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Abstract001

Despite Telugu being spoken by over 80 million002
people, speech translation research for this mor-003
phologically rich language remains severely004
underexplored. We address this gap by devel-005
oping a high-quality Telugu–English speech006
translation benchmark from 46 hours of man-007
ually verified CSTD corpus data (30h/8h/8h008
train/dev/test split). Our systematic compar-009
ison of cascaded versus end-to-end architec-010
tures shows that while IndicWhisper + IndicMT011
achieves the highest performance due to exten-012
sive Telugu-specific training data, fine-tuned013
SeamlessM4T models demonstrate remarkable014
competitiveness despite using significantly less015
Telugu-specific training data. This finding sug-016
gests that with careful hyperparameter tuning017
and sufficient parallel data (potentially less than018
100 hours), end-to-end systems can achieve per-019
formance comparable to cascaded approaches020
in low-resource settings. Our analysis reveals021
that Wav2Vec-based cascaded systems perform022
poorly due to limited Telugu ASR training data,023
while our metric reliability study evaluating024
BLEU, METEOR, ChrF++, ROUGE-L, TER,025
and BERTScore against human judgments re-026
veals that traditional metrics provide better027
quality discrimination than BERTScore for028
Telugu–English translation. The work delivers029
three key contributions: a reproducible Telugu–030
English benchmark, empirical evidence of com-031
petitive end-to-end performance potential in032
low-resource scenarios, and practical guidance033
for automatic evaluation in morphologically034
complex language pairs.035

1 Introduction036

Speech Translation (ST) systems aim to convert037

spoken input in one language into textual output038

in another, combining the challenges of automatic039

speech recognition (ASR) and machine translation040

(MT). While ST has made significant progress for041

high-resource language pairs like English–French,042

low-resource languages from the Indian subconti- 043

nent, such as Telugu, remain vastly underexplored. 044

Telugu is spoken by over 80 million people and 045

is the official language of the Indian states Andhra 046

Pradesh and Telangana. Despite this large speaker 047

base, Telugu–English ST research is hindered by 048

the lack of high-quality speech-text parallel data 049

and robust evaluation protocols. Telugu’s agglu- 050

tinative morphology and rich linguistic structure 051

further complicate the task, often rendering stan- 052

dard evaluation metrics insufficient for capturing 053

translation quality. 054

Recent efforts such as India’s Bhaashini initia- 055

tive and the AI4Bharat consortium have signifi- 056

cantly advanced NLP for Indian languages. Mod- 057

els like IndicWhisper (Bhogale et al., 2023), In- 058

dicWav2Vec (Javed et al., 2022 (to appear), and 059

IndicTrans (Gala et al., 2023) have enabled ASR 060

and MT for many Indic languages, including Tel- 061

ugu. These models benefit from extensive Telugu- 062

specific training data, with IndicWhisper trained on 063

over 800 hours of Telugu speech data and IndicMT 064

having substantial exposure to Telugu-English par- 065

allel corpora. This language-specific training ad- 066

vantage becomes particularly important in low- 067

resource scenarios. 068

Contemporary ST systems fall into two broad 069

paradigms. Cascaded systems, which perform ASR 070

followed by MT, benefit from modular design and 071

can leverage language-specific models trained on 072

larger datasets for each component. End-to-end 073

systems, such as SeamlessM4T (Seamless Com- 074

munication, 2023) and SONAR (Duquenne et al., 075

2023), directly translate speech to text using unified 076

neural architectures. While end-to-end approaches 077

often show advantages for high-resource language 078

pairs due to joint optimization, their effectiveness 079

on low-resource Indic language pairs may be lim- 080

ited by insufficient language-specific training data. 081

For instance, SeamlessM4T’s Telugu-English train- 082

ing data comprises only 466 hours compared to the 083
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800+ hours available to IndicWhisper for Telugu084

ASR alone.085

Equally important is the question of evaluation.086

While BLEU (Papineni et al., 2002) remains a087

widely used metric, it is known to underperform on088

morphologically rich languages. Alternatives such089

as ChrF++ (Popović, 2015), METEOR (Baner-090

jee and Lavie, 2005), ROUGE (Lin, 2004), and091

BERTScore (Zhang et al., 2020) offer different092

perspectives on translation quality. TER (Snover093

et al., 2006) provides another angle on edit dis-094

tance. However, their reliability and discrimina-095

tive power in Telugu–English ST scenarios has096

not been systematically studied, particularly re-097

garding which metrics can effectively distinguish098

between different model performances. This pa-099

per addresses these gaps through three major100

contributions: (1) We release 46 hours of manu-101

ally verified Telugu–English parallel data curated102

from the CSTD corpus (Mirishkar et al., 2021),103

facilitating reproducible benchmarks for ST in a104

low-resource Indian (2) We evaluate the perfor-105

mance of both cascaded (IndicWhisper+IndicMT,106

IndicWav2Vec+IndicMT) and end-to-end models107

(SeamlessM4T, SONAR), providing empirical evi-108

dence that while cascaded approaches with exten-109

sive language-specific training data achieve supe-110

rior performance, carefully fine-tuned end-to-end111

systems show promising competitiveness with lim-112

ited data. (3) We analyze the reliability and discrim-113

inative power of six standard automatic metrics114

(BLEU, METEOR, ChrF++, ROUGE, TER, and115

BERTScore) by comparing them with ChatGPT-116

style human evaluations.117

We also investigate the effect of mixing verified118

and unverified data during fine-tuning, offering in-119

sights into corpus construction strategies under re-120

source constraints. Together, these efforts provide121

a solid foundation for Telugu–English ST bench-122

marking and offer broader implications for other123

morphologically rich, underrepresented languages.124

All resources—data splits, evaluation scripts, and125

system outputs—are made publicly available to126

foster reproducible and inclusive research in multi-127

lingual speech translation.128

2 Dataset Creation129

We construct a high-quality Telugu-English130

speech translation dataset from the CSTD cor-131

pus (Mirishkar et al., 2021), addressing cross-132

lingual alignment and dialectal variation challenges133

through systematic quality control. 134

2.1 Source Dataset Selection 135

We utilize the CSTD corpus, comprising 2,000 136

hours of transcribed Telugu audio across three 137

dialectal variants: Telangana, Rayalaseema, and 138

Andhra. We strategically selected a 50-hour sub- 139

set maintaining dialectal diversity while ensuring 140

computational feasibility for manual verification 141

processes. 142

2.2 Translation Pipeline and Quality Control 143

2.2.1 Initial Translation Generation 144

Telugu transcripts were extracted from the 50-hour 145

subset and translated to English using IndicTrans 146

MT, selected for its effectiveness with morpholog- 147

ically rich Indian languages and Telugu-English 148

parallel training data. 149

2.2.2 Manual Verification Protocol 150

Each audio-translation pair underwent evaluation 151

by native Telugu speakers using a 5-point Likert 152

scale: 153

• Score 5: Perfect semantic alignment with nat- 154

ural English expression 155

• Score 4: Minor variations, core meaning pre- 156

served 157

• Score 3: Acceptable translation with moderate 158

modifications required 159

• Score 2: Significant gaps requiring substantial 160

revision 161

• Score 1: Fundamental misalignment requiring 162

complete retranslation 163

Pairs scoring below 3 received manual correc- 164

tion. Audio segments with multiple speakers, back- 165

ground noise, or recording artifacts were eliminated 166

through automatic detection and manual inspec- 167

tion. 168

2.2.3 Dataset Composition 169

Following quality control, we obtained 46 hours 170

of verified parallel data (92% retention rate), par- 171

titioned as Training Set: 30 hours (65.2%),Devel- 172

opment Set: 8 hours (17.4%), Test Set: 8 hours 173

(17.4%) 174
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Metric Description

BLEU Focuses on lexical matching and word order.
ChrF++ Captures sub-word similarities and handles morphological variations.
BERTScore Captures semantic meaning beyond surface form matching.
TER Measures minimum number of edits (insertions, deletions, substitutions, shifts) re-

quired to transform hypothesis into reference.
ROUGE-L Captures structural similarity and word order.
METEOR Incorporates linguistic knowledge and semantic equivalence.

Table 1: Overview of evaluation metrics and their calculation approaches for assessing translation quality.

2.2.4 Key Challenges175

Primary challenges included transcription inconsis-176

tencies from dialectal variations, translation ambi-177

guities from Telugu’s morphological richness, and178

temporal alignment drift. These were addressed179

through standardization protocols, manual correc-180

tion procedures, and systematic alignment verifica-181

tion.182

3 Speech Translation Architectures and183

Training Setup184

3.1 Model Architectures185

We evaluate four speech translation architectures186

spanning two major paradigms: cascaded and end-187

to-end systems.188

The cascaded models follow a modular design189

and benefit from component-specific training ad-190

vantages. IndicWhisper + IndicMT (cascad-1)191

integrates IndicWhisper, an ASR model fine-tuned192

on over 800 hours of Telugu speech data, with193

IndicTrans, a neural machine translation system194

with extensive Telugu-English parallel training.195

This combination leverages substantial language-196

specific training data for both ASR and MT com-197

ponents. IndicWav2Vec + IndicMT (cascad-2)198

combines a Telugu-specific Wav2Vec-based speech199

encoder with IndicTrans. However, this configu-200

ration faces limitations as the Wav2Vec model 1201

has been trained on significantly limited Telugu202

data compared to IndicWhisper, potentially leading203

to incorrect transcriptions that negatively impact204

downstream translation quality.205

The end-to-end models include SeamlessM4T206

and SONAR. SeamlessM4T is a massively multi-207

lingual model that directly maps speech to text us-208

ing a unified architecture, but with limited Telugu-209

English training data (466 hours) compared to210

1https://huggingface.co/anuragshas/wav2vec2-large-xlsr-
53-telugu

the cascaded components. Despite this limitation, 211

our experiments reveal that SeamlessM4T shows 212

promising potential when fine-tuned with careful 213

hyperparameter selection. SONAR is a unified 214

multilingual encoder that produces sentence-level 215

representations for over 200 languages across both 216

speech and text modalities, though it similarly lacks 217

the extensive Telugu-specific training of the cas- 218

caded components. 219

3.2 Training Configurations 220

We investigate the impact of training data quality 221

by fine-tuning SeamlessM4T under three distinct 222

configurations. The Verified Only setting uses 30 223

hours of manually verified data as the baseline. The 224

Balanced configuration expands the dataset to 45 225

hours by combining the 30 hours of verified data 226

with an additional 15 hours of unverified speech- 227

text pairs. Finally, the Unbalanced configuration 228

further increases the total to 73 hours by incorporat- 229

ing a larger proportion of unverified data, allowing 230

us to examine the effects of noisy data on model 231

performance. 232

For hyperparameter optimization, we explore 233

learning rates of 1 × 10−5 and 1 × 10−6, batch 234

sizes of 10, 32, and 64, and warmup steps set to 235

either 100. These variations are used to identify 236

stable training regimes that balance learning effi- 237

ciency and generalization performance across the 238

data configurations. 239

4 Evaluation Metrics 240

We employ six automatic metrics capturing differ- 241

ent translation quality aspects. Table 1 provides 242

an overview of these metrics and their computa- 243

tional approaches, highlighting how each metric 244

addresses different dimensions of translation qual- 245

ity assessment. 246

3



Model BLEU ChrF++ TER (↓) ROUGE-L METEOR BERTScore ChatGPT (%)
cascad-1 23.99 47.69 82.00 48.47 47.19 91.9 58.3
cascad-2 8.3 28.27 99.8 28.23 20.17 89.12 41.2
Configuration 0 13.9 38.9 89.9 38.7 39.5 89.5 48.1
configuration 1 14.1 39.8 89.5 40.2 40.2 89.1 49.2
configuration 2 16.9 42.87 86.0 42.6 43.01 90.1 51.0
configuration 3 14.9 40.1 87.7 41.2 41.6 89.7 50.4
configuration 4 17.1 42.9 85.9 42.7 43.8 90.9 51.3
configuration 5 15.8 41.8 86.0 41.6 42.4 89.9 50.9
SONAR 10.9 35.8 98.7 36.4 35.6 88.3 49.2

Table 2: Automatic metric scores across cascaded and end-to-end models. Cascaded models, particularly IndicWhis-
per + IndicMT, significantly outperform end-to-end approaches across most metrics.

4.1 BLEU Score247

Measures precision-based n-gram overlap with248

brevity penalty, emphasizing lexical similarity.249

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(1)250

where pn is n-gram precision and BP is brevity251

penalty.252

4.2 ChrF++253

Evaluates character-level F-score, effective for mor-254

phologically rich languages like Telugu.255

ChrF++ =
(1 + β2) · chrP · chrR
β2 · chrP + chrR

(2)256

where chrP and chrR are character-level precision257

and recall.258

4.3 BERTScore259

Computes semantic similarity using contextual em-260

beddings, capturing meaning beyond surface form.261

BERTScore =
1

|x|
∑
xi∈x

max
yj∈y

x⊤
i yj (3)262

where xi and yj are BERT embeddings of tokens.263

4.4 Translation Edit Rate (TER)264

Measures minimum edit operations required for265

transformation (lower is better).266

TER =
Number of Edits

Average Reference Length
(4)267

4.5 ROUGE 268

Computes recall-oriented n-gram overlap. We use 269

ROUGE-1, ROUGE-2, and ROUGE-L variants. 270

ROUGE-N =
Number of matching n-grams
Total n-grams in the reference

(5) 271272

ROUGE-L =
(1 + β2) · P ·R
β2 · P +R

(6) 273

where P is precision, R is recall, and β = 1. 274

4.6 METEOR 275

Combines precision and recall using exact, stem, 276

synonym, and paraphrase matching with linguistic 277

equivalence. 278

METEOR =
10 · P ·R
R+ 9 · P

· (1− Penalty) (7) 279

where P and R are weighted precision and recall, 280

and Penalty accounts for word order differences. 281

5 Experimental Setup 282

5.1 Baseline Model Evaluation 283

Our experimental framework comprised two dis- 284

tinct categories of speech translation models: cas- 285

caded and end-to-end architectures. For the cas- 286

caded approaches, we evaluated two configurations: 287

IndicWhisper + IndicMT and IndicWav2Vec2.0 + 288

IndicMT. Additionally, we assessed SONAR and 289

Seamless as our end-to-end baseline models. Initial 290

performance evaluation was conducted by directly 291

inferencing these models on our designated test 292

dataset without any domain-specific adaptations. 293

This provided baseline performance metrics that 294

informed subsequent fine-tuning strategies. 295
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5.2 Fine-Tuning Methodology296

Based on the initial inference results, which297

showed end-to-end models underperforming cas-298

caded approaches, we implemented a systematic299

fine-tuning approach (Akkiraju et al., 2025) using300

the SeamlessM4T model to investigate whether tar-301

geted fine-tuning could bridge this performance302

gap . The fine-tuning process was designed to in-303

vestigate the impact of training data composition304

and hyperparameter configurations on model per-305

formance.306

5.3 Training Data Configurations307

We conducted fine-tuning experiments across mul-308

tiple data configurations to assess the relationship309

between data quality, quantity, and model perfor-310

mance:311

• Configuration 0 : SeamlessM4T large model312

with Direct Inference313

• Configuration 1: Verified Data Only314

Utilized exclusively verified, high-quality315

training data to establish performance under316

clean training conditions.317

• Configuration 2: Mixed Data (15 hours)318

Combined verified data with 15 hours of un-319

verified data to evaluate the impact of limited320

data augmentation using noisy samples.321

• Configurations 3–5: Extended Mixed Data322

(80 hours)323

Employed a larger dataset combining verified324

and unverified data (80 hours total) to investi-325

gate the effects of hyperparameter variations326

at scale.327

Configuration 3: Learning rate = 1× 10−5,328

batch size = 10, representing an aggressive329

learning setup with smaller batch processing.330

Configuration 4: Learning rate = 1× 10−6,331

batch size = 10, combining conservative learn-332

ing with smaller batch sizes to balance stabil-333

ity and computational efficiency.334

Configuration 5: Learning rate = 1× 10−6,335

batch size = 32, implementing a conservative336

learning strategy with larger batch size for337

improved gradient stability.338

6 Results339

We evaluate cascaded and end-to-end speech340

translation models using six automatic met-341

rics—BLEU, ChrF++, TER, ROUGE-L, ME- 342

TEOR, and BERTScore—alongside ChatGPT-style 343

human scoring to assess model performance and 344

metric reliability for Telugu–English speech trans- 345

lation. Table 2 presents results across all configura- 346

tions. 347

Our findings highlight the performance dynam- 348

ics across architectural choices. IndicWhisper + 349

IndicMT achieves the best overall performance 350

with 23.99 BLEU, 47.69 ChrF++, and 47.19 ME- 351

TEOR, clearly benefiting from over 800 hours 352

of Telugu ASR training and substantial Telugu- 353

English parallel corpora in the MT stage. This 354

cascaded setup demonstrates the importance of 355

component-specific language exposure in low- 356

resource scenarios. 357

Interestingly, fine-tuned SeamlessM4T mod- 358

els perform competitively despite limited Telugu- 359

specific supervision. Configuration 4 achieves 360

17.1 BLEU and 43.82 METEOR—only a 29% 361

BLEU drop from the cascaded baseline—while 362

using under 30 hours of verified training data and 363

43 hours of unverified training data. This result 364

suggests that with effective fine-tuning, end-to- 365

end models can approach cascaded system perfor- 366

mance, offering a scalable alternative where mono- 367

lithic training pipelines are preferred. 368

By contrast, Wav2Vec + IndicMT underper- 369

forms across all metrics (8.3 BLEU, 28.27 ChrF++, 370

20.17 METEOR), largely due to inadequate Tel- 371

ugu ASR training data. This discrepancy under- 372

scores the vital role of ASR quality in cascaded 373

speech translation pipelines. Additionally, SONAR 374

achieves only moderate performance (10.9 BLEU, 375

35.6 METEOR), highlighting that not all end-to- 376

end multilingual systems generalize well to mor- 377

phologically rich Indian languages. Among end-to- 378

end SeamlessM4T variants, Configurations 2 and 379

4 deliver the best results. Configuration 2 achieves 380

16.9 BLEU and 43.01 METEOR, closely trailing 381

Configuration 4. These results reflect the effective- 382

ness of balanced data curation and learning rate 383

tuning in maximizing translation quality with lim- 384

ited resources. 385

6.1 Metric Reliability Analysis 386

To evaluate which metrics align best with human 387

perception, we compute the Pearson correlation 388

coefficient (PCC) between ChatGPT scores and 389

each automatic metric. 390

• ROUGE-L (r = 0.96) and ChrF++ (r = 391
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Metric PCC with ChatGPT

BLEU 0.9417
ChrF++ 0.9479
TER -0.8197
ROUGE-L 0.9645
METEOR 0.9022
BERTScore 0.7372

Table 3: Pearson correlation (PCC) between ChatGPT-
style scores and automatic metrics across model config-
urations.

0.95) show the strongest agreement with hu-392

man judgment, making them suitable for low-393

resource ST evaluation.394

• BLEU (r = 0.94) and METEOR (r = 0.90)395

also show strong correlations, reinforcing396

their applicability in this domain.397

• BERTScore (r = 0.73) shows lower align-398

ment across configurations, suggesting limited399

discriminative power for morphologically rich400

translations.401

• TER (r = −0.82) exhibits a strong inverse402

correlation, as expected from an error-based403

metric, further validating its interpretability in404

this context.405

7 Conclusion406

This work presents a comprehensive benchmark407

for Telugu–English speech translation, releasing408

46 hours of verified data from the CSTD corpus.409

Our experiments reveal important insights into the410

trade-offs between cascaded and end-to-end archi-411

tectures in low-resource settings. While cascaded412

systems like IndicWhisper + IndicMT achieve the413

best results (23.99 BLEU, 47.19 METEOR), fine-414

tuned end-to-end models such as SeamlessM4T415

demonstrate notable competitiveness (17.1 BLEU,416

43.82 METEOR) despite relying on significantly417

less Telugu-specific training data.418

This 29% BLEU gap underscores the strong419

inductive bias provided by Telugu-specific train-420

ing in cascaded models. However, it also high-421

lights the scalability potential of end-to-end sys-422

tems: with less than 100 hours of parallel fine-423

tuning data, SeamlessM4T models can approach424

the performance of cascaded systems. The weak425

performance of Wav2Vec + IndicMT (8.3 BLEU,426

28.27 ChrF++) further emphasizes the necessity of 427

sufficient ASR exposure for effective cascaded ST. 428

Our metric reliability analysis demonstrates that 429

ROUGE-L and ChrF++ correlate most strongly 430

with human judgments (Pearson r = 0.96 and 431

r = 0.95, respectively), suggesting their effec- 432

tiveness in evaluating low-resource, morpholog- 433

ically rich translations. BLEU and METEOR 434

also show strong alignment (r > 0.90), reinforcing 435

their continued relevance in this setting. In contrast, 436

BERTScore exhibits lower correlation (r = 0.73), 437

indicating limited sensitivity to performance vari- 438

ation across configurations. As expected, TER 439

shows strong inverse correlation (r = −0.82), 440

aligning well with human judgments when inter- 441

preted as an error-based metric. 442

Although cascaded systems benefit from large 443

language-specific resources (e.g., 800+ hours for 444

IndicWhisper), our findings indicate that carefully 445

fine-tuned end-to-end systems, with modest high- 446

quality data, can deliver competitive performance. 447

Future work should explore monolingual augmen- 448

tation, domain-specific adaptation (e.g., medical 449

ST), and multilingual pretraining across related In- 450

dian languages to further enhance end-to-end ST 451

in underrepresented contexts. 452

Overall, this benchmark lays the foundation for 453

reproducible research in Indic speech translation, 454

encourages deeper evaluation methodology, and 455

demonstrates that with thoughtful design, end-to- 456

end systems offer a viable path forward in low- 457

resource speech translation scenarios. 458

8 Limitations and Future Work 459

8.1 Limitations 460

Our study presents few limitations that should be 461

considered when interpreting the results. The pri- 462

mary limitation is the constrained dataset size of 46 463

hours, which, while manually verified for quality, 464

limits our ability to fully understand the relation- 465

ship between data quantity and model performance. 466

This constraint prevents us from conducting com- 467

prehensive scaling experiments to determine opti- 468

mal data requirements for different model archi- 469

tectures. The potential for including more verified 470

data from the CSTD corpus remains unexplored, 471

which could provide valuable insights into how 472

data size impacts translation quality across cas- 473

caded and end-to-end approaches.Another signifi- 474

cant limitation is our focus on a single end-to-end 475

model (SeamlessM4T) for fine-tuning experiments. 476
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While this provided insights into the potential of477

end-to-end approaches, exploring other architec-478

tures could yield different conclusions about the479

scalability and effectiveness of unified speech trans-480

lation systems for Telugu.481

8.2 Future Work482

Several promising research directions emerge from483

this work that could significantly advance Telugu484

speech translation and broader low-resource ST485

research.486

Dataset Expansion and Quality Analysis: A487

critical next step involves scaling the verified488

dataset to investigate the data size-performance489

relationship systematically. Expanding from the490

current 46 hours to 100+ hours of verified Telugu-491

English parallel data would enable more robust con-492

clusions about optimal training data requirements493

for different model architectures.494

Advanced Fine-tuning Strategies for End-to-495

End Models: Given the promising results of Seam-496

lessM4T fine-tuning, future research should ex-497

plore more sophisticated adaptation techniques498

including domain adaptation strategies, few-shot499

learning approaches, and parameter-efficient fine-500

tuning methods such as LoRA or adapters.501

Cross-lingual Transfer and Multilingual Ex-502

tensions: Investigating how insights from Telugu-503

English speech translation can transfer to other504

Dravidian languages (Tamil, Kannada, Malayalam)505

could provide valuable guidance for developing506

ST systems across the Indian subcontinent. This507

includes exploring multilingual training strategies508

and cross-lingual transfer learning approaches that509

leverage shared linguistic properties among related510

languages.511
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