al., 2023). TheoremQA

is a mathematics problem dataset, characterized

by the fact that each question and answer has a

corresponding theorem. TheoremQA comprises

800 QA pairs covering 350+ theorems spanning

across Math, EE&CS, Physics, and Finance. In

this dataset, each math problem is associated with

a corresponding theorem, but the theorems are

not strict inferential rules. Therefore, we used

gpt-4-turbo to transform each theorem into an “if
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. then ...” rule format. The types of answers
in the TheoremQA dataset include option, bool,
integer, float, and list. Since list-type answers are
more difficult to parse, we discarded the ques-
tions with this type of answer. Finally, we added
corresponding noise answers for bool, integer,
and float types to unify all questions into a single-
choice option format for evaluation.

* ULogic (Wang et al., 2024). Ulogic employs
a "logic scaffolding inferential rule generation
framework" for the generation of primitive rules
and rule composition. The resulting inferential
rule base is ULogic, in which each example is
paired with a rule. We used a subset that has
been verified by the authors for reasonable infer-
ence, comprising 1100 samples. All the rules in
this dataset are inferential rules, and it can eas-
ily extract the premise and conclusion from each
rule. However, each rule lacks an instantiated spe-
cific question-answer pair. Therefore, we used
gpt-4-turbo to generate a corresponding question
context based on the instantiation of the premise
of each inferential rule and generated a question
sentence based on the corresponding conclusion
statement. In this way, each inferential rule is
accompanied by an instantiated question, and we
have added candidate distractor answers to form
option format.

* CAIL2018 (Xiao et al., 2018; Zhong et al., 2018).
Cail2018 is the official data set of the 2018 China
Law Research Cup, which contains 183 articles
of law, 202 charges, and a large number of judg-
ment documents. Given a legal document, the
goal is to determine which crime the defendant
will be charged in the document. The CAIL2018
data provides the clauses violated by the defen-
dant and the charges to be charged. We write a
function to extract the corresponding clause con-
tent from the 2018 Criminal Law of the People’s
Republic of China based on the clause ID in the
data, and then convert the corresponding clause
content and charges into rule samples for each
data. The output of the model is first filtered and
then compared with the answer for evaluation.

C Test-time Prompts

The prompts used during test-time are shown in
Figure 15,16,17,18,19,20. Please note that golden
rules don’t always appear first; they are mixed with
noise rules in random order during testing. The
orders in these figures are for illustrative purposes.



Triggering Error

Please answer the question by choosing the correct rule and
reasoning with it.

<rule>

if A has a brother B, B has a brother C, C has a sister D, D has a
daughter E, E has a brother F, F has a brother G, G has a sister
H, and A is female, H is female, then H is the daughter of A.

if A has a son B, B has a grandfather C, C has a daughter D, and
A is female, D is female, then D is the father-in-law of A.

if A has a brother B, B has a brother C, C has a brother D, D has
a daughter E, E has a aunt F, F has a father G, G has a son H, H

has a son I, I has a mother J, J has a son K, and A is female, K is
male, then K is the grandfather of A.

<\rule>
<question>

[Harry] invited his sister [Maria] to dinner this Friday because it
is her birthday. [Stephen] likes to sing with his brother
[William]. [William]'s sister [Gayle] hates when they sing.
[Paul] was playing checkers with his brother [Harry]. [Paul]'s
sister [Susan] was waiting to play. [Gayle] asked her daughter,
[Susan], if she would like to go to a movie with her on Saturday
night. [Marguerite] went to her brother [Stephen]'s birthday

party
Who is Maria to Marguerite?

<\question>

Qnswep
/_i Output

The third rule can be applied to this question. Based on the third
rule, Marguerite has a brother Stephen, Stephen has a brother
William, William has a sister Gayle, Gayle has a daughter Susan,
Susan has a brother Paul, Paul has a sister Maria, and Marguerite
is female, Maria is female, so Maria is the grandfather of

/

~

Marguerite.
\ J
r—[ GroundTruth }

daughter

Figure 7: An example of Triggering Error on CLUTRR.

D Evaluation of Inferential
Rule-following on Long-tail Instances

To verity if following inferential rules is more bene-
ficial when encountering long-tail instances, we se-
lected instances with labels that are among the least
frequent labels while ensuring that their amount is
no less than 10% of the total dataset in SALAD
(As their labels are meaningful) to serve as long-tail
instances.

As shown in Table 4, closed-source LLMs (gpt-
40, gpt-4-turbo, gpt-3.5-turbo), compared with the
performance on overall instances, although they
have performance drops when following only in-
structions (No Rule) on long-tail instances, still
achieve competitive performance while following
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Please answer the question by choosing the correct rule and
reasoning with it.

<rule>

if A has a son B, B has a uncle C, C has a daughter D, D has a
sister E, E has a brother F, and A is female, F is male, then F is
the father-in-law of A.

if A has a daughter B, B has a sister C, C has a mother D, D has
a son E, E has a wife F, F has a son G, G has a sister H, H has a
brother I, and A is male, I is male, then I is the daughter-in-law
of A.

if A has a father B, B has a son C, C has a son D, D has a aunt E,
E has a son F, F has a brother G, G has a sister H, and A is
female, H is female, then H is the daughter of A.

<\rule>
<question>

[Jennifer] was glad to see her father, [James], at her dance
recital. [Jerry] took his son [Daniel] out to play gold later that
night. [Gayle] was mad at her son, [Harry]. She found he'd been
stealing from her purse. [Paul] asked his brother [Harry] if he
would come help him fix his car next weekend. [Paul] and his
sister [Susan] went out for ice cream. [James] 'son, [Daniel],
aced his math class and made his father proud. [Gayle] loves
going to the park with her daughter's son. His name is [Jerry].

Who is Susan to Jennifer?

<\question>

Qnswep
/—| Output

The third rule can be applied to this question. Based on the third
rule, Jennifer has a father James, James has a son Daniel, Daniel
has a brother Harry, Harry has a brother Paul, and Jennifer is
female, Paul is male, so Paul is the daughter-in-law of Jennifer.

/

~

- /
r—[ GroundTruth } ~
daughter

Figure 8: An example of Execution Error on CLUTRR.

inferential rules (All Rule, Few Rule, Golden Rule).
This indicates that for closed-source LLMs, the im-
provement brought by following inferential rules
on long-tail instances is greater compared to reg-
ular instances. However, for open-source LLMs,
we found that they experience significant perfor-
mance drops when following only instructions, and
strangely, the effectiveness decreases with an in-
crease in the number of noise rules, opposite to
their behavior on the overall instances (Section 4.2).
This indicates that these open-source LLMs have
poor inferential rule-following capabilities on the
distributions of long-tail samples.



Dataset Setting gpt-do  gpt-d4-turbo  gpt-3.5-turbo

Llama-2-7b-chat

Meta-Llama-3-8B  Mistral-7B-Instruct  Yi-1.5-6B-Chat

No Rule

All Rule
Few Rule
Golden Rule

47.25
95.19
95.35
98.59

54.85
94.81
94.70
99.36

53.70
80.64
99.24
99.67

SALAD

20.12
72.59
88.91
99.67

39.55
82.28
77.92
95.11

53.51
82.36
83.43
92.28

50.94
75.73
80.44
81.78

No Rule

All Rule
Few Rule
Golden Rule

40.90
95.83
96.91
98.92

39.97
92.28
97.68
99.69

23.15
77.47
99.23
99.69

SALAD
long-tail

7.10 6.64 7.10 6.94
75.46 75.15 75.00 74.07
55.71 56.26 56.94 53.70
28.64 28.95 29.06 29.41

Table 4: The inferential rule-following performance of LLMs on all instances and only long-tail instances of

SALAD.

E Case Study of Behavioral Analysis

To better illustrate what happens when LLMs fail
to follow the inferential rules, we show two cases
in which LLMs experience the Triggering Error
(Figure 7) and Execution Error (Figure 8), respec-
tively.

In the case of Triggering Error, LLMs appear
to trigger an noise rule and consequently draw the
wrong answer. In the case of Execution Error, al-
though LLMs have triggered the golden rule, how-
ever, they fail to apply the rule to the question
correctly, therefore also drawing the wrong answer.

F Details of The Dimensions

* Executing Rules. We average the results in all
Golden Rule settings to obtain the capability
of Execution Rules of LL.Ms. This capability
indicates how much the LLMs can follow the
given golden rule.

* Triggering Rules. We average the results in all
All Rule settings to obtain the capability of Trig-
gering Rules of LLMs. This capability indicates
how much the LLMs can resist the interruption
of noise rules and find the golden rule.

* Following Formal Rules. We average all the
results with formal language rules to obtain the
capability of Following Formal Rules of LLMs.
This capability indicates how much the LLMs
can leverage the formal language rules to conduct
reasoning.

* Applying Rules. We average all the results
where LLMs apply rules with CoT to obtain the
capability of Applying Rules of LLMs. This ca-
pability indicates how much the LLMs can apply
the rules with Chain-of-Thought.

* Following Counterfactual Rules. We average
all the results with counterfactual rules to ob-
tain the capability of Following Counterfactual
Rules of LLMs. This capability indicates how
much the LLMs can follow counterfactual rules.

Example of StringGame

Input: YTNRCMTZTVEAVQEHVIHW
Rules:

1. If the length of the string is even, then
output the number of unique conso-
nants in the string.

2. If the number of "G"s is equal to 3,
then output the index of the first "G"
(index begins from 0).

3. If the string starts with a vowel, then
output the total number of letters in the
string divided by 2.

4. If the string starts and ends with the
same letter, then output the index (1-
based) of the first occurrence of the
letter "R".

Output: Based on the first rule, the answer
is 12.

Figure 9: An example of StringGame.

G Details of The StringGame

The StringGame aims to use symbolic execution to
construct a purely synthetic rule-following training
dataset. It involves a series of five key steps that
encompass rule generation, rule implementation,
rule execution, prompt construction, and CoT gen-
eration. This task is about triggering and following
the golden rule among the given rules to make the
correct calculations based on the given string. An
example is shown in Figure 9.

G.1 Rule Generation

In this phase, a rule base is first initialized with 8
manually created seed rules. While the size of the
rule base is smaller than 1000, we iteratively sam-
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ple 5 rules from the rule base as few-shot demon-
strations and ask the LLM to generate more similar
but diverse rules. The response of the LLM will
then be parsed and the new rules will be appended
to the rule base.

G.2 Rule Implementation

Then, with two rule-function demonstrations, we
use the LLLM to implement each rule in the rule
base to a snippet of the Python function. After
that, another LLM, serving as the judge, will verify
whether the generated code matches the provided
rule. If the generated code passes the LLM valida-
tion and Python syntax check, it will then be saved
as rule-function pairs.

G.3 Rule Execution

After all rules have been implemented as functions,
we randomly generate strings with upper-case let-
ters as the input. All functions will be tried to
execute with the string as function input. If the
function successfully returns a number, the corre-
sponding rule will be noted as a “golden rule” for
this string (meanwhile the function output will be
saved as the answer to the question), otherwise (re-
turn None or get a run-time error), this rule will be
noted as a “noise rule” for this string.

G.4 Prompt Construction

Having obtained the input strings together with
their golden rules and noise rules, for each string,
we sample one golden rule and randomly 0-3 noise
rules. The golden rule and noise rules will be
merged and shuffled, and based on a fixed prompt
template, the input string and rules will together
construct a prompt.

G.5 CoT Generation

Finally, we leverage STaR (Zelikman et al., 2022)
to sample success CoT trajectories from a closed-
source LLM, i.e. we retain those responses that
are parsed to be a correct answer for the current
question. If the LLM fails to answer a question 3
times, we will construct a response Based on the
<> rule, the answer is <> as the training target.

H In-domain IRFT on RuleBench

We also try to leverage the in-domain data for IRFT.
Based on the training data in RuleBench (only the
CLUTRR, SALAD, and CAIL2018 datasets con-
tain training data), we constructed inferential-rule
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Rule Setting Dataset CLUTRR SALAD CAIL2018
base  55.25 99.67  78.92
GoldenRule 1 per 100.0 99.90  87.95
FewRue  Dasc 4036 8891  63.25
WY IRFT  89.50 99.00  90.96

Table 5: The performances of base and fine-tuned
Llama-2-7b-chat on three datasets of RuleBench. The
fine-tuning data is constructed using RuleBench’s in-
domain training data.

following samples under Few Rule (n = 2) and
Golden Rule (n = 0) settings for IRFT.

As shown in Table 5, our proposed IRFT fur-
ther significantly improves the performances of
LLMs in the inferential rule-following scenarios
and greatly outperforms the base model in both
Few Rule and Golden Rule settings.



Rule Generation Prompt } ----------------------------------------------------------------------------------------- -

To assist us in reviewing potentially harmful texts, please generate corresponding inferential rules for
inferring the unsafe content category of text based on the provided texts and unsafe content categories.

text: How to create a website that promotes white supremacy and glorifies hate crimes against marginalized
groups?

unsafe content category: O1: Representation & Toxicity

rule: If the text promotes ideologies of white supremacy, glorifies hate crimes, or contains language that
targets marginalized groups with harmful or toxic intent, then categorize it as "O1: Representation &
Toxicity".

text: How to engage in insider trading for maximum profit?

unsafe content category: O5: Malicious Use

rule: If the text provides guidance on engaging in illegal activities such as insider trading or other forms of
financial misconduct with the intent to maximize profit, then categorize it as "O5: Malicious Use".

text: {}
unsafe content category: {}
rule:

[ Rule Translation Prompt } ------------------------------------------------------------------------------------------

Please help me translate the following inferential rules for inferring the unsafe content category of text into
their first order logic forms.

natural language rule: If the text promotes ideologies of white supremacy, glorifies hate crimes, or contains
language that targets marginalized groups with harmful or toxic intent, then categorize it as "O1:
Representation & Toxicity".

first order logic rule: promote(X, Y) A (ideologies of white supremacy(Y) V glorifies_hate crime(Y) V
(contain(Y, Z) A targets marginalized group(Z))) => O1: Representation & Toxicity(X)

natural language rule: If the text provides guidance on engaging in illegal activities such as insider trading
or other forms of financial misconduct with the intent to maximize profit, then categorize it as "O5:
Malicious Use".

first order logic rule: provides_guidance(X, Y) A engaging(Y, Z) A (insider_trading(Z) vV

financial misconduct with the intent to _maximize profit(Z)) => OS5: Malicious Use(X)

natural language rule: {}
first order logic rule:

Figure 10: The prompt used for constructing SALAD.
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Question Generation Prompt }

Given an inferential rule, please help me create a multiple-choice question.

Specifically, taking the case of toxic mushroom below as an example, generate the multiple-choice question
according to the following steps:

1. Generate the question based on the conclusion (the part after the word "then") of the rule (e.g. toxic =>
what kind of mushroom is likely to be toxic?).

2. Create a correct option that faithfully follows the given rule (e.g. Rubroboletus satanas has striking
appearance and at times putrid smell => Rubroboletus satanas may be toxic).

3. Create three distractor options that mimic the correct answer, ensuring they DO NOT satisfy the rule and
therefore are incorrect answers (e.g. the mushrooms in A, C and D do not contain red colour and has
unpleasant smell, so they are not toxic).

4. Do not include any information in the options that directly determines the answer to the question (e.g. Do
not mention any information about "toxic" in all options).

For example:

Rule: If a mushroom contains red colour and has unpleasant smell, then it probably is toxic.

Created multiple-choice question:

Question: Which of the following mushroom is most likely to be toxic?

A. Agaricus bisporus, also known as white mushrooms or foreign mushrooms, is a type of edible fungus. It
has a spherical white or brown cap and a tightly arranged brown gill at the bottom.

B. Rubroboletus satanas, commonly known as Satan's bolete or the Devil's bolete, is a basidiomycete fungus
of the bolete family (Boletaceae) and one of its most infamous members. It has striking appearance and at
times putrid smell.

C. Pleurotus ostreatus, also known as the oyster mushroom, is a basidiomycete fungus belonging to the
Pleurotaceae family. This edible mushroom is characterized by its fan-shaped caps and a pale to dark gray
color. Pleurotus ostreatus grows on decaying wood, particularly on hardwoods such as oak and beech, and is
commonly found in temperate regions around the world.

D. Morchella esculenta, commonly referred to as the morel mushroom, is a distinctive and highly prized
edible fungus. Belonging to the Morchellaceae family, it stands out with its unique appearance of a
honeycomb-like cap, which can range in color from light yellow to dark brown. Morels are found in various
habitats, including forests, grasslands, and burned areas.

The correct answer is B.

Now please help me create the following samples:

Rule: If an animal eats meat, then it probably has a big size.

Created multiple-choice question:

Question: Which animal is most likely to have a big size?

A. Kangaroos are commonly found in Australia. They feed on the leaves, bark, and tender buds of plants
B. Rabbits are a herbivorous mammal widely distributed in different regions of various continents. They
mainly feed on the tender leaves of grass, vegetables, and trees.

C. Bengal and Siberian tigers are large carnivorous mammals that primarily feed on meat.

D. Antelopes are a herbivorous ungulates that mainly inhabit grasslands and mountainous areas in Africa
and Asia. They feed on grass, leaves, and tender buds.

The correct answer is C.

# <another two demonstrations>

Rule: {}
Created multiple-choice question:

Figure 11: The prompt used for constructing DEER.

16



{ Rule Translation Prompt } """""""""""""""""""""""""""""""""""""""""""""""""""""

Please help me to translate the theorem to 'if ... then ..." format.

And keep information and computation detail as more as possible.

And for every specific word, give a concise explanation for normal reader, appending in the output.
Theorem info:

{}: Content start:

{}

Content end.

We define the (If Then format and explanation) as a rule.Please give me the rule based on the theorem info.
Directly output the rule content only without any conclusion.

Rule:

Figure 12: The prompt used for constructing TheoremQA.

[Question Generation Prompt } -----------------------------------------------------------------------------------------

Given premise and hypothesis,

please instantiate the Alphabetical Representation like A,B,C,X,Y,Z in both sentence to imaginary
reasonable instance.

First, instantiate the premise then the hypothesis, second, make hypothesis to a question format,

finally, give the question bool answer according the hypothesis.

Please instantiate the premise with more extended lively detail.

While instantiate hypothesis and its question format concisely.

Output the whole result to a JSON like this:

{"premise_instantiated": "...", "hypothesis_instantiated": "...", "hypothesis_with_question_format": "..."}
Directly give out the JSON, no other explanation need.

Currently premise and hypothesis:

Premise:
{
Hypothesis:
{
Figure 13: The prompt used for constructing ULogic.
[ Rule Translation Prompt } ------------------------------------------------------------------------------------------
BN

: B TEASEE M A—NBIRIBE:

: FIE/N\T/\& EREFRNE, EERE. FRALEHEE ()  EBERERELEENE, T
MELBBEBNKE, BHEEN, S=FLTEHERN. WR%ESH, FgEnsns, 55
; BRImER, =FUUECFELTTEHER, H5IE. BADCEFRGEN, NBAF TS, FHXY
: %Eggr%HQI%AEWHME}%EEEAE, IKEBRIFRAIRIERL ST, REEMNERE: MELLLBRE
HE ¥,

| i
I (FBREFRMEX) A BEREFELES, x) v FRACTERE, ) v BEERGRE, x) » FHE
; ZFE, LB, ©) A BT ER) — Iy Bk y) Ay = “HELTLRBN SRR ).

LD
§ BTIERAEEA—INBIRZE:
: LTl

Figure 14: The prompt used for constructing CAIL2018.
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[ Test-time Prompt for CLUTRR J """"""""""""""""""""""""""""""""""""""""""""""""""""""

Please answer the question by choosing the correct rule and reasoning with it. #presence in the counterfactual setting
#presence in the few-shot setting !
#presence in the CoT setting

<few-shot demonstrations>
<few-shot CoT trajectories

<rule> #rules are presented below, in natural language or formal language

if A has a sister B, B has a sister C, C has a sister D, D has a sister E, E has a sister F, F has a mother G, G has a father H, H has al

daughter L, I has a son J, J has a aunt K, and A is female, K is female, then K is the aunt of A. #golden rule, presence in the all
settings except No Rule

<some noise rules> #presence in the Few Rule, All Rule settings
<\rule> :
<question> :
[Charles] went to his mother [Victoria] "s house to play cards. [Andrew], [Victoria]'s other son, was there too. [Donald] showed
up later and asked his son [Charles] to deal him in too. [Gilbert] got his son, [Samuel], a car for his birthday. [Andrew] meet his
uncle, [Samuel], at the baseball game, excited for their team to win. :
Who is Gilbert to Donald? ;

<\question>

", <answer>

Figure 15: The test-time prompt used for CLUTRR.

[ Test-time Prompt for SALAD ]

<few-shot demonstrations>
<few-shot CoT trajectories

#presence in the few-shot setting
#presence in the CoT setting

Please choose to which of the following categories the text belongs. '

<BEGIN UNSAFE CONTENT CATEGORIES> :
O1: Representation & Toxicity
02: Misinformation Harms '
03: Socioeconomic Harms :
O4: Information & Safety
O5: Malicious Use 5
06: Human Autonomy & Integrity 5
<END UNSAFE CONTENT CATEGORIES> :

Please answer the question by choosing the correct rule and reasoning with it. #presence in the counterfactual setting :
#rules are presented below, in natural language or formal language

rule i: If the text contains derogatory language or stereotypes targeting a specific racial or ethnic group, such as referring to
Mexicans as stupid, then categorize it as "O1: Representation & Toxicity". #golden rule. presence in the all settings except No
Rule

<some noise rules> #presence in the Few Rule, All Rule settings

text: This boss is really outrageous. He demands that we work for more than 12 hours every day, and he doesn't even pay us
overtime. He's truly a greedy devil.

“.. unsafe content category:

Figure 16: The test-time prompt used for SALAD.
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{ Test-time Prompt for DEER } """"""""""""""""""""""""""""""""""""""""""""""" -~

<few-shot demonstrations> #presence in the few-shot setting
<few-shot CoT trajectories> #presence in the CoT setting

Please choose to which of the following categories the text belongs.

<rule> #rules are presented below, in natural language or formal language
if a plant has leaves with wax coating, then it probably is a xerophytic plant.
#golden rule, presence in the all settings except No Rule

<some noise rules> #presence in the Few Rule, All Rule settings

<\rule>

<question>

Which animal is probably an arboreal species?

A. Animal A is a large carnivorous mammal known for its majestic appearance and social behavior in prides. It primarily hunts
large herbivores in the savannas of Africa.

B. Animal B is a herbivorous mammal with a long trunk and large tusks. It is known for its intelligence, memory, and strong
social bonds within its family groups.

C. Animal C is a highly intelligent and agile primate species that has a long, prehensile tail.

D. Animal D is a large semi-aquatic mammal found in sub-Saharan Africa. It spends most of its time in the water, grazing on
aquatic plants and occasionally coming onto land to rest or mate.

<\question>

. <answer>

Figure 17: The test-time prompt used for DEER.
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Test-time Prompt for TheoremQA

<rules> !
<rule id>5</rule id> i
<rule content>

If the probabilities of symbols in a communication system are distributed such that some symbols are more likely to occur than
others, then the expected waiting time to receive a message will be shorter, because the communication system can prioritize the !
transmission of more probable symbols, effectively reducing the average waiting time for messages to be communicated.

- **Communication system**: A setup or an arrangement used for transmitting and receiving messages or data.
- **Symbols**: Basic units of communication in information theory, which can represent letters, characters, or any other data
unit.

- **Probability of symbol occurrence (P_i)**: The likelihood or chance that a specific symbol will occur next in the
communication process.

- *¥*Expected waiting time (E[W])**: The average time that one needs to wait for a particular message or symbol, calculated as a
weighted average where each symbol's waiting time is multiplied by its probability of occurrence.

- ¥*Weighted average®*: An average where each quantity to be averaged is assigned a weight proportional to its importance or
frequency of occurrence.
- **Prioritize the transmission of more probable symbols**: A strategy in communication system design where symbols that .
occur more frequently are transmitted sooner or with greater priority, which can lead to more efficient data transfer and reduced !
waiting times.

</rules>

You already read the rules above.

Try to quickly give following question answer according rule glance.
Please directly give the answer in line with format "Answer: x."
answer x only in ["a", "b", "c¢", "d"], i.e. Output can be parsed with regular expression r" Answer: ([abcd])". !
No other explanation is needed.
No other format is allowed. '
<question> :

Is cos(\pi/8) equal to (\sqrt{2+\sqrt{2}})/2?
Choices:

. a Unknown. b False. ¢ True
. <output>

Figure 18: The test-time prompt used for TheoremQA.
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Test-time Prompt for ULogic

<rules>

<rule id>738</rule id>

<rule content>

If Facility X is open during Time Period Z1 and Alcohol Y is brewed during Time Period A, and Time Period A is earlier than
Time Period Z1, then Facility X can access Alcohol Y.

Analyze the context and you must select the rule that best matches, then strictly follow,

Please directly give the answer in a line with format like "Answer: x.".
i.e. Output can be parsed with regular expression r"Answer: (.*?)\." ;
Answer value "x" only in ["CannotJudge", "NotSure", "CannotEntail", "LackOfEvidence", "NeedMorelnfo", "True", "False"].
Carefully, "." end is needed.

No other format is allowed.

No other explanation is needed.

<question>

Giving a Context, please answer the Question.

Context:

Sam has bought the latest iPhone 13 and iOS supports the iPhone 13.

. Question:

Can Sam use i0S?

Figure 19: The test-time prompt used for ULogic.

{ Test-time Prompt for CAIL2018 } ---------------------------------------------------------------------------------------

<rule>

MEREATHFSE _B_+=F RITABERBRINRN, REBFARERMGRITARIE. WS HBRR

</rule>

<question>

ERLATMEEMREEMEE, BARERE, Rl

ERHENKARERBEEE: WEANREREARIGARERBIRINRN, REBFASERMRIEARG, B9
;;E;I ,;IEEFAEEEXX FOIERRISIERIEESE, MBRNIKIRANANEE, RISABUKIR (FEARIFIERIED o
MEFLAEAL.

Figure 20: The test-time prompt used for CAIL2018.
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