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ABSTRACT

Syllables are compositional units of spoken language that play a crucial role in
human speech perception and production. However, current neural speech repre-
sentations lack structure, resulting in dense token sequences that are costly to pro-
cess. To bridge this gap, we propose a new model, Sylber, that produces speech
representations with clean and robust syllabic structure. Specifically, we propose
a self-supervised model that regresses features on syllabic segments distilled from
a teacher model which is an exponential moving average of the model in training.
This results in a highly structured representation of speech features, offering three
key benefits: 1) a fast, linear-time syllable segmentation algorithm, 2) efficient
syllabic tokenization with an average of 4.27 tokens per second, and 3) syllabic
units suited for lexical and syntactic understanding. We also train token-to-speech
generative models with our syllabic units and show that fully intelligible speech
can be reconstructed from these tokens. Lastly, we observe that categorical per-
ception, a linguistic phenomenon of speech perception, emerges naturally in our
model, making the embedding space more categorical and sparse than previous
self-supervised learning approaches. Together, we present a novel self-supervised
approach for representing speech as syllables, with significant potential for effi-
cient speech tokenization and spoken language modeling.

1 INTRODUCTION

Self-supervised learning (SSL) approaches have been successful in learning speech representations
that encode rich speech contents useful for diverse speech downstream tasks (Baevski et al., 2020;
Hsu et al., 2021; Hu et al., 2024; Mohamed et al., 2022; Yang et al., 2021). In particular, speech
tokens obtained by quantizing SSL features are receiving attention for understanding and generating
spoken language (Lakhotia et al., 2021; Kharitonov et al., 2021; Hassid et al., 2024; Lee et al., 2022;
Zhang et al., 2023). Substantial evidence suggests that SSL features are highly phonetic (Hsu et al.,
2021; Cho et al., 2023; 2024a; Choi et al., 2024), which suggests that these quantized tokens are
sub-phonemic units that densely tile the phonetic space (Sicherman & Adi, 2023). While capturing
fine-grained speech contents, most existing speech tokenization approaches yield high frequency
tokens (25-75 Hz), resulting in a long sequence of tokens to be processed. As prevailing attention
based neural networks (Vaswani, 2017) have a quadratic cost with respect to sequence length, it
becomes infeasible to process longer sequences with phoneme-level granularity.

A major bottleneck of the inefficiency in modeling spoken language is a lack of structure in current
neural speech representations. Unlike text, there is no clear delimiter nor orthographic symbol in
speech audio, which are crucial in efficient and scalable processing as evidenced in the text domain.
However, human speech perception is structured as being segmented (Greenberg, 1998; Oganian
& Chang, 2019; Gong et al., 2023) and categorical (Liberman et al., 1957; Pisoni, 1973; Pisoni &
Lazarus, 1974). We argue that the machine representation of speech should resemble these cognitive
structures to allow similar efficiency as text processing. A natural segmented structure of speech is a
syllable, which organizes speech sounds in time (MacNeilage, 1998; Greenberg, 1998), and ideally,
the embedding of a syllable should represent contents in a categorical way to avoid redundancy
prevailing in current SSL-based tokens.

To this end, we propose self-segmentation distillation, a novel SSL framework that induces clean
and robust syllabic structures in speech representations. Specifically, we build on top of a previous
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self-supervised syllable learning model, SDHuBERT (Cho et al., 2024b), and iteratively refine the
syllabic segments that naturally arise from the model. Unlike the original model, which induces
syllable structure as a byproduct of sentence-level SSL, we directly impose syllabic structures by
regressing features against unsupervised syllable segments extracted from a teacher model which is
a moving average of the training model. We call the resulting model Sylber (Syllabic embedding
representation).1

The features from Sylber exhibit salient syllabic structure — showing a flat, consistent output within
each segment and distinctive from other syllables (Figure 2, right). This enables a fast, linear time
algorithm for segmenting these features. Moreover, this allows more accurate boundary detection
and clustering that is more coherent with ground truth syllables than previous approaches. Syllabic
tokens quantized from Sylber features show significantly lower frequency at an average of 4.27
token/second, and can be used to synthesize fully intelligible speech.2 Furthermore, speech unit
LMs based on syllabic tokens show comparable or better performance than the baselines with a
similar resource setting, in learning lexicons and syntax.

To test whether Sylber is categorical, we probe the embeddings of a continuum of speech samples
that interpolate rhyming word pairs, inspired by linguistics (Liberman et al., 1957). We introduce
the Discriminability Index (DI) to quantify the degree of categorical perception of a speech represen-
tation model. Surprisingly, we observe a transient boundary drawn in the middle of the continuum,
showing the best DI across SSL models. This suggests that the learned features are discretized
in embedding space, contributing to the high efficiency of our syllabic tokens. To the best of our
knowledge, this is the first demonstration of the validity and effectiveness of speech tokenization at
the syllable level, with a tight connection to linguistic theories.

We summarize our contributions as follows:

• We propose self-segmentation distillation, a novel SSL framework that imposes salient and
robust syllabic structure in speech representation.

• The resulting model, Sylber, outperforms previous approaches in syllable detection and dis-
covery with a segmentation algorithm with O(n) time complexity.

• We use this model to build a syllable-level speech tokenization scheme that has significantly
lower sampling rate as 4.27 Tok/s on average, 6-7 times improvement over previous HuBERT
tokens.

• We demonstrate that fully intelligible speech can be reconstructed from syllabic tokens, and
that these units are suited for lexical and syntactic understanding.

• We demonstrate that categorical perception arises in Sylber, projecting audio to a more cate-
gorical embedding space than previous SSL models.

2 RELATED WORK

Self-supervised learning in speech Self-supervised learning (SSL) has been leveraged in speech
to learn representations from large, unlabeled speech corpuses (Hsu et al., 2021; Baevski et al.,
2020; Chen et al., 2022; Chung et al., 2021; Mohamed et al., 2022). Notably, HuBERT (Hsu et al.,
2021) and WavLM (Chen et al., 2022) are pretrained using masked prediction on audio signals in
order to extract representations on the audio for each frame. These SSL techniques typically extract
representations at a fixed frame rate at around 50 Hz, which is fairly finegrained and suggests that
these representations are highly correlated with sub-phonemic structures (Hsu et al., 2021; Cho et al.,
2023; Abdullah et al., 2023; Sicherman & Adi, 2023; Baevski et al., 2021).

Speech tokenization Clustering and/or quantizing these SSL representations can provide speech
tokens that are used for acoustic unit discovery (Hallap et al., 2022), speech recognition (Baevski
et al., 2021; Chang et al., 2024), speech synthesis (Polyak et al., 2021; Hassid et al., 2024), language
modeling (Lakhotia et al., 2021; Borsos et al., 2022; Hassid et al., 2024; Zhang et al., 2023), and
translation (Lee et al., 2022; Li et al., 2023). However, these tokens severely suffer from high
sampling rates, which makes the downstream models hard to scale, and struggle to learn long-range

1The code and checkpoints will be open-sourced upon publication.
2Audio samples are at https://anonymousiclr9417.github.io and in supplementary materials.
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Figure 1: Overview of self-segmentation distillation. Sylber is trained with frame-wise regression on
pseudo segment targets, obtained by an unsupervised segmentation algorithm on the teacher outputs.

dependencies and higher-level linguistic structures due to the lack of explicit word boundaries and
longer sequences. These caveats can be greatly improved by tokenizing speech at syllable-level
granularity.3

Syllabic structure in speech SSL Previous studies have demonstrated that syllabic structure can
be induced by SSL (Peng et al., 2023; Cho et al., 2024b; Komatsu & Shinozaki, 2024). Peng et al.
(2023) shows that syllabic structure in SSL features can be induced by jointly training with images
and spoken captions. SDHuBERT (Cho et al., 2024b) demonstrates that such syllabic induction
can be free of other modalities, with a sentence-level SSL. Komatsu & Shinozaki (2024) combined
frame-wise distillation with speaker augmentation in order to derive syllabic segments. All these
methods then utilize an agglomeration algorithm on top of the learned features to infer syllable
boundaries, and extract syllable embeddings by averaging frames within detected segments. How-
ever, all of these prior studies induce syllabic structures through indirect ways, resulting in noisy
syllable boundaries. Moreover, it is unclear whether the discovered syllables are valid speech rep-
resentations or tokens. Our approach greatly improves the quality of the segments. Moreover, we
demonstrate the efficacy and validity of syllabic tokens through experiments.

3 METHODS

3.1 SELF-SEGMENTATION DISTILLATION

Sylber is trained by a novel SSL framework, self-segmentation distillation, that imposes more ex-
plicit inductive bias of segment structure in feature representations by directly solving the speech
segmentation problem. The diagram of our training process is depicted in Figure 1. Specifically,
we use SDHuBERT (Cho et al., 2024b) as a starting point, and leverage its unsupervised syllable
segments as pseudo targets of segmentation. The target segment labels are continuous embeddings
averaged across frames within each segment. The segments are found by an unsupervised segmen-
tation algorithm. We use self-supervised knowledge distillation, where the teacher is an exponential
moving average (EMA) of the student model (Grill et al., 2020; Caron et al., 2021; He et al., 2020).
The target segment and segment embedding are extracted from the teacher, making the learning
process self-supervised and free of labels. The loss objective is a frame-wise regression loss that
minimizes the Mean Squared Error (MSE) between the output features at each frame and the target
from the corresponding segment. Non-speech frames are regressed to zero, which are marked by
norm thresholding by SDHuBERT (Cho et al., 2024b), and segments with low waveform amplitude
(Appendix A.1.6). See Appendix A.1.1 for a formal definition.

3In English, the typical speaking rate is 4-5 syllables per second.
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Figure 2: Frame-wise similarity matrix of raw features measured by dot product. For HuBERT and
SDHuBERT, features from the ninth Transformer layer are extracted. As we can see, Sylber shows
extremely salient syllabic structure that is aligned with the ground truth syllable boundaries.

Other than EMA, this learning objective is free of techniques that prevent collapse (e.g., contrastive
learning, target recentering, masked prediction, etc). However, we find that initializing Sylber
weights with SDHuBERT can avoid collapse even though a naive regression is highly vulnerable
to collapse. Also, the training stability is not sensitive to the choice of hyperparameters or initial-
ization (Appendix A.6). Additionally, we include a denoising objective similar to Chen et al. (2022)
to improve robustness of the model, where 20% of the batch inputs for the student are mixed with
environmental noise (Reddy et al., 2021) or other speech audio. This additional denoising is not a
primary source of learning as a syllabic structure is readily visible without it (Appendix A.1.8).

3.2 LINEAR TIME GREEDY SEGMENTATION ALGORITHM

The result of our self-segmentation distillation induces a framewise speech representation that ex-
hibits a segmented structure as seen in the frame-wise similarity matrix (Figure 2, right). As we
can see, our method produces a clean and robust segment structure that we can take advantage of to
design a linear-time, greedy audio segmentation algorithm (also shown in Algorithm 1).

The algorithm involves three linear passes through the audio embeddings. The first step thresholds
all of the embeddings by their L2 norm. This step allows us to differentiate between speech and
non-speech segments. The second step is a monotonic agglomeration process where we sweep
through each embedding and aggregate them into segments. Adjacent frames are merged together
into a segment as long as their cosine similarity goes above a predefined merge threshold. This can
be done in single pass without constructing the entire similarity matrix by greedily creating a new
segment once a frame with a similarity below the threshold is seen.

The greedy segmentation algorithm can sometimes make some errors by shifting some frames, so a
third pass is used to refine the boundaries of adjacent segments. For each boundary, a local search
range is defined from the midpoint of the previous segment to the midpoint of the sub-sequence
segment. From here, we can compute the cosine similarity between each frame and the averages
of the two segments. For each candidate boundary in the search range, we compute an aggregate
cosine similarity score between each frame and the assigned segment and maximize this sum to find
the optimal boundary between adjacent segments.

Each one of these steps can be implemented with O(n) complexity, so the entire segmentation
algorithm has linear complexity with respect to the audio sequence length. As we can see in Table
1, this is significantly more efficient that previous segmentation approaches (Peng et al. (2023); Cho
et al. (2024b); Komatsu & Shinozaki (2024)) which all have O(n2) complexity.
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Figure 3: A. Overview of articulatory interpolation of rhyming words when interpolating α ∈ [0, 1].
B. Hypothetical curves of categorical (solid lines) and non-categorical (dashed lines) embeddings. C.
Similarity curves examples from Melspectrogram (Mel), HuBERT, and Sylber. Sylber consistently
shows highly categorical perception, drawing a sharp boundary in continuum between words.

4 EVALUATING CATEGORICAL PERCEPTION IN SPEECH REPRESENTATION

Previous SSL-based tokens suffer from high redundancy in token vocabulary (Sicherman & Adi,
2023). This indicates that the SSL features densely tile the phonetic space without a clear boundary,
resulting fine-grained, sub-phonemic units when clustered. Thus, to be better tokenized, the fea-
tures should have distinct boundaries in their embedding space. This is well-aligned with categori-
cal perception, a linguistic theory, which argues that human speech perception draws a categorical
boundary in a continuum of speech sounds (Liberman et al., 1957; Pisoni & Lazarus, 1974; Harnad,
2003).

Inspired from this linguistic theory, we simulate interpolation between two rhyming words to probe
the embeddings of speech SSL models to check whether they are categorical. Specifically, mono-
syllabic words are recruited where a single consonant is different at the front or back of the syllable
(onset or coda). We make the contrast to be switching one of phonological properties: nasality,
voicedness, or place (e.g., “b”all vs “m”all, “d”own vs “t”own, or “l”est vs “r”est, respectively). We
do not include vowel contrasts since categorical perception of vowels is not as consistent as conso-
nants (Pisoni, 1973; Pisoni & Lazarus, 1974). We consider 13 types of such difference and simulate
4 pairs for each type, resulting 52 word pairs in total. The details of the difference types and the
full list of word pairs can be found in Appendix A.4. To simulate a continuum between words, we
utilize Articulatory Encodec (Cho et al., 2024c) which allows direct editing in the physical articu-
latory space (Figure 3-A). We first generate audio using the an off-the-shelf TTS API.4 We extract
articulatory features from the speech, which are then temporally aligned by dynamic time warping
to either end if necessary. We sample 51 equidistant samples in the linear interpolation between two
words, where each end is manually adjusted to make the perceptual boundary drawn approximately
in the middle (α = 0.5), which can be heard here. The pitch and loudness are also controlled to be
at the same level. More details about Articulatory Encodec can be found in Appendix A.1.4.

Given a speech representation model, we extract features for each interpolating point between words
in each pair. We calculate the similarity between interpolating features with features from either
end, forming a likelihood curve along the interpolation. Hypothetically, if the representation is
categorical, the likelihood curves should show a sharp transition at the boundary (Figure 3-B). If
the embeddings are not categorical and tracing the interpolation, the curves would show “X” pattern
as the dashed line in Figure 3-B. We define the Discriminability index (DI) to quantify the level

4We use the TTS service in Vertex AI (https://cloud.google.com/vertex-ai) with a default female voice.
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of categorical perception. The DI measures an empirical risk of wrong discrimination, where the
probability is calculated based on similarities. See Appendix A.1.3 for the detailed definition. If the
embeddings are categorical, DI will be close to 0. If they are non-categorical with X-shaped curves,
DI will be 0.25. The maximum value of DI is 0.5, which would be random chance discrimination.
This will be discussed later in §6.4 in detail.

5 EXPERIMENTAL SETUP AND EVALUATION PROTOCOL

5.1 EXPERIMENTAL SETUP

Architecture Sylber has the same architecture as HuBERT with a CNN feature extractor followed
by Transformer encoder. Based on the observation that the ninth layer of SDHuBERT best encodes
syllables (Cho et al. (2024b)), we use a 9 layer transformer and initialize weights with SDHuBERT
up-to that layer.5 See Appendix A.1.5 for training details.

Tokenization To tokenize speech, we apply the aforementioned segmentation algorithm (Section
3.2) to get unsupervised speech segments. The features within segments are averaged to form
continuous speech tokens at a syllable granularity (4-5 syllables per second). We apply a simple
k-means clustering on the features with several different vocab sizes (5K, 10K, and 20K). These
cluster sizes are larger than what is used by other SSL-based clustering techniques (usually around
50-500 clusters), which is necessary since our features are more closer to syllables than phonemes;
similar to how vocabulary sizes for BPE based tokenizers are significantly larger than the number of
characters. However, these syllabic tokens have a significantly lower temporal resolution compared
to previous SSL-based tokens, which leads to improvements to efficiency (see Section 6.2).

Token-to-speech If our syllabic tokens are valid speech tokens, we should be able to reconstruct
intelligible speech from them. We train a Conditional Flow-matching (CFM) (Lipman et al., 2022;
Le et al., 2024) model to generate interpretable articulatory features that can be converted to speech
audio using Articulatory Encodec (Cho et al., 2024c). Cho et al. (2024c) empirically prove that
these articulatory features are speaker agnostic provided that pitch is normalized, while allowing
full-reconstruction to speech. Since SSL-based speech tokens generally lack speaker information
(Polyak et al., 2021; Wang et al., 2023), we aim to reconstruct these speaker-agnostic articulatory
features from the syllabic tokens. See Appendix A.1.4 for the implementation and training details.

Unit LM Following Lakhotia et al. (2021), we train an autoregressive unit language model (uLM)
using the syllabic tokens. The model has the same architecture as GSLM (Lakhotia et al., 2021),
which is a decoder-only Transformer with 12 layers.

Datasets LibriSpeech (Panayotov et al., 2015) is used for training Sylber, and k-means clustering.
For training the uLMs, we use either LibriSpeech or LibriLight (Kahn et al., 2020), and separately
report the performance. LibriTTS-R (Koizumi et al., 2023) is used for training the CFM models.

5.2 EVALUATION

Syllable detection and discovery We evaluate syllable boundaries with precision, recall, F1, and
R-value with a 50 ms tolerance, following (Räsänen et al., 2009; Peng et al., 2023; Cho et al., 2024b;
Komatsu & Shinozaki, 2024). Syllable discovery is evaluated by a separate clustering, where we
use the same process as the previous works that use 4096 clusters. Then, we measure syllable purity,
cluster purity, and mutual information between discovered syllables and ground truths (Cho et al.,
2024b; Komatsu & Shinozaki, 2024). The same LibriSpeech dev/test sets are used as prior works.

Speech resynthesis We measure reconstruction performance using the average Pearson Correlation
of each component in articulatory features. To evaluate intelligibility, we use an off-the-shelf speech
recognition model, Whisper (Radford et al., 2023)6, and measure word error rate (WER) and char-
acter error rate (CER). Lastly, we apply an automated speech quality measurement, UTMOS (Saeki
et al., 2022), to evaluate the quality of generated speech. These are evaluated on the test-clean split
of LibriTTS-R. For some models, we collect subjective human evaluation on qualities, and report

5The checkpoint is retrieved from https://github.com/cheoljun95/sdhubert.
6We use “openai/whisper-large-v3” from Huggingface.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Syllable detection and discovery results. Pr: precision, Re: recall, R: R-value, SP: syllabic
purity, CP: cluster purity, and MI: mutual information. Complexity indicates time complexity of
post-hoc segmentation algorithm. n: the number of frames and k: the number of syllables. Results
of other model–algorithm combinations are denoted at the bottom. Sylber uses a linear time algo-
rithm while the other models use a quadratic time algorithm, which is only available with the clean
structure learned by our approach.

Model Complexity Syllable Detection Syllable Discovery
Pr↑ Re↑ F1↑ R↑ SP↑ CP↑ MI↑

HuBERT O(kn2) 51.4 31.4 39.0 50.1 33.1 28.4 3.54
VGHuBERT O(kn2) 65.3 64.3 64.8 70.0 53.4 43.6 4.66
SDHuBERT O(n2/k) 64.3 71.0 67.5 70.7 54.1 46.2 4.76
Komatsu & Shinozaki (2024) O(kn2) 73.3 67.6 70.3 74.6 59.4 44.5 5.08
Sylber O(n) 76.6 68.3 72.2 75.9 64.0 43.9 5.28
Sylber–MinCut O(n2/k) 76.8 68.1 72.2 75.8 63.9 44.0 5.29
HuBERT-Greedy O(n) 54.5 35.2 42.8 52.7 29.5 25.9 3.36
SDHuBERT-Greedy O(n) 56.1 67.4 61.2 62.1 30.0 41.5 2.67

mean opinion scores (MOS) on the naturalness (nMOS) and prosodic similarity with the ground
truth (psMOS).

Coding efficiency We evaluate the coding efficiency of the tokens with Token/second (Tok/s), bi-
trate, and coding-rate. The bitrate is calculated by (log2(vocab size))×Tok/s. We define coding-rate
as how much word information is preserved per bit: (1−WER/100)×total # of words

total # of bits . Likewise, the test-
clean split of LibriTTS-R is used.

Spoken Language Understanding (SLU) We use the zero-shot metrics of lexical learning,
sWUGGY, and syntax learning, sBLIMP, following Lakhotia et al. (2021); Algayres et al. (2023).
These metrics are measured by accuracy of discriminating real words/phrases and fake ones using
the probabilities inferred from uLM.

5.2.1 BASELINES

For syllable detection and discovery, we compare our models against HuBERT, VGHuBERT, SDHu-
BERT, and Komatsu & Shinozaki (2024). For token-to-speech, we train the baseline CFM models
using deduplicated HuBERT units with the size of 50, 100, and 200 by Lakhotia et al. (2021), and
500, and 2K by Nguyen et al. (2023); and SDHuBERT tokens with 5K, 10K, and 20K cluster sizes.
For coding efficiency, we apply Byte Pair Encoding (BPE) using SentencePiece7 to merge frequent
units to form larger vocabulary that matches ours: 5K, 10K, and 20K, similar to Shen et al. (2024).8
For evaluating language understanding, we use GSLM (Lakhotia et al., 2021), tGSLM (Algayres
et al., 2023), NAST (Messica & Adi, 2024), TWIST (Hassid et al., 2024) as baselines. These are
selected as the tokenizers stem from HuBERT. For TWIST, we also include a smaller instance,
TWIST-ColdInit, which is using a similar resource setting as ours, allowing a more fair comparison.

6 RESULTS

6.1 SYLLABLE DETECTION AND DISCOVERY

Table 1 shows a comparison of syllable detection and discovery performance. Sylber outperforms
all previous approaches in every metric other than recall and cluster purity. As these two terms can
be inflated by having more segments, it indicates that SDHuBERT is oversegmenting. In terms of
discovery, we find the ground truth syllables are more purely mapped to ours than the baselines,
greatly improving the previous SOTA by huge margin (59.4 → 64.0). The results indicate that
our model can detect and discover syllables better than the previous approaches. Moreover, the

7https://github.com/google/sentencepiece
8The coding efficiency metrics are substantially worse using HuBERT without BPE due to their sampling

granularity; thus, we compare against HuBERT with BPE to make a more fair comparison.
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Table 2: Resynthesis results. HB: HuBERT, SDHB: SDHuBERT, and KM: KMean cluster size. Re-
construction metrics are average Pearson Correlation and WER and CER are reported in percentage
(%). 95% confidence interval is reported for reconstruction and quality. Best scores are highlighted
with bold font and best scores with quantization are underlined.

Model Reconstruction Intelligibility Quality Frequency
Upstream KM Art↑ Loudness↑ Pitch↑ WER↓ CER↓ UTMOS↑ Tok/s↓

HB

50 0.926± 0.065 0.880± 0.089 0.586± 0.581 13.32 7.24 4.190± 0.553 23.59
100 0.941± 0.046 0.878± 0.098 0.594± 0.560 7.78 3.89 4.177± 0.548 26.68
200 0.944± 0.044 0.886 ± 0.090 0.608± 0.573 6.34 3.10 4.197± 0.543 28.97
500 0.941± 0.043 0.882± 0.095 0.623± 0.532 5.47 2.69 4.198± 0.533 29.46
2K 0.945 ± 0.040 0.883± 0.095 0.660± 0.458 5.04 2.46 4.197± 0.551 33.62

SDHB

5K 0.925± 0.066 0.872± 0.089 0.757± 0.384 9.88 5.40 4.140± 0.660

5.2410K 0.927± 0.064 0.879± 0.083 0.759± 0.412 9.25 4.99 4.173± 0.600
20K 0.930± 0.061 0.883± 0.081 0.784 ± 0.373 8.63 4.62 4.180± 0.609
∞ 0.959 ± 0.035 0.948± 0.042 0.906± 0.217 4.94 2.56 4.190± 0.552

Sylber

5K 0.919± 0.072 0.877± 0.091 0.739± 0.431 8.70 4.48 4.189± 0.607

4.2710K 0.922± 0.064 0.876± 0.088 0.753± 0.424 8.07 4.28 4.155± 0.624
20K 0.924± 0.066 0.882± 0.084 0.774± 0.374 7.95 4.06 4.210 ± 0.547
∞ 0.957± 0.037 0.950 ± 0.045 0.918 ± 0.216 4.88 2.42 4.199± 0.539

output features from our model are significantly cleaner than HuBERT or SDHuBERT as shown
in Figure 2, showing highly consistent similarities within syllable spans. (We also find zero-shot
generalization to other domain and languages. See Appendix A.5 for analysis and discussion.) This
allows for a much faster O(n) algorithm applicable, compared to the previous O(kn2) and O(n2/k)
algorithms where n is the number of frames and k is the estimate number of syllables controlled by
a hyperparameter. Compared to SDHuBERT, our syllable segmentation shows approximately 4 ×
gains in inference time measured by real-time factor (Appendix A.8).

When we apply the previous algorithm, MinCut (Peng et al., 2023; Cho et al., 2024b) to Sylber, the
scores show very marginal differences (Sylber-Mincut in Table 1). MinCut is designed to search
optimal segments in the cost of computation time. Therefore, this indicates that Sylber features
are clean and robust enough to find optimal segments in a greedy manner. In fact, when the greedy
algorithm is applied to SDHuBERT, we find significant drops from the original scores (SDHuBERT-
Greedy). In the case of HuBERT, the differences are less prominent and mixed (HuBERT-Greedy),
having generally low performance. This is due to the lack of syllabic structure in HuBERT features.

6.2 RESYNTHESIS PERFORMANCE AND CODING EFFICIENCY

The results of token-to-speech resynthesis are shown in Table 2 and can be heard here. We find a
general trend in both SDHuBERT and our syllabic tokens that articulatory reconstruction and intel-
ligibility increase with finer clustering granularity. For intelligibility, our model outperforms SD-
HuBERT at every vocab size while requiring less tokens per second. Interestingly, the articulatory
reconstruction is generally higher in SDHuBERT, but also less intelligible. This indicates that our
model marginalizes out some amount of articulatory variance which is orthogonal to orthographic
contents. This marginalization is also happening in intonation when the embeddings are quantized,
as shown in the huge reduction in pitch correlation compared to non-quantized model, resulting in a
flattened speech generation. This pattern is shared in both SDHuBERT and Sylber.

Compared to HuBERT units which have token granularity at sub-phonemic level, the articulation is
better reconstructed by HuBERT units with 100 and more clusters than the units from SDHuBERT
or our model. This is natural given their temporal granularity as 28.97 tokens per second, which is
likely to capture the local dynamics of articulation better than syllabic level. The intelligibility is
also better in the case of 100 and more cluster sizes, WERs of 5.04-7.78, compared to the best case
of syllabic units, WER of 7.95. Though the difference is marginal, HuBERT units require at least
6-8 times more tokens per second. Also, we find the HuBERT is worse in representing pitch, as
suggested by Polyak et al. (2021); Kharitonov et al. (2021); Nguyen et al. (2023).

To better characterize coding efficiency, we compare bandwidth and coding-rate in Table 3 against
baselines with comparable settings. Our model outperforms each baseline in every metric, show-
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Table 3: Coding efficiency comparison.

Model
Token/second↓ Bitrate↓ Coding-rate↑

Vocab size Vocab size Vocab size
5K 10K 20K 5K 10K 20K 5K 10K 20K

HB50-BPE 7.45 6.82 6.30 91.57 90.68 90.00 0.0283 0.0285 0.0287
HB100-BPE 14.78 14.40 14.10 181.56 191.37 201.46 0.0152 0.0144 0.0137
HB200-BPE 16.67 15.99 15.53 204.79 212.41 221.84 0.0136 0.0132 0.0126
SDHB 5.24 64.39 69.63 74.87 0.0253 0.0243 0.0234
Sylber 4.27 52.43 56.70 60.97 0.0315 0.0302 0.0289

Table 5: Speech uLM performance comparison. Sections are divided by training data size (top:
LibriSpeech (LS) and bottom: LibriLight (LL) or more).

Model # Param. Vocab size Tok/s↓ Bitrate↓ Corpus Data size sWUGGY↑ sBLIMP↑
GSLM 150M 100 26.68 177.26 LS 1K 68.70 57.06

SDHuBERT-uLM 125M
5K

5.24
64.39 LS 1K 65.80 54.87

10K 69.63 LS 1K 67.42 54.48
20K 74.87 LS 1K 67.85 54.87

Sylber-uLM 125M
5K

4.27
52.47 LS 1K 67.32 57.34

10K 56.74 LS 1K 68.41 58.04
20K 61.01 LS 1K 70.27 57.67

tGSLM 150M – 5 – LL 6K 68.53 55.31
NAST 150M 200 28.97 221.44 LL 6K 76.42 55.62
TWIST-ColdInit 125M 500 16.78 150.45 LL++ 150K 77.74 54.27
TWIST 13B 500 16.78 150.45 LL++ 150K 84.10 59.20
Sylber-uLM 125M 20K 4.27 61.01 LL 66K 76.31 60.54
Sylber-w/SIL-uLM 125M 20K 4.76 68.01 LL 66K 78.03 60.78

ing about a 20% gain over the SDHuBERT tokens. In addition, Table 3 demonstrates the innate
inefficiency in previous approaches using HuBERT units. There is a minimal gain in sequence com-
pression while increasing the vocabulary size, where BPE is not able to reduce Tok/s by even half
of the original when applied to 100 and 200 clusters. The only comparable baseline is BPE on 50
HuBERT clusters, which can reduce Tok/s from 23.59 to between 6.30 and 7.45. However, there is
a huge information loss as shown in the high WER of 13.32, which results in a lower coding-rate
(0.0283, 0.0285, 0.0287) compared to ours (0.0315, 0.0302, 0.0289) for vocab size of (5K, 10K,
20K) respectively.

Table 4: Subjective evaluation
on resynthesis quality.

Model KM nMOS↑ psMOS↑
GT 4.37 4.71

HB 200 3.24 2.65
HB 2K 3.33 2.90
Sylber 20K 3.32 3.04
Sylber ∞ 3.80 3.62

HuBERT units and Sylber units show comparable quality in terms
of naturalness in both machine and human evaluation (UTMOS in
Table 2; nMOS in Table 4). In terms of prosody, Sylber 20K units
show higher subjective similarity than HuBERT 200 or 2K units
as shown in psMOS. Without quantization, the best performance
is achieved by our model, with a WER of 4.88, Tok/s of 4.27,
and higher correlations in loudness and pitch (Table 2). Also,
both of the subjective qualities, nMOS and psMOS, significantly
increase (Table 4). This indicates the significant potential of syl-
labic tokens as an efficient speech coding that can be harnessed
by a better quantization method like vector quantization (VQ) or residual VQ (RVQ). We leave this
investigation for future work.

6.3 SPOKEN LANGUAGE UNDERSTANDING (SLU)

Table 5 compares the sWUGGY and sBLIMP scores of speech uLMs. In limited resource setting that
uses 1K hours of train data, Sylber-uLMs generally outperform baselines, GSLM and SDHuBERT-
uLMs at sBLIMP, and the model with 20K vocab size outperforms GSLM in sWUGGY, while none
of the SDHuBERT-uLMs outperform GSLM or Sylber-uLMs (top section of Table 5). This indicates
that our syllabic tokens have better utility in terms of language modeling compared to the syllabic
tokens from SDHuBERT. We also observe a general trend shared in SDHuBERT and ours that a
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larger vocab size yields a higher sWUGGY score, indicating a finer clustering better covers the
lexical space. Notably, Sylber-uLM outperforms tGSLM which has a similar token granularity as
5 Hz but with a fixed pooling window, even though their model is trained on a larger dataset. This
suggests that a variable pooling window which is dynamically driven by segmentation algorithm is
better than using a fixed pooling window.

When we scale up the train data to 66K, Sylber-uLMs are able to achieve comparable or better
sWUGGY scores than the models with similar sizes, tGSLM, NAST and TWIST-ColdInit (bottom
section of Table 5). We also include a silence interleaved version (Sylber-w/SIL-uLM), where we
insert a silence token when the gap between two adjacent tokens is longer than 140 ms. This in-
creases Tok/s and bitrate but we can achieve a significant gain in sWUGGY. Though sWUGGY is
fall short of TWIST model with 13B parameters, Sylber-uLMs show slightly better performance in
sBLIMP. This is surprising result given the huge gap in the resources. Most importantly, all these
results are obtained using very minimal length of tokens and bitrate with several factors lower than
the previous approaches. This suggests that Sylber units are highly efficient and valid tokens for
SLU modeling.

6.4 DEMONSTRATION OF EMERGENT CATEGORICAL PERCEPTION

Figure 3-C illustrates that a clear boundary is drawn when interpolating between two rhyming words,
whereas such a boundary is less prominent in HuBERT. This indicates that Sylber needs only 2 cate-
gories to represent the interpolating continuum, while HuBERT requires multiple categories or units,
which induces high level of inefficiency and redundancy in clustering (Sicherman & Adi, 2023). The
curves extracted from the melspectrogram resemble an X-shape, indicating a non-categorical em-
bedding space.

Table 6: DI comparison.

Model DI↓
Onset Coda All

Mel 0.198 0.193 0.196
MFCC 0.191 0.182 0.188
W2V2 0.172 0.178 0.174
HB 0.136 0.152 0.141
W2V2-L 0.138 0.156 0.143
HB-L 0.166 0.180 0.170
WavLM-L 0.136 0.148 0.140
SDHB 0.133 0.126 0.131
Sylber 0.116 0.103 0.112

We compare Sylber with traditional acoustic features (Melspec-
trogram and MFCC), representative frame-wise SSL models (Hu-
BERT (HB), Wav2Vec2 (W2V2), WavLM, and large (-L) ver-
sions if applicable), and SDHuBERT. As shown in Table 6, our
model’s embeddings demonstrate the best discriminability, with
the lowest DIs across both onset and coda contrasts (overall DI:
0.112). The results are highly surprising since we only impose the
model to learn temporal structure, and our loss objective does not
involve categorical learning at all. However, the embedding space
of Sylber is naturally structured to be categorical, indicating the
self-segmentation distillation might be a natural learning algo-
rithm that resembles human language learning. Taken together,
these qualitative and quantitative results suggest that the embed-
ding space of Sylber is readily quantized, contributing to the per-
formance improvements observed in previous sections. See Appendix A.7 for more inspection on
the Sylber embedding space.

7 CONCLUSION

We propose a novel self-supervised learning framework of speech, Sylber, that learns to transform
speech waveform to syllabic embedding that is well aligned with linguistic theories. Sylber offers
promising potential for interpretable and efficient speech tokenization, and scalable and efficient
spoken language modeling.

Limitations As we present our model more as a ”coding” framework of speech, we largely put
our focus on demonstrating efficiency and reconstruction quality. Therefore, our model is not yet
suitable for universal speech representation, which the most speech SSL approaches aim for (Yang
et al., 2021). We find that Sylber degrades in some SUPERB downstream tasks, which we believe,
is due to the parsimonious structure we are imposing. See Appendix A.3 and Table 10 for details
and discussion. Also, SUPERB protocol is optimally designed for frame-wise SSL, therefore, we
need a more investigation on a better downstream architecture that can leverage the unique syllabic
structure of Sylber. We leave this for future study.
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ETHICS STATEMENT

We believe that Sylber is a substantial step forward for speech models and spoken language under-
standing. Our technique enables efficient and effective speech tokenization which can potentially be
used for malicious purposes. It is important for users, researchers, and developers to use this model
and this framework ethically and responsibly.

REPRODUCIBILITY STATEMENT

In the spirit of open research, we will be releasing all of the code associated with Sylber. We
will release the pretrained model weights as well as the code necessary to retrain the model. In
addition, we will be releasing all of the interpolation samples so that other researchers can also use
our Discriminability Index as an evaluation metric for future research.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 SELF-SEGMENTATION DISTILLATION

Given a speech audio, x, we extract features, MS(x) = zS and MT (x) = zT , where MS and MT

are the student and teacher models, respectively. The unsupervised segmentation algorithm, Useg,
outputs segment boundaries from z as Useg(z) = {s}N , where N is the number of discovered
segments, and s ∈ N2 denotes start and end frames of the segment, indexed as sj,0 and sj,1 for the
j-th segment. We define an assignment function, A(i) = j, that gives the index of the segment, j,
given a frame number, i, such that sj,0 ≤ i < sj,1. When there is no assignable segment, A(i) = −1,
meaning i is a non-speech frame. The segment-averaged feature, vj , is defined by averaging across
frames in the j-th segment, vj = 1

p−q

∑
k∈[p,q] zk, where (p, q) = (sj,0, sj,1). Then, vTA(i) indicates

the teacher’s segment-averaged feature of the segment that i-th frame belongs to, being the target
of the regression, which is zero for non-speech frame, vT−1 = 0. Finally, the loss function of the
proposed self-segmentation distillation is defined as LSegDistill :=

∑
i ||vTA(i) − zSi ||22.

A.1.2 NOISE AUGMENTATION

For denoising objective, we mix the input with a randomly sampled environmental sound or other
speech audio. For mixing with environmental sound, we randomly select a clip from Reddy et al.
(2021) and sample a 5 seconds clip from it. We first z-score the waveform and multiply by a factor
sampled from [0.05, 0.7], and mix with original speech audio. Note that the original speech is also
z-scored. For mixing with other speech, we randomly select another clip in the batch and shift from
left or right with a percentage sampled from [0.4, 0.7], to make sure the original speech holds the
dominant information context in the mixture. The magnitude is also modulated by multiplying by a
factor sampled from [0.0, 0.2]. We apply this augmentation to 20% of the samples in the batch, and
only to the inputs fed to the student model. Within the 20%, we have the source of noise be 75%
environmental noise and 25% other speech.

A.1.3 DISCRIMINABILITY INDEX

Given words at the left and right ends in interpolation, xL, xR ∈ W , the probability of being the left
word given interpolating factor α is defined as p(xL|xα) =

sim(xL,xα)−offsetL
sim(xL,xα)−offsetL+sim(xR,xα)−offsetR

. The
probability of being the right word is symmetrically defined. We need to subtract an offset due to
the high base similarity, as the words are rhyming pairs, such that offsetA = minα∈[0,1]sim(xA, xα).
Then the empirical risk can be defined as LDisc(q|xL, xR) := Eα∈[0,1]1α<qp(xR|xα) +
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Algorithm 1 Greedy Segmentation Algorithm
1: procedure GREEDY-SEGMENTATION(states, Nthr , Mthr)
2: Compute L2 norms and mark speech frames: speechi = (∥si∥2 ≥ Nthr)
3: Initialize empty list of segments S
4: for i = 1 to n do
5: if speechi and (no current segment or sim(si, si−1) < Mthr) then
6: Start new segment Sk+1 with si
7: else if speechi then
8: Add si to current segment Sk

9: else if current segment Sk exists then
10: Finalize current segment Sk

11: end if
12: end for
13: for each boundary j between segments Sk and Sk+1 do
14: if speechj then
15: if sim(avg(Sk), avg(Sk+1) ≥ Mthr then
16: Merge Sk and Sk+1

17: Continue
18: end if
19: Define local search range from a = midpoint(Sk) to b = midpoint(Sk+1)

20: Find optimal boundary j∗ = argmaxj

∑j
i=a sim(si, avg(Sk)) +

∑b
i=j+1 sim(si, avg(Sk+1))

21: Update boundary to j∗

22: end if
23: end for
24: return S
25: end procedure

1α≥qp(xL|xα), for the decision boundary at q ∈ [0, 1]. The optimal boundary can be drawn by
minimizing the risk, α∗ = argminq∈[0,1]LDisc(q|xL, xR). Discriminability index (DI) is then de-
fined as the risk at the optimal boundary, averaged over word pairs:

DI :=
1

|W |
∑

xL,xR∈W

LDisc(α
∗|xL, xR) (1)

For the models with frame-wise models like MFCC or HuBERT, we use dynamic time warping
to find an alignment that maximizes similarity. While some sample pairs are already aligned, we
find that additional warping yields better scores. For models with syllabic features (SDHuBERT
and Sylber), we average across all speech (or norm thresholded) parts of the features as all samples
are monosyllabic, yielding a single embedding per sample. We use cosine similarity to measure
similarity between embeddings from samples. For frame-wise SSL models, the best layers with the
lowest DIs are chosen.

A.1.4 TOKEN-TO-SPEECH

Articulatory Encodec Articulatory Encodec (Cho et al., 2024c) is composed of articulatory encod-
ing and decoding. The encoding pipeline outputs 14 articulatory features at 50 Hz are used, which
are composed of the XY coordinates of 6 articulators (lower incisor; upper and lower lips; tongue
tip, blade and dorsum;), and loudness and pitch. These are interpretable and grounded representa-
tions of speech that are fully informative of speech contents (Cho et al., 2024c). The decoder, or
articulatory vocoder, is a Hifi-GAN (Kong et al., 2020) conditioned on a speaker embedding inferred
from a separate speaker encoder. Cho et al. (2024c) shows that Articulatory Encodec successfully
decomposes speech contents and speaker identity, by normalizing pitch to remove speaker specific
pitch level. We replicate the implementation from Cho et al. (2024c), except that we change the
layer of WavLM from which speaker information is extracted from the CNN outputs to the sixth
Transformer layer, based on the observation that this layer contributes the most to the downstream
speaker identification task (Chen et al., 2022). For training, we use an extended dataset that includes
LibriTTS-R, LibriTTS (Zen et al., 2019), and EXPRESSO (Nguyen et al., 2023).
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Conditional flow-matching (CFM) The input model in the CFM is composed of two feed forward
networks (FFNs) and a linear layer, where each FFN has two linear layers with 512 hidden units and
residual connection, with a ReLU activation and dropout rate of 0.05. Also, Layernorm is applied
to the output of each FFN. The final linear layer projects the 512 dimensional feature to 256. The
Transformer in the CFM has 8 layers and each layer has 8 heads with 64 dimensions, and 512 for
the encoding dimension. We use Rotary positional embeddings (Su et al., 2024). The final output is
projected to the 14 dimensional flow in articulatory feature space.

Inference The SSL token embeddings are restored by the k-means codebooks, and expanded to the
durations of the original segments. The non-speech frames are filled with zeros. For the case without
quantization, the segment-averaged features are used. We use the extracted speaker embedding and
mean pitch from the original speaker to synthesize speech from articulatory features predicted from
tokens. We use the original segment durations for each token without predicting them since the
duration information can be easily tokenized. (For example, duration can be tagged for each token.
See Appendix A.2.) We remove randomness in CFM to yield consistent generation for evaluation
purposes.

A.1.5 TRAINING DETAILS

We train Sylber in two stages. The first stage is training with segment boundaries inferred from
SDHuBERT which are extracted once at the beginning and fixed while in this stage. The second
stage utilizes online segmentation using the teacher model’s outputs, by the algorithm in §3.2. Note
that this training is only possible since our model exhibits features clean enough for our greedy
segmentation to work. In the second stage, the L2 norm threshold is updated online by aggregating
the statistics of speech and non-speech segments, and the merge threshold is randomly sampled from
[0.8, 0.9]. After the training, the norm threshold is fixed at 3.09 and the merge threshold is fixed at
0.8. See Appendix A.1.6 for details about the thresholding. Sylber is trained for 115K steps in the
first stage and further trained for 50k steps in the second stage. We use a batch size of 64 and each
data point is randomly cropped to be 5 seconds, following Cho et al. (2024b). The learning rate is set
as 1e-4 with initial 500 warmup updates for the first stage and 5e-5 for the second stage. The EMA
decay rates are set as 0.9995 and 0.9999 for the first and second stages, respectively. The second
stage training improves performance in syllable detection and discovery (Appendix A.1.7).

For the CFM, the learning rate is fixed as 1e-4, with a batch size of 64 and 200k updates. For
Articulatory Encodec and uLMs on LibriSpeech, we largely follow Cho et al. (2024c) and Hassid
et al. (2024), respectively. For uLMs trained on LibriLight, we use 96% of the data for training and
2% each is held out for validation and test, where we sample 100 tokens for each speech for training.
Every model used in Sylber, CFM, and uLM on LibriSpeech fits in a single A6000 GPU with 49G
RAM. We use two of them for training uLMs on LibriLight.

A.1.6 THRESHOLDS SETTING

Thresholds in SDHuBERT segmentation For segmentation on SDHuBERT features, we apply
the minimum cut algorithm introduced by Peng et al. (2023) and modified by Cho et al. (2024b).
Following Cho et al. (2024b), the initial mask is obtained by thresholding norms of features from the
eleventh layer of Transformer, where we normalize norms to be in [0, 1] and use 0.1 as threshold. The
minimum cut refines each masked chunk to make it syllabic. Specifically, the algorithm conducts
within segment agglomerative clustering with a preset number of clusters. This preset number is
estimated by a pre-defined speaking rate. As this preset number of syllables may be larger than the
number of segments, a post-hoc merging process merges adjacent segments with cosine similarity
higher than a threshold, which we call the merge threshold. For tokenization experiments, we use a
more sensitive segmentation configuration than the original setting to prevent loss of speech contents
due to overly broad segments. Specifically, we halve the estimated syllable duration from 200ms to
100ms to cover speech with fast speaking rate, and increase the merge threshold from 0.3 to 0.4.

None-speech Frames The non-speech frames are initially defined as“knocked out” frames in norm
thresholding by SDHuBERT. However, the SDHuBERT is still sensitive to non-speech noise events.
Therefore, we filter out segments with average absolute amplitude of waveform lower than 0.05.

Thresholds in Sylber greedy segmentation algorithm Unlike the thresholds in SDHuBERT, which
are heuristically driven, we try to set the thresholds in our algorithm more principled way, especially
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in the second stage of training where the target segments are dynamically generated. We first set the
norm threshold to be optimal boundary between signal (speech) and noise (non-speech), where the
likelihoods of being signal and noise are equal. We assume both signal and noise distributions to be
Gaussian and solve the equality condition. After the first training stage, we use the pseudo ground
truth segments used for training to get the distribution of segment norms and non-segment norms in
the dev split of LibriSpeech. To make the distribution reflects noise, we apply the noise augmentation
as described in the denoising objective (Sec. A.1.2) to each sample. In the second training stage,
we update the mean and variance of noise distribution using the non-segment portions of student
outputs using an exponential moving average with a decay rate of 0.9999, while keeping the signal
distribution the same as initially set. This results in the threshold of 3.09 after training. While these
segments may not require such frequent updates in threshold, we implement this to try to keep it
principled and empirically driven.

On the other hand, we still remain largely heuristically driven in terms of setting our merge threshold.
We use a particularly high threshold of 0.8 compared to 0.3 in the previous works. Such a high
threshold for merging is effective in Sylber since the features are much cleaner than SDHuBERT.
Instead setting this threshold to a fixed number, we sample a value from [0.8, 0.9] during the second
stage training, which is somewhat arbitrarily set after visually inspecting multiple samples. We
found that 0.7 also generally works fine but we select 0.8 as the threshold for the inference since
that is the lowest number in the range we impose during training. In fact, the phoneme recognition
experiment empirically proves that 0.8 is optimal when thresholds of 0.1 increments are tested (Table
9).

A.1.7 EFFECT OF THE SECOND STAGE TRAINING WITH ONLINE SEGMENTATION

To check the effectiveness of the second stage training with the online segmentation, we compare
syllable detection and discovery metrics between the stage 1 and stage 2 models. As shown in Table
7, we observe some gain after the second stage training, especially in precision of the segmentation.

Table 7: Syllable detection and discovery performance comparison between two stages.

Model Syllable Detection Syllable Discovery
Pr↑ Re↑ F1↑ R↑ SP↑ CP↑ MI↑

Sylber-Stage-1 73.7 69.2 71.4 75.6 63.2 43.9 5.24
Sylber-Stage-2 76.6 68.3 72.2 75.9 64.0 43.9 5.28

A.1.8 EFFECT OF DENOISING OBJECTIVE

As demonstrated in left two panels in Figure 4, the syllabic structures are already highly visible
without the denoising objective, indicating that the major learning source is self-segmentation distil-
lation than the denoising objective. However, adding the denoising objective significantly improves
robustness; otherwise, the model becomes highly sensitive to noisy audio as shown in the right two
panels in Figure 4.

A.2 CODING EFFICIENCY WITH DURATION-INFORMED TOKENIZATION

When we measure coding efficiency in §2, we ignore the duration information. Here, we recalculate
the metrics by adding duration as separate token tagged to each speech token. Note that duration is
counted as the number of frames, so it already lies on discrete space. We find that 99% of HuBERT
tokens have duration less than 8, 7, and 6 with the vocab size of 50, 100, and 200, respectively. This
means that the duration of each token can be coded by 3 bits. However, when BPE is applied, these
3 bits will be multiplied by the maximum number of units in subwords to count per-token duration
bits, which is 10 to 16 depending on the vocab size and cluster granularity.

The syllabic tokens do not densely cover the frames. Therefore, the duration of subsequent silence
can be tagged along with the duration of the tokens. 98% of syllabic tokens have duration less than
or equal to 16 (4 bits). We can also keep the subsequent silence duration up-to 7 frames (3 bits)
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Clean audio-W/o denoising Clean audio-W/ denosing Noisy audio-W/o denoising Noisy audio-W/ denosing

Figure 4: Frame-wise similarity matrix from with and without denosing objectives, using clean
signal (left two panels) and noisy signal (right two panel). The orange waveform depicts the source
noise we add to the clean speech signal.

efficiently, and silence longer than 7 frames can be regarded as a separate “silence token”, adding
one more token to the k-means codebook.

Taking all these into consideration, we measure the coding efficiency metrics with the duration-
informed tokens as Table 8. Compared to Table 3, the gap between HuBERT-BPE and ours gets
even larger, where we achieve around or more than 4× gains compared to HuBERT baselines.
Moreover, even after appending duration tokens, we achieve significantly lower bitrates which are
below or around 100.

Table 8: Coding efficiency of duration-informed tokens.

Model
Token/second↓ Bitrate↓ Coding-rate↑

Vocab size Vocab size Vocab size
5K 10K 20K 5K 10K 20K 5K 10K 20K

HB50-BPE 7.45 6.82 6.30 449.26 418.24 392.36 0.0058 0.0062 0.0066
HB100-BPE 14.78 14.40 14.10 624.82 666.64 709.06 0.0044 0.0041 0.0039
HB200-BPE 16.67 15.99 15.53 654.77 979.72 967.13 0.0043 0.0029 0.0029
SDHB 5.84 112.73 118.58 124.42 0.0239 0.0228 0.0219
Sylber 4.76 91.80 96.56 101.32 0.0297 0.0284 0.0271

A.3 GENERAL REPRESENTATIONAL POWER OF SYLBER

Though the universal utility of our model is not of our focus, we evaluate and benchmark down-
stream tasks using SUPERB (Yang et al., 2021). First of all, to find the optimal merge threshold,
we train a phoneme recognition (PR) model with syllabic embeddings, where the merge threshold is
sampled from [0.3, 0.9]. The regular CTC based approach is not applicable to syllabic granularity,
since it requires that the input length must be no shorter than the target length. Instead, we adopt
RNN-T (Graves, 2012) which has no restriction on sequence length. To keep the model size similar
to the PR model in SUPERB, we use a very simple, non-RNN transcriber, which is a Layernorm
followed by two linear layers where the GELU activation function is applied to the first linear layer’s
output. The output size of the first layer is set as 768 and set as the vocab size of phonemes, 73, for
the second layer. The predictor network has a 3 layer LSTM with a hidden size of 1024, 0.1 dropout
rate and Layernorm applied. The model is trained with the RNN-T implementation in PyTorch, and
we use beam size of 5 for decoding. The learning rate is set as 0.001 and AdamW is used. The
model is trained until no improvement is found in validation loss. We use LibriSpeech clean subsets
(train-clean, dev-clean, and test-clean), which is the dataset used in SUPERB PR task setting. As
results in Table 9, the merge threshold of 0.8 is selected and used throughout the SUPERB evalua-
tion. This number coincides with the threshold we use in the main results as well. We use the code
provided by S3PRL for the experiment.9

We evaluate 3 versions of Sylber. We freeze the model following the SUPERB protocol.
9https://github.com/s3prl/s3prl
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Table 9: Phoneme recognition on LibriSpeech (LS) dev-celan with different merge threshods.

Dataset PER ↓
Mthr=0.5 Mthr=0.6 Mthr=0.7 Mthr=0.8 Mthr=0.9

LS dev-clean 6.15 5.88 5.73 5.68 5.68

Sylber-All Layer uses all layer features without segmenting with 50 Hz full-sampling rate, being a
regular entry to SUPERB.
Sylber-Segment uses segment embedding after segmentation, with syllable granularity.
Sylber-Segment-Expand expands segment embedding to original length.

Table 10 compares these with a HuBERT base model, which has a comparable model size and
trained on the same data. Since Sylber-Segment has a shorter sequence length than the target, thus
making the CTC-based recognition task inapplicable, we replace the scores using the aforemen-
tioned RNN-T model, and we find a reasonable performance in PR as PER of 5.98, while ASR is
lagging by large margin. As our model features are syllabic, this structure may need to be resolved
to be converted to characters, adding additional layer of complexity than mapping phonemic features
to characters which is hard to resolve in a limited resource setting.

Another notable point is that our models achieve higher keyword spotting accuracy (KS) and intent
classification (IC) compared to the HuBERT base model in all 3 versions. This is aligned with the
improved performance in language learning reported in §6.3. Also, there is a huge drop in speaker
identity accuracy (SID) when our syllabic embedding is used, indicating that the speaker information
is somewhat marginalized out.

Also, the failure in slot filling (SF) and automatic speech verification (ASV) by Sylber-Segment is
attributed to the fact that S3PRL is tuned to lengthy input of speech representation with a regular
sampling rate. Further investigation is required, for a proper application of syllabic embedding to
those tasks.

Table 10: Performance comparison of various models across different metrics
Model PR KS IC SID ER ASR ASR (w/ LM) QbE SF ASV SD

PER↓ Acc↑ Acc↑ Acc↑ Acc↑ WER↓ WER↓ MTWV ↑ F1↑ CER↓ EER↓ DER↓
Hubert-base 5.41 96.3 98.34 81.42 64.92 6.42 4.79 0.0736 88.53 25.2 5.11 5.88
Sylber-All Layer 11.78 96.75 98.44 76.16 64.34 11.76 8.32 0.0623 85.79 29.21 6.72 5.08
Sylber-Segment ∗5.98 97.08 98.92 50.59 64.50 ∗14.07 – 0.0139 – – – 13.21
Sylber-Segment-Expand 88.79 97.11 99.08 51.25 65.25 12.04 8.88 0.0591 85.66 29.49 8.75 15.55

A.4 RHYMING WORD PAIRS

For the consonant at the onset, we constrain the difference to be phonologically adjacent: voiced
or voiceless sounds (e.g., “d”own vs “t”own), non-nasal or nasal sounds (e.g., “b”all vs “m”all), or
spatially adjacent pairs (e.g., “l”est vs “r”est). For the consonant at the coda, we confine the words
to have “/I/” at the nucleus vowel to minimize different coarticulation pattern induced by different
ending consonants. We only consider nasality difference at the coda and we regard voiced and un-
voiced consonants the same since voiced-ness is relatively subtle at the coda position. Additionally,
we include “n-ng” contrast. Table 11 shows the full list of word pairs.

A.5 OUT-OF-DOMAIN GENERALIZABILITY OF SYLBER

To verify whether the syllable segmentation by Sylber can be applied to other domain, we evaluated
the model on different datasets from other domain and languages. Specifically, we use Fisher corpus
Cieri et al. (2004), an English conversational dataset with noisy phone call dialogues. As the training
data of Sylber are clean audiobook reading data, evaluation on Fisher can show whether Sylber can
work on a different style of speaking and noisy speech. To create the testbed, we sample 200
conversations for each of validation and test set, and we filtered utterances with less than 3 words
spoken, leaving 23K utterances for each set. Furthermore, we also evaluated two datasets from
different languages, Spanish and Mandarin, to demonstrate that the syllable boundary detection by
Sylber is not limited to English. These two languages are selected since they are the most common
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Table 11: Rhyming word pairs used in the discriminability task.

Onset
Voicedness

b-p v-f d-t z-s g-k
bay, pay vill, fill down, town zeal, seal goal, coal
bar, par vine, fine dall, tall zip, sip gap, cap
ban, pan vault, fault deen, teen zig, sig gain, cane
bad, pad vox, fox dime, time zoo, sue gauge, cage

Nasality Place
b-m d-n l-r t-s

ball, mall dose, nose lock, rock tank, sank
bean, mean dull, null lane, rain tale, sale
boon, moon dine, nine long, wrong tip, sip
bost, most deal, kneal lest, rest tell, sell

Coda
g/k-ng n-ng d/t-n b/p-m

pig, ping thin, thing kid, kin trip, trim
sick, sing bin, bing seed, seen deep, deem
dig, ding sin, sing chit, chin sip, seem

click, cling kin, king grid, grin rip, rim

Table 12: Syllable detection performance in out-of-distribution data. Sylber with the same config-
uration as the main experiment is applied. Pr: precision, Re: recall, and R: R-value. Sylber can
generalize to unseen corpus, language, and style. Sylber can generalize across novel domain and
langauges without any tuning, showing high scores in all metrics.

Corpus Language Style Pr↑ Re↑ F1↑ R↑
LibriSpeech (in-domain) English Reading 76.6 68.3 72.2 75.9

Fisher English Conversation 78.8 66.2 71.9 75.0
MLS Spanish Reading 73.5 69.9 71.7 75.9

AISHELL-3 Mandarin Reading 74.9 68.0 71.3 75.3

languages other than English and have distinct nature from English. In particular, Mandarin is a
tonal language and a distinct Asian language which has a different root from Latin. We used a
Spanish subset of Multilingual LibriSpeech (MLS) (Pratap et al., 2020) and AISHELL-3 (Shi et al.,
2021) for Mandarin.

We follow the same procedure proposed by Peng et al. (2023) and Cho et al. (2024b) to get ground
truth syllable segments. We apply Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) to get
phoneme alignments and then we group phonemes by syllabification rules to get syllable boundaries.
For syllabification, we use a script by Gorman (2013) for English and Silabeador (Sanz-Lázaro) for
Spanish. For Mandarin, we regard character boundaries as syllable boundaries since Mandarin is a
syllabic language. Lastly, we measure the same syllable detection scores as Table 1 using the exactly
same configuration of Sylber and greedy segmentation. Note that we do not include any language
or domain specific optimization or training.

Table 12 shows the boundary detection scores in the three out-of-domain (OOD) datasets. As we can
see, all metrics show close to or even better scores compared to the in-domain scores that are denoted
at the top row. Sylber shows a surprising generalization capacity in challenging noisy conversation
data and even novel languages distinct from English. The similarity matrices in Figure 5 show
clean and prominent segments, similar to the in-domain sample shown in Figure 2. This high-
performance does not require any domain specific design adaptation. The main reason of this zero-
shot multilingual generalization is due to the fact that Sylber represent phonological information
rather than other higher order linguistic information like semantic concepts. This finding resonates
well with a linguistics perspective that suggests a shared physical basis of phonologies of different
languages (Ohala, 1984; 1990). Hypothetically, we can use Sylber for initial segmentation of other
domain or languages to train a domain specific or data-scaled domain general Sylber. To sum, this
result suggests a strong potential of our method in the real-world, multilingual application.
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Figure 5: Frame-wise similarity matrices of Sylber applied to samples from OOD datasets: Fisher
(top), Spanish (middle), and Mandarin (bottom). The dot product is applied to raw features to
measure similarity. We can see highly prominent syllabic segments in all OOD cases.

A.6 ABLATION EXPERIMENTS: DIFFERENT MODEL & SEGMENT INITIALIZATION

To demonstrate robustness of training Sylber, we conduct ablation experiments with different initial
segments and model weights. In particular, we simulate a noisier setting by randomly adding noise
to the initial segment boundaries. We randomly selected 20% of syllable boundaries from training,
and shifted 20-80ms, affecting 36 of the segment annotations in total. This perturbation is applied
to the SDHuBERT unsupervised segmentation we used in the first stage and is done once before the
training.

We train models with two different initialization – SDHuBERT or HuBERT, to see if initialization
with SDHuBERT is necessary. We do not include training from scratch since the training is not
successful, resulting in degenerate representations. Moreover, we train the models with a reduced
setting by decreasing EMA decay from 0.9995 to 0.999, increasing the learning rate from 1e-4
to 5e-4, and reducing the number of updates from 115K to 50K. And we skip the second stage
training. This modification decreases stability in EMA-based self-distillation (Baevski et al., 2022),
therefore, we can also inspect the stability of self-segmentation distillation. We measure the same
syllable detection and discovery metrics used in Table 1.

As shown in Table 13, the models trained with the noisier initial segments can perform well, showing
high scores closer to the main Sylber model. The frame-wise similarity matrices visualized in Figure
6 in show similar prominent syllabic structures in both models. The performance difference between
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Table 13: Syllable detection and discovery performance for Sylber trained with noisy initial seg-
mentation with reduced training setting. Original Sylber result is denoted at the top. Pr: precision,
Re: recall, R: R-value, SP: syllabic purity, CP: cluster purity, and MI: mutual information.

Initial Segmentation Model Init. Syllable Detection Syllable Discovery
Pr↑ Re↑ F1↑ R↑ SP↑ CP↑ MI↑

SDHuBERT Segment SDHuBERT 76.6 68.3 72.2 75.9 63.16 43.92 5.24
Noisy SDHuBERT Segment SDHuBERT 74.9 67.8 71.2 75.2 61.87 42.19 5.17
Noisy SDHuBERT Segment HuBERT 73.4 68.6 70.9 75.2 63.48 41.62 5.22
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Figure 6: Frame-wise similarity matrix of raw features measured by dot product. Three different
samples are shown by rows and columns mean different models. Next to the original model, Sylber
(main), the models are denoted as Initial Model-Initial Segment. Even with initial noisy syllable
segments (NoisySyllable), similar prominent syllable segments emerge from training. When ground
truth phoneme boundaries (GTPhoneme) are used, phonemic segments are induced.

two initializations is marginal and no single model outperforms in all metrics. This indicates that
HuBERT can be also used for weight initialization and SDHuBERT is unnecessary if a reasonable
initial segmentation is provided.

Furthermore, we train models using phoneme boundaries as initial segments to see the case where
the granularity of boundaries is dramatically different. While syllabic segmentation is naturally
driven from SDHuBERT, we do not have a readily available unsupervised phonemic segmenta-
tion. Therefore, we utilize the ground truth phoneme transcription and alignment inferred by MFA
(McAuliffe et al., 2017). We train the exact same settings as above with two different model ini-
tializations and the reduced training setting. We measure the same detection metrics but against the
ground truth phoneme boundaries (Table 14).

As shown in right two columns in Figure 6, the resulting features are more structured with phonemic
granularity, showing prominent squares accurately aligned with the ground truth phoneme bound-
aries. Moreover, the detection scores are very high, near to or over 0.9 (Table 14). Even though the
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Table 14: Phoneme detection performance using ground truth phoneme segments as initial segmen-
tation by different model weight initialization (SDHuBERT or HuBERT). Pr: precision, Re: recall,
and R: R-value.

Initial Segmentation Model Initialization Pr↑ Re↑ F1↑ R↑
Phoneme Segment SDHuBERT 87.6 90.3 89.0 90.4

HuBERT 94.2 91.6 92.9 93.6

Vowel
AA
AE
AH
AO
AY
EH
ER
IH
IY
OW
UW

Onset Consonant
B
D
DH
F
HH
K
L
M
N
R
S
SH
T
V
W
Y
N/A

Coda Consonant
D
L
N
N-D
R
T
TH
V
Z
N/A

Top 1~ 9 Syllables
DH-AH
AH
AH-V
IH-N
AE-N-D
AY
T-AH
AH-N-D
Other

Top 9~ 17 Syllables
HH-IY
L-IY
IH-T
W-AH-Z
T-UW
DH-IY
T-ER
R-IY
Other

Top 17~ 25 Syllables
HH-IH-Z
Y-UW
T-IH
B-IY
N-AA-T
DH-AH-T
D-IH
IH-Z
Other

Figure 7: Visualization of Sylber embedding space using t-SNE. The top row shows different col-
orization by nucleus vowels, onset consonants, and coda consonants. The bottom row shows col-
orization by different syllables. As shown here, embeddings for each syllable are distinctively clus-
tered, putting similar syllables closer (e.g., “DH-AH”, “T-AH”, and “AH” in the bottom left panel).

ground truth boundaries are used in training, this is still surprising since sensitivity to boundaries
is not guaranteed as the training does not involve any contrastive or categorization objective. Also,
unlike the syllable case, the model initialized with HuBERT shows higher performance than the
one with SDHuBERT. This indicates that phonemic information is better encoded in HuBERT than
SDHuBERT, which is obvious since SDHuBERT has more syllable-level information.

Lastly, the reduced training setting with higher learning rate and lower EMA decay is expected
to induce a less stable optimization than the original setting. This means that our method is not
sensitive to a specific choice of hyperparameters, and easy to train.

A.7 VISUALIZATION OF SYLBER EMBEDDING

To provide a better sense of embedding structure in Sylber, we apply t-SNE to syllabic embeddings
obtained from Sylber. We select 50 most frequent syllables in LibriSpeech dataset, ignoring stress.
Then, for each syllable, we select 1K most matching Sylber segments and use those embeddings
(50K vector embeddings in total). We plot the result with colorization by different categories in
Figure 7. Overall, the Sylber embedding space demonstrates highly discrete structure. The top
row shows color distributions by nucleus vowels, onset consonants, and coda consonants. We can
see the syllables with same phoneme components are closely clustered. Also, the distance reflects
phonological similarity of the sounds. This is most prominently shown in vowels and coda con-
sonants. For examples, the similar vowels “AH” and “AE” clusters are adjacent. Also, “N” and
“N-D” at the coda are clustered together. The bottom row shows color distributions of individual
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Table 15: Real-time factor (RTF) of syllable segmentation by Sylber and SDHuBERT.

Batch Size Model RTF↓
1 SDHuBERT 0.00635

Sylber 0.00174

32 SDHuBERT 0.00600
Sylber 0.00169
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Figure 8: Performance decomposition by different input lengths for Sylber and HuBERT. The x
axis shows the input length in seconds. Figure 8a shows Syllable detection metrics while Figures
8b-d show resynthesis scores for different SSL models and unit granularity. The HuBERT units
are denoted with“HB-” in the label and dashed lines. Figure 8b shows WER, Figure 8c shows
Articulatory correlation and Figure 8d shows Pitch correlation.

syllables selected from top N most frequent syllables. We can see each individual island is corre-
sponding to different syllable suggesting a high specificity of Sylber in representing syllables. Also,
the clusters of phonologically similar syllables are adjacent. For example, “DH-AH”, “T-AH”, and
“AH” in the bottom left plot, and “L-IY” and “DH-IY” in the bottom middle plot. Furthermore,
“AE-N-D” and“AH-N-D” are not well distinguishable, thus overlapping in the embedding space. To
sum, Sylber embedding space is highly discrete and well aligned with phonological characteristics
of syllables.

A.8 REAL-TIME FACTOR

We evaluate the inference efficiency of Sylber and compare it to SDHubert to show the efficacy
of using these models as segmentation models in the Table 15. In the first two rows, we evaluate
the real-time factor (RTF) in the small batch size regime to measure the efficacy for realtime speech
processing. We randomly sampled 32 LibriSpeech files and sequentially ran them through the model
and measured the end-to-end latency in order to calculate the RTF. In the latter two rows, we evaluate
the RTF in the large batch size regime to measure the efficacy for offline speech processing. We
randomly sampled 32 batches of 32 files of LibriSpeech files and ran them through the model in
a batched manner. All experiments used the same set of randomly selected files in the same order
for both SDHuBERT and Sylber. Every experiment was run on a single A6000 GPU with 2 AMD
EPYC 7513 32-Core Processor. As result, Sylber shows a ∼4 times reduction in RTF in both single
and batched inference compared to SDHuBERT. As we are using a naive numpy implementation for
Sylber, this gap can be even larger with more optimized implementation.

A.9 PERFORMANCE BY INPUT LENGTH

We decomposed the performance for syllable detection and resynthesis into different input length
bins. As shown in Figure 8, the syllable detection scores have marginal differences across different
input length bins. In terms of resynthesis, there is also minimal difference in input lengths longer
than 5 seconds, slightly degrading in 15-20s and 20-25s inputs in resynthesis.
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