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Abstract

This paper explores the problem of effectively compressing 3D geometry sets1

containing diverse categories. We make the first attempt to tackle this fundamental2

and challenging problem and propose NeCGS, a neural compression paradigm,3

which can compress hundreds of detailed and diverse 3D mesh models (∼684 MB)4

by about 900 times (0.76 MB) with high accuracy and preservation of detailed5

geometric details. Specifically, we first represent each irregular mesh model/shape6

in a regular representation that implicitly describes the geometry structure of the7

model using a 4D regular volume, called TSDF-Def volume. Such a regular rep-8

resentation can not only capture local surfaces more effectively but also facilitate9

the subsequent process. Then we construct a quantization-aware auto-decoder10

network architecture to regress these 4D volumes, which can summarize the sim-11

ilarity of local geometric structures within a model and across different models12

for redundancy elimination, resulting in more compact representations, including13

an embedded feature of a smaller size associated with each model and a network14

parameter set shared by all models. We finally encode the resulting features and15

network parameters into bitstreams through entropy coding. After decompressing16

the features and network parameters, we can reconstruct the TSDF-Def volumes,17

where the 3D surfaces can be extracted through the deformable marching cubes.18

Extensive experiments and ablation studies demonstrate the significant advantages19

of our NeCGS over state-of-the-art methods both quantitatively and qualitatively.20

We have included the source code in the Supplemental Material.21

1 Introduction22

3D mesh models/shapes are widely used in various fields, such as computer graphics, virtual reality,23

robotics, and autonomous driving. As geometric data becomes increasingly complex and voluminous,24

effective compression techniques have become critical for efficient storage and transmission. More-25

over, current geometry compression methods primarily focus on individual 3D models or sequences26

of 3D models that are temporally correlated, but struggle to handle more general data sets, such as27

compressing large numbers of unrelated 3D shapes.28

Unlike images and videos represented as regular 2D or 3D volumes, mesh models are commonly29

represented as triangle meshes, which are irregular and challenging to compress. Thus, a natural30

idea is to structure the mesh models and then leverage image or video compression techniques to31

compress them.Converting mesh models into voxelized point clouds is a common practice, and the32

mesh models can be recovered from the point clouds via surface reconstruction methods [22, 24].33

Based on this, in recent years, MPEG has developed two types of 3D point cloud compression (PCC)34

standards [46, 28]: geometry-based PCC (GPCC) for static models and video-based PCC (VPCC) for35

sequential models. And with advancements in deep learning, numerous learning-based PCC methods36

[41, 14, 55, 19, 54] have emerged, enhancing compression efficiency. However, the voxelized point37

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



clouds require a high resolution (typically 210 or more) to accurately represent geometry data, which38

is redundancy, limiting the compression efficiency.39

Another regular representation involves utilizing implicit fields of mesh models, such as signed40

distance fields (SDF) and truncated signed distance fields (TSDF). This is achieved by calculating41

the value of the implicit field at each uniformly distributed grid point, resulting in a regular volume.42

And the mesh models can be recovered from the implicit fields through Matching Cubes [32] or its43

variants [15, 45]. Compared with point clouds, the implicit volume could represent the mesh models44

in a relatively small resolution. Recently proposed methods, such as DeepSDF [36], utilize multilayer45

perceptrons (MLPs) to regress the SDFs of any given query points. While this representation achieves46

high accuracy for single or similar models (e.g., chairs, tables), the limited receptive field of MLPs47

makes it challenging to represent large numbers of models in different categories, which is a more48

common scenario in practice.49

We propose NeCGS, a novel framework for compressing large sets of geometric models. Our NeCGS50

framework consists of two stages: regular geometry representation and compact neural compression.51

In the first stage, each model is converted into a regular 4D volumetric format, called the TSDF-Def52

volume, which can be considered a 3D ‘image’. In the second stage, we use an auto-decoder to53

regress these 4D volumes. The embedded features and decoder parameters represent these models,54

and compressing these components allows us to compress the entire geometry set. We conducted55

extensive experiments on various datasets, demonstrating that our NeCGS framework achieves higher56

compression efficiency compared to existing geometry compression methods when handling large57

numbers of models. Our NeCGS can achieve a compression ratio of nearly 900 on some datasets,58

compressing hundreds or even thousands of different models into 1∼2 MB while preserving detailed59

structures.60

Figure 1: Our NeCGeS can compress geometry data with hundreds or even thousands of shapes into 1~2 MB
while preserving details. Left: Original Geometry Data. Right: Decompressed Geometry Data. ü Zoom in for
details.
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2 Related Work61

2.1 Geometry Representation62

In general, the representation of geometry data is divided into two main categories, explicit represen-63

tation and implicit representation, and they could be transformed into another.64

Explicit Representation. Among the explicit representations, voxelization [7] is the most intuitive.65

In this method, geometry models are represented by regularly distributed grids, effectively converting66

them into 3D ‘images’. While this approach simplifies the processing of geometry models using67

image processing techniques, it requires a high resolution to accurately represent the models, which68

demands substantial memory and limits its application. Another widely used geometry representation69

method is the point cloud, which consists of discrete points sampled from the surfaces of models.70

This method has become a predominant approach for surface representation [2, 39, 40]. However, the71

discrete nature of the points imposes constraints on its use in downstream tasks such as rendering and72

editing. Triangle meshes offer a more precise and efficient geometry representation. By approximating73

surfaces with numerous triangles, they achieve higher accuracy and efficiency for certain downstream74

tasks.75

Implicit Representation. Implicit representations use the isosurface of a function or field to represent76

surfaces. The most widely used implicit representations include Binary Occupancy Field (BOF)77

[22, 35], Signed Distance Field (SDF) [36, 29], and Truncated Signed Distance Field (TSDF) [11],78

from which the model’s surface can be easily extracted. However, these methods are limited to79

representing watertight models. The Unsigned Distance Field (UDF) [8], which is the absolute value80

of the SDF, can represent more general models, not just watertight ones. Despite this advantage,81

extracting surfaces from UDF is challenging, which limits its application.82

Conversion between Geometry Representations. Geometry representations can be converted83

between explicit and implicit forms. Various methods [21, 22, 24, 6, 35, 29, 45] are available for84

calculating the implicit field from given models. Conversely, when converting from implicit to85

explicit forms, Marching Cubes [32] and its derivatives [48, 49, 15, 45] can reconstruct continuous86

surfaces from various implicit fields.87

2.2 3D Geometry Data Compression88

Single 3D Geometric Model Compression. In recent decades, compression techniques for images89

and videos have rapidly advanced [51, 34, 59, 5, 4]. However, the irregular nature of geometry90

data makes it more challenging to compress compared to images and video, which are represented91

as volumetric data. A natural approach is to convert geometry data into voxelized point clouds,92

treating them as 3D ‘images’, and then applying image and video compression techniques to them.93

Following this intuition, MPEG developed the GPCC standards [13, 28, 47], where triangle meshes or94

triangle soup approximates the surfaces of 3D models, enabling the compression of models with more95

complex structures. Subsequently, several improved methods [37, 60, 53, 62] and learning-based96

methods [18, 43, 10, 9, 3, 42, 54] have been proposed to further enhance compression performance.97

However, these methods rely on voxelized point clouds to represent geometry models, which is98

inefficient and memory-intensive, limiting their compression efficiency. In contrast to the previously99

mentioned methods, Draco [12] uses a kd-tree-based coding method to compress vertices and employs100

the EdgeBreaker algorithm to encode the topological relationships of the geometry data. Draco101

utilizes uniform quantization to control the compression ratio, but its performance decreases at higher102

compression ratios.103

Multiple Model Compression. Compared to compressing single 3D geometric models, compressing104

multiple objects is significantly more challenging. SLRMA [17] addresses this by using a low-rank105

matrix to approximate vertex matrices, thus compressing sequential models. Mekuria et al. [33]106

proposed the first codec for compressing sequential point clouds, where each frame is coded using107

Octree subdivision through an 8-bit occupancy code. Building on this concept, MPEG developed the108

VPCC standards [13, 28, 47], which utilize 3D-to-2D projection and encode time-varying projected109

planes, depth maps, and other data using video codecs. Several improved methods [57, 26, 1, 44]110

have been proposed to enhance the compression of sequential models. Recently, shape priors like111

SMPL [31] and SMAL [63] have been introduced, allowing the pose and shape of a template frame112

to be altered using only a few parameters. Pose-driven geometry compression methods [16, 58, 56]113
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Figure 2: The pipeline of NeCGS. It first represents original meshes regularly into TSDF-Def volumes, and an
auto-decoder network is utilized to regress these volume. Then the embedded features and decoder parameters
are compressed into bitstreams through entropy coding. When decompressing the models, the decompressed
embedded features are fed into the decoder with the decompressed parameters from the bitstreams, reconstructing
the TSDF-Def volumes, and the models can be extracted from them.

leverage this approach to achieve high compression efficiency. However, these methods are limited to114

sequences of corresponding geometry data and cannot handle sets of unrelated geometry data, which115

is more common in practice.116

3 Proposed Method117

Overview. Given a set of N 3D mesh models containing diverse categories, denoted as S = {Si}Ni=1,118

we aim to compress them into a bitstream while maintaining the quality of the decompressed models119

as much as possible. To this end, we propose a neural compression paradigm called NeCGS. As120

shown in Fig. 2, NeCGS consists of two main modules, i.e., Regular Geometry Representation (RGR)121

and Compact Neural Representation (CNR). Specifically, RGR first represents each irregular mesh122

model within S into a regular 4D volume, namely TSDF-Def volume that mplicitly describes the123

geometry structure of the model, via a rendering-based optimization, thus leading to a set of 4D124

volumes V := {Vi}Ni=1 with Vi corresponding to Si. Then CNR further obtains a more compact125

neural representation of V , where a quantization-aware auto-decoder-based network is constructed126

to regress these volumes, producing an embedded feature for each volume. Finally, the embedded127

features along with the network parameters are encoded into a bitstream through a typical entropy128

coding method to achieve compression. We also want to note that NeCGS can also be applied to129

compress 3D geometry sets represented in 3D point clouds, where one can either reconstruct from the130

given point clouds 3D surfaces through a typical surface reconstruction method or adopt a pre-trained131

network for SDF estimation from point clouds, e.g., SPSR [22] or IMLS [24], to bridge the gap132

between 3D mesh and point cloud models. In what follows, we will detail NeCGS.133

3.1 Regular Geometry Representation134

Figure 3: 2D visual illustration of DMC.
The blue points refer to the deformable grid
points, the green points refer to the vertices of
the extracted surfaces, and the orange lines
refer to the faces of the extracted surfaces.
Left: The original grid points. Right: The
surface extraction.

Unlike 2D images and videos, where pixels are uniformly135

distributed on 2D regular girds, the irregular characteristic136

of 3D mesh models makes it challenging to compress them137

efficiently and effectively. We propose to convert each138

3D mesh model to a 4D regular volume called TSDF-139

Def volume, which implicitly represents the geometry140

structure of the model. Such a regular representation can141

describe the model precisely, and its regular nature proves142

beneficial for compression in the subsequent stage.143

TSDF-Def Volume. Although 3D regular SDF or TSDF144

volumes are widely used for representing 3D geometry145

models, they may introduce distortions when the volume146
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resolution is relatively limited. Inspired by recent shape extracting methods [48, 49], we propose147

TSDF-Def, which extends the regular TSDF volume by introducing an additional deformation for148

each grid point to adjust the detailed structure during the extraction of models, as shown in Fig.149

3. Accordingly, we develop the differentiable Deformable Marching Cubes (DMC), the variant of150

the Marching Cubes method [32], for surface extraction from a TSDF-Def volume. Consequently,151

each shape S is represented as a 4D TSDF-Def volume, denoted as V ∈ RK×K×K×4, where K152

is the volume resolution. More specifically, the value of the grid point located at (u, v, w) is153

V(u, v, w) := [TSDF(u, v, w),∆u,∆v,∆w], where (∆u,∆v,∆w) are the deformation for the grid154

point and 1 ≤ u, v, w ≤ K. TSDF-Def enhances representation accuracy, particularly when the grid155

resolution is relatively low.156

Optimization of TSDF-Def Volumes. To obtain the optimal TSDF-Def volume V for a given model157

S, after initializing the deformations of each grid to zero and computing the TSDF value for each158

grid we optimize the following problem:159

min
V

ERec(DMC(V),S), (1)

where DMC(·) refers to the differentiable DMC process for extracting surfaces from TSDF-Def160

volumes, and the EReg(·, ·) measures the differences between the rendered depth and silhouette161

images of two mesh models through the differentiable rasterization [25]. Algorithm 1 summarizes162

the whole optimization process. More details can be found in Sec. A.2 of the subsequent Appendix.163

Algorithm 1: Optimization of TSDF-Def Volumes
Input: 3D mesh model S; the maximum number of iterations maxIter.
Output: The optimal TSDF-Def volume V ∈ RK×K×K×4.

1 Place uniformly distributed grids in the cube of S, denoted as G ∈ RK×K×K×3;
2 Initialize V[..., 0] as the ground truth TSDF of S at the location of G, the deformation

V[..., 1 :]=0, and the current iteration Iter = 0;
3 while Iter < maxIter do
4 Recover shape from V according to DMC, DMC(V);
5 Calculate the reconstruction error, ERec(DMC(V),S);
6 Optimize V using ADAM optimizer based on the reconstruction error;
7 Iter:=Iter+1;
8 end
9 return V;

3.2 Compact Neural Representation164

Observing the similarity of local geometric structures within a typical 3D model and across different165

models, i.e., redundancy, we further propose a quantization-aware neural representation process166

to summarize the similarity within V , leading to more compact representations with redundancy167

removed.168

Network Architecture. We construct an auto-decoder network architecture to regress these 4D169

TSDF-Def volumes. Specifically, it is composed of a head layer, which increases the channel of its170

input, and L cascaded upsampling modules, which progressively upscale the feature volume. We171

also utilize the PixelShuffle technique [50] between the convolution and activation layers to achieve172

upscaling. We refer reviewers to Sec. B of Appendix for more details. For TSDF-Def volume Vi,173

the corresponding input to the auto-decoder is the embedded feature, denoted as Fi ∈ RK′×K′×K′×C ,174

where K ′ is the resolution satisfying K ′ ≪ K and C is the number of channels. Moreover, we175

integrate differentiable quantization to the embedded features and network parameters in the process,176

which can efficiently reduce the quantization error. In all, the compact neural representation process177

can be written as178

V̂i = DQ(Θ)(Q(Fi)). (2)

where Q(·) stands for the differentiable quantization operator, and V̂i is the regressed TSDF-Def.179

Loss Function. We employ a joint loss function comprising Mean Absolute Error (MAE) and180

Structural Similarity Index (SSIM) to simultaneously optimize the embedded features {Fi} and181
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the network parameters Θ. In computing the MAE between the predicted and ground truth TSDF-182

Def volumes, we concentrate more on the grids close to the surface. These surface grids crucially183

determine the surfaces through their TSDFs and deformations; hence we assign them higher weights184

during optimization than the grids farther away from the surface. The overall loss function for the185

i-th model is written as186

L(V̂i,Vi) = ∥V̂i −Vi∥1 + λ1∥Mi ⊙ (V̂i −Vi)∥1 + λ2(1− SSIM(V̂i,Vi)), (3)

where Mi = 1(|Vi[..., 0])| < τ) is the mask, indicating whether a grid is near the surface, i.e., its187

TSDF is less than the threshold τ , while λ1 and λ2 are the weights to balance each term of the loss188

function.189

Entropy Coding. After obtaining the quantized features {F̃i = Q(Fi)} and quantized network190

parameters Θ̃ = Q(Θ), we adopt the Huffman Codec [20] to further compress them into a bit-191

stream. More advanced entropy coding methods can be employed to further improve compression192

performance.193

3.3 Decompression194

To obtain the 3D mesh models from the bitstream, we first decompress the bitstream to derive the195

embedded features, {F̃i} and the decoder parameter, Θ̃. Then, for each F̃i, we feed it to the decoder196

DΘ̃(·) to generate its corresponding TSDF-Def volume197

V̂i = DΘ̃(F̃i). (4)

Finally, we utilize DMC to recover each shape from V̂i, Ŝi = DMC(V̂i), forming the set of decom-198

pressed geometry data, Ŝ = {Ŝi}Ni=1.199

4 Experiment200

4.1 Experimental Setting201

Implementation details. In the process of optimizing TSDF-Def volumes, we employed the ADAM202

optimizer [23] for 500 iterations per shape, using a learning rate of 0.01. The resolution of TSDF-Def203

volumes was K = 128. The resolution and the number of channels of the embedded features were204

K ′ = 4 and C = 16, respectively. And the decoder is composed of L = 5 upsampling modules with205

an up-scaling factor of 2. During the optimization, we set λ1 = 5 and λ2 = 10, and the embedded206

features and decoder parameters were optimized by the ADAM optimizer for 400 epochs, with a207

learning rate of 1e-3. We achieved different compression efficiencies by adjusting decoder sizes. We208

conducted all experiments on an NVIDIA RTX 3090 GPU with Intel(R) Xeon(R) CPU.209

210

Table 1: Details of the selected datasets1.

Dataset Original Size (MB) # Models
AMA 378.41 500
DT4D 683.80 500
Thingi10K 335.92 1000
Mixed 496.16 600

Datasets. We tested our NeCGS on various types211

of datasets, including humans, animals, and CAD212

models. For human models, we randomly selected213

500 shapes from the AMA dataset [52]. For animal214

models, we randomly selected 500 shapes from215

the DT4D dataset [27]. For the CAD models, we216

randomly selected 1000 shapes from the Thingi10K217

dataset [61]. Besides, we randomly selected 200218

models from each dataset, forming a more challenging dataset, denoted as Mixed. The details about219

the selected datasets are shown in Table 1. In all experiments, we scaled all models in a cube with a220

range of [−1, 1]3 to ensure they are in the same scale.221

Methods under Comparison. In terms of traditional geometry codecs, we chose the three most222

impactful geometry coding standards with released codes, G-PCC2 and V-PCC3 from MPEG (see223

1The original geometry data is kept as triangle meshes, so the storage size is much less than the voxelized
point clouds.

2https://github.com/MPEGGroup/mpeg-pcc-tmc13
3https://github.com/MPEGGroup/mpeg-pcc-tmc2
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more details about them in [13, 28, 47]), and Draco 4 from Google as the baseline methods. Addi-224

tionally, we compared our approach with state-of-the-art deep learning-based compression methods,225

specifically PCGCv2 [54]. Furthermore, we adapted DeepSDF [36] with quantization to serve as226

another baseline method, denoted as QuantDeepSDF. It is worth noting that while some of the chosen227

baseline methods were originally designed for point cloud compression, we utilized voxel sampling228

and SPSR [22] to convert them between the forms of point cloud and surface. More details can be229

found in Sec. C.2 appendix.230
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Figure 4: Quantitative comparisons of different methods on four 3D geometry sets.

Evaluation Metrics. Following previous reconstruction methods [35, 38], we utilize Chamfer231

Distance (CD), Normal Consistency (NC), F-Score with the thresholds of 0.005 and 0.01 (F1-0.005232

and F1-0.01) as the evaluation metrics. Furthermore, to comprehensively compare the compression233

efficiency of different methods, we use Rate-Distortion (RD) curves. These curves illustrate the234

distortions at various compression ratios, with CD and F1-0.005 specifically describing the distortion235

of the decompressed models. Our goal is to minimize distortion, indicated by a low CD and a high236

F1-Score, while maximizing the compression ratio. Therefore, for the RD curve representing CD,237

optimal compression performance is achieved when the curve is closest to the lower right corner.238

Similarly, for the RD curve representing the F1-Score, the ideal compression performance is when239

the curve is nearest to the upper right corner. Their detailed definition can be found in Sec. C.1 of240

appendix.241

4.2 Results242

The RD curves of different compression methods under different datasets are shown in Fig. 4. As243

the compression ratio increases, the distortion also becomes larger. It is obvious that our NeCGS244

can achieve much better compression performance than the baseline methods when the compression245

ratio is high, even in the challenging Mixed dataset. In particular, our NeCGS achieves a minimum246

compression ratio of 300, and on the DT4D dataset, the compression ratio even reaches nearly 900,247

with minimal distortion. Due to the larger model differences within the Thingi10K and Mixed datasets248

compared to the other two datasets, the compression performance on these two datasets is inferior.249

(a) Ori. (b) 455.25 (c) 651.85 (d) 899.73
Figure 6: Decompressed models under different com-
pression ratios.

The visual results of different compression meth-250

ods are shown in Fig. 5. Compared to other251

methods, models compressed using our ap-252

proach occupy a larger compression ratio and253

retain more details after decompression. Fig. 6254

4https://github.com/google/draco
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Figure 5: Visual comparisons of different compression methods. All numbers in corners represent the
compression ratio. ü Zoom in for details.

illustrates the decompressed models under different compression ratio. Even when the compression255

ratio reaches nearly 900, our method can still retain the details of the models.256

4.3 Ablation Study257

In order to illustrate the efficiency of each design of our NeCGS, we conducted extensive ablation258

study about them on the Mixed dataset.259

Figure 7: Models recovered from different regular geometry repre-
sentations under various volume resolutions. From Left to Right:
Original, TSDF with K = 64, TSDF with K = 128, TSDF-Def
with K = 64, and TSDF-Def with K = 128.

Necessity of the Deformation of260

Grids. We utilize TSDF-Def volumes261

to as the regular geometry representa-262

tion, instead of TSDF volumes like263

previous methods. Compared with264

models recovered from TSDF vol-265

umes through MC, the models recov-266

ered from TSDF-Def volumes through267

DMC preserve more details of the thin268

structures, especially when the volume resolutions are relatively small, as shown in Fig. 7. We also269

conducted a numerical comparison of the decompressed models on the AMA dataset under these two270

settings, and the results are shown in Table. 2, demonstrating its advantages.271

Table 2: Quantitative comparisons of different RGRs.

RGR Size (MB) Com. Ratio CD (×10−3) ↓ NC ↑ F1-0.005 ↑ F1-0.01 ↑
TSDF 1.631 304.20 5.015 0.944 0.662 0.936
TSDF-Def 1.612 307.79 4.913 0.947 0.674 0.943

Neural Representation Structure. To illustrate the superiority of auto-decoder framework, we272

utilize an auto-encoder to regress the TSDF-Def volume. Technically, we used a ConvNeXt block273

[30] as the encoder by replacing 2D convolutions with 3D convolutions. Under the auto-encoder274

framework, we optimize the parameters of the encoder to change the embedded features. The RD275
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Figure 8: (a) RD curves of different neural representation structures. (b) RD curves of different regression
losses.

curves about these two structures are shown in Fig. 8(a), demonstrating rationality of our decoder276

structure.277

(a) Original (b) w/o SSIM (c) w/ SSIM

Figure 9: Visual comparison of regression loss w/
and w/o SSIM item.

SSIM Loss. Compared to MAE, which focuses on278

one-to-one errors between predicted and ground truth279

volumes, the SSIM item in Eq. 3 emphasizes more280

on the local similarity between volumes, increasing281

the regression accuracy. To verify this, we removed282

the SSIM item and kept others unchanged. Their RD283

curves are shown in Fig. 8(b), and it is obvious that284

the SSIM item in the regression loss increases the285

compression performance. The visual comparison is286

shown in Fig. 9, and without SSIM, there are floating287

parts around the decompressed models.288

(a) Ori. (b) 64 (c) 128 (d) 256
Figure 10: Visual comparison under differ-
ent resolutions of TSDF-Def volume.

Resolution of TSDF-Def Volumes. We tested the com-289

pression performance at different resolutions of TSDF-290

Def volumes by adjusting the decoder layers accordingly.291

Specifically, we removed the last layer for a resolution292

of 64 and added an extra layer for a resolution of 256.293

The quantitative and numerical comparisons are shown in294

Table 3 and Fig. 10, respectively. Obviously, increasing295

the volume resolution can enhance the compression effec-296

tiveness, resulting in more detailed structures preserved297

after decompression. However, the optimization and in-298

ference time also increase accordingly due to more layers299

involved.300

Table 3: Quantitative comparisons of different resolutions of TSDF-Def volumes.
Res. Size (MB) Com. Ratio CD (×10−3) ↓ NC ↑ F1-0.005 ↑ F1-0.01 ↑ Opt Time (h) Infer. Time (ms)
64 1.408 268.75 4.271 0.927 0.721 0.966 2.16 38.97
128 1.493 253.45 3.436 0.952 0.842 0.991 16.32 98.95
256 1.627 232.58 3.234 0.962 0.870 0.995 94.50 421.94

5 Conclusion and Discussion301

We have presented NeCGS, a highly effective neural compression scheme for 3D geometry sets.302

NeCGS has achieved remarkable compression performance on various datasets with diverse and303

detailed shapes, outperforming state-of-the-art compression methods to a large extent. These advan-304

tages are attributed to our regular geometry representation and the compression accomplished by a305

convolution-based auto-decoder. We believe our NeCGS framework will inspire further advancements306

in the field of geometry compression.307

However, our method still suffers from the following two limitations. One is that it requires more308

than 15 hours to regress the TSDF-Def volumes, and the other one is that the usage of 3D convolution309

layers limits the inference speed. Our future work will focus on addressing these challenges by310

accelerating the optimization process and incorporating more efficient network modules.311
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Appendix466

A Regular Geometry Representation467

A.1 Tensor Quantization468

Denoted x is a tensor, we quantize it in a fixed interval, [a, b], at (2N + 1) levels5 by469

Q(x) = Round
(
Clamp(x, a, b)− a

s

)
× s+ a, (5)

where s = (b− a)/2N . In our experiment, we set a = −1 and b = 1.470

A.2 Optimization of TSDF-deformation Volumes471

We set a series of camera pose, T = {Ti}Ei=1, around the meshes. Let ID1 (Ti) and ID2 (Ti) represent472

the depth images obtained from the reconstructed mesh DMC(V) and the given mesh S at the pose Ti473

respectively. Similarly, let IM1 (Ti) and IM2 (Ti) denote their respective silhouette images at pose Ti.474

The reconstruction error produced by silhouette and depth images at all pose are475

EM(DMC(V),S) =
∑
Ti∈T

∥IM1 (Ti)− IM2 (Ti)∥1 (6)

and476

ED(DMC(V),S) =
∑
Ti∈T

∥ (ID1 (Ti)− ID2 (Ti)) ∗ IM2 (Ti)∥1. (7)

Then the reconstruction error is defined as477

ERec(DMC(V),S) = EM(DMC(V),S) + λrecED(DMC(V),S), (8)

where E = 4 and λrec = 10 in our experiment.478

B Auto-decoder-based Neural Compression479

B.1 Upsampling Module480

In each upsampling module, we utilize a PixelShuffle layer between the convolution and activa-481

tion layers to upscale the input, as shown in Fig. 11. The input feature volume has dimensions482

(Nin, Nin, Nin, Cin), with an upsampling scale of s and an output channel count of Cout.483

C Experiment484

C.1 Evaluation Metric485

Let SRec and SGT denote the reconstructed and ground-truth 3D shapes, respectively. We then486

randomly sample Neval = 105 points on them, obtaining two point clouds, PRec and PGT. For each487

point of PRec and PGT, the normal of the triangle face where it is sampled is considered to be its488

normal vector, and the normal sets of PRec and PGT are denoted as NRec and NGT, respectively.489

Let NN_Point(x,P) be the operator that returns the nearest point of x in the point cloud P. The CD490

between them is defined as491

CD(SRec,SGT) =
1

2Neval

∑
x∈PRec

∥x− NN_Point(x,PGT)∥2

+
1

2Neval

∑
x∈PGT

∥x− NN_Point(x,PRec)∥2.
(9)

5We partition the interval [a, b] into (2N + 1) levels, rather than 2N levels, to ensure the inclusion of the
value 0.
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Figure 11: Upsampling Module.

Let NN_Normal(x,P) be the operator that returns the normal vector of the point x’s nearest point in492

the point cloud P. The NC is defined as493

NC(SRec,SGT) =
1

2Neval

∑
x∈PRec

|NRec(x) · NN_Normal(x,PGT)|

+
1

2Neval

∑
x∈PGT

|NGT(x) · NN_Normal(x,PRec)|.
(10)

F-Score is defined as the harmonic mean between the precision and the recall of points that lie within494

a certain distance threshold ϵ between SRec and SGT,495

F− Score(SRec,SGT, ϵ) =
2 · Recall · Precision
Recall+ Precision

, (11)

where496

Recall(SRec,SGT, ϵ) =

∣∣∣∣{x1 ∈ PRec, s.t. min
x2∈PGT

∥x1 − x2∥2 < ϵ

}∣∣∣∣ ,
Precision(SRec,SGT, ϵ) =

∣∣∣∣{x2 ∈ PGT, s.t. min
x1∈PRec

∥x1 − x2∥2 < ϵ

}∣∣∣∣ . (12)

Decoder

Figure 12: Pipeline of QuantDeepSDF.

C.2 QuantDeepSDF497

Compared to DeepSDF, our QuantDeepSDF incorporates the following two modifications:498

• The decoder parameters are quantized to enhance compression efficiency.499
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• To maintain consistency with our NeCGS, the points sampled during training are drawn500

from TSDF-Def volumes.501

The pipeline of QuantDeepSDF is shown in Fig. 12. Specifically, the decoder is an MLP, where the502

input is the concatenated vector of coordinate x ∈ R3 and the i-th embedded feature vector Fi ∈ RC ,503

and the output is the corresponding TSDF-Def value. In our experiment, the decoder consists of 8504

layers, and the compression ratio is controled by changing the width of each layer.505

C.3 Auto-Encoder in Ablation Study506

Different from the auto-encoder used in our framework, where the embed features are directly507

optimized, auto-encoder utilizes an encoder to produce the embedded features, where the inputs are508

the TSDF-Def volumes. And the decoder is kept the same as our framework. During the optimization,509

the parameters of encoder and decoder are optimized. Once optimized, the embedded features510

produced by the encoder and decoder parameters are compressed into bitstreams.511

C.4 More Visual Results512

Fig. 13 depicts the visual results of the decompresed models from the AMA dataset, DT4D dataset,513

and Thingi10K dataset under various compression ratios, respectively. With the compression ratio514

increasing, the decompressed models still preserve the detailed structures, without large distortion.515

Ori. 253.45 362.80 500.54

Ori. 455.26 651.85 899.73

Ori. 166.79 219.84 273.32

Figure 13: Visual results of the decompressed models under different compression ratios. From Top to Bottom:
AMA, DT4D, and Thingi10K. ü Zoom in for details.
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NeurIPS Paper Checklist516

1. Claims517

Question: Do the main claims made in the abstract and introduction accurately reflect the518

paper’s contributions and scope?519

Answer: [Yes]520

Justification: Abstract.521

Guidelines:522

• The answer NA means that the abstract and introduction do not include the claims523

made in the paper.524

• The abstract and/or introduction should clearly state the claims made, including the525

contributions made in the paper and important assumptions and limitations. A No or526

NA answer to this question will not be perceived well by the reviewers.527

• The claims made should match theoretical and experimental results, and reflect how528

much the results can be expected to generalize to other settings.529

• It is fine to include aspirational goals as motivation as long as it is clear that these goals530

are not attained by the paper.531

2. Limitations532

Question: Does the paper discuss the limitations of the work performed by the authors?533

Answer: [Yes]534

Justification: Sec. 5.535

Guidelines:536

• The answer NA means that the paper has no limitation while the answer No means that537

the paper has limitations, but those are not discussed in the paper.538

• The authors are encouraged to create a separate "Limitations" section in their paper.539

• The paper should point out any strong assumptions and how robust the results are to540

violations of these assumptions (e.g., independence assumptions, noiseless settings,541

model well-specification, asymptotic approximations only holding locally). The authors542

should reflect on how these assumptions might be violated in practice and what the543

implications would be.544

• The authors should reflect on the scope of the claims made, e.g., if the approach was545

only tested on a few datasets or with a few runs. In general, empirical results often546

depend on implicit assumptions, which should be articulated.547

• The authors should reflect on the factors that influence the performance of the approach.548

For example, a facial recognition algorithm may perform poorly when image resolution549

is low or images are taken in low lighting. Or a speech-to-text system might not be550

used reliably to provide closed captions for online lectures because it fails to handle551

technical jargon.552

• The authors should discuss the computational efficiency of the proposed algorithms553

and how they scale with dataset size.554

• If applicable, the authors should discuss possible limitations of their approach to555

address problems of privacy and fairness.556

• While the authors might fear that complete honesty about limitations might be used by557

reviewers as grounds for rejection, a worse outcome might be that reviewers discover558

limitations that aren’t acknowledged in the paper. The authors should use their best559

judgment and recognize that individual actions in favor of transparency play an impor-560

tant role in developing norms that preserve the integrity of the community. Reviewers561

will be specifically instructed to not penalize honesty concerning limitations.562

3. Theory Assumptions and Proofs563

Question: For each theoretical result, does the paper provide the full set of assumptions and564

a complete (and correct) proof?565

Answer: [NA]566
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Justification: [NA]567

Guidelines:568

• The answer NA means that the paper does not include theoretical results.569

• All the theorems, formulas, and proofs in the paper should be numbered and cross-570

referenced.571

• All assumptions should be clearly stated or referenced in the statement of any theorems.572

• The proofs can either appear in the main paper or the supplemental material, but if573

they appear in the supplemental material, the authors are encouraged to provide a short574

proof sketch to provide intuition.575

• Inversely, any informal proof provided in the core of the paper should be complemented576

by formal proofs provided in appendix or supplemental material.577

• Theorems and Lemmas that the proof relies upon should be properly referenced.578

4. Experimental Result Reproducibility579

Question: Does the paper fully disclose all the information needed to reproduce the main ex-580

perimental results of the paper to the extent that it affects the main claims and/or conclusions581

of the paper (regardless of whether the code and data are provided or not)?582

Answer: [Yes]583

Justification: Sec. 4.1.584
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• The answer NA means that the paper does not include experiments.586

• If the paper includes experiments, a No answer to this question will not be perceived587

well by the reviewers: Making the paper reproducible is important, regardless of588

whether the code and data are provided or not.589

• If the contribution is a dataset and/or model, the authors should describe the steps taken590

to make their results reproducible or verifiable.591

• Depending on the contribution, reproducibility can be accomplished in various ways.592

For example, if the contribution is a novel architecture, describing the architecture fully593

might suffice, or if the contribution is a specific model and empirical evaluation, it may594

be necessary to either make it possible for others to replicate the model with the same595

dataset, or provide access to the model. In general. releasing code and data is often596

one good way to accomplish this, but reproducibility can also be provided via detailed597

instructions for how to replicate the results, access to a hosted model (e.g., in the case598

of a large language model), releasing of a model checkpoint, or other means that are599

appropriate to the research performed.600

• While NeurIPS does not require releasing code, the conference does require all submis-601

sions to provide some reasonable avenue for reproducibility, which may depend on the602

nature of the contribution. For example603

(a) If the contribution is primarily a new algorithm, the paper should make it clear how604

to reproduce that algorithm.605

(b) If the contribution is primarily a new model architecture, the paper should describe606

the architecture clearly and fully.607

(c) If the contribution is a new model (e.g., a large language model), then there should608

either be a way to access this model for reproducing the results or a way to reproduce609

the model (e.g., with an open-source dataset or instructions for how to construct610

the dataset).611

(d) We recognize that reproducibility may be tricky in some cases, in which case612

authors are welcome to describe the particular way they provide for reproducibility.613

In the case of closed-source models, it may be that access to the model is limited in614

some way (e.g., to registered users), but it should be possible for other researchers615

to have some path to reproducing or verifying the results.616

5. Open access to data and code617

Question: Does the paper provide open access to the data and code, with sufficient instruc-618

tions to faithfully reproduce the main experimental results, as described in supplemental619

material?620
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Answer: [Yes]621

Justification: We include the code in the supplemental material.622

Guidelines:623

• The answer NA means that paper does not include experiments requiring code.624

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/625

public/guides/CodeSubmissionPolicy) for more details.626

• While we encourage the release of code and data, we understand that this might not be627

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not628

including code, unless this is central to the contribution (e.g., for a new open-source629

benchmark).630

• The instructions should contain the exact command and environment needed to run to631

reproduce the results. See the NeurIPS code and data submission guidelines (https:632

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.633

• The authors should provide instructions on data access and preparation, including how634

to access the raw data, preprocessed data, intermediate data, and generated data, etc.635

• The authors should provide scripts to reproduce all experimental results for the new636

proposed method and baselines. If only a subset of experiments are reproducible, they637

should state which ones are omitted from the script and why.638

• At submission time, to preserve anonymity, the authors should release anonymized639

versions (if applicable).640

• Providing as much information as possible in supplemental material (appended to the641

paper) is recommended, but including URLs to data and code is permitted.642

6. Experimental Setting/Details643

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-644

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the645

results?646

Answer: [Yes]647

Justification: Sec. 4.1648

Guidelines:649

• The answer NA means that the paper does not include experiments.650

• The experimental setting should be presented in the core of the paper to a level of detail651

that is necessary to appreciate the results and make sense of them.652

• The full details can be provided either with the code, in appendix, or as supplemental653

material.654

7. Experiment Statistical Significance655

Question: Does the paper report error bars suitably and correctly defined or other appropriate656

information about the statistical significance of the experiments?657

Answer: [Yes]658

Justification: Sec. 4.2 and 4.3.659

Guidelines:660

• The answer NA means that the paper does not include experiments.661

• The authors should answer "Yes" if the results are accompanied by error bars, confi-662

dence intervals, or statistical significance tests, at least for the experiments that support663

the main claims of the paper.664

• The factors of variability that the error bars are capturing should be clearly stated (for665

example, train/test split, initialization, random drawing of some parameter, or overall666

run with given experimental conditions).667

• The method for calculating the error bars should be explained (closed form formula,668

call to a library function, bootstrap, etc.)669

• The assumptions made should be given (e.g., Normally distributed errors).670

• It should be clear whether the error bar is the standard deviation or the standard error671

of the mean.672
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• It is OK to report 1-sigma error bars, but one should state it. The authors should673

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis674

of Normality of errors is not verified.675

• For asymmetric distributions, the authors should be careful not to show in tables or676

figures symmetric error bars that would yield results that are out of range (e.g. negative677

error rates).678

• If error bars are reported in tables or plots, The authors should explain in the text how679

they were calculated and reference the corresponding figures or tables in the text.680

8. Experiments Compute Resources681

Question: For each experiment, does the paper provide sufficient information on the com-682

puter resources (type of compute workers, memory, time of execution) needed to reproduce683

the experiments?684

Answer: [Yes]685

Justification: Sec. 4.1 and 4.3.686

Guidelines:687

• The answer NA means that the paper does not include experiments.688

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,689

or cloud provider, including relevant memory and storage.690

• The paper should provide the amount of compute required for each of the individual691

experimental runs as well as estimate the total compute.692

• The paper should disclose whether the full research project required more compute693

than the experiments reported in the paper (e.g., preliminary or failed experiments that694

didn’t make it into the paper).695

9. Code Of Ethics696

Question: Does the research conducted in the paper conform, in every respect, with the697

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?698

Answer: [Yes]699

Justification: [NA]700

Guidelines:701

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.702

• If the authors answer No, they should explain the special circumstances that require a703

deviation from the Code of Ethics.704

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-705

eration due to laws or regulations in their jurisdiction).706

10. Broader Impacts707

Question: Does the paper discuss both potential positive societal impacts and negative708

societal impacts of the work performed?709

Answer: [Yes]710

Justification: [NA]711

Guidelines:712

• The answer NA means that there is no societal impact of the work performed.713

• If the authors answer NA or No, they should explain why their work has no societal714

impact or why the paper does not address societal impact.715

• Examples of negative societal impacts include potential malicious or unintended uses716

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations717

(e.g., deployment of technologies that could make decisions that unfairly impact specific718

groups), privacy considerations, and security considerations.719

• The conference expects that many papers will be foundational research and not tied720

to particular applications, let alone deployments. However, if there is a direct path to721

any negative applications, the authors should point it out. For example, it is legitimate722

to point out that an improvement in the quality of generative models could be used to723
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generate deepfakes for disinformation. On the other hand, it is not needed to point out724

that a generic algorithm for optimizing neural networks could enable people to train725

models that generate Deepfakes faster.726

• The authors should consider possible harms that could arise when the technology is727

being used as intended and functioning correctly, harms that could arise when the728

technology is being used as intended but gives incorrect results, and harms following729

from (intentional or unintentional) misuse of the technology.730

• If there are negative societal impacts, the authors could also discuss possible mitigation731

strategies (e.g., gated release of models, providing defenses in addition to attacks,732

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from733

feedback over time, improving the efficiency and accessibility of ML).734

11. Safeguards735

Question: Does the paper describe safeguards that have been put in place for responsible736

release of data or models that have a high risk for misuse (e.g., pretrained language models,737

image generators, or scraped datasets)?738

Answer: [NA]739

Justification: [NA]740

Guidelines:741

• The answer NA means that the paper poses no such risks.742

• Released models that have a high risk for misuse or dual-use should be released with743

necessary safeguards to allow for controlled use of the model, for example by requiring744

that users adhere to usage guidelines or restrictions to access the model or implementing745

safety filters.746

• Datasets that have been scraped from the Internet could pose safety risks. The authors747

should describe how they avoided releasing unsafe images.748

• We recognize that providing effective safeguards is challenging, and many papers do749

not require this, but we encourage authors to take this into account and make a best750

faith effort.751

12. Licenses for existing assets752

Question: Are the creators or original owners of assets (e.g., code, data, models), used in753

the paper, properly credited and are the license and terms of use explicitly mentioned and754

properly respected?755

Answer: [Yes]756

Justification: [NA]757

Guidelines:758

• The answer NA means that the paper does not use existing assets.759

• The authors should cite the original paper that produced the code package or dataset.760

• The authors should state which version of the asset is used and, if possible, include a761

URL.762

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.763

• For scraped data from a particular source (e.g., website), the copyright and terms of764

service of that source should be provided.765

• If assets are released, the license, copyright information, and terms of use in the766

package should be provided. For popular datasets, paperswithcode.com/datasets767

has curated licenses for some datasets. Their licensing guide can help determine the768

license of a dataset.769

• For existing datasets that are re-packaged, both the original license and the license of770

the derived asset (if it has changed) should be provided.771

• If this information is not available online, the authors are encouraged to reach out to772

the asset’s creators.773

13. New Assets774

Question: Are new assets introduced in the paper well documented and is the documentation775

provided alongside the assets?776
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Answer: [NA]777

Justification: [NA]778

Guidelines:779

• The answer NA means that the paper does not release new assets.780

• Researchers should communicate the details of the dataset/code/model as part of781

their submissions via regular templates. This includes details about training, license,782

limitations, etc.783

• The paper should discuss whether and how consent was obtained from people whose784

asset is used.785

• At submission time, remember to anonymize your assets (if applicable). You can either786

create an anonymized URL or include an anonymized zip file.787

14. Crowdsourcing and Research with Human Subjects788

Question: For crowdsourcing experiments and research with human subjects, does the paper789

include the full text of instructions given to participants and screenshots, if applicable, as790

well as details about compensation (if any)?791

Answer: [NA]792

Justification: [NA]793

Guidelines:794

• The answer NA means that the paper does not involve crowdsourcing nor research with795

human subjects.796

• Including this information in the supplemental material is fine, but if the main contribu-797

tion of the paper involves human subjects, then as much detail as possible should be798

included in the main paper.799

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,800

or other labor should be paid at least the minimum wage in the country of the data801

collector.802

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human803

Subjects804

Question: Does the paper describe potential risks incurred by study participants, whether805

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)806

approvals (or an equivalent approval/review based on the requirements of your country or807

institution) were obtained?808

Answer: [NA]809

Justification: [NA]810

Guidelines:811

• The answer NA means that the paper does not involve crowdsourcing nor research with812

human subjects.813

• Depending on the country in which research is conducted, IRB approval (or equivalent)814

may be required for any human subjects research. If you obtained IRB approval, you815

should clearly state this in the paper.816

• We recognize that the procedures for this may vary significantly between institutions817

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the818

guidelines for their institution.819

• For initial submissions, do not include any information that would break anonymity (if820

applicable), such as the institution conducting the review.821
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