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ABSTRACT

3D convolution neural networks (CNNs) have been the prevailing option for video
recognition. To capture the temporal information, 3D convolutions are com-
puted along the sequences, leading to cubically growing and expensive compu-
tations. To reduce the computational cost, previous methods resort to manually
designed 3D/2D CNN structures with approximations or automatic search, which
sacrifice the modeling ability or make training time-consuming. In this work,
we propose to automatically design efficient 3D CNN architectures via a novel
training-free neural architecture search approach tailored for 3D CNNs consid-
ering the model complexity. To measure the expressiveness of 3D CNNs effi-
ciently, we formulate a 3D CNN as an information system and derive an ana-
lytic entropy score, based on the Maximum Entropy Principle. Specifically, we
propose a spatio-temporal entropy score (STEntr-Score) with a refinement factor
to handle the discrepancy of visual information in spatial and temporal dimen-
sions, through dynamically leveraging the correlation between the feature map
size and kernel size depth-wisely. Highly efficient and expressive 3D CNN ar-
chitectures, i.e., entropy-based 3D CNNs (E3D family), can then be efficiently
searched by maximizing the STEntr-Score under a given computational budget,
via an evolutionary algorithm without training the network parameters. Exten-
sive experiments on Something-Something V1&V2 and Kinetics400 demonstrate
that the E3D family achieves state-of-the-art performance with higher compu-
tational efficiency. Code is available at https://github.com/alibaba/
lightweight-neural-architecture-search.

1 INTRODUCTION

Video recognition is a fundamental task for video understanding. To capture the visual information
in both temporal and spatial domains from high-quality large-scale videos, most works have been
focusing on proposing highly expressive models which, however, lead to higher computational costs
Kondratyuk et al. (2021); Zhang et al. (2022); Li et al.. Recent research shows that 3D CNNs achieve
excellent performance on large-scale benchmarks (Hara et al., 2018) with unified computations to
capture spatio-temporal features jointly. However, the computational cost grows cubically in stan-
dard 3D convolution, making it prohibitive for high-resolution long-duration videos. Previous works
propose to improve the efficiency of 3D CNNs via 2D decomposition or approximation manually
(Carreira & Zisserman, 2017; Tran et al., 2018; Feichtenhofer, 2020). Some practices have also been
conducted to manually design efficient 3D CNNs relying on heuristics or experiences (Hara et al.,
2018; Feichtenhofer, 2020). The manually designed 3D or 2D CNN structures cost massive ef-
forts and time in strengthening the modeling ability. Neural Architecture Search (NAS) approaches
(Kondratyuk et al., 2021; Wang et al., 2020) can automatically generate 3D CNN architectures with
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higher modeling ability. However, searching for a single 3D architecture requires days on multi-
ple GPUs or TPUs, as training and evaluation of the accuracy indicator are required in the process,
making the automatic 3D CNN design process time-consuming and/or hardware-dependent.

To tackle the above issues, we study how to automatically generate (or design) efficient and expres-
sive 3D CNNs with limited computations. Recently, training-free technologies have been introduced
by some approaches (Chen et al., 2021; Lin et al., 2021; Sun et al., 2022b), in which kernel spec-
trum analysis or forward inference are adopted to measure the expressiveness of spatial 2D CNNs.
Inspired by the training-free concept and information theory, we suggest that a deep network can
be regarded as an information system, and measuring the expressiveness of the network can be
considered equivalent to analyzing how much information it can capture. Therefore, based on the
Maximum Entropy Principle (Jaynes, 1957), the probability distribution of the system that best
represents the current state of knowledge is the one with the highest entropy. However, as discussed
in (Xie et al., 2018), the information in spatial and temporal domains is different in natural video
data. The spatial dimension is usually limited to some local properties, like connectivity (Claramunt,
2012), while the temporal dimension usually contains more drastic variations with more complex
information. To address the spatio-temporal discrepancy in video data, we conduct a kernel selection
experiment and observe that different 3D kernel selections in different stages have different effects
on performance, and the focus of 3D CNNs changes from spatial information to spatio-temporal in-
formation, as the network depth increases. We thus consider that the design of 3D CNN architecture
should focus on spatial-temporal aggregation depth-wisely.

The above analysis has motivated us to propose a training-free NAS approach to obtain optimal
architectures, i.e., entropy-based 3D CNNs (E3D family). Concretely, we first formulate a 3D
CNN-based architecture as an information system whose expressiveness can be measured by the
value of its differential entropy. We then derive the upper bound of the differential entropy using
an analytic formulation, named Spatio-Temporal Entropy Score (STEntr-Score), conditioned on
spatio-temporal aggregation by dynamically measuring the correlation between feature map size
and kernel size depth-wisely. Finally, an evolutionary algorithm is employed to identify the optimal
architecture utilizing the STEntr-Score without training network parameters during searching. In
summary, the key contributions of our work are as follows:
• We present a novel training-free neural architecture search approach to design efficient 3D CNN
architectures. Instead of using forward inference estimation, we calculate the differential entropy of
a 3D CNN by an analytic formulation under Maximum Entropy Principle.
• We investigate the video data characteristics in spatial and temporal domains and correlation be-
tween feature map with kernel selection, then propose the corresponding spatio-temporal entropy
score to estimate the spatio-temporal aggregation dynamically, with a spatio-temporal refinement
mechanism to handle the information discrepancy.
• Each model of E3D family can be searched within three hours on a desktop CPU, and the models
demonstrate state-of-the-art performance on various video recognition datasets.

2 RELATED WORK

Action recognition. 2D CNNs lack temporal modeling for video sequences, and many approaches
(Wang et al., 2016; Lin et al., 2019; Li et al., 2020; Wang et al., 2021a;b; Huang et al., 2022) focused
on designing an extended module for temporal information learning. Meanwhile, 3D CNN-based
frameworks have a spatio-temporal modeling capability, which improves model performance for
video action recognition (Tran et al., 2015; Carreira & Zisserman, 2017; Feichtenhofer, 2020; Kon-
dratyuk et al., 2021). Some attempts (Feichtenhofer, 2020; Fan et al., 2020; Kondratyuk et al., 2021)
focused on designing efficient 3D CNN-based architectures. For example, X3D (Feichtenhofer,
2020) progressively expands a tiny 2D image classification architecture along multiple network
axes, in space, time, width and depth. Our work also focuses on designing efficient 3D CNN-based
architectures, but in a deterministic manner with entropy-based information criterion analysis.

Maximum Entropy Principle. The Principle of Maximum Entropy is one of the fundamental prin-
ciples in Physics and Information Theory (Shannon, 1948; Reza, 1994; Kullback, 1997; Brillouin,
2013). Accompanied by the widespread applications of deep learning, many theoretical studies
(Saxe et al., 2019; Chan et al., 2021; Yu et al., 2020; Sun et al., 2022b) try to understand the success
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of deep learning based on the Maximum Entropy Principle. Our work focuses on video recognition
and explores the aggregation of spatio-temporal information under the Maximum Entropy Principle.

Training-Free NAS. To reduce the search time of NAS, recent attempts (Mellor et al., 2021; Chen
et al., 2021; Tanaka et al., 2020; Lin et al., 2021; Sun et al., 2022a;b; Zhou et al., 2022; Chen et al.,
2022; Lin et al., 2020) proposed training-free strategies for architecture searching, which construct
an alternative score to rank the initialized networks without training. For example, the work of (Sun
et al., 2022b) maximizes the differential entropy of detection backbones, leading to a better fea-
ture extractor for object detection under the given computational budgets. However, these methods
construct scores on spatial 2D CNNs, and cannot handle the discrepancy of visual information in
spatial and temporal dimensions of 3D CNNs. In order to address the above issues, our work aims
to optimize the network architecture by considering spatio-temporal dimensions aggregation.

3 THE PROPOSED APPROACH

In this section, we first present a detailed technical description of the derivation process of an an-
alytical solution and propose the STEntr-Score with a refinement factor to handle the discrepancy
of visual information in spatial and temporal dimensions. Then we give an overview of the search
strategy for the E3D family, via an evolutionary algorithm without training the network parameters.

3.1 PRELIMINARY

In Information Theory, differential entropy is employed to represent the information capacity of
an information system by measuring the output of the system (Jaynes, 1957; Reza, 1994; Kullback,
1997; Brillouin, 2013; Norwich, 1993). Generally, the output of a system is a high-dimensional con-
tinuous variable with a complex probability distribution, making it difficult to compute the precise
value of its entropy directly. Based on the Maximum Entropy Principle (Jaynes, 1957), a common
alternative approach is to estimate the upper bound of the entropy (Cover & Thomas, 2012), as:

Theorem 1 For any continuous distribution P (x) of mean µ and variance σ2, its differential en-
tropy is maximized when P (x) is a Gaussian distribution N (µ, σ2).

Thus, the differential entropy of any distribution is upper bound by the Gaussian distribution with
the same mean and variance. Suppose x is sampled from Gaussian distribution N (µ, σ2), the dif-
ferential entropy (Norwich, 1993) of x is then:

H(x) =

∫ +∞

−∞
−log(P (x))P (x)dx ∝ log(σ2), (1)

where P (x) represents the probability density function of x. Note that the entropy of the Gaussian
distribution depends only on the variance σ2, and a simple proof is included in the Appendix B.1.

According to successful deep learning applications (Saxe et al., 2019; Chan et al., 2021; Yu et al.,
2020; Sun et al., 2022b;a) of Maximum Entropy Principle, a deep neural network can be regarded
as an information system, and the differential entropy of the last output feature map represents the
expressiveness of the system. Recent method (Sun et al., 2022b) estimates the entropy of 2D CNNs
by simply computing the feature map variance via sampling input data and initializing network
parameters from a random standard Gaussian distribution. However, when migrating to 3D CNNs,
how to efficiently reduce the random sampling noise due to the random initialization, and how to
estimate the entropy after aggregating spatial and temporal dimensions in 3D CNNs design, still
remain open questions. We then propose our method to address these problems.

3.2 STATISTICAL ANALYSIS OF ENTROPY IN DEEP 3D CNNS

Simple Network Space. Following the idea that simpler is better (Lin et al., 2021; Sun et al., 2022b),
we apply vanilla 3D CNNs without considering auxiliary modules (e.g., BN (Ioffe & Szegedy,
2015), Reslink (He et al., 2016), SE block (Hu et al., 2018) and so on) to conduct analysis of
network architectures. Formally, given a convolutional network with L layers of weights W 1, ...,
WL, the forward inference with a simple network space is given by:

xl = W l ∗ xl−1 for l = 1, . . . , L , (2)
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where xl denotes the lth layer feature map. For holistic analysis, the bias of the convolutional layer is
set to zero and the activation function is omitted in the network for simplification. Auxiliary modules
are ignored during entropy calculation and plugged into the backbone without special modification
during training. A detailed discussion about these rules is included in Appendix C.

Since the input data and network parameters are randomly sampled from Gaussian distributions,
the forward entropy calculation will be inconsistent, which might lead to random sampling noise.
To obtain a valid entropy value, computing an average value from multiple sampling iterations and
increasing the value of batch size or resolution can be adopted to reduce the noise. These operations
are however time-consuming and cost higher computational resources. To this end, we propose to
explore the statistical characteristics of the forward inference, to provide an efficient solution.

Maximum Entropy of 3D CNNs. We first consider the product law of expectation (Mood, 1950)
and the Bienaymé’s identity in probability theory (Loeve, 2017), as follows:

Theorem 2 Given two independent random variables v1, v2, the expectation of their product v1v2
is: E(v1v2) = E(v1)E(v2).

Theorem 3 Given n random variables {v1, v2, ..., vi, vi+1, ..., vn} which are pairwise independent
integrable, the sums of their expectations and variances are: E(

∑n
i=1 vi) =

∑n
i=1 E(vi), and

D2(
∑n

i=1 vi) =
∑n

i=1 D2(vi).

We can thus compute the expectation and variance of lth layer feature map element xl
i as:

E(xl
i) =

Kl
t∑

t=1

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

[
E(xl−1

cthw)E(W
l
cthw)

]
, (3)

D2(xl
i) =

Kl
t∑

t=1

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

{
D2(xl−1

cthw)D
2(W l

cthw) + D2(xl−1
cthw)

[
E(W l

cthw)
]2

+ D2(W l
cthw)

[
E(xl−1

cthw)
]2}

,

(4)

where {Kl
t,K

l
h,K

l
w} represents the kernel size of the lth layer in the 3D CNN, and Cl−1 denotes

its input channels size. Note that Cl−1 is equal to 1 when the layer is a depth-wise convolution.
Besides, t, h, w denote the temporal, height, and width positions, respectively. A simple proof is
included in Appendix B.2.

The input x0 is initialized from a standard Gaussian distribution, which means that its expectation
E(x0) = 0 and variance D2(x0) = 1. From the perspective of statistics, we can regard D2(x0

cthw) =
1 when sampling sufficient times. Also, suppose that all parameters are initialized from a zero-mean
Gaussian distribution, and thus the variance of the last layer D2(xL) can be computed by propagating
the variances from previous layers as:

D2(xL
i ) =

L∏
l=1

Kl
tK

l
hK

l
wC

l−1D2(W l
cthw). (5)

Finally, by combining Eq. (5) and Eq. (1), we derive that the upper bound entropy is numerically
proportional to:

H(F ) ∝
L∑

l=1

log(Kl
tK

l
hK

l
wC

l−1D2(W l
cthw)) , (6)

where detailed proof is included in Appendix B.3. By assuming that the parameters of each layer
are initialized with a standard Gaussian distribution with D(W l

cthw) = 1, the entropy score defined
in Eq. (6) can be written as

∑L
l=1 log(K

l
tK

l
hK

l
wC

l−1). It measures the influence of kernel size
and channel dimension on the entropy score in a homogeneous way, named HomoEntr-Score. This
analytic formulation does not require random sampling, thus no random sampling noise exists.
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3.3 SPATIO-TEMPORAL ENTROPY SCORE

The HomoEntr-Score is derived from the analysis with an independent and identical assumption on
the input elements (and the corresponding intermediate features). Although it can generally repre-
sent the expressiveness characteristics of a neural network, there is a gap between HomoEntr-Score
and reality on 3D CNNs. When directly applying it on 3D CNNs for handling video sequences, we
realize the HomoEntr-Score with the independent and identical assumption cannot capture the dis-
crepancy of the visual information in the spatial and temporal domain, as the information between
spatial and temporal dimensions in video data is different in video recognition. The gap leads to
some issues with HomoEntr-Score for modeling video data with 3D CNNs. The observations will
be discussed and analyzed in the following. Note that HomoEntr-Score (and similar approaches
(Sun et al., 2022b)) can work well for modeling the expressiveness of 2D CNNs since there is no
(obvious) discrepancy on the information of the two directions in 2D images statistically. Based on
the analyses, we propose a Spatio-Temporal Entropy Score (STEntr-Score) for 3D CNNs on video
data, where a Spatio-temporal refinement factor is introduced to handle the information discrepancy.

Model Top1 Params
(M)

FLOPs
(G)

HomoEntr
Score

S-2 45.15% 3.33 1.93 178.5
S-3 44.87% 3.33 1.93 178.4
S-4 44.35% 3.33 1.94 178.4
S-5 43.85% 3.33 1.94 178.4
S-6 43.83% 3.33 1.94 178.4

Model Top1 Params
(M)

FLOPs
(G)

HomoEntr
Score

T-2 41.59% 3.32 1.93 177.7
T-3 42.93% 3.32 1.93 177.8
T-4 43.17% 3.32 1.92 177.8
T-5 43.43% 3.32 1.92 177.9
T-6 43.35% 3.32 1.92 177.9

Table 1: Results of different kernel positions on the Sth-Sth V1 validation dataset. All model structures are
based on X3D-S (Feichtenhofer, 2020). “S-N” models mean only stage N selects 1×5×5 kernel, and others
select 3×3×3. “T-N” models mean only stage N selects 3×3×3 kernel, and others select 1×5×5. Note that
we divide stage 4 of X3D with 11 layers into two stages (5 and 6 layers).

Kernel Selection Observations. We conduct an experiment to explore how different 3D convolu-
tional kernel sizes at different stages (i.e., layer blocks at different positions in the network) impact
the performance, as shown in Table 1. All models are based on X3D-S but with different kernels in
different stages. We set 1×5×5 and 3×3×3 kernels at the different stages in the 3D CNNs, which
are typical 3D convolutional kernels for learning spatio-temporal information. These two different
choices enable a layer to aggregate the visual information focusing on different spatial and temporal
dimensions, with the receptive field of CNN in the most pertinent directions. In Table 1, the perfor-
mances of S-2 and S-3 models are higher than X3D-S with only 3×3×3 kernels (44.6% in Table 2),
and S-series outperform T-series, which show that kernel selection at different stages influences the
performance significantly, and that different stages may prefer different kernel sizes, respectively.
Although the kernel selections (with different spatio-temporal dimensions) at different stages lead
to different effects on performance, the corresponding 3D CNNs have similar HomoEntr-Score.
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Figure 1: Input feature map size and kernel sizes of S-2, T-5 and X3D model in each stage.

According to the downsampling strategy of the 3D CNNs, spatial resolutions become smaller from
the large input as the depth increases, while the temporal frame size remains a certain value, as
shown in Figure 1a. Through analyzing the results in Table 1, we can infer that spatial kernels (like
1×5×5) can obtain spatial information more effectively at low-level stages, and spatio-temporal
kernels (like 3×3×3) are more stable to obtain spatio-temporal information at high-level stages.
Meanwhile, the similarity between the input feature map and the kernel size of the S-2 model at
each stage is higher than that of the T-5 model or X3D, according to Figure 1. We thus consider that
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with the higher correlation between the feature map size and kernel size depth-wisely, the model can
obtain higher expressiveness of spatial and temporal information.

Spatio-Temporal Refinement. To estimate the correlation between feature map and kernel size in
different depths, we first define two vectors: the input feature map size S = [T,H,W ] and the 3D
kernel size K = [Kt,Kh,Kw] in a convolutional layer, where {T,H,W} ∈ R represent frame,
height and width dimension size. We compute the distance D̂ based on commonly used cosine
distance as:

D̂(S,K) = −log(Dcosine(S,K)) = −log
(
1− S ·K

∥S∥∥K∥
)
, (7)

where Dcosine represents the Cosine Distance function, and we expand the diversity of the cosine
distance by using log. We thus utilize the distance D̂ between S and K in each layer to define the
variance of weight dynamically. Finally, we refine the upper bound differential entropy as:

H(F ) ∝
L∑

l=1

log(Kl
tK

l
hK

l
wC

l−1 · D̂(Sl,Kl)) . (8)
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Figure 2: Top-1 accuracy vs. STEntr-Score and
HomoEntr-Score.

We name this analytic formulation of Eq. (8) as
Spatio-Temporal Entropy Score (STEntr-Score) to
measure the aggregation of spatio-temporal dimen-
sions. After spatio-temporal refinement, we re-
calculate the entropy of each model by STEntr-Score
in Table 1, and present the relationship between ac-
curacy with STEntr-Score and HomoEntr-Score in
Figure 2. According to this figure, STEntr-Score is
positively correlated with Top1 accuracy which in-
dicates that the proposed spatio-temporal refinement
can handle the discrepancy of visual information in
spatial and temporal dimensions.

3.4 3D CNN SEARCHING STRATEGY

Utilizing STEntr-Score, we apply the basic Evolutionary Algorithm (EA) to find the optimal 3D
CNN architectures, which is similar to (Lin et al., 2021; Sun et al., 2022b). We initialize a population
of candidates randomly under a small budget and define the 3D kernel search space within each
layer with two options: {1× (kspace)2, ktimes × (kspace)2}, then randomly select two stages from
the candidates and mutate them at each iteration step. We calculate its STEntr-Score to navigate
the evolution process instead of evaluating the accuracy after mutation, if the inference cost of
the mutated structure does not exceed the budget. The population will be maintained to a certain
size during iterations, by discarding the worst candidate of the smallest STEntr-Score. After all
iterations, the target network is achieved with the largest STEntr-Score under the given budget (e.g.,
FLOPs, parameters, and latency). Since the latency budget requires a forward process on GPU which
will diminish the efficiency of our STEntr-Score search, we choose FLOPs as the target budget.
Another reason for applying FLOPs budget is to fairly compare with X3D (Feichtenhofer, 2020)
and MoViNet (Kondratyuk et al., 2021), which only report FLOPs rather than latency. Thus, we
obtain the spatio-temporal entropy 3D CNNs family (E3D family) under certain FLOPs, All models
are searched separately with different FLOPs bugdet (1.9G, 4.7G, and 18.4G) for a fair comparison
with X3D-S/M/L as the baseline, and the detailed algorithm is described in Appendix E

4 EXPERIMENTS

Our E3D family consists of E3D-S (1.9G FLOPs), E3D-M (4.7G FLOPs), and E3D-L (18.3G
FLOPs). The detailed structures of the E3D family are described in Appendix F. We compare our
approach with other state-of-the-art methods and in-depth analysis to better understand our method.
More results are presented in Appendix H.
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Method Backbone Pretrain Resolution GFLOPs 1×1 V1-Val 2×3 V2-Val

Top1 Top5 Top1 Top5

TSN (Wang et al., 2016) ResNet50 ImageNet 8 × 2562 16 19.5 - - -
TSM (Lin et al., 2019) ResNet50 ImageNet 16 × 2562 65 47.2 77.1 63.4 88.5
TANet (Liu et al., 2021) ResNet50 ImageNet 16 × 2562 66 47.6 77.7 64.6 89.5
ActionNet (Wang et al., 2021b) ResNet50 ImageNet 16 × 2562 69.5 - - 64.0 89.3
TAda (Huang et al., 2022) ConvNeXt-T ImageNet 16 × 2562 47 - - 64.8 88.8

I3D (Carreira & Zisserman, 2017) InceptionV1 ImageNet+K400 64 × 2562 306 41.6 72.2 - -
NL I3D (Carreira & Zisserman, 2017) InceptionV1 ImageNet+K400 64 × 2562 334 44.4 76.0 - -
S3D-G (Xie et al., 2018) InceptionV1 ImageNet 64 × 2562 71.4 48.2 78.7 - -
X3D∗ (Feichtenhofer, 2020) X3D-S No pretrain 13 × 1602 2 44.6 74.4 60.1 85.9
X3D∗ (Feichtenhofer, 2020) X3D-M No pretrain 16 × 2242 4.7 47.3 76.6 62.2 87.2
X3D∗ (Feichtenhofer, 2020) X3D-L No pretrain 16 × 3122 18.4 49.4 77.9
MoViNet∗ (Kondratyuk et al., 2021) MoViNet-A0 No pretrain 50 × 1722 2.7 46.9 75.0 61.9 87.2
MoViNet∗ (Kondratyuk et al., 2021) MoViNet-A1 No pretrain 50 × 1722 6 49.3 77.1 64.5 89.1

E3D E3D-S No pretrain 13 × 1602 1.9 47.1 75.6 62.1 87.6
E3D E3D-M No pretrain 16 × 2242 4.7 49.4 78.1 64.7 89.6
E3D E3D-L No pretrain 16 × 3122 18.3 51.1 78.7 65.7 89.8

Table 2: Comparison with state-of-the-art methods on Sth-Sth V1 and V2 validation datasets. The models only
take RGB frames as inputs. To be consistent with compared approaches, we present most results of 2D CNN-
based methods with ResNet50. “MN-V2”” denotes MobileNet-V2. k×k denotes temporal clip with spatial
crop evaluation. “-” indicates the results are not available for us, and ∗ denotes our reproduced models.

4.1 EXPERIMENT SETTINGS

The E3D family includes a search stage without training and a training & inference stage for video
recognition on a specific dataset. Detailed settings in each stage are described as follows:

Search Settings. Following X3D (Feichtenhofer, 2020), we also apply a MobileNet-like network
basis, in which the core concept is 3D depth-wise separable convolution for efficiency. The initial
structure is composed of 5 stages with small and narrow blocks to meet the reasonable budget, which
is usually below 1/3 of the target FLOPs budget. The population size and total iterations of EA are
set as 512 and 500000, respectively. During mutation stages from the candidates, we randomly select
3D kernels from {1×3×3, 1×5×5, 3×3×3} to replace the current one; interchange the expansion
ratio of bottleneck from {1.5, 2.0, 2.5, 3.0, 3.5, 4.0}(bottleneck = ratio× intput); scale the output
channels with the ratios {2.0, 1.5, 1.25, 0.8, 0.6, 0.5}; or increases or decreases depth with 1 or 2.
Note that the channel dimension of every layer is fixed within 8 to 640 with multiples of 8, which
helps shrink homologous search space and accelerate search speed.

Training & Inference. Our experiments are conducted on three large-scale datasets, Something-
Something (Sth-Sth) V1&V2 (Goyal et al., 2017), and Kinetics400 (Kay et al., 2017). All models are
trained by using Stochastic Gradient Descent (SGD). The cosine learning rate schedule (Loshchilov
& Hutter, 2016) is employed, and total epochs are set to 100 for Sth-Sth V1&V2 datasets, and 150
for Kinetics400 dataset, with synchronized Batch-Norm instead of common Batch-Norm. Random
scaling, cropping, and flipping are applied as data augmentation on all datasets. To be comparable
with previous work and evaluate accuracy and complexity trade-offs, we apply two testing strategies:
1) K-Center: temporally, uniformly sampling of K clips (e.g., K=10) from a video and taking a center
crop. 2) K-LeftCenterRight: also uniformly sampling K clips temporally, but taking multiple crops
to cover the longer spatial axis, as an approximation of fully-convolutional testing. For all methods,
we follow prior studies by reporting Top1 and Top5 recognition accuracy, and FLOPs to indicate the
model complexity. More experiment setting details can be seen in Appendix G.

4.2 MAIN RESULTS

Sth-Sth V1&V2. Tabel 2 shows the comparison between E3D family and state-of-the-art meth-
ods. It can be seen that our proposed E3D family achieves competitive performance with more
efficient FLOPs-level, which indicates that the E3D models can recognize actions effectively and
efficiently. 1) Compared to 2D CNN-based methods, E3D outperforms most previous approaches
on the same FLOPs-level. Even compared to many methods with similar performance, our model
requires much lower computational costs. Note that our E3D family does not need to be pretrained
on other datasets, and the performance of these 2D CNN-based methods is based on ResNet50 or a
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Method Backbone Pretrain Frame #Param. GFLOPs × Views Val

Top1 Top5

TSN (Wang et al., 2016) ResNet50 ImageNet 25 24.3M 80×1×10 72.5 90.2
TSM (Lin et al., 2019) ResNet50 ImageNet 16 24.3M 65×3×10 74.7 91.4
TEA (Li et al., 2020) ResNet50 ImageNet 16 - 70×3×10 76.1 92.5
TANet (Liu et al., 2021) ResNet50 ImageNet 16 26M 86×3×10 76.9 92.9
TDN (Wang et al., 2021a) ResNet50 ImageNet 16+64 - 72×3×10 77.5 93.2
R(2+1)D (Tran et al., 2018) ResNet50 ImageNet 16 63.6M 67×3×10 73.7 91.6
SlowOnly (Feichtenhofer et al., 2019) ResNet50 ImageNet 8 - 42×3×10 74.8 91.6
SlowFast (Feichtenhofer et al., 2019) ResNet50 ImageNet 8+32 34.4M 65.7×3×10 77.0 92.6

I3D (Carreira & Zisserman, 2017) InceptionV1 ImageNet 64 12M 108×N/A 72.1 90.3
Two-Stream I3D (Carreira & Zisserman, 2017) InceptionV1 ImageNet 64 25M 216×N/A 75.7 92.0
S3D-G (Xie et al., 2018) InceptionV1 ImageNet 64 - 71.4×3×10 74.7 93.4
X3D (Feichtenhofer, 2020) X3D-M No pretrain 16 3.8M 6.2×3×10 76.0 92.3
X3D (Feichtenhofer, 2020) X3D-L No pretrain 16 3.8M 24.8×3×10 77.5 92.9
MoViNet (Kondratyuk et al., 2021) MoViNet-A2 No pretrain 50 4.6M 10.3×1×1 75.0 92.3

TimeSformer-S (Bertasius et al., 2021) ViT-B ImageNet 8 121.4M 590×3×10 78.0 93.7
Swin (Liu et al., 2022) Swin-T ImageNet 32 28.2M 88×3×4 78.8 93.6

E3D E3D-M No pretrain 16 3.4M 4.7×3×10 76.4 92.5
E3D E3D-L No pretrain 16 5.8M 18.3×3×10 77.6 92.9

Table 3: Comparison with state-of-the-art methods on the validation set of Kinetics400. We report the inference
cost with a single “view” (temporal clip with spatial crop) × the number of such views used (GFLOPs×views).
“N/A” and “-” indicate the numbers are not available for us.

stronger backbone that is not suitable for low-level computation. 2) The E3D family also achieves
higher performance compared to 3D CNN-based methods, which indicates that the architecture of
E3D can handle the discrepancy of visual information in spatial and temporal dimensions Compared
to the NAS-based method (Kondratyuk et al., 2021), our proposed E3D can still achieve a remark-
able result which thus verifies the effectiveness of the STEntr-Score for searching the architecture.

Kinetics400. Table 3 shows that E3D achieves state-of-the-art performance compared to most 2D
and 3D methods, but uses much less computational resources. 1) Most methods apply ImageNet
pretrained backbones on the Kinetics400 dataset. However, our model can still achieve excellent
results without using pretrained models, which indicates that our searched architecture by STEntr-
Score can effectively learn spatio-temporal information. 2) E3D outperforms other 3D CNN-based
models (Carreira & Zisserman, 2017; Xie et al., 2018; Feichtenhofer, 2020) which only employ
3×3×3 kernel. It means that kernel selection is important for action recognition, and STEntr-Score
can benefit 3D CNN architecture design. 3) Even though the performance of Transformer-based
models (Bertasius et al., 2021; Neimark et al., 2021; Liu et al., 2022) is competitive, our model still
provides remarkable results by using much lower computational resources (FLOPs) and parameters,
which means our model is more suitable in efficient scenarios.

4.3 CORRELATION STUDY
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Figure 3: Correlations between Top1 and STEntr-Score, HomoEntr-Score, FLOPs, and Parameters. Points
represent different sampled models, which have different channel numbers and layer configurations.

To verify the importance of STEntr-Score in the design of video understanding models, we ran-
domly construct 60 different models (0.2 to 5 GFLOPs) with different channel dimensions and layer
numbers to investigate the correlations between STEntr-Score, HomoEntr-Score, FLOPs and param-
eters. For a fair comparison, all networks are trained on the Sth-Sth V1 dataset with batch size of
256 and 50 epochs. We also provide the performance of E3D-S and X3D-S under the same training
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setting. According to results in Figure 3, we can observe that: (1) The proposed STEntr-Score is
more positively correlated with Top1 accuracy than other metrics, which proves the effectiveness
of our proposed STEntr-Score in evaluating network architecture. (2) Although HomoEntr-Score
is discriminative on different FLOPs levels, the ability to capture the discrepancy of the visual in-
formation in the spatial and temporal domain is not as good as STEntr-Score on the same FLOPs
level. (3) Benefiting from STEntr-Score, EA can help us obtain 3D CNN architectures with higher
expressiveness as measured by STEntr-Score on the same FLOPs or parameters level.

4.4 DISCUSSION
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Figure 4: Comparisons between HomoEntr-Score and “Forward” calculations. “Forward” represents using the
forward inference. The calculations are conducted on an AMD Ryzen 5 5600X 6-core CPU.

Comparison with forward inference. For a fair comparison with the realization of forward infer-
ence in (Sun et al., 2022b), we use HomoEntr-Score and conduct a simulation in a three-layer 3D
network. The shape of the input feature is 5× 5× 5, kernel sizes are set to 1× 1× 1, 3× 3× 3 and
1× 1× 1 with a stride of 1, and channels are all set to Cin ∈ {16, 32, 64, 128}. The entropy of each
network is calculated 103 times with either forward inference via Eq. (1) or direct computation of
HomoEntr-Score. When performing the forward inference of the network, convolution blocks are
re-initialized based on a Gaussian distribution during each iteration. The filled “Forward” range in
Figure 4a demonstrates there exists variance between different random samples, which also empha-
sizes the stability of the analytic formulation. In Figure 4b, regardless of how channels change, the
speed of 103 times formulaic calculation of value remains constant, while the speed reduces almost
linearly when performing forward inference. More comparison analysis of training-free scores is
included in Appendix D

Method Search
Devices

Search
Time

Power
Consumption GFLOPs TOP-1

MoViNet-A1 TPUs § 24h 691.2kWh 6 49.3
E3D-M CPU † 3h 0.195kWh 4.7 49.4

Table 4: Searching cost comparison on the Sth-Sth V1
dataset. §: 64 Google TPUv3, Power 450W per TPUv3;
†: 1 AMD Ryzen 5 5600X 6-Core CPU, Power 65W;

Searching cost comparison. Since we ap-
ply analytic formulation rather than infer-
ence, the calculation of our STEntr-Score has
lower hardware requirements, which means
that CPU resources can meet it instead of GPU
or TPU. From Table 13, our method only takes
three hours of searching time with a desktop
CPU, while MoViNet consumes 24 hours with
64 commercial TPUs. Extremely low time and
power consumption demonstrate the searching
efficiency of our analytic entropy formulation.

5 CONCLUSION

In this paper, we propose to automatically design efficient 3D CNN architectures via an entropy-
based training-free neural architecture search approach, to address the problem of efficient action
recognition. In particular, we first formulate the 3D CNN architecture as an information system and
propose the STEntr-Score to measure the expressiveness of the system. Then we obtain the E3D
family by an evolutionary algorithm, with the help of STEntr-Score. Extensive results show that our
searched E3D family achieves higher accuracy and better efficiency compared to many state-of-the-
art action recognition models, within three desktop CPU hours searching.
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APPENDIX

In the appendix, we provide a detailed description of notations in this paper (Appendix A), detailed
proof of equations (Appendix B), a comparison between different training-free scores on the Ima-
geNet dataset (Appendix C), a discussion of simple network space in the entropy mechanism (Ap-
pendix D), STEntr-Score for maximizing expressiveness (Appendix E), E3D family structure details
(Appendix F), experimental setting details (Appendix G), additional result analysis (Appendix H),
and future work discussion (Appendix I).

A MEANING OF NOTATIONS

Notation Size Meaning

H(x) - The function of computing the entropy of the given x
P (x) - The distribution of the given x
µ Constant The value of expectation
E - The function of computing expectation
σ Constant The value of variance
D - The function of computing variance
Kt Constant Temporal dimension size of 3D CNN kernel
Kh Constant Height dimension size of 3D CNN kernel
Kw Constant Width dimension size of 3D CNN kernel
C Constant Channel dimension size
K Kt ×Kh ×Kw A 3D CNN kernel size
W C×K The weight matrix of the CNN layer
S T ×H ×W The input feature map size of a given depth (time × height × width)

Dcosine - The cosine similarity distance function
D̂ - The expanded diversity of cosine similarity distance function

Table 5: The meaning of all notations appeared in this paper.

B PROOF OF SPATIO-TEMPORAL ENTROPY SCORE

B.1 DERIVATION PROCESS OF DIFFERENTIAL ENTROPY

Suppose x is sampled from Gaussian distribution N (µ, σ2), and we know about the probability
density function of x:

p(x) =
1√
2πσ

exp[− (x− µ)2

2σ2
] . (9)

We can then derive the differential entropy with
∫ +∞
−∞ e−x2

dx =
√
π as:

H(x) =

∫ +∞

−∞
−log(p(x)p(x)dx

= −
∫ +∞

−∞

1√
2πσ

exp[− (x− µ)2

2σ2
]log

1√
2πσ

exp[− (x− µ)2

2σ2
]dx

=
log(

√
2πσ)√
π

∫ +∞

−∞
e−y2

dy +
1√
π

∫ +∞

−∞
e−y2

y2dy

= log(
√
2πσ) +

1√
π
× [−1

2
(0−

∫ +∞

−∞
e−y2

dy)]

=
1

2
log(2π) + log(σ) +

1

2
∝ log(σ2) .

(10)
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B.2 EXPECTATION AND VARIANCE OF FEATURE MAP

According to Theorem 2 and Theorem 3, we can compute the expectation of lth layer feature map
element xl

i, as:

E(xl
i) = E(

Kl
t∑

t=1

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

xl−1
cthwW

l
cthw) =

Kl
t∑

t=1

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

[
E(xl−1

cthw)E(W
l
cthw)

]
, (11)

Given two independent random variables v1 and v2, based on D(v) = E(v2)−E(v)2 and Theorem
2, we can then calculate the variance of the product of these variables as:

D2(v1v2) = E(v21v22)− E(v1v2)2 = E(v21)E(v22)− E(v1)2E(v2)2

= [D(v1) + E(v1)2][D(v2) + E(v2)2]− E(v1)2E(v2)2

= D2(v1)D2(v2) + D2(v2)[E(v1)]2 + D2(v1)[E(v2)]2 ,
(12)

We can then derive the variance of xl
i, based on Theorem 2 and Theorem 3, as:

D2(xl
i) = D2(

Kl
t∑

t=1

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

xl−1
cthwW

l
cthw)

=

Kl
t∑

t=1

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

D2(x
l−1

cthwW
l
cthw)

=

Kl
t∑

t=1

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

{
D2(xl−1

cthw)D
2(W l

cthw)

+ D2(xl−1
cthw)

[
E(W l

cthw)
]2

+ D2(W l
cthw)

[
E(xl−1

cthw)
]2}

,

(13)

B.3 PROOF OF 3D CNNS ENTROPY

As the input x0 is initialized from a standard Gaussian distribution N (0, 1), and all parameters
initialized from Gaussian Distribution N (0, σ2

w), we can formulate Eq. (11) and Eq. (4) as:

E(x1
i ) = 0, D2(x1

i ) =

K1
t∑

t=1

K1
h∑

h=1

K1
w∑

w=1

C0∑
c=1

[
D2(W 1

chw)
]
, (14)

Subsequently, the expectation E(xL
i ) and variance D2(xL)i of the last layer can be derived as:

E(xL
i ) = 0, D2(xL

i ) =

KL
t∑

t=1

KL
h∑

h=1

KL
w∑

w=1

CL−1∑
c=1

[
D2(WL

chw)
]
, (15)

Therefore, the variance can be computed by propagating the variances from previous layers as:

D2(xL
i ) =

L∏
l=1

Kl
tK

l
hK

l
wC

l−1D2(W l
chw), (16)

According to Eq. (1), the upper bound entropy is proportional to the variance of last feature map.
Then we can derive Eq. (1) as:

H(F ) ∝
L∑

l=1

log(Kl
tK

l
hK

l
wC

l−1D2(W l
chw)) , (17)
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C DISCUSSION OF SIMPLE NETWORK SPACE

The bias of a convolutional layer is zero, and the activation function in the network is omitted in
the search for simplification, following the work of ZenNAS (Lin et al., 2021) and MAE-DET (Sun
et al., 2022b), which has been shown to have no influence on the expressiveness of the network.
The training of CNN models has been well studied, and some components can be integrated to
boost performance. We deliberately avoid using these components to keep our design simple and
universal. Nevertheless, these auxiliary components can easily be plugged into the architecture
without any special modifications. Moreover, we provide a discussion of auxiliary components with
the entropy calculation, which is listed below.

Batch Normalization (BN). BN is a widely used method to re-center and re-scale the features
to make the network converge faster and more stable. BN normalizes entropies adaptively to the
network width (which can be related to output variance). When BN is used, networks of different
widths will have the same entropy value. Hence, BN has to be removed when calculating entropy.

Activation Function. Activation functions increase the non-linearity of training, which has different
effects on entropy. For example, ReLUs, half the variance of the output, decrease the entropy with
a constant factor in each layer, having a less positive effect on entropy. Meanwhile, if we formulate
each kind of activation for our system, it introduces redundancy and becomes complicated, so we
give them a uniform form to omit them in search of concise expressiveness calculation.

Residual Link. If the input and all parameters are initialized from standard Gaussian distribution,
the variances with or without residual links are less than 2% different in entropy score, which means
it affects the entropy value slightly. Meanwhile, the residual link has a significant impact on conver-
gence in training.

Squeeze-and-Excitation Module (SE). SE modules are used to adaptively recalibrate channel-wise
feature responses by explicitly modeling interdependency between channels. When the input is
initialized from a Gaussian distribution, the output after global pooling in SE block is equal to 0 and
the final output becomes 0.5, which will lose the ability to model interdependency between channels.

D COMPARISON ON TRAINING-FREE SCORES

D.1 COMPARISON ON THE IMAGENET-1K DATASET.

Training-free method FLOPs Search
Devices

Design Cost
(hours) Top-1

ResNet-50 4.1G - - 78.0

Zen-score (Lin et al., 2021) 4.4G GPU‡ 24 78.9
MAE-DET score (Sun et al., 2022b) 4.4G GPU‡ 14 79.1

HomoEntr-Score (w/o Kt) 4.3G CPU† 3 79.0

Table 6: Comparison of different training-free methods on ImageNet-1K dataset. ‡: Nvidia Tesla V100 16G
GPU, †: AMD Ryzen 5 5600X 6-Core CPU.

We conduct comparison experiments using 2D CNNs on ImageNet with the same evolutionary
strategies (ResNet design space), as shown in Table 6. Compared with the result of ResNet-50, the
model searched by HomoEntr-Score improves 1.0% of accuracy, which indicates that the entropy-
based analytic formulation can also measure the information capacity of 2D CNNs. Compared with
Zen-score and MAE-DET, the performance of our proposed formulaic metric can also achieve com-
parable performance. It means that HomoEntr-Score can work well for modeling the information
capacity of 2D CNNs, since there is no (obvious) discrepancy in the information of the two direc-
tions in 2D images statistically.
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D.2 COMPARISON ON THE STH-STH V1 DATASET.

Since there is no existing code available for training-free NAS methods for 3D CNNs, we then refine
their implementations for the video recognition task. The results are shown in Table 7.

Training-free method GFLOPs Search
Devices

Design Cost
(hours) Top-1 Top-5

X3D-S (Feichtenhofer, 2020) 2G - - 44.6 74.4

Zen-score (Lin et al., 2021) 1.9G GPU 26 45.5 74.6
MAE-DET score (Sun et al., 2022b) 1.9G GPU 15 45.8 74.7

E3D-S 1.9G CPU 3 47.1 75.6

Table 7: Comparison of different training-free methods on the Sth-Sth V1 dataset. ‡: Nvidia Tesla V100 16G
GPU, †: AMD Ryzen 5 5600X 6-Core CPU.

According to the results in Table 7, the performances of other training-free NAS methods are better
than X3D-S, but the performance of our searched model is higher. It indicates directly applying
training-free NAS methods can be effective in the video recognition task, but it still needs spatio-
temporal refinement on video understanding tasks, which our work mainly focuses on.

E DETAILED SEARCHING ALGORITHM AND SETTINGS

To obtain highly expressive 3D CNNs of maximized entropy, we use a customized Evolutionary
Algorithm. The step-by-step description of EA is given in Algorithm 1, as the architecture generator.
We only apply the STEntr-Score to guide the evolution process, not accuracy, which therefore does
not need training on the dataset. We choose EA due to its simplicity, and it is possible to choose
other methods, such as reinforcement learning or even greedy selection. According to our kernel
selection observations, we define the 3D kernel size search space within each layer, 1 × (kspace)2,
ktimes×(kspace)2, to be chosen as one of the following: {1×3×3, 1×5×5, 3×3×3}. These choices
enable a layer to focus on and aggregate different dimensional representations efficiently, expanding
the network’s receptive field in the most pertinent directions, while reducing FLOPs along other
dimensions (Kondratyuk et al., 2021).

E.1 INITIAL ARCHITECTURE

Stage Kernels Channels Layers T ×H ×W

data stride 6, 12 3 1 13× 160× 160

conv1 1× 32, 24 24 1 13× 80× 80

stage2 [1×12, 3×32, 1×12] [48, 48, 24] 1 13× 40× 40
stage3 [1×12, 3×32, 1×12] [96, 96, 48] 1 13× 20× 20
stage4 [1×12, 3×32, 1×12] [192, 192, 96] 1 13× 10× 10
stage5 [1×12, 3×32, 1×12] [192, 192, 96] 1 13× 10× 10
stage6 [1×12, 3×32, 1×12] [384, 384, 192] 1 13× 5× 5

conv7 1× 12 512 1 13× 5× 5
pool8 13× 5× 5 512 1 1× 1× 1

conv9/10 1× 12, 1× 12 [2048, #classes] 1 1× 1× 1

Table 8: E3D-S initial searching. “stagex” is a super structure which contains “layers”-layer 3D inverted
bottleneck block. Channels means the output channels of the corresponding convolution.

Firstly, we set up the initial architecture in a MobileNet-styled network, as shown in Table 8, which
consists of five stages with only one layer that can be easily evolved during the algorithm. The
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initial architecture is inspired by the structure of X3D-S (Feichtenhofer, 2020) because inheriting
good prior design can reduce the uncertainty of search space. Then, based on the initial architecture,
applied EA helps us mutate channel dimension, kernel selection, bottleneck expansion ratio, and
layer arrangement by randomly selecting the stage. Note that the channel dimension in conv1 and
conv7 also participate in the mutation process.

Algorithm 1 Maximum Entropy Evolutionary Algorithm
Require: Search space S. Inference budget B, maximal depth L, total number of iterations M ,

evolutionary population size N , initial structure F0.
Ensure: Designed E3D backbone F ∗.

1: Initialize population P = {F0}.
2: for m = 1, 2, · · · ,M do
3: Randomly select Fm ∈ P and select two stages stagek ∈ Fm.
4: for j = 1, 2 do
5: Switch Randomly select one target of {Kernel size, Output channels, Bottleneck chan-

nels, Layers} from stagekj do
6: Case kernel: Mutate kernel from 3D kernel search space.
7: Case Output: Mutate output channels with multiplier space.
8: Case Bottleneck: Mutate bottleneck channels with expansion ratio space.
9: Case Layers: Mutate block layers with addend from {−2,−1, 1, 2}.

10: end for
11: Get mutated network F̂m with two mutated stages stagekj .
12: if F̂m is within inference budget B and has no more than L layers then
13: Get STEntr-Score of F̂m and append F̂m to P .
14: end if
15: Remove networks of the smallest STEntr-Score if the size of P exceeds B.
16: end for
17: Return F ∗, the network of the highest STEntr-Score in P .

E.2 EVOLUTIONARY ALGORITHM

In Algorithm 1, we randomly initialize a population of candidates from the initial structure, under
a computational budget. The population size and total iterations of EA are set to 512 and 500000,
respectively. At each iteration step m, we randomly select two stages from the candidates and
mutate them. Next, we will randomly select a mutation strategy from 4 strategies for each stage.
Specific mutation strategies for our E3D family are described as follows. We randomly select 3D
kernels from {1×3×3, 1×5×5, 3×3×3} to replace the current one; interchange the expansion
ratio of bottleneck from {1.5, 2.0, 2.5, 3.0, 3.5, 4.0}(bottleneck = ratio× intput); scale the output
channels with the ratios {2.0, 1.5, 1.25, 0.8, 0.6, 0.5}; or increases or decreases depth with 1 or 2.
Note that the channel dimension of every layer is fixed within from 8 to 640 with multiples of 8,
which will help shrink homologous search space and accelerate the search speed. The mutated
structure F̂m is appended to the population if its inference cost does not exceed the budget. Finally,
we maintain the population size by removing networks with the smallest STEntr-Score. After M
iterations, the target network with the largest STEntr-Score is obtained, namely E3D.

F E3D FAMILY ARCHITECTURE DETAILS

Table 9 shows three instantiations of E3D with varying complexity, including E3D-S (1.9G FLOPs),
E3D-M (4.7G FLOPs), and E3D-L (18.3G FLOPs). All models are searched separately with differ-
ent FLOPs budget (1.9G, 4.7G, and 18.4G) for a fair comparison with X3D-S/M/L as the baseline.
Meanwhile, SE block and ReLU activation function will be added into these architectures for train-
ing. For both training and inference, the input size remains the same: 160 for E3D-S, 224 for E3D-
M, and 312 for E3D-L. All channel dimensions and layer arrangements are searched by evolutionary
algorithm under different given budgets.
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Stage E3D-S E3D-M E3D-L

filters output size filters output size filters output size

data stride 6, 12 13× 160× 160 stride 5, 12 16× 224× 224 stride 5, 12 16× 312× 312

conv1 1× 32, 24 13× 80× 80 1× 32, 24 16× 112× 112 1× 32, 24 16× 156× 156

stage2

1× 12, 32
1× 52, 32
1× 12, 24

×3 13× 40× 40

1× 12, 32
1× 52, 32
1× 12, 24

×3 16× 56× 56

1× 12, 32
1× 52, 32
1× 12, 24

×3 16× 78× 78

stage3

1× 12, 96
3× 32, 96
1× 12, 48

×6 13× 20× 20

1× 12, 96
3× 32, 96
1× 12, 64

×6 16× 28× 28

1× 12, 120
3× 32, 120
1× 12, 48

×13 16× 39× 39

stage4

1× 12, 176
3× 32, 176
1× 12, 120

×6 13× 10× 10

1× 12, 176
3× 32, 176
1× 12, 120

×6 16× 14× 14

1× 12, 176
3× 32, 176
1× 12, 120

×13 16× 20× 20

stage5

1× 12, 176
3× 32, 176
1× 12, 120

×6 13× 10× 10

1× 12, 176
3× 32, 176
1× 12, 120

×6 16× 14× 14

1× 12, 176
3× 32, 176
1× 12, 120

×13 16× 20× 20

stage6

1× 12, 384
3× 32, 384
1× 12, 256

×6 13× 5× 5

1× 12, 464
3× 32, 464
1× 12, 184

×6 16× 7× 7

1× 12, 480
3× 32, 480
1× 12, 192

×13 16× 10× 10

conv7 1× 12, 13× 5× 5 1× 12, 464 16× 7× 7 1× 12, 480 16× 10× 10
pool8 13× 5× 5 1× 1× 1 16× 7× 7 1× 1× 1 16× 10× 10 1× 1× 1

conv9/10 [2048, #classes] 1× 1× 1 [2048, #classes] 1× 1× 1 [2048, #classes] 1× 1× 1

Table 9: Three instantiations of E3D with varying complexity. E3D-S with 1.9G FLOPs, E3D-M with 4.7G
FLOPs, and E3D-L with 18.4G FLOPs. The size of output is T ×H ×W .

G EXPERIMENT SETTING DETAILS

G.1 DATASETS

Our experiments are conducted on three large-scale datasets: Something-Something (Sth-Sth)
V1&V2 (Goyal et al., 2017), and Kinetics400 (Kay et al., 2017). More dataset details can be seen in
the supplementary materials. 1) The Sth-Sth datasets are more focused on fine-grained and motion-
dominated actions, which contain pre-defined basic actions involving different interacting objects.
Sth-Sth V1 comprises 86k video clips in the training set and 12k video clips in the validation set.
Sth-Sth V2 is an updated version of Sth-Sth V1, which contains 169k video clips in the training set
and 25k video clips in the validation set. They both have 174 action categories. 2) The Kinetics
dataset contains activities in daily life and some categories are highly correlated with interacting
objects or scene context. Kinetics400 contains over 200k training videos and 20k validation videos
divided into 400 categories, covering a wide range of human activities.

G.2 IMPLEMENTATION DETAILS

Detailed implementation settings of training & inference stage on Sth-Sth V1&V2 and Kinetics400
datasets are listed in Table 10. All experiments are performed on 8×Nvidia Tesla A100 GPUs.

Hyperparameter Sth-Sth V1&V2 Kinetics400

Epoch 128 256
Batch Size per GPU 32 16
Optimizer SGD SGD
Learning Rate 0.8 0.4
Learning Rate Policy cosine cosine
Momentum 0.9 0.9
Weight Decay 5e−5 5e−5

Warm-up Epoch 10 15
Synchronized Batch Normalization True True
Training from scratch True True

Table 10: List of hyperparameters used on Sth-Sth V1&V2 and Kinetics400 datasets.
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H ADDITIONAL RESULTS

H.1 ACCURACY VS. COMPLEXITY

x 4.7

x 14

Figure 5: Accuracy/complexity trade-off on the
Sth-Sth V2 dataset.

Figure 5 shows the trade-off between accuracy
and complexity (FLOPs). Compared to 2D CNN-
based methods, E3D requires much lower compu-
tational resources. Although the performance of
our method is similar to Tada-R50, the FLOPs of
Tada-R50 are 4.7 times more than E3D-L. Com-
pared to 3D CNN-based methods, we observe that
both E3D and MoViNet can achieve large im-
provement, which indicates that searched methods
have higher efficiency in utilizing computing re-
sources. Also, our method achieves comparable
performance compared with MoViNet, which indi-
cates that the proposed training-free STEntr-Score
can effectively evaluate the expressiveness of a 3D
architecture.

H.2 HOMOENTR-SCORE VS. STENTR-SCORE

Table 11 reports E3D results searched by HomoEntr-Score and STEntr-Score, under the same search
settings. The results show substantial improvement when using STEntr-Score instead of HomoEntr-
Score, which indicates the effectiveness of STEntr-Score to handle the discrepancy of visual infor-
mation in spatial and temporal dimensions. Even though without refinement factor, the performance
of HomoEntr-Score searched E3D still outperforms X3D, which means the entropy-based search
strategy can also measure the expressiveness of 3D CNN architectures.

Model Resolution GFLOPs Top-1 Top-5

X3D-S* (Feichtenhofer, 2020) 13×1602 2 44.6 74.4
MoViNet-A0* (Kondratyuk et al., 2021) 50×1722 2.7 46.9 75.0

E3D (HomoEntr-Score) 13×1602 1.9 45.8 74.8
E3D (STEntr-Score) 13×1602 1.9 47.1 75.6

Table 11: Comparison of different entropy scores on the Sth-Sth V1 dataset. * denotes our reproduced models.

H.3 3D KERNEL SEARCH SPACE

To analyze the impact of kernel search space, we expand the 3D kernel search space and conduct
experiments, as shown in Table 12. The results indicate that larger search spaces actually benefit the
performance. However, compared to the results between E3D (HomoEntr-Score) with E3D (STEntr-
Score)) in Table 11, the STEntr-Score based searching can boost the performance (+1.3%) more than
a large search space did (+0.2%). It also verified the effectiveness of our proposed STEntr-Score in
evaluating the expressiveness of 3D CNNs.

Kernel Search Space FLOPs Top-1 STEntr-Score

1×3×3, 3×3×3 1.9G 46.3 198.55
1×3×3, 1×5×5, 3×3×3 1.9G 47.1 202.86

1×3×3, 1×5×5, 3×3×3, 3×1×1 1.9G 47.1 202.74
1×3×3, 1×5×5, 3×3×3, 5×3×3 1.9G 47.2 203.13

Table 12: Comparison of different 3D kernal search space on the Sth-Sth V1 dataset.
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H.4 INFERENCE TIME COMPARISON

We report the inference time comparison with some state-of-the-art methods in Table 13. All models
are trained and tested on the Sth-Sth V1 dataset, and the batch size is set to 16. Compared to X3D,
our E3D performs better not only on accuracy but also costs lower inference time. It indicates that
the searched architecture by our proposed STEntr-Score is more effective and efficient for video
understanding. Compared to MoViNet, even though Top-1 accuracies are similar, both latency and
throughput of E3D are performing better. Due to MoViNet applies a causal convolutional network
and contains more parameters. Compared to 2D CNN-based methods, E3D performs better on both
accuracy and running time and requires much lower computational resources. Overall, we believe
that our proposed E3D family is more efficient and practical for real-world applications.

Method Resolution Frame GFLOPs #Param Top1 Latency (ms/video) Throughput(video/s)

TSM (Lin et al., 2019) 256 16 65 23.9M 47.2 23.0 43.5
TANet (Liu et al., 2021) 256 16 66 26M 47.6 14.7 68.0

X3D-M (Feichtenhofer, 2020) 224 16 4.7 3.7M 47.3 13.5 74.1
MoViNet-A1 (Kondratyuk et al., 2021) 172 50 6 4.6M 49.3 21.9 45.7

E3D-M 224 16 4.7 3.4M 49.4 11.4 87.7

Table 13: Inference comparison using a Tesla V100 on the Sth-Sth V1 dataset.

I FUTURE DIRECTION

Data-driven design. The design of STEntr-Score search correlates with parameter initialization
and kernel selection, with standard Gaussian initialization input. If we replace the Gaussian input
directly with target data, the output after a convolution will be random due to the Gaussian initialized
weights, as the process of STEntr-Score based searching is contained without data training. The aim
of our work is therefore to provide a training-free approach to 3D CNN architecture design according
to the maximum entropy principle under the given budgets. We believe that the training-free method,
combined with target data without training, could be a future direction for research.

Transformer model. We believe that the principle of maximum entropy is theoretically applicable
to transformers. However, there exist some challenges to overcome. For example, Transformer
has more complex components than CNN, such as ‘Q’ and ‘K’ kernel operation and multi-head
attention, which is difficult to calculate the maximum entropy. In addition, the discrepancy of visual
information in spatial and temporal dimensions by Transformer still remains a challenge. Although
these challenges are difficult to overcome, this would be a fascinating task for us in the future.
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