
Scope-enhanced Compositional Semantic Parsing for DRT

Anonymous ACL submission

Abstract

Discourse Representation Theory (DRT) distin-001
guishes itself from other semantic representa-002
tion frameworks by its ability to model complex003
semantic and discourse phenomena through004
structural nesting and variable binding. While005
seq2seq models hold the state of the art on DRT006
parsing, their accuracy degrades with the com-007
plexity of the sentence, and they sometimes008
struggle to produce well-formed DRT represen-009
tations. We introduce the AMS parser, a com-010
positional, neurosymbolic semantic parser for011
DRT. It rests on a novel mechanism for predict-012
ing quantifier scope. We show that the AMS013
parser reliably produces well-formed outputs014
and performs well on DRT parsing, especially015
on complex sentences.016

1 Introduction017

Among current semantic representation formalisms018

used in NLP, Discourse Representation Theory019

(DRT; Kamp and Reyle, 1993) stands out in its020

systematic use of structural nesting and variable021

binding to represent meaning in detail. Originating022

from linguistic theory, DRT has been designed to023

capture subtle semantic and discourse phenomena024

such as anaphora, presupposition, and discourse025

structure, as well as tense and aspect (see Fig. 1).026

This structural and semantic richness distinguishes027

DRT from other popular frameworks in semantic028

parsing, such as Abstract Meaning Representation029

(AMR; Banarescu et al., 2013).030

With the availability of the broad-coverage Paral-031

lel Meaning Bank (PMB; Abzianidze et al., 2017),032

DRT has become an active target for the develop-033

ment of semantic parsing methods. The current034

state of the art is held by purely neural seq2seq035

models (Zhang et al., 2024). However, due to the036

structural complexity of typical DRT representa-037

tions, these models do not always generate well-038

formed meaning representations. They also strug-039

gle on long sentences; length generalization is a040
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Figure 1: DRS (top) and DRG (bottom) for the sentence
Every child misbehaves occasionally; dashed lines rep-
resent scope assignments of connectives.

known challenge for transformers in semantic pars- 041

ing settings (Hupkes et al., 2020; Yao and Koller, 042

2022). Existing compositional semantic parsers for 043

DRT significantly lag behind the seq2seq models 044

in terms of parsing accuracy. 045

In this paper, we introduce the AMS parser, an 046

accurate compositional DRT parser. The AMS 047

parser extends the AM parser (Groschwitz et al., 048

2018), which predicts meaning representations 049

compositionally and has achieved high accuracy 050

across a range of sembanks (Lindemann et al., 051

2019; Weißenhorn et al., 2022). The AM parser 052

by itself struggles to predict structural nesting in 053

DRT. The key challenge is to predict scope: how 054

to assign each atomic formula in Fig. 1 to one of 055

the three boxes. Differences in scope assignment 056

affect the represented meaning significantly. 057

The technical contribution of this paper is to ex- 058

tend the AM parser with an innovative mechanism 059

for predicting scope. We train a dependency parser 060

to predict scope relations between word tokens and 061

project this information into the DRT representa- 062

tion using word-to-box alignments. We show that 063

this dependency mechanism can predict correct 064

scope assignments at very high accuracy. The over- 065

all parser always predicts well-formed DRT repre- 066
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sentations (in contrast to all seq2seq models) and067

is almost on par with the best models in parsing068

accuracy. On the PMB TestLong split, which con-069

tains particularly long sentences, it outperforms070

all other DRT parsers that are trained on the PMB071

gold dataset. Thus, the strength of the AMS parser072

is its ability to remain accurate as sentences grow073

complex.074

2 Background and Related Work075

Discourse Representation Theory (DRT; Kamp and076

Reyle, 1993) is a well-developed framework for077

dynamic semantics that aims to interpret meanings078

from the context. It can model diverse linguistic079

phenomena ranging from anaphora (Kamp, 1981;080

Haug, 2014) to rhetorical structures (Lascarides081

and Asher, 2007). In DRT, meanings are tradition-082

ally represented by Discourse Representation Struc-083

tures (DRS), which are composed of nested boxes084

that contain discourse referents (the entities talked085

about in the discourse) and propositions about these086

discourse referents. Fig. 1 (top) is an example of087

DRS representing Every child misbehaves occa-088

sionally. The boxes act as logical quantifiers that089

bind variables, and they can be connected with090

logical operators such as implication.091

Bos (2023) recently proposed an equivalent,092

variable-free notation for DRSs in the form of di-093

rected acyclic graphs, called Discourse Representa-094

tion Graphs (DRGs; see Fig. 1, bottom). A DRG095

contains nodes representing boxes, predicate sym-096

bols, and constants. Some edges (drawn solid in097

Fig. 1) connect predicates to arguments with se-098

mantic roles. Others (drawn dashed) represent the099

structural nesting of boxes and propositions: A100

dashed edge means that its target node is inside101

the box from which the edge emanates. Universal102

quantification, disjunction, and implication are rep-103

resented in DRGs as logically equivalent structures104

using only negation and conjunction.105

The main resource for DRS and DRG is the106

Parallel Meaning Bank (PMB; Abzianidze et al.107

(2017)), which is a multilingual parallel corpus108

comprising sentences and texts paired with mean-109

ing representations. In this paper, we use the latest110

version (PMB release 5.1.0, English) for evalua-111

tion. It includes three distinct splits based on the112

quality and method of annotation: Gold (manually113

verified), Silver (partially corrected), and Bronze114

(automatically generated by Boxer). As our ob-115

jective is to address challenges within a limited116

data setting, our experiments specifically focus on 117

utilizing gold-annotated data. 118

2.1 DRS parsing 119

Deriving DRSs from sentences compositionally is 120

a nontrivial challenge. Efforts towards this goal 121

include λ-DRT (Muskens, 1994; Kohlhase et al., 122

1996, 1998), Compositional DRT (Muskens, 1996), 123

and bottom-up DRT (Asher, 1993). All of these 124

approaches use lambda calculus to compositionally 125

combine partial meaning representations, which is 126

intractable in broad-coverage semantic parsing (see 127

e.g. the discussion by Artzi et al. (2015)). 128

To date, the most accurate broad-coverage DRT 129

parsers are based on neural sequence-to-sequence 130

models (e.g., Liu et al., 2018; Fancellu et al., 2019; 131

Van Noord et al., 2018; van Noord et al., 2020). 132

They achieve impressive performances, especially 133

when the models are trained on additional silver 134

or bronze training data (Wang et al., 2023a) or use 135

additional features (van Noord et al., 2019, 2020). 136

However, due to the structure-unaware design of 137

these models, they sometimes struggle to gener- 138

ate well-formed DRT representations (see Poelman 139

et al. (2022)). 140

Existing compositional semantic parsers for 141

DRT rely on syntactic dependency parsers (Le and 142

Zuidema, 2012; Poelman et al., 2022) or CCG 143

parsers (Bos, 2008, 2015). These models reliably 144

generate well-formed DRSs, but are not competi- 145

tive with seq2seq models in terms of parsing accu- 146

racy. 147

2.2 AM Parsing 148

The DRT parser we present here is based on the AM 149

Parser (Groschwitz et al., 2018), a neurosymbolic 150

compositional semantic parser that has previously 151

been shown to be fast and accurate both on broad- 152

coverage parsing, e.g. on AMR (Lindemann et al., 153

2019), and in compositional generalization tasks 154

(Weißenhorn et al., 2022). 155

Apply and Modify The AM parser uses a neural 156

dependency parser and tagger to predict terms over 157

the AM algebra (Groschwitz et al., 2017), which 158

combines graphs into bigger graphs using the op- 159

erations Apply and Modify. To this end, nodes of 160

the graphs can be decorated with sources (Cour- 161

celle and Engelfriet (2012), marked in blue), which 162

assign names to nodes at which the graph can be 163

combined with other graphs. Every graph has a 164

special source called ROOT, drawn with a bold out- 165
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Figure 2: Relevant graphs for sentence The little cat
wanted to sleep.

line, which is where the graph inserts into others166

when used as an argument.167

In the example of Fig. 2a, the graph GWANT has168

sources S and O indicating where the arguments169

supplied by the subject and object should be in-170

serted. It also has a source M1 which allows it to171

attach to some other graph as a modifier.172

The Apply operation (APP) models the combi-173

nation of a complement (i.e. argument) with its174

head. For example in Fig. 2d, the APPO operation175

combines the head GWANT with its argument GSLEEP,176

plugging the root of GSLEEP into the O source of177

GWANT (Fig. 2d). Because every graph may only178

contain one node decorated with each source name,179

the S and M1 source nodes of GSLEEP and GWANT get180

merged. This allows the AM algebra to generate181

nontrivial graph structures.182

The Modify operation (MOD) models the combi-183

nation of a head with a modifier. For example, the184

MODM operation in our example attaches the ad-185

junct GLITTLE to the root of its head GCAT, using the186

adjunct’s M source (Fig. 2b). Again, both graphs187

have an M1 source that gets merged.188

AM dependency trees and AM parsing The189

AM parser predicts a graph from a sentence by190

computing an AM dependency tree, as in Fig. 2e.191

It uses a neural tagger to predict a lexical graph 192

for each word (drawn below the sentence) and a 193

neural dependency parser to predict APP and MOD 194

edges. The AM dependency tree can be unraveled 195

into a term of APP and MOD operations over the 196

AM algebra, which deterministically evaluates into 197

a graph; for instance, the AM dependency tree in 198

Fig. 2e evaluates to the graph in Fig. 2c. Words that 199

do not lexically contribute to the meaning represen- 200

tation, such as the determiner the, are not assigned 201

incoming dependency edges and thus ignored in 202

the construction of the graph. 203

In order to train the AM parser, one needs to con- 204

struct an AM dependency tree for every sentence- 205

graph instance in the training data. Decomposing 206

the graph into an AM dependency tree is a nontriv- 207

ial task, which can fail: Depending on the align- 208

ments between word tokens and nodes in the graph, 209

an AM dependency tree that evaluates to the given 210

graph may not exist. We call such training instances 211

non-decomposable. 212

3 Scope in DRT is hard for the AM parser 213

We start with an attempt to directly apply the AM 214

parser to DRT. As we will see, the dashed scope 215

edges in a DRG are difficult to handle with the AM 216

parser. We will solve this problem in the AMS 217

parser, presented in Section 4. 218

3.1 A baseline AM parser for DRG 219

We construct AM dependency trees for the DRGs 220

in the PMB using the approach proposed by 221

Groschwitz et al. (2021), which learns decomposi- 222

tion jointly with training the neural parsing model. 223

The learning algorithm represents the latent space 224

of possible AM dependency trees for each graph 225

compactly, allowing training on the whole latent 226

space. This leads to the parser converging on AM 227

dependency trees that are consistent across the cor- 228

pus. 229

This largely unsupervised method still requires 230

two inputs beyond the graph. First, node-token 231

alignments (every node must be aligned), for which 232

we use the alignments given in PMB5.1. For the 233

top box in each DRG, which is always unaligned, 234

we introduce a special START token to align it to 235

(cf. Fig. 2e). 236

Second, each edge must be assigned to a graph 237

constant, to fully partition the DRG into lexical 238

graphs for the individual words. This often makes 239

the difference between an Apply or Modify op- 240
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Figure 3: Failed combination of graphs for Fig 1

NoPrep CPT SCPL

APP 0.7 84.5 94.4
MOD 76.7 77.7 78.0

Table 1: Decomposable graphs in PMB5 (%). APP:
member edges grouped with the box; resulting in Apply
operations in the AM dependency tree. MOD: member
edges grouped with the content nodes, resulting in Mod-
ify operations.

eration. For example in Fig. 2, the Attribute241

edge between little and cat is grouped with the242

little node, making little a modifier of cat, a243

linguistically plausible analysis. The edge could244

also be grouped with the cat node, effectively mak-245

ing little an argument of cat (the two would be246

combined with an APP operation), an implausible247

analysis. We follow the linguistically-informed248

principle to group edges between a head and an249

argument with the head, and edges between a head250

and a modifier (Lindemann et al., 2019); see Ap-251

pendix C for our full heuristics. The scope edges do252

not fall into these categories and provide a unique253

challenge, see below.254

All remaining aspects of the AM dependency255

tree, including the source names, are then learned256

during training.257

3.2 The Challenge of Scope Prediction258

The scope edges of DRGs are not something that259

the Apply and Modify operations were designed for.260

In particular, the scope edges do not fall straightfor-261

wardly into the head/argument/modifier paradigm.262

The design of the AM algebra forces us into an263

inconvenient choice: (1) include scope edges in264

the lexical graph that contains the box and insert265

the contents of the box with Apply operations; or266

(2) include scope edges in the lexical graphs of the267

contents of the box and insert them into the box268

using Modify operations.269

The first approach fails completely, with only270

Natural 
language 
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AM-Parser
Scopeless/ 
Compact 
parsed DRGs

Dependency 
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predicted 
scope 
dependencies

complete
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Figure 4: Overall structure of the AMS parser.

0.7% of DRGs in PMB5 being decomposable (see 271

Table 1, NoPrep/APP; see also Appendix B). The 272

second approach works better, with 76% graphs 273

being decomposable (Table 1, NoPrep/MOD). For 274

example, Fig. 2e shows a valid AM dependency 275

tree for the graph in Fig. 2c under this paradigm. 276

However, this success is limited to graphs with only 277

a single box: only 30% of all multibox DRGs, i.e. 278

DRGs that contain more than one box node, can be 279

decomposed into AM dependency trees. 280

To illustrate the challenge, consider the DRG 281

in Fig. 1. Fig. 3 shows two partial graphs in an 282

attempt to build the full graph with the AM algebra, 283

the left representing child misbehaves occasionally, 284

and the right representing every. The lexical graph 285

GEVERY introduces two boxes, and to obtain the 286

DRG in Fig. 1, we need to draw a scope edge from 287

the upper box to the child node on the left and, 288

simultaneously, scope edges from the lower box 289

to the misbehave, time, and occasionally nodes. 290

We can use a MODM1 operation to unify the M1- 291

source of the left graph with the root of GEVERY (the 292

upper box); but this will put child into the wrong 293

box. The problem is that both boxes are introduced 294

by the same lexical graph (a consequence of the 295

alignments in the PMB), and only one of them can 296

receive outgoing edges through a single Modify 297

operation. Other attempts at decomposing the DRG 298

in Fig. 1 fail in similar ways. 299

4 Scope-enhanced AM Parsing 300

We will address this scope challenge through a two- 301

step process. First, we simplify the DRGs by re- 302

moving scope edges, such that over 94% of DRGs 303

can be decomposed for training. Second, we re- 304

cover the scope information at parsing time through 305

an independent scope prediction mechanism. The 306

overall structure of our parser is sketched in Fig. 4. 307

4.1 Simplifying DRGs 308

We identified two effective DRG simplification 309

strategies: Compact DRG and Scopeless DRG. 310
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Figure 6: Scopeless DRG for Fig 1.

Compact DRG The Compact DRG representa-311

tion (CPT), inspired by Abzianidze et al. (2020),312

makes use of the fact that many nodes share the313

same scope as their parent node, i.e. are members314

of the same box. In this representation, we thus re-315

move all scope edges for nodes that are in the same316

scope as their parents (if there are multiple parents,317

we only remove the scope edge if the node and318

all its parents are in the same box). This method319

removes around 70% of scope edges, and the full320

scope information can be losslessly recovered with321

the rule-based method in Section 4.2. The compact322

DRG for Fig. 1 is shown in Fig. 5 with the removed323

edges marked in light blue.324

Scopeless DRG While Compact DRGs maintain325

at least one connection between a scope box and a326

node within its scope, Scopeless DRGs (SCPL) re-327

move all scope edges as long as the graph remains328

connected. This results in graphs that are mostly329

reduced to their predicate-argument structure, facil-330

itating a more straightforward decomposition with331

the AM Algebra, at the cost of losing some infor-332

mation. An example is shown in Fig. 6. More333

complex examples are detailed in Appendix I.334

Both Compact and Scopeless DRGs show much335

higher decomposability rates compared to the full336

DRGs, see Table 1. This effect is particularly337

strong in the setting where membership edges are338

grouped with the boxes (see row “APP”), where339

Compact and Scopeless DRGs achieve decompos-340

ability rates of 84.5% and 94.4% respectively.341

4.2 Scope Prediction342

To recover the scope information, we designed two343

scope resolvers: one rule-based, and the other re-344

lying on a dependency parser to predict the scope 345

edges. 346

Rule-based Scope Resolver The rule-based 347

scope resolver is the inverse of our Compact DRG 348

simplification method, but can also be applied to 349

Scopeless DRG. This resolver traverses the pre- 350

dicted graph top-down; if it encounters a node with 351

no incoming scope edge, it assigns the node the 352

same scope as its parent. If a node has multiple 353

parents with conflicting scope, an arbitrary parent 354

is chosen (this only occurs with Scopeless DRG). 355

For Compact DRG, this method recovers the full 356

scope information losslessly. 357

This rule-based approach is easy to implement, 358

transparent and fully explainable. However, it is 359

imperfect for Scopeless DRG, and even for Com- 360

pact DRG it may propagate parsing errors into the 361

recovered scope edges. 362

Dependency-based Scope Resolver For the 363

dependency-based scope resolver, we make use 364

of the fact that an AM dependency tree splits the 365

graph into lexical graphs, each of which is linked to 366

a specific word token in the sentence. This induces 367

an alignment relation between nodes in the graph 368

and tokens in the sentence: a node is aligned to 369

the token if it is part of the lexical graph for that 370

token. We project the scope edges in the DRG into 371

edges between the word tokens by following this 372

alignment relation from the nodes to the tokens; 373

this creates a scope dependency graph over the sen- 374

tence (see Fig. 7). The scope dependency graph 375

is not necessarily a tree: it need not be connected, 376

and a token might receive multiple incoming edges 377

if the aligned lexical graph contains multiple nodes 378

linked to different boxes (see Appendix F). 379

When the lexical graph for a token contains mul- 380

tiple nodes or boxes, we also encounter a further 381

challenge. In such a case, the scope dependency 382

graph, which connects only the two tokens, can- 383

not fully specify which nodes in the lexical graphs 384

the scope edge connects. An example of this can 385

be seen in Fig. 7. Here, the lexical graphs GCHILD 386

and GMISBEHAVES are both children of GEVERY in the 387

scope dependency graph, but they should go in 388

different boxes of GEVERY. 389

To remove this ambiguity, we name the boxes 390

in each lexical graph and encode the box to which 391

each child in the scope dependency graph connects 392

in the dependency edge label. For example, con- 393

sider again the dependency graph in Fig. 7. The 394
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Figure 7: Scope dependency graph for Every child mis-
behaves occasionally.

relationship between the tokens every and child is395

annotated as scope_b2, indicating that child goes396

into the upper box (b21). By contrast, the edge397

into misbehaves has the label scope_b3, indicating398

that it goes into the lower box. We use a similar399

method if different nodes from the same constant400

are members of different boxes, see Appendix F.401

In this way, the labeled scope dependency graphs402

unambiguously specify scope edges.403

This method allows us to use standard depen-404

dency parsing techniques for scope prediction. We405

adopted the biaffine dependency graph parser of406

Dozat and Manning (2018), which is simple and407

accurate. We use ordinary supervised training,408

based on the annotated node-token alignments in409

the PMB5. Hyperparameter details can be found in410

Appendix E.411

Since the AM parser also predicts some scope412

edges (in particular for Compact DRG, but also a413

bare minimum in Scopeless DRG), there can be414

conflicts between the dependency-based scope pre-415

dictions and scope edges already present in the416

predicted simplified DRG. We use the following417

rules to resolve mismatches: (1) We only use a418

dependency-based edge if its target has no scope419

edge in the predicted simplified DRG; i.e. the AM420

parser predictions take precedence. (2) Any remain-421

ing node without a scope edge inherits its scope422

from its parent (as in the rule-based resolver).423

5 Results & Discussion424

5.1 Data & Evaluation425

We evaluated on the latest Parallel Meaning Bank426

5.1.0 (Abzianidze et al., 2017). Apart from the427

normal train, dev, and test split, the PMB 5.1.0428

also provides an extra TestLong set that contains429

40 lengthy (average length: 39.7 tokens) sentences.430

1The labeling of the boxes is decided by the hierarchy of
the boxes in the whole graph: the parent box is assigned by
a smaller number than the children, the root box is assigned
with b1.

Statistics can be found in Appendix A. 431

For the evaluation metric, following Poelman 432

et al. (2022), we convert DRGs to condensed Pen- 433

man notations2 (Wang et al., 2023b) and adopt the 434

SMATCH F1 score (Cai and Knight, 2013) to as- 435

sess DRGs. We also report the percentage of test 436

instances for which a parser generated ill-formed 437

DRGs. 438

5.2 Handling coreference 439

The PMB contains coreference annotations; these 440

are non-compositional by design and thus very 441

tricky for a compositional system like the AM 442

parser. We reduce the impact of coreference on 443

our evaluation through a simple pre- and postpro- 444

cessing method. We remove all edges indicating 445

coreference in the DRG and introduce a new tag p 446

to the label of all coreferent nodes. In postprocess- 447

ing, we then simply add coreference edges between 448

all nodes marked as coreferent. This method further 449

increases decomposability, up to 94% (see Table 1). 450

Details are in Appendix D. 451

This method has the advantage of only using 452

information from the predicted DRG, but it only re- 453

ally works when there is just one instance of coref- 454

erence in the graph. This is frequently the case in 455

the PMB 5.1.0, but in a different setting, more com- 456

plex coreference resolution methods would likely 457

be needed (see e.g. Anikina et al. (2020)). 458

5.3 Experiment details 459

We use the implementation of Groschwitz et al. 460

(2021) in all our AM Parser experiments. Hyperpa- 461

rameter settings can be found in Appendix H. 462

We compare the AMS parser against the 463

strongest published models for DRG parsing listed 464

in Zhang et al. (2024): byT5 (Xue et al., 2022), mT5 465

(Xue et al., 2021) and mBART (Liu et al., 2020). All 466

of these are sequence-to-sequence models with no 467

built-in awareness of semantic structure, composi- 468

tionality, or scope. 469

We also trained the AM Parser on the DRGs with 470

the original scope annotations. To make the root 471

box easier to learn for the parser, we introduced a 472

new token START to the beginning of each input sen- 473

tence. Finally, we fine-tuned T5-Base, T5-Large 474

(Raffel et al., 2020) as two further robust baselines. 475

2Examples can be found in Appendix G.
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Dev Test TestLong

UAS LAS UAS LAS UAS LAS

98.7 96.4 98.3 95.7 67.0 55.4

Table 2: Accuracy of scope dependency parsing.

5.4 Parsing Results476

Scope Dependency Parsing We first evaluate477

how accurately scope assignments can be predicted478

by dependency parsing (cf. Section 4.2), using the479

usual UAS and LAS evaluation measures for de-480

pendency parsing. Table 2 reveals high LAS and481

UAS of predicted scope dependency graphs across482

both development and test sets, indicating reliable483

scope prediction. This is remarkable, given the484

complexity of the scope prediction task.485

On the TestLong set, the accuracy dropped sig-486

nificantly, indicating the difficulty of predicting487

scope as sentences grow in complexity. The much488

larger drop in LAS compared to UAS indicates489

the difficulty of reliably making scope assignment490

decisions within a lexical graph.491

DRG Parsing For the task of DRG parsing itself,492

we compare the AMS parser to the baselines in493

Table 3. Our focus is on models that are trained494

on the hand-annotated gold dataset (G); we also in-495

clude some models trained on gold and silver. The496

suffix scpl denotes Scopeless DRGs, cpt refers to497

Compact DRGs, d indicates the dependency-based498

scope resolver, and h signifies the heuristic scope499

resolver. “Without scope resolution” groups to-500

gether variants of the AMS parser that directly pre-501

dict compact or scopeless DRGs, without a mech-502

anism for reconstructing scope edges in postpro-503

cessing. The best results among the gold-trained504

models are marked in bold. Three critical observa-505

tions emerge from the table.506

First, the AMS parser, especially the scope-507

less (SCPL) version, excels against the gold-data508

trained baselines. The only exception is byT5,509

which has a token-free architecture that makes it510

particularly good at processing short texts – a sig-511

nificant advantage given the very short average512

sentence length of 6.7 tokens in the regular test set.513

The AMS parser also outperforms the generic AM514

parser, indicating the effectiveness of our novel515

scope resolution mechanism.516

Second, in contrast to all seq2seq models, the517

AMS parser maintains a 0% error rate, i.e. it never518

generated ill-formed DRGs. Furthermore, on the519

Models Test TestLong

F1 Err F1 Err

Baselines (gold only)
ByT5(G) 86.7 5.4 27.1 38.3
mT5(G) 61.2 11.3 16.5 25.0
mBART(G) 82.8 6.3 30.5 12.5
T5-base(G) 76.4 20.0 13.9 77.5
T5-large(G) 84.2 3.9 18.1 67.5
AM Parser(G) 81.9 0.0 47.2 0.0

without scope resolution
AMS Parserscpl(G) 73.5 0.0 39.3 0.0
AMS Parsercmpt(G) 73.1 0.0 37.3 0.0

with scope resolution
AMS Parserscpl+h(G) 84.6 0.0 48.4 0.0
AMS Parsercmpt+h(G) 83.1 0.0 44.9 0.0
AMS Parserscpl+d(G) 85.3 0.0 48.8 0.0
AMS Parsercmpt+d(G) 83.3 0.0 46.0 0.0

Baselines (gold + silver)
byT5(G+S) 93.4 0.7 36.6 40.0
T5-base(G+S) 86.0 1.6 44.3 37.5
mT5(G+S) 93.1 0.8 55.8 15.0
mBART(G+S) 86.2 4.4 7.8 12.5

Table 3: Accuracy and error rates for DRG parsing.

very long sentences of the TestLong set, all vari- 520

ants of the AMS parser outperform the gold-trained 521

seq2seq baselines by a large margin, almost achiev- 522

ing parity with the best model trained on silver 523

data. 524

Finally, Scopeless DRGs perform better than 525

Compact DRGs. This could be attributed to the 526

fact that Compact DRGs retain more scope edges, 527

making the graph more complex to learn. The 528

higher decomposability rate of Scopeless DRGs 529

also means that we have more training data in that 530

setting. The dependency-based scope resolver out- 531

performs its heuristic-based counterpart in accu- 532

racy across in-domain development and test splits. 533

This advantage makes sense given the scope depen- 534

dency parser’s high accuracy. It could also be that 535

the dependency resolver is better able to handle 536

initial parsing inaccuracies compared to the rule- 537

based resolver, where AM Parsing errors can easily 538

propagate into more scope errors. 539

Scaling to complex DRGs As we already saw 540

in Section 3.2, scope prediction is easy when there 541

are not many boxes. Table 3 therefore splits the 542

test instances by number of boxes3. For each of 543

these classes, we report the overall SMATCH score 544

of our best model and the baselines, as well as 545

the SMATCH score when considering only scope 546

3For the TestLong split, we evaluate the models only on
multi-box DRGs, of which there are 33 out of 40.
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Models Test TestL

# Box #1 #2 #3 #≥4 #≥2

Count 972 136 75 10 33

T5-base(G) 86.2 17.5 17.5 16.7 9.0

92.9 3.0 5.0 14.6 10.3

mBART(G) 84.8 81.5 83.1 76.6 17.2

91.7 80.7 84.8 80.2 17.2

mT5(G) 65.6 61.6 55.8 49.9 13.5

76.7 65.4 63.3 59.3 17.7

T5-large(G) 87.9 74.8 67.4 45.2 19.0

94.1 73.7 68.5 48.3 21.5

byT5(G) 87.3 84.3 86.9 52.5 29.6

93.6 85.2 86.6 55.6 33.0

AM Parser(G) 84.3 75.6 67.5 61.9 46.3

92.1 78.9 72.0 66.5 56.0

AMS Parserscpl+d(G) 86.0 83.8 81.9 75.2 48.2
92.9 86.5 82.2 85.2 58.7

byT5(G+S) 89.1 89.9 88.8 83.6 48.0

95.0 89.2 90.6 87.4 47.8

mT5(G+S) 89.1 89.9 88.8 85.6 61.7

95.0 88.9 89.5 88.4 65.1

mBART(G+S) 84.8 81.5 83.1 75.7 17.2

91.7 80.6 84.6 80.2 17.6

Table 4: SMATCH score for multi-box DRGs and cor-
responding scope score (highlighted in gray)

edges. This allows us to explore how the parsers547

scale to complex DRGs, and in particular how they548

maintain their ability to predict scope edges when549

there are many boxes.550

Compared to other models trained on gold data,551

the AMS parser excels at maintaining its accuracy552

as the DRGs grow more complex. While the AM553

parser is almost on par with the AMS parser on554

single-box DRGs, the gap widens drastically with555

increasing complexity. For DRGs with four or556

more boxes, as well as on the TestLong set, the557

AMS parser also decisively outperforms all (gold)558

seq2seq baselines.559

At the same time, we observe that the AMS560

parser maintains a very high accuracy on predicting561

scope edges even for complex DRGs. We observe562

that the difference between the AMS Parser and the563

baseline AM parser is small on single-box DRGs,564

but much larger on multi-box DRGs, showing that565

treating scope prediction separately pays off.566

5.5 What makes long texts so hard?567

Anil et al. (2022) found that simple fine-tuning of568

transformer models does not achieve length gen- 569

eralization, nor does scaling up the models. We 570

conducted a detailed error analysis and identified 571

two factors that might contribute to the limitations 572

of the models in length generalization. 573

Structural Complexity As shown in Table 4, all 574

models show a decreasing trend as the number of 575

boxes increases. We find that a higher number of 576

boxes generally results in longer sequences, espe- 577

cially in the TestLong split - we assume the box 578

complexity brought by longer sequences could be a 579

possible reason for length generalization limitation. 580

Furthermore, byT5 tends to generate shorter se- 581

quences, averaging 70 roles and relations in its pre- 582

dictions, in contrast to other models which average 583

approximately 100. This discrepancy underscores 584

byT5’s limitation in handling long texts. 585

Sense Generalization Furthermore, longer sen- 586

tences can introduce new word senses, which have 587

to be predicted as node labels. 25% senses in the 588

TestLong split are absent in the train split. All mod- 589

els show accuracies lower than 0.33 in predicting 590

unseen senses with the AMS Parser performing the 591

best at this rate. 592

6 Conclusion and Future Work 593

In this work, we proposed a novel mechanism for 594

predicting scope assignments in DRT parsing. By 595

combining it with the compositional AM parser, we 596

obtain the AMS parser, which outperforms existing 597

DRT parsers trained on the same dataset, especially 598

for complex sentences. It also avoids the prediction 599

of ill-formed DRGs that plague other models. The 600

prediction of scope information has been a long- 601

standing challenge in computational semantics; our 602

dependency parsing mechanism achieves very high 603

accuracy on this task. 604

In the future, we plan to extend our work to 605

tackle increasingly complex meaning representa- 606

tion frameworks, such as Uniform Meaning Rep- 607

resentation (UMR) (Van Gysel et al., 2021). Since 608

UMR-writer (Zhao et al., 2021), the UMR annota- 609

tion tool, provides node-token alignment automati- 610

cally, no more manual annotation is needed. Fur- 611

thermore, our current system’s architecture, which 612

includes both the AM Parser and a dependency 613

parser by Dozat and Manning (2018), presents op- 614

portunities for optimization. We aim to streamline 615

the process by unifying these two models into a 616

single framework that leverages joint learning. 617
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Limitations618

The AMS parser uses the AM parser to predict the619

predicate-argument relations in the DRGs. The AM620

parser has not kept pace in accuracy with the devel-621

opment of overall graph parsing models since it was622

published in 2019. This holds back the accuracy623

of the AMS parser. If a more accurate sentence-to-624

graph parser that induces node-token alignments625

became available, the AMS parser could be com-626

bined with it for increased accuracy. Note, however,627

that the AM parser shows strong performance with628

respect to the degradation of parsing accuracy for629

long and complex sentences.630

Furthermore, the treatment of coreference in the631

paper is quite shallow. One might include the pre-632

dictions of a coreference resolver into the parsing633

process. On the relatively short coreference chains634

in the PMB test sets, this would probably not make635

a significant impact on the evaluation.636
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A Statistics of Parallel Meaning Bank893

Release 5.1.0894

In our experiment, we excluded all ill-formed895

DRGs from the gold split of the PMB5.1.0 dataset.896

Detailed statistics of the modified gold data as well897

as the silver and bronze splits are presented below.

Gold Silver Bronze

Train Dev Test TestLong

9560 1195 1193 40 146,718 141,435

Table 5: Number of sentences across different splits

898

B Challenges Brought by Scope899

In this section, we show that AM-Algebra struggles900

with even one-box DRG when scope is taken as an901

argument of the root box, with sentence The little902

cat wanted to sleep as an example.903

The graphs corresponding to the sentences are904

illustrated in Fig. 8. As depicted in Fig. 9, these905

graphs can be merged to form a scopeless lexical906

graph. However, integrating this lexical graph with907

a box requiring four arguments proves problematic908

for constructing the AM-tree. This is due to AM-909

Algebra’s restriction against multiple APPs (appli-910

cations) between two sub-graphs, a constraint that911

mirrors linguistic principles in English, where dif-912

ferent parts of one constituent cannot play unique913

roles relative to another constituent.914

Figure 8: graphs for DRGs with scope as argument

START The little cat wanted to sleep.

GSTART ⊥ Glittle Gcat Gwanted ⊥ Gsleep

xMODo1

APPs

APPo

MODm2

Figure 9: Failed combinations of graphs

C Heuristics on Edge Directions915

The heuristics on edge directions can be found in916

Table 6.917

Operation Edge Labels

APP Agent, Bearer, Participant, Creator, Proposi-
tion, Stimulus, Beneficiary, Co-Agent, Co-
Patient, Co-Theme, Experiencer, Patient,
Pivot, Product, Recipient, Theme, Owner,
OF, User, Role, NEQ, APX, EQU, TPR

Mod Consumer, Topic, Result, member, Sub,
Source, Destination, Goal, Product, AL-
TERNATION, ATTRIBUTION, CONDI-
TION, CONSEQUENCE, CONTINUA-
TION, CONTRAST, EXPLANATION, NE-
CESSITY, NEGATION, POSSIBILITY,
PRECONDITION, RESULT, SOURCE

Table 6: Mapping of operation types to edge labels in
the DRG-to-graph conversion process.

D Coreference Resolution 918

PMB5.1.0 explicitly marks coreference: two nodes 919

that refer to the same entity are connected with an 920

ANA edge. 921

In our approach, we leverage the AM Parser’s su- 922

pertagger for coreference resolution. In PMB, node 923

labels are annotated with lexical categories like n 924

(noun), a (adjective), r (adverb), and v (verb), such 925

as female.n.02 in Fig. 10. To allow coreference 926

resolution via supertagging, we introduce a new 927

category, denoted as p (pronoun). During prepro- 928

cessing, this category is assigned to nodes involved 929

in coreference, identified by the ANA edge linking 930

them. For example, Fig. 10 shows the resulting pen- 931

man notation after preprocessing and postprocess- 932

ing steps. The two nodes, s0 and s3 (bot labeled 933

female.n.01) are relabeled as female.p.01. This 934

encodes the fact that the two entities corefer is now 935

encoded in the node labels, allowing us to remove 936

the ANA edge. While this is not always a lossless 937

transformation when there are multiple instances 938

of coreference in the graph, we find it to work well 939

in practice (see Section 5). And crucially, this re- 940

moves a reentrancy from the DRG, making it more 941

likely to be decomposable by the AM algebra. At 942

training time, the AM Parser’s supertagger can then 943

learn to distinguish regular nouns (i.e., n) and coref- 944

erent nouns (i.e., p). 945

At evaluation time, we reconstruct coreference 946

information in a postprocessing step. This step 947

begins with identifying nodes marked as p in pre- 948

dicted DRGs. However, if a DRG contains only 949

one such p-tagged node, we do not treat it as coref- 950

erent, since coreference involves multiple entities. 951

In most cases, the parser flags either one or two 952

nodes as potential coreference candidates within 953
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Preprocessing:
(b0 / box :member (s1 / unscrew.v.01 :Agent (s0
/ female.np.02 :Name (c0 / "Mary")) :Time (s2
/ time.n.08 :TPR (c1 / "now")) :Patient (s4 /
lipstick.n.01 :User (s3 / female.np.02 :ANA s0))))
Postprocessing:
(b0 / box :member (s1 / unscrew.v.01 :Agent (s0
/ female.n.02 :Name (c0 / "Mary"))) :Time (s2
/ time.n.08 :TPR (c1 / "now")) :Patient (s4 /
lipstick.n.01 :User (s3 / female.n.02 :ANA s0 ))))

Figure 10: An example of coreference after preprocess-
ing and postprocessing for the sentence Shei unscrewed
heri lipstick.

a single DRG. When two nodes are both tagged954

as p, we compare their node concepts to see if955

they are identical. In our example (Fig. 10), since956

both nodes are labeled female.p.02, indicating a957

match, we create an ANA edge linking them. This958

edge is directed from node with a larger number on959

the node label (like s3) to the one with a smaller960

node label (like s1). The final step is to change the961

nodes’ categories from p back to n.962

E Implementation details of the scope963

dependency parser964

The original implementation of Dozat and Manning965

(2018) uses POS tags, lemma-, and character-level966

word embeddings, processed through a BiLSTM967

and a Forward Network (FNN), to predict if there968

is an edge between two tokens as well as the cor-969

responding edge label. Then a biaffian classifier970

is used to predict the existence of an edge and the971

edge label.972

In our experiment, we fine-tune roberta-large973

(Liu et al., 2019) and take POS tags and characters974

as feature embeddings. All the linguistic informa-975

tion is provided by spaCy4 (Honnibal et al., 2020).976

We keep all other hyperparameters the same as the977

best model reported in their paper.978

F Scope Annotation of a Complex979

Example980

As discussed in Section 4, when a single token981

aligns with a lexical graph that contains multiple982

nodes or boxes, it creates a complex scenario where983

different nodes within the same lexical graph are984

linked to distinct boxes and complicates the estab-985

lishment of straightforward one-to-one dependency986

relations between tokens. Our annotation method987

is straightforward: as long as an aligned lexical988

4We use version 3.7.2

graph contains multiple nodes or boxes, we make 989

the scope assignment of each node explicit in a 990

top-down order. 991

We illustrate our method with two other possibil- 992

ities when we build the dependency edges between 993

lexical graphs aligned with tokens. 994

(1) the two lexical graphs aligned with the token 995

have multiple nodes and boxes respectively, and 996

each node is assigned a different scope box. An 997

example can be found in the scope assignment be- 998

tween the lexical graph aligned with born (Gborn) 999

and the lexical graph aligned with all (Gall). We 1000

can see that the bottom node of Gborn receives the 1001

scope from the top box of Gall, while the top node 1002

of Gborn receives the scope from the bottom box 1003

of Gall. In this case, the dependency edge between 1004

born and all is scope_b3_b2. 1005

(2) the two lexical graphs aligned with the to- 1006

ken have multiple nodes and boxes respectively, 1007

and each node is assigned the same scope box. 1008

This case can be found in the scope assignment 1009

between the lexical graph aligned with children 1010

(Gchildren)and that with all. Although both nodes of 1011

Gchildren receives the same scope, we still explicitly 1012

annotating the scope for each node as shown in 1013

scope_b2_b2. 1014

G Evaluation Format 1015

In evaluation, we use a more compact format fol- 1016

lowing Wang et al. (2023b). This strict format inte- 1017

grates synset nodes’ information into a single en- 1018

tity and eliminates variables representing constants, 1019

thereby avoiding inflated scores. An example is 1020

shown in Fig. 12. 1021

H Hyperparameters in AM Parser 1022

The hyperparameters used in the experiments that 1023

show the best performance on the scopeless SBN 1024

training data are summarized in Table 7. 1025

I More examples of Complex DRGs 1026

In this section, we show examples of more complex 1027

scope assignments in Fig 13. 1028
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(a) Token Alignments: lexical graphs are color-coded to indicate alignment with
distinct tokens, denoted beneath each respective circle

START All of their children were born in Malaysia.

GSTART Gall of Gtheir Gchildren Gwere Gborn in GMaylaysia

no_scope

no_scope

scope_b2

scope_b2_b2

scope_b3
scope_b3_b2

scope_b3

(b) The converted dependency graph based on the scope information represented
in dashed lines

Figure 11: Complex DRG and dependency graph for
All of their children were born in Malaysia.

(b0 / "box"
:member (s0 / "synset"

:lemma "person"
:pos "n"
:sense "01"
:Name (c0 / "?"))

:member (s1 / "synset"
:lemma "time"
:pos "n"
:sense "08"
:TPR (c1 / "now"))

:member (s2 / "synset"
:lemma "male"
:pos "n"
:sense "02"

:Name (c2/"William W"))
:member (s3 / "synset"

:lemma "defeat"
:pos "v"
:sense "01"
:Co-Agent s0
:Time s1
:Agent s2))

(a) Lenient Format used in
(Poelman et al., 2022)

(b0 / box
:member (s0 / person.n.01

:Name "?")
:member (s1 / time.n.08

:TPR "now")
:member (s2 / male.n.02

:Name "William Wallace")
:member (s3 / defeat.v.01

:Co-Agent s0
:Time s1
:Agent s2))

(b) Strict Format

Figure 12: Comparison of DRG Representation in
Lenient and Strict Formats for the sentence Who did
William Wallace defeat?

Hyperparameter Value
Activation function tanh
Optimizer Adam
Learning rate 0.001
Epochs 100
Early Stopping 20
Dim of lemma embeddings 64
Dim of POS embeddings 32
Dim of NE embeddings 16
Minimum lemma frequency 7
Hidden layers in all MLPs 1
Hidden units in LSTM (per direction) 256
Hidden units in edge existence MLP 256
Hidden units in edge label MLP 256
Hidden units in supertagger MLP 1024
Hidden units in lexical label tagger MLP 1024
Layer dropout in LSTMs 0.35
Recurrent dropout in LSTMs 0.4
Input dropout 0.35
Dropout in edge existence MLP 0.0
Dropout in edge label MLP 0.0
Dropout in supertagger MLP 0.4
Dropout in lexical label tagger MLP 0.4

Table 7: Common hyperparameters used in all experi-
ments in AM Parser.
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Figure 13: Examples of complete DRG (top), scopeless
DRG(middle), and simplified DRG (bottom) for the
sentence You and he both are very kind.
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